JP2009250432A - Mechanical seal and mechanical seal device - Google Patents

Mechanical seal and mechanical seal device Download PDF

Info

Publication number
JP2009250432A
JP2009250432A JP2008103405A JP2008103405A JP2009250432A JP 2009250432 A JP2009250432 A JP 2009250432A JP 2008103405 A JP2008103405 A JP 2008103405A JP 2008103405 A JP2008103405 A JP 2008103405A JP 2009250432 A JP2009250432 A JP 2009250432A
Authority
JP
Japan
Prior art keywords
seal
ring
region
rotary
mechanical seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008103405A
Other languages
Japanese (ja)
Other versions
JP4724731B2 (en
Inventor
Takahito Fukumoto
崇人 福本
Masaki Miyamoto
正樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2008103405A priority Critical patent/JP4724731B2/en
Publication of JP2009250432A publication Critical patent/JP2009250432A/en
Application granted granted Critical
Publication of JP4724731B2 publication Critical patent/JP4724731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanical seal which can properly secure the followability of a static sealed ring even under a high-temperature condition, and is high in reliability. <P>SOLUTION: The mechanical seal 4 is formed in such a manner that a rotating sealed ring 15 is fixed to a rotating shaft 2, and the static sealed ring 14 which is arranged at the side of an atmospheric region of the rotating sealed ring 15, and press-energized to the rotating sealed ring 15 is movably held in a metal-made seal case 1 which the rotating shaft 2 penetrates in the axial direction via a rubber O-ring 17. In the mechanical seal, heat radiation fins 31 are protrusively formed on a face facing the atmospheric region B in the seal case 1, and an air blowing fan 32, which is arranged at a position opposite to the heat radiation fins 31 in the atmospheric region B, and is rotated for blowing air to the heat radiation fins 31 by the rotation of the rotating shaft 2, is arranged at the rotating shaft 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポンプ,ミキサー等の回転機器に軸封手段として使用されるメカニカルシール及びこれを二次シールとして使用するタンデム型シール等のメカニカルシール装置に関するものである。   The present invention relates to a mechanical seal used as a shaft sealing means for a rotary device such as a pump and a mixer, and a mechanical seal device such as a tandem type seal using the same as a secondary seal.

ポンプ,ミキサー等の回転機器に軸封手段として使用されるメカニカルシール装置としては、機内領域側の一次シールたる第1メカニカルシールと大気領域側の二次シールたる第2メカニカルシールとをタンデム配置してなるタンデム型シールが周知である。かかるタンデム型シールにあっては、第1メカニカルシールが、シールケースに固定された静止密封環と、静止密封環の機内領域側に配して、回転軸にOリングを介して軸線方向に移動可能に保持された回転密封環と、シールケースと回転密封環との間に介装されて回転密封環を静止密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、機内領域たる被密封流体領域と両メカニカルシール間に形成された中間シール領域とを遮蔽シールするように構成されており、第2メカニカルシールが、シールケースにOリングを介して軸線方向に移動可能に保持された静止密封環と、静止密封環の機内領域側に配して回転軸に固定された回転密封環と、シールケースと静止密封環との間に介装されて静止密封環を回転密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、機外領域たる大気領域と前記中間シール領域とを遮蔽シールするように構成されている(例えば、特許文献1を参照)。   As a mechanical seal device used as a shaft seal means for rotary devices such as pumps and mixers, a first mechanical seal as a primary seal on the in-machine region side and a second mechanical seal as a secondary seal on the air region side are arranged in tandem. A tandem seal is known. In such a tandem type seal, the first mechanical seal is disposed on the in-machine region side of the stationary seal ring fixed to the seal case and the stationary seal ring, and moves in the axial direction via the O-ring on the rotating shaft. An in-flight region comprising: a rotational seal ring that is operatively held; and a spring member that is interposed between the seal case and the rotational seal ring and biases the rotary seal ring into pressure contact with the stationary seal ring. It is configured to shield and seal the sealed fluid region and the intermediate seal region formed between both mechanical seals, and the second mechanical seal is held in the seal case so as to be movable in the axial direction via an O-ring. A stationary sealing ring, a rotational sealing ring disposed on the in-machine region side of the stationary sealing ring and fixed to the rotary shaft, and a stationary sealing ring interposed between the seal case and the stationary sealing ring. Press contact Comprises a spring member for biasing in order to have the said the outboard region serving atmospheric region intermediate the sealing region is configured to shield the seal (e.g., see Patent Document 1).

而して、このように被密封流体領域と大気領域とを中間シール領域を介してシールするタンデム型シールは、単一のメカニカルシールにより被密封流体をシールするシングルシールに比して、被密封流体領域と大気領域とのシールをより確実に行うことができるものであり、しかも第1メカニカルシールによるシール機能が低下,喪失するような非常事態が生じた場合にも、第2メカニカルシールが二次シールないし安全シールとして機能して、被密封流体の大気領域への大量漏れを防止することができるものであり、軸封手段としての信頼性及び安全性に極めて優れるものである。したがって、タンデム型シールにおいて、二次シールたる第2メカニカルシールが適正に機能することが極めて重要である。   Thus, the tandem seal that seals the sealed fluid region and the atmospheric region through the intermediate seal region in this way is more sealed than the single seal that seals the sealed fluid by a single mechanical seal. Sealing between the fluid region and the atmospheric region can be performed more reliably, and even when an emergency situation occurs in which the sealing function of the first mechanical seal is reduced or lost, the second mechanical seal is It functions as a secondary seal or a safety seal, can prevent a large amount of fluid to be sealed from leaking to the atmosphere, and is extremely excellent in reliability and safety as a shaft sealing means. Therefore, in the tandem type seal, it is extremely important that the second mechanical seal as the secondary seal functions properly.

特開2004−266756号公報JP 2004-266756 A

しかし、静止密封環は、これとシールケースとの対向周面間にOリングを適度に圧縮された状態で装填させておくことにより、シールケースとの間のシール機能(二次シール機能)を適正に確保しつつ軸線方向に円滑に移動できる追従性を担保されるものであるが、第2メカニカルシールにあっては、高温条件下では静止密封環の追従性が適正に担保されず、静止密封環の追従不良により適正なメカニカルシール機能が発揮されない虞れがあった。   However, the stationary sealing ring has a sealing function (secondary sealing function) between the stationary sealing ring and the sealing case by loading the O-ring in an appropriately compressed state between the opposed peripheral surfaces of the stationary sealing ring. The second mechanical seal is guaranteed to follow properly and can move smoothly in the axial direction while being properly secured. There is a possibility that an appropriate mechanical seal function may not be exhibited due to poor follow-up of the sealing ring.

すなわち、一般に、シールケースが伝熱効率の高い金属材で構成されると共にOリングが熱膨張係数の高いゴム材で構成されているために、高温条件下においては、シールケースからOリングへの伝熱により、Oリングが大きく熱膨張して、静止密封環とシールケースとの対向周面間におけるOリングの圧縮度(締め代)が必要以上に高くなる。その結果、静止密封環とOリングとの摩擦抵抗が高くなって、静止密封環の軸線方向移動が円滑に行われなくなり、その追従性が不良となる。なお、かかる静止密封環の追従不良の問題は、第2メカニカルシールがシングルシールとして使用される場合においても、同様に生じる。   That is, in general, since the seal case is made of a metal material having a high heat transfer efficiency and the O-ring is made of a rubber material having a high thermal expansion coefficient, the transfer from the seal case to the O-ring is performed under high temperature conditions. Due to the heat, the O-ring expands greatly, and the degree of compression (tightening margin) of the O-ring between the opposed peripheral surfaces of the stationary sealing ring and the sealing case becomes higher than necessary. As a result, the frictional resistance between the stationary seal ring and the O-ring is increased, and the axial movement of the stationary seal ring is not performed smoothly, and the followability is poor. In addition, the problem of the follow-up failure of the stationary seal ring similarly occurs even when the second mechanical seal is used as a single seal.

本発明は、このような問題を生じることなく、高温条件下においても静止密封環の追従性を適正に担保することができる信頼性の高いメカニカルシールを提供すると共に、かかるメカニカルシールを第2メカニカルシールとして使用することにより良好且つ安全なシールを行いうる信頼性の高いメカニカルシール装置を提供することを目的とするものである。   The present invention provides a highly reliable mechanical seal that can appropriately ensure the followability of the stationary seal ring even under high temperature conditions without causing such problems, and this mechanical seal is a second mechanical seal. An object of the present invention is to provide a highly reliable mechanical seal device that can perform a good and safe seal by using it as a seal.

本発明は、第1に、回転軸に回転密封環を固定すると共に、回転軸が洞貫する金属製のシールケースに、回転密封環の大気領域側に配して、回転密封環へと押圧附勢された静止密封環をゴム製のOリングを介して軸線方向移動可能に保持してあるメカニカルシールにおいて、上記の目的を達成すべく、特に、シールケースにおける大気領域に臨む面に放熱フィンを突設すると共に、回転軸に、大気領域における放熱フィンの対向位置に配して、回転軸の回転に伴って当該放熱フィンへと送風すべく回転せしめられる送風ファンを設けておくことを提案するものである。   In the present invention, firstly, the rotary seal ring is fixed to the rotary shaft, and the metal seal case through which the rotary shaft penetrates is arranged on the atmospheric region side of the rotary seal ring and pressed to the rotary seal ring. In a mechanical seal in which an energized stationary sealing ring is held so as to be movable in an axial direction via a rubber O-ring, in order to achieve the above-mentioned purpose, in particular, a heat radiating fin is provided on the surface facing the atmospheric region in the sealing case. Proposed to provide a blower fan that is arranged on the rotating shaft at a position opposite to the heat dissipating fin in the atmospheric region and is rotated to blow air to the heat dissipating fin as the rotating shaft rotates. To do.

また、本発明は、第2に、回転機器のハウジングに取り付けられた金属製のシールケースとこれを洞貫する当該回転機器の回転軸との間に、機内領域側の第1メカニカルシールと機外領域側の第2メカニカルシールとを軸線方向に並列配置してなるメカニカルシール装置であって、第2メカニカルシールが、シールケースにゴム製のOリングを介して軸線方向に移動可能に保持された静止密封環と、静止密封環の機内領域側に配して回転軸に固定された回転密封環と、シールケースと静止密封環との間に介装されて静止密封環を回転密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、機外領域たる大気領域と両メカニカルシール間に形成される中間シール領域とを遮蔽シールするように構成されたメカニカルシール装置において、上記の目的を達成すべく、特に、シールケースにおける大気領域に臨む面に放熱フィンを突設すると共に、回転軸に、大気領域における放熱フィンの対向位置に配して、回転軸の回転に伴って当該放熱フィンへと送風すべく回転せしめられる送風ファンを設けておくことを提案するものである。   In addition, the present invention secondly, the first mechanical seal on the in-machine region side and the machine between the metal seal case attached to the housing of the rotary machine and the rotary shaft of the rotary machine passing through the metal seal case. A mechanical seal device in which an outer region side second mechanical seal is arranged in parallel in the axial direction, and the second mechanical seal is held in a seal case so as to be movable in the axial direction via a rubber O-ring. The stationary seal ring, the rotary seal ring arranged on the in-machine region side of the stationary seal ring and fixed to the rotary shaft, and interposed between the seal case and the stationary seal ring, the stationary seal ring to the rotary seal ring A mechanical seal device configured to shield and seal an atmospheric region which is an out-of-machine region and an intermediate seal region formed between both mechanical seals. In order to achieve the above object, in particular, a heat radiation fin protrudes from the surface facing the air region in the seal case, and the rotation shaft is arranged at a position opposite to the heat radiation fin in the air region so that the rotation shaft rotates. Accordingly, it is proposed to provide a blower fan that is rotated to blow air to the radiating fin.

本発明のメカニカルシールにあっては、シールケースを空冷することができるから、高温条件下においても、ゴム製のOリングがシールケースからの伝熱により熱膨張することがなく、シールケースと静止密封環との間におけるOリングの締め代を適正に維持することができる。したがって、静止密封環がシールケースとの間を適正に二次シールされた状態で良好な追従機能を発揮して、信頼性の高いメカニカルシール機能を発揮することができる。しかも、シールケースの空冷手段の駆動源として回転軸を利用するため、格別の冷却設備を必要とせず、メカニカルシールのイニシャルコスト及びランニングコストが高くなることもない。   In the mechanical seal of the present invention, since the seal case can be air-cooled, the rubber O-ring does not thermally expand due to heat transfer from the seal case even under high temperature conditions, and the seal case is stationary. The interference of the O-ring with the sealing ring can be properly maintained. Therefore, a good follow-up function can be exhibited in a state where the stationary seal ring is properly secondary-sealed with the seal case, and a highly reliable mechanical seal function can be exhibited. In addition, since the rotating shaft is used as a drive source for the air cooling means of the seal case, no special cooling equipment is required, and the initial cost and running cost of the mechanical seal are not increased.

また、本発明のメカニカルシール装置にあっては、高圧条件下においても第2メカニカルシールにおける静止密封環の追従性を適正に担保することができ、第2メカニカルシールを二次シールないし安全シールとして適正に機能させることができる。したがって、本発明によれば、信頼性の高いメカニカルシール装置を提供することができる。   In the mechanical seal device of the present invention, the followability of the stationary seal ring in the second mechanical seal can be properly ensured even under high pressure conditions, and the second mechanical seal can be used as a secondary seal or safety seal. It can function properly. Therefore, according to the present invention, a highly reliable mechanical seal device can be provided.

以下、本発明の実施の形態を図面に基づいて具体的に説明する。図1は本発明に係るメカニカルシールを二次シール(第2メカニカルシール)として使用するメカニカルシール装置の一例を示す半截の縦断側面図であり、図2は図1の要部を拡大して示す詳細図であり、図3は当該メカニカルシール装置の要部(空冷手段)を立体的に示す斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical side view of a half-pitch showing an example of a mechanical seal device using a mechanical seal according to the present invention as a secondary seal (second mechanical seal), and FIG. 2 is an enlarged view of the main part of FIG. FIG. 3 is a detailed perspective view, and FIG. 3 is a perspective view three-dimensionally showing the main part (air cooling means) of the mechanical seal device.

図1に示すメカニカルシール装置は、ポンプ,ミキサー等の回転機器に装備されるものであり、回転機器のハウジングに取り付けられたシールケース1とこれを同心状に洞貫する当該回転機器の回転軸2との間に、機内領域側に位置する第1メカニカルシール3と機外領域側に位置する第2メカニカルシール4とを軸線方向に並列状にタンデム配置してなるタンデム型シールである。   The mechanical seal device shown in FIG. 1 is mounted on a rotary device such as a pump and a mixer, and has a seal case 1 attached to a housing of the rotary device and a rotary shaft of the rotary device concentrically penetrating therethrough. 2 is a tandem type seal in which a first mechanical seal 3 located on the in-machine region side and a second mechanical seal 4 located on the outside region side are arranged in tandem in parallel in the axial direction.

シールケース1は、図1に示す如く、ケース本体5の内周部に第1及び第2静止密封環保持部6,7を突出形成した金属製(例えばステンレス鋼)の円筒状構造物である。第2静止密封環保持部7は、ケース本体5の機外領域側(図1における左側)の端部から内方に突出する環状壁部7aとその内周端部から機内領域側(図1における右側)へと突出する円筒状部7bとからなる。回転軸2は、図1に示す如く、軸本体8とこれに嵌挿固定された金属製のスリープ9とからなり、スリーブ9には環状の第1及び第2回転密封環保持部9a,9bが突出形成されている。   As shown in FIG. 1, the seal case 1 is a metal (for example, stainless steel) cylindrical structure in which first and second stationary seal ring holding portions 6 and 7 protrude from the inner peripheral portion of the case body 5. . The second stationary seal ring holding portion 7 includes an annular wall portion 7a projecting inwardly from an end of the case body 5 on the outboard region side (left side in FIG. 1) and an inboard region side (see FIG. 1). And a cylindrical portion 7b projecting to the right side. As shown in FIG. 1, the rotary shaft 2 includes a shaft main body 8 and a metal sleep 9 fitted and fixed thereto. The sleeve 9 has annular first and second rotary sealing ring holding portions 9a and 9b. Projectingly formed.

第1メカニカルシール3は、図1に示す如く、シールケース1の第1静止密封環保持部6に固定された静止密封環(以下「第1静止密封環」という)10と、第1静止密封環10の機内領域側に配して、回転軸2に軸線方向移動可能に保持された回転密封環(以下「第1固定密封環」という)11と、第1回転密封環11を第1静止密封環10へと押圧接触させるべく附勢するスプリング部材12とを具備して、両密封環10,11の対向端面たる密封端面10a,11aの相対回転摺接作用により機内領域たる被密封流体領域Aと両メカニカルシール3,4間に形成される中間シール領域Cとを遮蔽するように構成されたコンタクトシールである。   As shown in FIG. 1, the first mechanical seal 3 includes a stationary sealing ring (hereinafter referred to as “first stationary sealing ring”) 10 fixed to a first stationary sealing ring holding portion 6 of the seal case 1, and a first stationary sealing. A rotary seal ring (hereinafter referred to as a “first fixed seal ring”) 11 disposed on the in-machine region side of the ring 10 and held on the rotary shaft 2 so as to be movable in the axial direction, and the first rotary seal ring 11 are first stationary. A sealed fluid region which is an in-machine region due to the relative rotational sliding contact action of the sealed end surfaces 10a and 11a, which are the opposed end surfaces of the seal rings 10 and 11, A contact seal configured to shield A and an intermediate seal region C formed between the mechanical seals 3 and 4.

第1回転密封環11は、回転軸2のスリーブ9にゴム製のOリング13を介して軸線方向移動可能に保持されており、スプリング部材12は、スリーブ9の第1回転密封環保持部9aと第1回転密封環11との間に介装された複数のコイルスプリング(1つのみ図示)で構成されている。両密封環10,11の構成材はシール条件等に応じて適宜に選定されるが、一般に、固定部材である第1静止密封環10はセラミックス,超硬合金等の硬質材で構成されており、可動部材である第1回転密封環11は第1静止密封環6より軟質で自己潤滑性を有するカーボン等で構成されている。なお、図示していないが、第1回転密封環11は、これと第1回転密封環保持部9aとの間に配設したドライブピン手段により、所定範囲での軸線方向移動を許容しつつ回転軸2に対する相対回転を阻止されている。   The first rotary seal ring 11 is held on the sleeve 9 of the rotary shaft 2 so as to be movable in the axial direction via a rubber O-ring 13, and the spring member 12 is a first rotary seal ring holding portion 9 a of the sleeve 9. And a plurality of coil springs (only one shown) interposed between the first rotary seal ring 11 and the first rotary seal ring 11. The constituent materials of both the sealing rings 10 and 11 are appropriately selected according to the sealing conditions and the like. In general, the first stationary sealing ring 10 as a fixing member is made of a hard material such as ceramics or cemented carbide. The first rotary seal ring 11 that is a movable member is made of carbon or the like that is softer and self-lubricating than the first stationary seal ring 6. Although not shown, the first rotary seal ring 11 is rotated while allowing axial movement within a predetermined range by a drive pin means disposed between the first rotary seal ring 11 and the first rotary seal ring holding portion 9a. Relative rotation with respect to the shaft 2 is prevented.

第2メカニカルシール4は、図1及び図2に示す如く、シールケース1の第2静止密封環保持部7に軸線方向に移動可能に保持された静止密封環(以下「第1静止密封環」という)14と、第2静止密封環14の機内領域側に配して回転軸2に固定された回転密封環15と、第2密封環保持部7と第1静止密封環14との間に介装されて静止密封環14を回転密封環15へと押圧接触させるべく附勢するスプリング部材16とを具備して、両密封環14,15の対向端面たる密封端面14a,151aの相対回転摺接作用により前記中間シール領域Cと機外領域たる大気領域Bとを遮蔽シールするように構成されたコンタクトシールである。   As shown in FIGS. 1 and 2, the second mechanical seal 4 is a stationary sealing ring (hereinafter referred to as “first stationary sealing ring”) held in a second stationary sealing ring holding portion 7 of the sealing case 1 so as to be movable in the axial direction. 14), between the second stationary seal ring 14 and the rotary seal ring 15 disposed on the in-flight region side of the second stationary seal ring 14 and fixed to the rotary shaft 2, and between the second seal ring holder 7 and the first stationary seal ring 14. And a spring member 16 that is interposed to urge the stationary seal ring 14 into a pressing contact with the rotary seal ring 15, so that the sealing end faces 14 a and 151 a that are the opposite end faces of the seal rings 14 and 15 are relatively rotated. The contact seal is configured to shield and seal the intermediate seal region C and the air region B which is an out-of-machine region by contact action.

第2静止密封環14は、第2静止密封環保持部7の円筒状部7bにゴム製のOリング17を介して軸線方向移動可能に外嵌保持されている。第2回転密封環15は、回転軸2の第2回転密封環保持部9bに固定されている。スプリング部材16は、第2静止密封環保持部7の環状壁部7aと第2静止密封環14との間に介装された複数のコイルスプリング(1つのみ図示)で構成されている。両密封環14,15の構成材はシール条件等に応じて適宜に選定されるが、一般に、固定部材である第2回転密封環15はセラミックス,超硬合金等の硬質材で構成されており、可動部材である第2静止密封環14は第2回転密封環15より軟質で自己潤滑性を有するカーボン等で構成されている。なお、図示していないが、第2静止密封環14は、これと第2静止密封環保持部7の環状壁部7aとの間に配設したドライブピン手段により、所定範囲での軸線方向移動を許容しつつシールケース1に対する相対回転を阻止されている。   The second stationary seal ring 14 is externally fitted and held on the cylindrical portion 7b of the second stationary seal ring holding portion 7 via a rubber O-ring 17 so as to be movable in the axial direction. The second rotary seal ring 15 is fixed to the second rotary seal ring holding portion 9 b of the rotary shaft 2. The spring member 16 is composed of a plurality of coil springs (only one is shown) interposed between the annular wall 7 a of the second stationary seal ring holding portion 7 and the second stationary seal ring 14. The constituent materials of both the sealing rings 14 and 15 are appropriately selected according to the sealing conditions and the like, but in general, the second rotary sealing ring 15 as a fixing member is made of a hard material such as ceramics or cemented carbide. The second stationary seal ring 14 that is a movable member is made of carbon or the like that is softer and self-lubricating than the second rotary seal ring 15. Although not shown, the second stationary sealing ring 14 is moved in the axial direction within a predetermined range by drive pin means disposed between the second stationary sealing ring 14 and the annular wall 7a of the second stationary sealing ring holding part 7. Is prevented from rotating relative to the seal case 1.

シールケース1のケース本体5と第2静止密封環14との対向周面間は、図2に示す如く、軸線方向において第2静止密封環保持部7の環状壁部7aから密封端面14aの近傍まで延びる円筒体18をケース本体5の内周部に嵌着することによって、狭小の環状隙間である第1絞り路19とされている。また、ケース本体5と第2回転密封環保持部9bとの対向周面間は、図2に示す如く、ケース本体5の内周部に環状凸部5aを形成することにより、狭小の環状隙間である第2絞り路20とされている。したがって、中間シール領域Cは、これらの絞り路19,20によって、第1絞り路19より機外領域側の中間シール領域部分つまり第2静止密封環14と第2密封環保持部7の環状壁部7aとの間のスプリング部材16が配設されている空間(以下「第1中間シール領域部分」という)C1と、両絞り路19,20間の中間シール領域部分つまり密封端面14a,15aの外周側空間(以下「第2中間シール領域部分」という)C2と、第2絞り路20より機内領域側の中間シール領域部分つまり第2回転密封環保持部9bの機内領域側空間(以下「第3中間シール領域部分」という)C3とに区画されている。なお、絞り路19,20の半径方向幅(内外周面の半径差)は、ガス25の流れの円滑性や後述する圧力損失の効果等を考慮して適宜に設定されるが、通常、25〜250μm程度としておくことが好ましい。   As shown in FIG. 2, the space between the opposing peripheral surfaces of the case body 5 and the second stationary sealing ring 14 of the sealing case 1 is in the vicinity of the sealing end surface 14a from the annular wall portion 7a of the second stationary sealing ring holding portion 7 in the axial direction. By fitting the cylindrical body 18 extending to the inner peripheral part of the case body 5, the first throttle path 19 which is a narrow annular gap is formed. Further, as shown in FIG. 2, a narrow annular gap is formed between the opposing peripheral surfaces of the case main body 5 and the second rotary seal ring holding portion 9b by forming an annular convex portion 5a on the inner peripheral portion of the case main body 5. The second throttle path 20 is. Therefore, the intermediate seal region C is formed by the throttle passages 19 and 20 in the intermediate seal region portion on the outside region side of the first throttle passage 19, that is, the annular wall of the second stationary seal ring 14 and the second seal ring holding portion 7. The space (hereinafter referred to as “first intermediate seal region portion”) C1 between which the spring member 16 is disposed between the portion 7a and the intermediate seal region portion between the throttle paths 19 and 20, that is, the sealing end surfaces 14a and 15a. An outer peripheral side space (hereinafter referred to as “second intermediate seal region portion”) C2 and an intermediate seal region portion closer to the in-machine region side than the second throttle path 20, that is, an in-machine region side space (hereinafter referred to as “second”) of the second rotary seal ring holder 9b. 3) (referred to as “3 intermediate seal region portion”). The radial widths (radial differences between the inner and outer peripheral surfaces) of the throttle paths 19 and 20 are appropriately set in consideration of the smoothness of the flow of the gas 25, the effect of pressure loss described later, and the like. It is preferable to set it to about ˜250 μm.

第2静止密封環14の密封端面14aには、図1及び図2に示す如く、これと同心をなす連続的な環状形状又は断続的な環状形状の凹溝21が形成されている。すなわち、この凹溝21により、密封端面14a,15a間には、図2に示す如く、環状空間21a又は環状をなして同心状に並列する複数の円弧状空間21bが形成される。また、第2静止密封環14には、図1及び図2に示す如く、当該凹溝21から第1中間シール領域部分C1へと貫通する連通路22が形成されている。なお、連通路22の本数は、第2静止密封環14の強度を必要以上に低下させない範囲で適宜に設定することができる。例えば、凹溝21が連続的な環状形状をなす場合には、一般に、3〜16本程度の連通路22を形成しておく。また、凹溝21が断続的な環状形状をなす場合、つまり複数の円弧状の凹溝21が環状をなして同心状に並列する場合には、かかる円弧状の凹溝21の数を3〜16個として、選択された複数の凹溝21に夫々連通する連通路22を形成しておくか、すべての凹溝21に夫々連通する連通路22を形成しておく。   As shown in FIGS. 1 and 2, a continuous annular shape or an intermittent annular groove 21 is formed on the sealing end surface 14 a of the second stationary sealing ring 14. That is, the concave groove 21 forms an annular space 21a or a plurality of arcuate spaces 21b that are concentrically arranged in parallel with each other as shown in FIG. 2 between the sealed end faces 14a and 15a. Further, as shown in FIGS. 1 and 2, the second stationary seal ring 14 is formed with a communication path 22 that penetrates from the concave groove 21 to the first intermediate seal region portion C <b> 1. Note that the number of the communication passages 22 can be set as appropriate as long as the strength of the second stationary sealing ring 14 is not lowered more than necessary. For example, when the concave groove 21 has a continuous annular shape, generally, about 3 to 16 communication paths 22 are formed. Further, when the concave grooves 21 have an intermittent annular shape, that is, when a plurality of arc-shaped concave grooves 21 are concentrically arranged in an annular shape, the number of the circular arc-shaped concave grooves 21 is 3 to 3. The communication paths 22 communicating with the plurality of selected concave grooves 21 are formed as 16 or the communication paths 22 communicating with all the concave grooves 21 are formed.

ケース本体5と円筒体18との対向周面間には環状の給気空間23a,23bが形成されている。この給吸空間は、図2に示す如く、第1給気空間23aとこれに連なって機外領域側へと延びる第2給気空間23bとからなる一連の環状空間であって、第2給気空間23bは第1給気空間23aより狭小なものとされている。円筒体18には、図2に示す如く、第2給気空間23bと第1中間シール領域部分C1とを連通する複数(1つのみ図示)の給気口24が周方向に所定間隔を隔てて穿設されている。ケース本体5には、図1及び図2に示す如く、中間シール領域Cにシールガスないしバージガス25を給排させる給気通路26及び排気通路27が形成されている。給気通路26は、図1及び図2に示す如く、第1給気空間23aに開口されていて、シールガス25を第1給気空間23a、第2給気空間23b及び給気口24を経て、第1中間シール領域部分C1に供給させる。排気通路27は、図1及び図2に示す如く、第3中間シール領域部分C3に開口されており、シールガス25をシールケース1外に排出する。シールガスないしパージガス25としては、被密封流体領域A又は大気領域Cに漏洩しても支障のないガスが使用されるが、通常、被密封流体と不活性であり且つ無害な窒素ガスが使用される。   Between the opposed peripheral surfaces of the case body 5 and the cylindrical body 18, annular air supply spaces 23 a and 23 b are formed. As shown in FIG. 2, the air supply / intake space is a series of annular spaces including a first air supply space 23a and a second air supply space 23b that extends to the outside region side. The air space 23b is narrower than the first air supply space 23a. As shown in FIG. 2, the cylindrical body 18 has a plurality of (only one shown) air supply ports 24 communicating with the second air supply space 23b and the first intermediate seal region portion C1 at predetermined intervals in the circumferential direction. Have been drilled. As shown in FIGS. 1 and 2, the case body 5 is provided with an air supply passage 26 and an exhaust passage 27 for supplying and discharging seal gas or barge gas 25 to and from the intermediate seal region C. As shown in FIGS. 1 and 2, the air supply passage 26 is opened to the first air supply space 23 a, and seal gas 25 is passed through the first air supply space 23 a, the second air supply space 23 b, and the air supply port 24. After that, the first intermediate seal region portion C1 is supplied. As shown in FIGS. 1 and 2, the exhaust passage 27 is opened to the third intermediate seal region portion C <b> 3 and discharges the seal gas 25 out of the seal case 1. As the seal gas or purge gas 25, a gas that does not interfere with leakage into the sealed fluid region A or the atmospheric region C is used. Usually, nitrogen gas that is inert and harmless with the sealed fluid is used. The

而して、シールケース1と回転軸2との間には、本発明に従って次のような空冷手段が設けられている。   Thus, the following air cooling means is provided between the seal case 1 and the rotating shaft 2 according to the present invention.

すなわち、この空冷手段は、図1〜図3に示す如く、シールケース1における大気領域Bに臨む面に放熱フィン31を突設すると共に、回転軸2に、大気領域Bにおける放熱フィン31の対向位置に配して、回転軸2の回転に伴って当該放熱フィン31へと送風すべく回転せしめられる送風ファン32を設けてなる。   That is, as shown in FIGS. 1 to 3, this air-cooling means projects the radiating fins 31 on the surface facing the atmospheric region B in the seal case 1 and faces the radiating fins 31 in the atmospheric region B on the rotary shaft 2. A blower fan 32 that is disposed at a position and is rotated to blow air to the heat radiating fins 31 as the rotary shaft 2 rotates is provided.

放熱フィン31は、シールケース1における大気領域Bに臨む面であってOリング17に可及的に近いシールケース部分の面に形成することが好ましく、この例では、図1〜図3に示す如く、第2静止密封環保持部7の環状壁部7aにおける大気領域側の面に、回転軸2と同心をなす複数の放熱フィン31を突設してある。   The radiating fins 31 are preferably formed on the surface of the seal case 1 facing the atmospheric region B and on the surface of the seal case portion as close as possible to the O-ring 17. In this example, it is shown in FIGS. As described above, a plurality of heat radiating fins 31 concentric with the rotary shaft 2 are provided on the surface of the annular wall portion 7 a of the second stationary seal ring holding portion 7 on the atmosphere region side.

送風ファン32は、図1〜図3に示す如く、放熱フィン31に直対向する位置に配置されており、回転軸2のスリーブ9に嵌合固定された円筒状のハブ32aとその外周面に周方向に一定間隔を隔てて突設された複数枚の羽根32bとからなる。ハブ32aは、これに螺合させた適当数(1つのみ図示)のスクリュー33を締め付けることにより、スリーブ9に固定されている。この例では、ハブ32aに螺合させた適当数(1つのみ図示)のセットスクリュー34をスリーブ9を貫通して軸本体8に締め付けることにより、当該ハブ32aがスリーブ9と軸本体8との間の連結具(固定具)として兼用されている。羽根32bの形状(回転軸2の軸線に対する傾斜角度等)は、回転軸2の回転方向に応じて、放熱フィン31への送風機能を発揮しうるように設定されている。羽根32bの枚数は適宜に設定することができるが、一般には、4〜6枚程度としておくことが好ましい。   As shown in FIGS. 1 to 3, the blower fan 32 is disposed at a position directly opposite to the heat dissipating fins 31, and a cylindrical hub 32 a fitted and fixed to the sleeve 9 of the rotating shaft 2 and an outer peripheral surface thereof. It consists of a plurality of blades 32b projecting at a constant interval in the circumferential direction. The hub 32a is fixed to the sleeve 9 by tightening an appropriate number (only one shown) of screws 33 screwed into the hub 32a. In this example, an appropriate number (only one is shown) of set screws 34 screwed into the hub 32 a is passed through the sleeve 9 and fastened to the shaft body 8, so that the hub 32 a is connected between the sleeve 9 and the shaft body 8. It is also used as a connecting tool (fixing tool). The shape of the blades 32b (such as an inclination angle with respect to the axis of the rotary shaft 2) is set so as to exhibit a function of blowing air to the radiating fins 31 in accordance with the rotation direction of the rotary shaft 2. The number of blades 32b can be set as appropriate, but in general, it is preferably about 4-6.

以上のように構成されたタンデム型シールにあっては、回転軸2の回転に伴って送風ファン32が回転され、放熱フィン31に向けて送風されることから、放熱フィン31による放熱と送風ファン32による送風によってシールケース1が効果的に冷却されることになる。その結果、Oリング17の熱膨張が抑制され、その締め代が適正に維持され、第2静止密封環14の追従性が高温条件下においても適正に維持,担保される。したがって、第2メカニカルシール4によるシール機能が良好に発揮され、タンデム型シールの信頼性が高くなる。   In the tandem seal configured as described above, the blower fan 32 is rotated with the rotation of the rotary shaft 2 and is blown toward the radiating fins 31. The sealing case 1 is effectively cooled by the air blow by 32. As a result, the thermal expansion of the O-ring 17 is suppressed, the tightening margin is properly maintained, and the followability of the second stationary seal ring 14 is properly maintained and secured even under high temperature conditions. Therefore, the sealing function by the second mechanical seal 4 is satisfactorily exhibited, and the reliability of the tandem seal is increased.

また、シールガスないしバージガス25は、給気路26から環状の第1給気空間23aに供給され、更に環状の第2給気空間23bを経て複数の吸気口24から第1中間シール領域部分C1に導入される。このとき、第2給気空間23bが第1給気空間23aより狭小とされていることから、給気路26から第1給気空間23aへのガス導入が一箇所で行われるにも拘わらず、環状の第2給気空間23b内においては、その全周に亘ってガス25が均一に導入されることになる。したがって、複数の吸気口24から第1中間シール領域部分C1へのガス導入も、当該領域部分C1にその全域に亘って均一に行われる。なお、第1給気空間23aへのガス導入箇所(給気路26と第1給気空間23aとの連通箇所)を基準として、吸気口24相互の間隔(ピッチ)を周方向において当該箇所から遠ざかるに従って小さくなるように設定しておくことも、第1中間シール領域部分C1への均一なガス導入に有効となる。而して、第1中間シール領域部分C1に供給されたガス25は、第1絞り路19を通過して第2中間シール領域部分C2に導入され、更に第2絞り路20を通過して第3中間シール領域部分C2に導入され、第3中間シール領域部分C3から排気路27へと排出される。このとき、連通路22から密封端面14a,15a間の空間21a,21bにもガス25が導入されるが、この空間21a,21bからガス漏れ量、つまり相対回転摺接する密封端面14a,15a間から第2中間シール領域部分C2へのガス漏れ量は極く僅かであるため、空間21a,21b及び連通路22においてはガス流動が生じず、これら21a,21b,22の内圧は第1中間シール領域部分C1のガス圧と略同一に保持される。一方、第1中間シール領域部分C1から第2中間シール領域部分C2へのガス導入は狭小の第1絞り路19を介して行われ、ガス25が第1絞り路19を通過する際に圧力損失が生じることから、第2中間シール領域部分C2のガス圧は第1中間シール領域部分C1より低くなる。したがって、空間21a,21b内の圧力つまり密封端面14a,15a間の圧力は、当該密封端面14a,15aの外周領域である第2中間シール領域部分C2の圧力よりも高くなることから、密封端面14a,15aは非接触でも接触でもない半接触状態となり、良好なドライコンタクトシール機能が発揮される。特に、凹溝21を断続的な環状形状をなす場合、つまり密封端面14a,15a間に複数の空間21bが並列形成される場合には、密封端面14a,15aの相対回転に伴って当該空間21bに動圧が発生することから、密封端面14a,15aの上記半接触状態が有効に維持されることなる。また、第2中間シール領域部分C2から第3中間シール領域部分C3へのガス導入も狭小な第2絞り路20を介して行われることから、第2絞り路20による圧力損失により、第3中間シール領域部分C3の圧力は第2中間シール領域部分C2よりも低くなる。したがって、被密封流体が一次シールたる第1メカニカルシール3の密封端面10a,11aから第3中間シール領域部分C3へと漏洩することがあっても、その漏洩流体は第2中間シール領域部分C2へと侵入することがなく、そのまま第3中間シール領域部分C3から排気路27へ排出される。したがって、被密封流体が低沸点流体,有毒流体,スラリ流体等である場合にも、その漏洩流体が第2メカニカルシール4のシール機能に悪影響を及ぼすことがなく、大気領域Bに放出されることもない。   Further, the seal gas or the barge gas 25 is supplied from the air supply passage 26 to the annular first air supply space 23a, and further passes through the annular second air supply space 23b to be supplied from the plurality of intake ports 24 to the first intermediate seal region portion C1. To be introduced. At this time, since the second air supply space 23b is narrower than the first air supply space 23a, the gas introduction from the air supply path 26 to the first air supply space 23a is performed at one place. In the annular second air supply space 23b, the gas 25 is uniformly introduced over the entire circumference. Therefore, gas introduction from the plurality of intake ports 24 to the first intermediate seal region portion C1 is also performed uniformly over the entire region portion C1. Note that the interval (pitch) between the intake ports 24 in the circumferential direction is determined from the location in the circumferential direction with reference to a gas introduction location (a communication location between the supply passage 26 and the first supply space 23a) to the first supply space 23a. It is effective to uniformly introduce gas into the first intermediate seal region portion C1 so as to decrease as the distance increases. Thus, the gas 25 supplied to the first intermediate seal region portion C1 passes through the first constriction passage 19 and is introduced into the second intermediate seal region portion C2, and further passes through the second constriction passage 20 to be the second. It is introduced into the third intermediate seal region portion C2 and discharged from the third intermediate seal region portion C3 to the exhaust passage 27. At this time, the gas 25 is also introduced from the communication passage 22 into the spaces 21a and 21b between the sealed end faces 14a and 15a. The amount of gas leakage from the spaces 21a and 21b, that is, between the sealed end faces 14a and 15a that are in relative rotational sliding contact. Since the amount of gas leakage to the second intermediate seal region portion C2 is very small, no gas flows in the spaces 21a, 21b and the communication passage 22, and the internal pressure of these 21a, 21b, 22 is the first intermediate seal region. It is kept substantially the same as the gas pressure in the portion C1. On the other hand, the gas introduction from the first intermediate seal region portion C1 to the second intermediate seal region portion C2 is performed through the narrow first narrow passage 19, and pressure loss occurs when the gas 25 passes through the first narrow passage 19. Therefore, the gas pressure in the second intermediate seal region portion C2 is lower than that in the first intermediate seal region portion C1. Accordingly, the pressure in the spaces 21a and 21b, that is, the pressure between the sealed end surfaces 14a and 15a is higher than the pressure in the second intermediate seal region portion C2 that is the outer peripheral region of the sealed end surfaces 14a and 15a. 15a is in a semi-contact state that is neither non-contact nor contact, and a good dry contact sealing function is exhibited. In particular, when the concave groove 21 has an intermittent annular shape, that is, when a plurality of spaces 21b are formed in parallel between the sealed end surfaces 14a and 15a, the space 21b is associated with the relative rotation of the sealed end surfaces 14a and 15a. Therefore, the half-contact state of the sealing end surfaces 14a and 15a is effectively maintained. In addition, since the gas introduction from the second intermediate seal region portion C2 to the third intermediate seal region portion C3 is also performed through the narrow second restricting path 20, the third intermediate seal is caused by the pressure loss caused by the second restricting path 20. The pressure in the seal region portion C3 is lower than that in the second intermediate seal region portion C2. Therefore, even if the fluid to be sealed leaks from the sealed end faces 10a and 11a of the first mechanical seal 3 serving as a primary seal to the third intermediate seal region portion C3, the leaked fluid flows to the second intermediate seal region portion C2. Without intruding, and is directly discharged from the third intermediate seal region C3 to the exhaust path 27. Therefore, even when the fluid to be sealed is a low boiling point fluid, a toxic fluid, a slurry fluid, etc., the leaked fluid does not adversely affect the sealing function of the second mechanical seal 4 and is released to the atmosphere region B. Nor.

本発明に係るメカニカルシールを装備したメカニカルシール装置(タンデムシール)の一例を示す半截の縦断側面図である。It is a vertical side view of a half-pitch showing an example of a mechanical seal device (tandem seal) equipped with a mechanical seal according to the present invention. 図1の要部を拡大して示す詳細図である。FIG. 2 is an enlarged detailed view showing a main part of FIG. 1. 当該メカニカルシール装置の要部(空冷手段)を立体的に示す斜視図である。It is a perspective view which shows the principal part (air cooling means) of the said mechanical seal apparatus in three dimensions.

符号の説明Explanation of symbols

1 シールケース
2 回転軸
3 第1メカニカルシール
4 第2メカニカルシール
14 第2静止密封環
15 第2回転密封環
16 スプリング部材
17 Oリング
31 放熱フィン
32 送風ファン
A 被密封流体領域(機内領域)
B 大気領域(機外領域)
C 中間シール領域部分
DESCRIPTION OF SYMBOLS 1 Seal case 2 Rotating shaft 3 1st mechanical seal 4 2nd mechanical seal 14 2nd stationary seal ring 15 2nd rotation seal ring 16 Spring member 17 O-ring 31 Radiation fin 32 Blower fan A Sealed fluid area | region (machine area)
B Atmosphere (outside the aircraft)
C Middle seal area

Claims (2)

回転軸に回転密封環を固定すると共に、回転軸が洞貫する金属製のシールケースに、回転密封環の大気領域側に配して、回転密封環へと押圧附勢された静止密封環をゴム製のOリングを介して軸線方向移動可能に保持してあるメカニカルシールにおいて、
シールケースにおける大気領域に臨む面に放熱フィンを突設すると共に、回転軸に、大気領域における放熱フィンの対向位置に配して、回転軸の回転に伴って当該放熱フィンへと送風すべく回転せしめられる送風ファンを設けてあることを特徴とするメカニカルシール。
The rotary seal ring is fixed to the rotary shaft, and the stationary seal ring that is pressed and urged to the rotary seal ring is disposed on the metal seal case through which the rotary shaft penetrates, on the atmosphere region side of the rotary seal ring. In the mechanical seal that is held so as to be movable in the axial direction via a rubber O-ring,
A heat radiating fin is provided on the surface of the seal case facing the air region, and is arranged on the rotating shaft at a position facing the heat radiating fin in the air region, and rotates to blow air to the heat radiating fin as the rotating shaft rotates. A mechanical seal characterized in that a blowing fan is provided.
回転機器のハウジングに取り付けられた金属製のシールケースとこれを洞貫する当該回転機器の回転軸との間に、機内領域側の第1メカニカルシールと機外領域側の第2メカニカルシールとを軸線方向に並列配置してなるメカニカルシール装置であって、第2メカニカルシールが、シールケースにゴム製のOリングを介して軸線方向に移動可能に保持された静止密封環と、静止密封環の機内領域側に配して回転軸に固定された回転密封環と、シールケースと静止密封環との間に介装されて静止密封環を回転密封環へと押圧接触させるべく附勢するスプリング部材とを具備して、機外領域たる大気領域と両メカニカルシール間に形成される中間シール領域とを遮蔽シールするように構成されたメカニカルシール装置において、
シールケースにおける大気領域に臨む面に放熱フィンを突設すると共に、回転軸に、大気領域における放熱フィンの対向位置に配して、回転軸の回転に伴って当該放熱フィンへと送風すべく回転せしめられる送風ファンを設けてあることを特徴とするメカニカルシール装置。
A first mechanical seal on the in-machine region side and a second mechanical seal on the out-of-machine region side are provided between a metal seal case attached to the housing of the rotating device and the rotating shaft of the rotating device penetrating therethrough. A mechanical seal device arranged in parallel in the axial direction, wherein a second mechanical seal is held in a seal case through a rubber O-ring so as to be movable in the axial direction, and a stationary seal ring A rotary seal ring disposed on the in-machine region side and fixed to the rotary shaft, and a spring member interposed between the seal case and the stationary seal ring to urge the stationary seal ring to press contact with the rotary seal ring And a mechanical seal device configured to shield and seal an air region outside the machine region and an intermediate seal region formed between both mechanical seals,
A heat radiating fin is provided on the surface of the seal case facing the air region, and is arranged on the rotating shaft at a position facing the heat radiating fin in the air region, and rotates to blow air to the heat radiating fin as the rotating shaft rotates. A mechanical seal device characterized in that a blower fan is provided.
JP2008103405A 2008-04-11 2008-04-11 Mechanical seal and mechanical seal device Active JP4724731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103405A JP4724731B2 (en) 2008-04-11 2008-04-11 Mechanical seal and mechanical seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103405A JP4724731B2 (en) 2008-04-11 2008-04-11 Mechanical seal and mechanical seal device

Publications (2)

Publication Number Publication Date
JP2009250432A true JP2009250432A (en) 2009-10-29
JP4724731B2 JP4724731B2 (en) 2011-07-13

Family

ID=41311335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103405A Active JP4724731B2 (en) 2008-04-11 2008-04-11 Mechanical seal and mechanical seal device

Country Status (1)

Country Link
JP (1) JP4724731B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052222A1 (en) 2009-10-30 2011-05-05 パナソニック株式会社 Wireless communication apparatus and reference signal generating method
CN102600781A (en) * 2011-01-24 2012-07-25 昆山密友机械密封有限公司 Improved cooling system structure for reactor
JP2014020501A (en) * 2012-07-20 2014-02-03 Matsui Mfg Co Switching valve device
JP2014055625A (en) * 2012-09-12 2014-03-27 Torishima Pump Mfg Co Ltd Mechanical seal
WO2018012330A1 (en) * 2016-07-13 2018-01-18 イーグル工業株式会社 Mechanical seal
JP2018062948A (en) * 2016-10-11 2018-04-19 イーグル工業株式会社 Mechanical seal and sealed structure
US10024436B2 (en) * 2014-08-26 2018-07-17 Eagle Industry Co., Ltd. Mechanical seal
JP2020056471A (en) * 2018-10-03 2020-04-09 株式会社荏原製作所 Mechanical seal and pump device
WO2022080278A1 (en) * 2020-10-14 2022-04-21 イーグル工業株式会社 Sliding component
CN116261316A (en) * 2023-05-16 2023-06-13 维宏感应(山东)科技有限公司 IGBT packaging structure with temperature measurement function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223128A (en) * 1985-07-24 1987-01-31 Hitachi Ltd Method for forming element isolating region
JPS6357862A (en) * 1986-08-27 1988-03-12 Toyota Motor Corp Control device for air-fuel ratio of carburetor internal combustion engine
JP2006316855A (en) * 2005-05-11 2006-11-24 Nippon Pillar Packing Co Ltd Non-contact mechanical seal
JP2007032652A (en) * 2005-07-25 2007-02-08 Eagle Ind Co Ltd Mechanical seal device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431136Y2 (en) * 1985-07-27 1992-07-27
JPS6357862U (en) * 1986-10-04 1988-04-18

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223128A (en) * 1985-07-24 1987-01-31 Hitachi Ltd Method for forming element isolating region
JPS6357862A (en) * 1986-08-27 1988-03-12 Toyota Motor Corp Control device for air-fuel ratio of carburetor internal combustion engine
JP2006316855A (en) * 2005-05-11 2006-11-24 Nippon Pillar Packing Co Ltd Non-contact mechanical seal
JP2007032652A (en) * 2005-07-25 2007-02-08 Eagle Ind Co Ltd Mechanical seal device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3541109A1 (en) 2009-10-30 2019-09-18 Sun Patent Trust Wireless communication apparatus and reference signal generating method
WO2011052222A1 (en) 2009-10-30 2011-05-05 パナソニック株式会社 Wireless communication apparatus and reference signal generating method
CN102600781A (en) * 2011-01-24 2012-07-25 昆山密友机械密封有限公司 Improved cooling system structure for reactor
CN102600781B (en) * 2011-01-24 2015-09-30 昆山密友机械密封有限公司 Structure improved reactor cooling system
JP2014020501A (en) * 2012-07-20 2014-02-03 Matsui Mfg Co Switching valve device
JP2014055625A (en) * 2012-09-12 2014-03-27 Torishima Pump Mfg Co Ltd Mechanical seal
US10024436B2 (en) * 2014-08-26 2018-07-17 Eagle Industry Co., Ltd. Mechanical seal
JPWO2018012330A1 (en) * 2016-07-13 2019-04-25 イーグル工業株式会社 mechanical seal
WO2018012330A1 (en) * 2016-07-13 2018-01-18 イーグル工業株式会社 Mechanical seal
JP2018062948A (en) * 2016-10-11 2018-04-19 イーグル工業株式会社 Mechanical seal and sealed structure
JP2020056471A (en) * 2018-10-03 2020-04-09 株式会社荏原製作所 Mechanical seal and pump device
JP7212489B2 (en) 2018-10-03 2023-01-25 株式会社荏原製作所 pumping equipment
JP2023052353A (en) * 2018-10-03 2023-04-11 株式会社荏原製作所 Mechanical seal and pump device
JP7471476B2 (en) 2018-10-03 2024-04-19 株式会社荏原製作所 Mechanical seals and pump equipment
WO2022080278A1 (en) * 2020-10-14 2022-04-21 イーグル工業株式会社 Sliding component
CN116261316A (en) * 2023-05-16 2023-06-13 维宏感应(山东)科技有限公司 IGBT packaging structure with temperature measurement function
CN116261316B (en) * 2023-05-16 2023-09-08 维宏感应(山东)科技有限公司 IGBT packaging structure with temperature measurement function

Also Published As

Publication number Publication date
JP4724731B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4724731B2 (en) Mechanical seal and mechanical seal device
JP5372772B2 (en) Tandem seal
JP5865908B2 (en) Shaft seal device
US6494460B2 (en) Rotary barrier face seal
CA2662039A1 (en) Turbine shroud gas path duct interface
US9091178B2 (en) Sealing arrangement
JP4763920B2 (en) Multistage shaft seal device
CA3029240C (en) Dry running end face mechanical seal
BRPI0911274B1 (en) internally pressurized seal assembly
JPH0989119A (en) Shaft sealing device for liquid apparatus
JP2003194236A (en) Mechanical seal device
US8011668B2 (en) Close coupled mechanical seal
JP2018179095A (en) Mechanical seal
JP5289850B2 (en) mechanical seal
US11873903B2 (en) Self-correcting hydrodynamic seal
JP6002537B2 (en) Shaft seal device
JP6612092B2 (en) mechanical seal
JP2009108941A (en) End surface contact type mechanical seal
JPH11108201A (en) Shaft-sealing device
JP2014139463A (en) Mechanical seal device
JP6924060B2 (en) mechanical seal
JP4445932B2 (en) Axial flow type non-contact seal
JPS5846655B2 (en) Turbocharger turbine side cooling system
JP6708496B2 (en) mechanical seal
JP6815813B2 (en) Sealed structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150