JP2009247880A - Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof - Google Patents

Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof Download PDF

Info

Publication number
JP2009247880A
JP2009247880A JP2008125274A JP2008125274A JP2009247880A JP 2009247880 A JP2009247880 A JP 2009247880A JP 2008125274 A JP2008125274 A JP 2008125274A JP 2008125274 A JP2008125274 A JP 2008125274A JP 2009247880 A JP2009247880 A JP 2009247880A
Authority
JP
Japan
Prior art keywords
needle
puncture needle
coated
organic insulating
puncture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008125274A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Seiji Oishi
政治 大石
Masaru Maruyama
勝 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008125274A priority Critical patent/JP2009247880A/en
Publication of JP2009247880A publication Critical patent/JP2009247880A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medical needle which has no bad influence on cells around the punctured needle by adopting a puncture needle newly coated by extremely thin organic insulating film and easing pains even when puncturing the human skin without thinly applying silicone-based oil. <P>SOLUTION: The medical needle is made using a metal and an alloy and is a needle and a puncture needle coated by a 0.001-2.0 micrometer thick extremely thin organic insulating film 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、医療用の針および穿刺針に極薄の有機絶縁性薄膜を被成した針および穿刺針およびその製造方法に関するもので、特に、▲1▼現行のステンレス鋼製の針および穿刺針は、電気抵抗が小さい導体金属であるため、刺した針のまわりの細胞に悪影響を及ぼすこと、また、▲2▼現行の針および穿刺針は、針の表面にシリコーン系油脂を薄く塗布して、人の皮膚から刺す際の痛み和らげる方法が採用されているが、一部では発癌を誘発することが懸念されるとの情報がある。
本発明は、新たに極薄の有機絶縁性薄膜を被成した針および穿刺針を用いることにより、上述の問題点を克服できる画期的な技術を開示するものである。
The present invention relates to a needle and a puncture needle in which an ultrathin organic insulating thin film is formed on a medical needle and a puncture needle, and a method for manufacturing the needle, and in particular, (1) current stainless steel needle and puncture needle. Is a conductive metal with a low electrical resistance, which adversely affects the cells around the needle, and (2) current needles and puncture needles have a thin silicone oil applied to the needle surface. Although the method of relieving pain when piercing from a person's skin has been adopted, there is information that there is a concern that it may induce carcinogenesis in part.
The present invention discloses an epoch-making technique that can overcome the above-mentioned problems by using a needle and a puncture needle that are newly coated with an ultrathin organic insulating thin film.

現在我が国は世界一の長寿国を達成しているが、これは最近の医療技術の進歩に支えられたものであると言っても過言ではない。そうした医療技術の中で、例えば、肝臓、胆のう、膵臓あるいは腎臓等の検査においては、患者の血液検査で得られないデータを得るために、エコーを利用した超音波検査やCT(コンピュータ断層撮影)検査、強い磁気と電波を使用して各種臓器の断面像を写し出すMRI(磁気共鳴画像)検査、細い管(カテーテル)を介して造営剤を注入し、血管の状態を画像化する血管造営検査等が広く用いられている。  At present, Japan has achieved the longest life expectancy in the world, but it is no exaggeration to say that this is supported by recent advances in medical technology. Among such medical technologies, for example, in examinations of the liver, gallbladder, pancreas or kidney, in order to obtain data that cannot be obtained by blood tests of patients, ultrasound examination using CT and computed tomography (CT) Inspection, MRI (Magnetic Resonance Imaging) inspection that uses cross-section images of various organs using strong magnetism and radio waves, Blood vessel construction inspection that injects a construction agent through a thin tube (catheter), and visualizes the state of the blood vessel Is widely used.

これらの血液検査や各種画像診断によって、癌の病巣の存在は診断できるけれども、確定診断のためには、肝生検等により病変部の病理学的な検査が必要となる。通常、かような検査においては、特殊な穿刺針を直接病変部に刺して組織を採取して調査する方法が採用されている。  Although these blood tests and various image diagnoses can diagnose the presence of a cancer lesion, a pathological examination of the lesion by a liver biopsy or the like is necessary for a definitive diagnosis. Usually, in such an inspection, a method is adopted in which a special puncture needle is directly inserted into a lesioned part and a tissue is collected and investigated.

しかしながら、現行のステンレス鋼製の穿刺針を用いた場合、針の基材の電気抵抗が小さい導体金属(抵抗率ρ:10−5〜10−8Ω・m)であることから、病変部から採取した組織や病変部に刺した穿刺針のまわりの細胞に悪影響を及ぼすことが指摘されている。However, when the current stainless steel puncture needle is used, it is a conductive metal (resistivity ρ: 10 −5 to 10 −8 Ω · m) whose electrical resistance of the needle base material is small. It has been pointed out that it adversely affects the cells around the collected tissue and the puncture needle that pierces the lesion.

また、生体患部の特定位置に薬液を注入する際の注射針としても、従来、導体金属製(主にステンレス鋼製)の医療針が使用されていたが、この場合にも、上述したところと同様の問題があった。
さらに、これらの針の表面にはシリコーン系油脂を薄く塗布して、人の皮膚から刺す際の痛み和らげる方法が採用されている。しかしながら、針の表面にこのシリコーン系油脂を塗布した場合に、発癌を誘発するとの情報があることが指摘されている。
Also, conventionally, a medical needle made of conductive metal (mainly made of stainless steel) has been used as an injection needle for injecting a drug solution into a specific position of a living body affected part. There was a similar problem.
In addition, a method of applying a thin silicone oil to the surface of these needles to relieve pain when piercing from the human skin is employed. However, it has been pointed out that there is information that carcinogenesis is induced when this silicone oil is applied to the surface of the needle.

最近、本発明者らは、セラミックを被覆した穿刺針を作製し、針の使用中に折損等を生じることがなく、また採取した組織および病変部に刺した穿刺針のまわりの細胞に悪影響を全く及ぼすことのない画期的な医療用セラミック被覆針を開発した。
特開2003−210579号公報 特開2003−310759号公報
Recently, the present inventors have produced a puncture needle coated with ceramic, which does not cause breakage or the like during use of the needle, and has an adverse effect on the tissue around the collected tissue and the cells around the puncture needle that has pierced the lesion. An innovative medical ceramic coated needle that has no effect was developed.
JP 2003-210579 A JP 2003-310759 A

この新たに開発された医療用セラミック被覆穿刺針は、ラットの肝臓実験に使用した場合極めて有効であることが実証された。すなわち、セラミック被覆穿刺針を使用してラットの肝臓組織を採取した場合には、通常のステンレス鋼製の穿刺針に比較して切れ味が極めてシャープでまわりの細胞に悪影響を全く及ぼさないことが判明した。
森博太郎、井口征夫、福田裕之、江原正明:人に優しい医療用セラミック被覆穿刺針の開発、まてりあ、42(2003)、No.2、p.151−153。
This newly developed medical ceramic-coated puncture needle has proven to be extremely effective when used in rat liver experiments. That is, when rat liver tissue was collected using a ceramic-coated puncture needle, it was found that it was sharper than normal stainless steel puncture needles and had no adverse effects on surrounding cells. did.
Hirotaro Mori, Norio Iguchi, Hiroyuki Fukuda, Masaaki Ehara: Development of a human-friendly medical ceramic coated puncture needle, Materia, 42 (2003), 2, p. 151-153.

ラットに加えてひき続き、イヌ、サル、ブタの肝臓についても同様のセラミック被覆穿刺針を用いて動物実験を行った。その結果、ラットの肝臓実験の場合と同様極めて有効であることが実証された。
井口征夫、小松原道郎、大石政治、小林吉彦、岩崎稔、長谷川紀昭、森博太郎:医療用セラミック被覆穿刺針の動物実験、2005年春季(第136回)日本金属学会講演概要、p.313、2005年3月29日―3月31日(横浜国立大学で開催)。
In addition to rats, animal experiments were also conducted on dog, monkey, and pig livers using the same ceramic-coated puncture needle. As a result, it was proved to be extremely effective as in the case of the rat liver experiment.
Iguchi Norio, Komatsubara Michio, Oishi Politics, Kobayashi Yoshihiko, Iwasaki Atsushi, Hasegawa Noriaki, Mori Hirotaro: Animal Experiment of Medical Ceramic-Coated Puncture Needles, Spring 2005 (136th) Outline of the Japan Institute of Metals, p. 313, March 29-31, 2005 (held at Yokohama National University).

上記の動物実験は、肝臓に直接セラミック被覆穿刺針を刺して肝臓の組織を採取した実験結果である。しかしながら、患者への治療・検査の際にはこれらのセラミック被覆穿刺針は、多くの場合人の皮膚から刺して肝臓、膵臓あるいは腎臓等の内蔵の組織を採取する方法も採用される。この場合皮膚の組織と内蔵の細胞組織は大きく異なり、前者の皮膚の細胞組織は、ウレタン系のシートあるいはラテックスシートに類似しており、後者の内臓の細胞組織のように水分を多量に含んでいない。  The above animal experiment is the result of an experiment in which a liver tissue was collected by piercing the liver directly with a ceramic-coated puncture needle. However, when treating or examining a patient, these ceramic-coated puncture needles are often pierced from a person's skin and a method of collecting a built-in tissue such as a liver, pancreas or kidney is also employed. In this case, the skin tissue and the built-in cell tissue are very different, and the former skin tissue is similar to a urethane-based sheet or latex sheet, and contains a large amount of water like the latter visceral cell tissue. Not in.

針あるいは穿刺針を人の皮膚から刺した場合には、痛みを和らげることが最重要課題である。最近、針あるいは穿刺針を人の皮膚から刺した際の痛みを評価する場合には、前もってポリウレタン系のシートあるいはラテックスシート(これらのシートは人の皮膚組織に似ていると考えられている。)を用いて、人の皮膚から刺したときの摩擦抵抗値を測定する模擬実験を行って痛みの程度を推定する方法が採用されるようになって来ている。
その中でも特に、現在使用されている腎臓透析用の針は高圧中で流量を多くすることが不可欠であり、このため針の径も大きく太くなるため針を皮膚から刺した場合痛みも大きくなる。また、大きく太い針を用いて皮膚から刺したときには、まわりの皮膚組織に悪影響を与えることも懸念されている。このため通常は、ステンレス鋼製の針の先端部附近(ベベルと呼ぶ。)にシリコーン系油脂を薄く塗布して皮膚の細胞組織との摩擦抵抗を小さくすることにより、痛みを和らげる方法が採用されている。
さらに、縫い針の表面にもシリコーン系油脂を薄く塗布して使用しているため同様のことが指摘されている。
上述したように、針にシリコーン系油脂を塗布した際には、患者に有害(上述したように、発癌を誘発するとの情報がある。)とされているため、シリコーン系油脂を塗布しない針の使用、すなわち、皮膚の細胞組織に摩擦抵抗の小さい針の開発が急務で重要な開発課題となって来ている。特に、腎臓透析の際には、皮膚から大きな針を刺した部位を長時間使用するため同じ位置での数回以上の使用が困難となる。このため、人の手、胴体、足、足の裏にまでも、針を刺す位置の変更を余儀なくされ、シリコーン系油脂を塗布しない針の開発が緊急かつ急務の極めて重要な開発課題となっている。
When a needle or a puncture needle is pierced from a person's skin, the most important issue is to relieve pain. Recently, in the case of evaluating pain when a needle or a puncture needle is pierced from a human skin, a polyurethane-based sheet or a latex sheet (these sheets are considered to be similar to human skin tissue). ), And a method for estimating the degree of pain by performing a simulation experiment for measuring a frictional resistance value when stabbed from a human skin is being adopted.
In particular, it is indispensable to increase the flow rate at a high pressure in the currently used needle for renal dialysis. For this reason, the diameter of the needle becomes large and thick, so that the pain increases when the needle is pierced from the skin. There is also a concern that when the needle is pierced from the skin using a large and thick needle, the surrounding skin tissue is adversely affected. For this reason, a method of relieving pain is usually adopted by applying a thin amount of silicone oil to the vicinity of the tip of a stainless steel needle (called a bevel) to reduce the frictional resistance with the skin tissue. ing.
Furthermore, the same thing is pointed out because the silicone oil is applied thinly on the surface of the sewing needle.
As described above, when silicone oil is applied to the needle, it is harmful to the patient (as described above, there is information that induces carcinogenesis). The use, that is, the development of needles with low frictional resistance on the skin tissue has become an urgent and important development issue. In particular, at the time of kidney dialysis, a site where a large needle is inserted from the skin is used for a long time, so that it is difficult to use several times at the same position. For this reason, it is necessary to change the position where the needle is inserted even in the human hand, torso, foot, and sole of the foot, and the development of a needle that does not apply silicone oil is an urgent and urgently important development issue. Yes.

このような状況下で、上記の条件を満足するためのセラミック被覆穿刺針は、摩擦係数が小さく、基板との密着性に優れ、耐磨耗特性に優れ、化学的に不活生な特性を同時に満足させる針の開発が緊急の課題となっている。
本発明者は、これらの条件を満足させることが可能、その中でも特に摩擦係数が小さく、密着性の優れたセラミック被覆穿刺針の開発に関して再度根本的な検討を行った。その結果、薄くしたSiNxセラミック被覆針の最表面に摩擦係数が小さいDLC膜を被覆した複層のセラミック被覆穿刺針を新たに採用した。その際、若干の改善が見られたが、針にシリコーン系油脂を塗布した場合に比較して、さらに改善すべきであることが判明した。しかし、このSiNxとDLC膜の複層のセラミック被覆穿刺針は、超音波画像でモニターした場合、複層被覆のため、より鮮明な画像の提供が可能であるも判明した。
Under such circumstances, the ceramic-coated puncture needle for satisfying the above conditions has a low coefficient of friction, excellent adhesion to the substrate, excellent wear resistance, and chemically inert properties. At the same time, the development of a satisfactory needle is an urgent issue.
The inventor has been able to satisfy these conditions, and in particular, has made a fundamental investigation again regarding the development of a ceramic-coated puncture needle having a particularly low coefficient of friction and excellent adhesion. As a result, a multilayer ceramic-coated puncture needle in which the outermost surface of the thinned SiNx ceramic-coated needle was coated with a DLC film having a low friction coefficient was newly adopted. At that time, although a slight improvement was observed, it was found that the improvement should be further made as compared with the case where the silicone oil was applied to the needle. However, it has also been found that this multilayer coated ceramic puncture needle of SiNx and DLC film can provide a clearer image because of the multilayer coating when monitored with an ultrasonic image.

上述したSiNxとDLC膜の複層のセラミック被覆穿刺針は、シリコーン系油脂を塗布した針に比較して改善が見られないことから、針の製作からプラズマコーティング処理にいたる製造の全工程にわたって再度根本的な再検討を行った。  The above-mentioned multilayer ceramic-coated puncture needle of SiNx and DLC film does not show any improvement compared with the needle coated with silicone oil, so it is re-executed throughout the entire manufacturing process from needle production to plasma coating treatment. A fundamental review was performed.

その結果、図1の(2)に模式的に示すようにセラミック被覆穿刺針のベベル先端(図中の2’のベベル先端が崩壊した模式図を参照)が、プラズマエッチング、その後の高温のプラズマコーティング中に、先鋭に精密加工された針のベベルの先端が崩壊してまるみをおびた状態となっていることが走査型電子顕微鏡の観察から明らかとなった。(具体的な走査型電子顕微鏡写真は省略する。)  As a result, as schematically shown in FIG. 1 (2), the bevel tip of the ceramic-coated puncture needle (see the schematic diagram in which the 2 ′ bevel tip in the figure collapses) is plasma-etched, and then the high-temperature plasma It became clear from the observation with a scanning electron microscope that the tip of the bevel of a sharply processed needle beveled during coating, and the tip was collapsed. (Specific scanning electron micrographs are omitted.)

図1の(2)に模式的に示したセラミック被覆穿刺針を使用して皮膚から刺した場合には、より摩擦抵抗が大きくなるために、痛みを和らげることが不可能となる。実際にセラミック被覆穿刺針の摩擦抵抗実験を行った場合には、摩擦抵抗値が高くなることが判明した。
この状態を改善するため、SiNxとDLC膜のセラミック膜厚の変更、プラズマ流れの変更、各セラミック膜の傾斜機能の改善等の数多くの実験を行った。しかしなら、プラズマエッチング、その後の高温のプラズマコーティング中に、針のベベル先端が、先鋭に精密加工された針のベベルの先端の鋭敏さを確保することが不可能となり、針のベベルの先端がまるみをおびた状態に変化していることが判明した。
When the ceramic-coated puncture needle schematically shown in (2) of FIG. 1 is used to puncture from the skin, the frictional resistance becomes larger, so that it becomes impossible to relieve pain. It was found that when the friction resistance experiment of the ceramic-coated puncture needle was actually performed, the friction resistance value increased.
In order to improve this state, many experiments were performed such as changing the ceramic film thickness of the SiNx and DLC films, changing the plasma flow, and improving the gradient function of each ceramic film. However, during plasma etching and subsequent high temperature plasma coating, it becomes impossible for the needle bevel tip to ensure the sharpness of the sharply precision machined bevel tip and the needle bevel tip It turns out that the state has changed to a full circle.

このため現行のプラズマエッチング、その後のプラズマコーティング中のセラミック被覆を断念し、その他の方法を再度模索・検討し始めた。
その結果最終的に図1の本発明の(1)に模式的に示すように、プラズマエプラズマエッチング、その後の高温のプラズマコーティングを用いない、低温のコーティング処理で、極薄の有機絶縁性薄膜を被成した針は、先鋭に精密加工した針のベベルの先端の鋭敏な状態を確保することが可能であることが判明した。その結果、針を皮膚から刺した場合には、摩擦抵抗が小さくなり、痛みを和らげることが可能となり、本発明を完成することに成功したものである。
For this reason, the current plasma etching and subsequent ceramic coating in the plasma coating were abandoned, and other methods were sought and examined again.
As a result, as schematically shown in FIG. 1 (1) of the present invention, an ultrathin organic insulating thin film is obtained by plasma plasma etching and subsequent low temperature coating treatment without using high temperature plasma coating. It has been found that the needle covered with can secure the sharp state of the tip of the bevel of a sharply processed needle. As a result, when the needle is pierced from the skin, the frictional resistance is reduced and the pain can be relieved, and the present invention has been completed successfully.

すなわち、本発明の要旨構成は、次のとおりである。
(1)金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性薄膜を被成した針および穿刺針。
(2)金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性で電気抵抗率ρが10Ω・m以上の絶縁性薄膜を被成した針および穿刺針。
(3)金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性薄膜にコーティングを施した針および穿刺針の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) A needle and a puncture needle in which an ultrathin organic insulating thin film having a thickness of 0.001 to 2.0 microns is formed on a medical needle and a puncture needle manufactured using a metal and an alloy.
(2) Medical needles and puncture needles manufactured using metals and alloys with an ultra-thin organic insulation of 0.001-2.0 microns thickness and an electrical resistivity ρ of 10 5 Ω · m or more A thin film-coated needle and a puncture needle.
(3) A needle and a puncture needle manufacturing method in which a medical needle and a puncture needle produced using a metal and an alloy are coated on a very thin organic insulating thin film having a thickness of 0.001 to 2.0 microns.

以下、本発明を具体的に順次説明する。
本発明では、針および穿刺針の表面に極薄の有機絶縁性薄膜を被成するので、針および穿刺針の基材としては金属および合金のコーティング可能な材料であれば使用可能であるが、特に好ましくはステンレス鋼である。というのは、ステンレス鋼は、表面が▲錆▼びず、かつ精密加工処理が容易だからであり、オーステナイト系およびフェライト系ステンレス鋼が有利に適合する。
Hereinafter, the present invention will be specifically described sequentially.
In the present invention, since an ultra-thin organic insulating thin film is formed on the surface of the needle and the puncture needle, the base material of the needle and the puncture needle can be any material that can be coated with metal and alloy, Particularly preferred is stainless steel. This is because the surface of stainless steel does not rust and precision processing is easy, and austenitic and ferritic stainless steels are advantageously suitable.

例えば、ステンレス鋼によって穿刺針の基体を製造する場合、ステンレス鋼素材を連続鋳造し、熱間圧延−冷間圧延−光輝焼鈍を行った後、精密加工により、外径:0.01〜3.5mm、長さ:30〜300mm程度の目的に応じた種々の針形状に加工処理する。なお、この際の処理工程は、従来技術に従って行えば良い。  For example, when manufacturing the base of a puncture needle with stainless steel, after continuously casting a stainless steel material and performing hot rolling-cold rolling-bright annealing, outer diameter: 0.01-3. 5 mm, length: processed into various needle shapes according to the purpose of about 30 to 300 mm. In addition, what is necessary is just to perform the process process in this case according to a prior art.

ついで、得られた針の表面を、電解研磨や超音波洗浄等によって清浄にした後、0.001−2.0ミクロン厚の極薄の有機絶縁性薄膜を被成する。
この有機絶縁性薄膜の被成には、従来公知のコーティング方法、物理気相蒸着(PVD)法、化学気相蒸着(CVD)法、スパッタリング等が用いられるが、とりわけ本発明では、コーティングが容易な低温の真空蒸着が有利である。すなわち、坩堝にコーティング材料を挿入して抵抗加熱によりコーティング処理を行うことが簡便である。これ以外に従来公知の技術、例えば、スピンコート、スプレーコート、ロールコート、ディップコート等を使用しても良い。また、コーティング材料は、ポリテトラフルオロエチレン(PTFE)、ポリピニルアルコール(PVA)、ポリイミド、ポリ尿素等が化学的に安定であるため好適に使用可能である。さらに、これらの材料の複合使用も可能である、
Next, after the surface of the obtained needle is cleaned by electrolytic polishing, ultrasonic cleaning, or the like, a very thin organic insulating thin film having a thickness of 0.001 to 2.0 microns is formed.
Conventionally known coating methods, physical vapor deposition (PVD) methods, chemical vapor deposition (CVD) methods, sputtering, and the like are used for depositing the organic insulating thin film. In particular, in the present invention, coating is easy. A low temperature vacuum deposition is advantageous. That is, it is easy to insert the coating material into the crucible and perform the coating process by resistance heating. In addition to this, a conventionally known technique such as spin coating, spray coating, roll coating, dip coating, or the like may be used. As the coating material, polytetrafluoroethylene (PTFE), polypinyl alcohol (PVA), polyimide, polyurea and the like can be suitably used because they are chemically stable. Furthermore, the combined use of these materials is also possible.

また、本発明の有機絶縁性薄膜の膜厚は、0.001−2.0ミクロン(好適には0.01−0.5ミクロン)の極薄に限定される。0.001ミクロン厚以下では、有機絶縁性薄膜の効果が発揮されず針固有の有害な性質が出るためである。一方、膜厚が、2.0ミクロン以上では、針の精密加工(ベベルの先端)効果が弱くなり、針との密着性も悪くなると同時に、コーティングのコストアップも懸念されるためである。  Further, the film thickness of the organic insulating thin film of the present invention is limited to an ultrathin 0.001-2.0 microns (preferably 0.01-0.5 microns). If the thickness is 0.001 micron or less, the effect of the organic insulating thin film is not exhibited, and harmful properties unique to the needle appear. On the other hand, when the film thickness is 2.0 microns or more, the effect of precision processing of the needle (bevel tip) is weakened, the adhesion to the needle is deteriorated, and at the same time, the cost of the coating may be increased.

さらに、本発明では、特許公開報2003−210670公報の開示から明らかなように、電気抵抗率ρが10Ω・m以上の絶縁性を確保することが必須条件である。ρが10Ω・m以下では、刺した針のまわりの細胞に対する悪影響を完全に払拭することができないからである。
本発明では、有機絶縁性薄膜の耐磨耗性や硬度を向上させるためセラミック膜との併用や傾斜機能を利用して膜の最表面をセラミック成分を多く使用することも可能である。
Furthermore, in the present invention, as is apparent from the disclosure of Japanese Patent Application Publication No. 2003-210670, it is an essential condition to ensure insulation with an electric resistivity ρ of 10 5 Ω · m or more. This is because, if ρ is 10 5 Ω · m or less, the adverse effects on the cells around the pierced needle cannot be completely eliminated.
In the present invention, in order to improve the wear resistance and hardness of the organic insulating thin film, it is possible to use many ceramic components on the outermost surface of the film by using the ceramic film together with the gradient function.

発明の効果The invention's effect

本発明の有機絶縁性薄膜を被成した針および穿刺針は、皮膚から刺しても痛みを和らげるとともに、まわりの細胞に悪影響も与えることもなく広範囲の医療に使用できるのが特徴である。  The needles and puncture needles coated with the organic insulating thin film of the present invention are characterized in that they can be used for a wide range of medical treatments without causing adverse effects on surrounding cells even if they are pierced from the skin.

C:0.04 mass%,Si:0.14 mass%,Mn:0.12 mass%,Cr:18.9 mass%,Ni:10.8 mass%を含有し、残部はFeおよび不可避的不純物の組成になるオーステナイト系ステンレス鋼の素材を、連続鋳造し、その後、熱間圧延、冷間圧延、光輝焼鈍し、さらに精密加工により外径:0.9mm、長さ:36.5mmの穿刺針に仕上げた。  C: 0.04 mass%, Si: 0.14 mass%, Mn: 0.12 mass%, Cr: 18.9 mass%, Ni: 10.8 mass%, the balance being Fe and inevitable impurities An austenitic stainless steel material having the following composition is continuously cast, then hot-rolled, cold-rolled, bright-annealed, and finely punctured with an outer diameter of 0.9 mm and a length of 36.5 mm. Finished.

その後、このステンレス鋼製の穿刺針は、針表面を超音波洗浄した後、低温の真空蒸着によりポリ尿素の薄膜を0.1ミクロン厚被成した。
穿刺針の表面に極薄の有機絶縁性薄膜を被成した針は、穿刺抵抗確認試験機を用いて、次に示す条件で確認試験を行った。
▲1▼ 抵抗確認試験の板 : ラテックスシート
▲2▼ 穿刺速度 : 100mm/min
▲3▼ 垂直(90度)に穿刺
Thereafter, the stainless steel puncture needle was subjected to ultrasonic cleaning of the needle surface, and then a polyurea thin film having a thickness of 0.1 μm was formed by low-temperature vacuum deposition.
A needle having a very thin organic insulating thin film formed on the surface of the puncture needle was subjected to a confirmation test under the following conditions using a puncture resistance confirmation tester.
(1) Resistance confirmation test plate: Latex sheet
(2) Puncture speed: 100mm / min
▲ 3 ▼ Puncture vertically (90 degrees)

このときの極薄の有機絶縁性薄膜を被成した穿刺針の抵抗値は、70.1gfで、比較材の穿刺針の抵抗値;103 gf、この穿刺針にシリコーン系油脂を塗布した針の抵抗値;73 gfで、本発明の方が最も優れた値を示した。  At this time, the resistance value of the puncture needle covered with the ultrathin organic insulating thin film was 70.1 gf, the resistance value of the puncture needle of the comparison material; 103 gf, the needle of which the silicone oil was applied to this puncture needle The resistance value was 73 gf, and the present invention showed the most excellent value.

また、穿刺針の表面に極薄の有機絶縁性薄膜を被成した針の電気抵抗率ρが10Ω・m以上の絶縁性を確保しており、さらに、この薄膜は、化学的に不活性な特性を同時に示す事が判明した。In addition, the electrical resistivity ρ of the needle with an ultrathin organic insulating thin film formed on the surface of the puncture needle has an insulating property of 10 6 Ω · m or more, and this thin film is chemically non-conductive. It has been found that it exhibits active properties at the same time.

産業上の利用の可能性Industrial applicability

本発明の極薄の有機絶縁性薄膜を被成した針および穿刺針は、刺した針のまわりの細胞に悪影響を及ぼすことが無く、また、シリコーン系油脂を薄く塗布しなくて、人の皮膚に刺しても傷みを和らげることが可能であり、画期的な医療用の針および穿刺針で広範囲の利用が期待される。  The needle and the puncture needle coated with the ultrathin organic insulating thin film of the present invention do not adversely affect the cells around the pierced needle, and do not apply a thin silicone-based oil and fat to human skin. It is possible to relieve the damage even if it is stabbed, and it is expected to be used in a wide range with innovative medical needles and puncture needles.

(1)本発明の穿刺針の先端部の模式図と(2)通常のセラミック穿刺針の先端部の模式図の比較を示す図である。  (1) It is a figure which shows the comparison of the schematic diagram of the front-end | tip part of the puncture needle of this invention, and (2) The schematic diagram of the front-end | tip part of a normal ceramic puncture needle.

符号の説明Explanation of symbols

1 有機絶縁性薄膜
2 ベベル先端
3 有機絶縁性薄膜を被成した穿刺針
1’セラミック膜
2’プラズマ流によるベベル先端の崩壊
3’セラミック被覆穿刺針
DESCRIPTION OF SYMBOLS 1 Organic insulating thin film 2 Bevel tip 3 Puncture needle coated with organic insulating thin film 1 'Ceramic film 2' Collapse of bevel tip by plasma flow 3 'Ceramic coated puncture needle

Claims (3)

金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性薄膜を被成した針および穿刺針。  A needle and a puncture needle in which an ultrathin organic insulating thin film having a thickness of 0.001 to 2.0 microns is formed on a medical needle and a puncture needle manufactured using a metal and an alloy. 金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性で電気抵抗率ρが10Ω・m以上の絶縁性薄膜を被成した針および穿刺針。Medical needles and puncture needles made of metal and alloys are covered with an ultra-thin organic insulating film with a thickness of 0.001-2.0 microns and an insulating thin film with an electrical resistivity ρ of 10 5 Ω · m or more. Needle and puncture needle. 金属および合金を用いて作製した医療用の針および穿刺針に0.001−2.0ミクロン厚の極薄の有機絶縁性薄膜にコーティングを施した針および穿刺針の製造方法。  A method for producing a needle and a puncture needle, wherein a medical needle and a puncture needle produced using a metal and an alloy are coated with an ultrathin organic insulating thin film having a thickness of 0.001 to 2.0 microns.
JP2008125274A 2008-04-09 2008-04-09 Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof Pending JP2009247880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125274A JP2009247880A (en) 2008-04-09 2008-04-09 Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125274A JP2009247880A (en) 2008-04-09 2008-04-09 Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
JP2009247880A true JP2009247880A (en) 2009-10-29

Family

ID=41309095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125274A Pending JP2009247880A (en) 2008-04-09 2008-04-09 Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof

Country Status (1)

Country Link
JP (1) JP2009247880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090660B2 (en) 2014-09-29 2022-06-24 ベクトン・ディキンソン・アンド・カンパニー Cannula insertion detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090660B2 (en) 2014-09-29 2022-06-24 ベクトン・ディキンソン・アンド・カンパニー Cannula insertion detection

Similar Documents

Publication Publication Date Title
EP1864149B1 (en) Interventional medical device for use in mri
JP4030635B2 (en) Nonmagnetic surgical needle
AU2014220632B2 (en) MRI visible medical device
WO2003061490A1 (en) Ceramic-coated instruments for medical use, ceramic-coated instruments for studying living organisms and process for producing the same
JPWO2005115505A1 (en) Hollow needle and indwelling needle using the hollow needle
US20230408606A1 (en) Omnidirectional MRI Catheter Resonator and Related Systems, Methods and Devices
JP2007181638A (en) Ceramic-coated puncture needle giving smaller pains when piercing into the skin and presenting clear ultrasonic images, as well as method of manufacturing the same
JP2009247880A (en) Medical needle, puncture needle coated by extremely thin organic insulating film, and method for manufacturing thereof
JP2011509144A (en) Surface colored tungsten alloy suture needle
JP3619366B2 (en) Guide wire
US20220218881A1 (en) Interventional Medical Devices Useful in Performing Treatment under Magnetic Resonance Imaging and Related Methods
JP4193597B2 (en) Method for manufacturing a ceramic-coated medical device
EP2619602B1 (en) Mr- or ct-guided medical instruments
JP2004147830A (en) Ceramic coated needle for genetic control, manufacturing method therefor, and its manufacturing apparatus
JPH10314137A (en) Catheter
Wang et al. Artificial pleural effusion in percutaneous microwave ablation of hepatic tumors near the diaphragm under the guidance of ultrasound
JP2004290410A (en) Thrusting needle and its manufacturing method
EP1948063B1 (en) Marker for marking an area in body tissue
TW201245469A (en) Use of a chrome steel with martensitic structure and enclosures from carbide material
JP2006122435A (en) Ceramic coated medical instrument and medical apparatus
JP2018519125A (en) Surface-cured injection needle and method for producing the same
Liu et al. Microscale sensor fabrication on curved needle surfaces: a review
JP2003210579A (en) Ceramic coated needle for medical treatment
JP2019170448A (en) Heating device
JPH04108555U (en) Catheter guide wire