JP2009245829A - Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte secondary battery containing nonaqueous electrolyte Download PDF

Info

Publication number
JP2009245829A
JP2009245829A JP2008092542A JP2008092542A JP2009245829A JP 2009245829 A JP2009245829 A JP 2009245829A JP 2008092542 A JP2008092542 A JP 2008092542A JP 2008092542 A JP2008092542 A JP 2008092542A JP 2009245829 A JP2009245829 A JP 2009245829A
Authority
JP
Japan
Prior art keywords
group
nonaqueous electrolyte
battery
acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008092542A
Other languages
Japanese (ja)
Other versions
JP5112148B2 (en
Inventor
Tetsuya Murai
村井  哲也
Akio Hibara
昭男 檜原
Takashi Hayashi
剛史 林
Yoshinobu Nogi
栄信 野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Original Assignee
Mitsui Chemicals Inc
Sanyo Electric Co Ltd
Sanyo GS Soft Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc, Sanyo Electric Co Ltd, Sanyo GS Soft Energy Co Ltd filed Critical Mitsui Chemicals Inc
Priority to JP2008092542A priority Critical patent/JP5112148B2/en
Publication of JP2009245829A publication Critical patent/JP2009245829A/en
Application granted granted Critical
Publication of JP5112148B2 publication Critical patent/JP5112148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte used for a battery, suppressing drop in discharge capacity when charge discharge are repeated at high temperature, suppressing bulging of an electrode, enhancing charge discharge cycle life characteristics and high temperature shelf characteristics; and to provide a nonaqueous electrolyte secondary battery including the nonaqueous electrolyte. <P>SOLUTION: The nonaqueous electrolyte contains a boron-containing compound represented by general formula (1) or (2). X preferably contains an organic group containing a C-C unsaturated bond and an S atom, especially a thiophene structure. In the formula, X is organic group and may be the same or different. X can contain a boric acid group as a substituent. X may be boron-containing compound bond by bonding of X and X. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質、及び該非水電解質を含み、ビデオカメラ,モバイルコンピュータ,携帯電話機等の主として携帯電子機器の電源として利用される充放電可能な非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery that includes the non-aqueous electrolyte and is used mainly as a power source for portable electronic devices such as video cameras, mobile computers, and mobile phones.

非水電解質を含む電池は、高電圧であり、かつ高エネルギー密度を有し、また貯蔵安定性等の信頼性も高いので、民生用電子機器の電源として広く用いられている。
非水電解質を含む電池の代表例として、リチウム電池及びリチウムイオン二次電池が挙げられる。これらの電池は、金属リチウム又はリチウムの吸蔵・放出が可能である活物質からなる負極と、遷移金属酸化物、弗化黒鉛、及びリチウムと遷移金属との複合酸化物等からなる正極と、非水電解質とを有する。
非水電解質は、非プロトン性有機溶媒にLiBF4 、LiPF6 、LiClO4 、LiAsF6 、LiCF3 SO3 、Li2 SiF6 等のLi電解質を混合してなる溶液である。
A battery containing a non-aqueous electrolyte is widely used as a power source for consumer electronic devices because it has a high voltage, a high energy density, and high reliability such as storage stability.
As a typical example of a battery containing a nonaqueous electrolyte, a lithium battery and a lithium ion secondary battery can be given. These batteries include a negative electrode made of metal lithium or an active material capable of occluding and releasing lithium, a positive electrode made of transition metal oxide, fluorinated graphite, a composite oxide of lithium and transition metal, and the like. A water electrolyte.
The non-aqueous electrolyte is a solution obtained by mixing a Li electrolyte such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and Li 2 SiF 6 in an aprotic organic solvent.

リチウムイオン二次電池等の非水電解質二次電池(以下、電池という)において、非水電解質は正極と負極との間のイオンの受け渡しを行う。電池の充放電特性を高めるためには正極と負極との間のイオンの受け渡し速度を出来るだけ速くする必要があり、非水電解質のイオン伝導度を高くしたり、非水電解質の粘度を低くしたりして、拡散による物質移動を起こりやすくする必要がある。また、非水電解質は、電池の保存性(放置特性等)、及び充放電を繰り返した場合のサイクル安定性を高めるために、化学的、電気化学的に反応性が高い正極及び負極に対して安定である必要がある。
電極に対する安定化を図った非水電解質として、非特許文献1には、プロピレンカーボネート、エチレンカーボネート等の高誘電率カーボネート溶媒、ジエチルカーボネート、メチルエチルカーボネート、ジメチルカーボネート等の低粘度カーボネート溶媒にLiPF6 等のリチウム塩を溶解したものが示されている。
In a non-aqueous electrolyte secondary battery (hereinafter referred to as a battery) such as a lithium ion secondary battery, the non-aqueous electrolyte transfers ions between a positive electrode and a negative electrode. In order to improve the charge / discharge characteristics of the battery, it is necessary to increase the ion transfer speed between the positive electrode and the negative electrode as much as possible, to increase the ionic conductivity of the nonaqueous electrolyte or to lower the viscosity of the nonaqueous electrolyte. For example, it is necessary to facilitate mass transfer by diffusion. In addition, non-aqueous electrolytes are used for positive and negative electrodes that are chemically and electrochemically highly reactive in order to improve the storage stability of batteries (such as storage characteristics) and cycle stability when charging and discharging are repeated. It needs to be stable.
Non-Patent Document 1 discloses a non-aqueous electrolyte that stabilizes an electrode, such as propylene carbonate, ethylene carbonate or other high dielectric constant carbonate solvents, diethyl carbonate, methyl ethyl carbonate, dimethyl carbonate or other low viscosity carbonate solvents such as LiPF 6. A lithium salt such as is dissolved.

しかし、上述の非水電解質を含有する電池は、充電状態で高温放置したり、また、高温で充放電を繰り返した場合に、電池が膨れたり、放電容量が低下したりするという問題があった。
上述のように電池が膨れるのは、高温環境下で電池を放置したために正極及び負極上で非水電解質が分解して気体が発生することによる。
また、放電容量が低下するのは、正極及び負極上における非水電解質の分解反応が進行して、電極の反応抵抗の上昇、非水電解質の電気伝導率の低下、セパレータの目詰まり、及び電池の膨れに起因する電極間の隙間増大等が生じるからである。
これらの性能を改善するために、電極表面を安定化する機能を有する添加剤を非水電解質に添加することが行われている。このような添加剤として、ビニレンカーボネート等の炭素炭素不飽和結合を有する炭酸エステル化合物、1,3−プロパンスルトン、亜硫酸エチレン、硫酸エチレン等の硫酸エステル化合物が特許文献1乃至3に開示されている。
また、特許文献4には、所定の金属にフェニル基、アルコキシ基、及び水酸基が配位した有機金属化合物を含む非水電解質添加剤の発明が開示されている。
特開平08−045545号公報 特開2002−329528号公報 特開平10−189042号公報 特表2004−520700号公報 ジーン−ポール ガバノ(Jean-Paul Gabano)編「リチウム バッテリ」(Lithium Battery),アカデミック・プレス(ACADMIC PRESS)(1983)
However, the battery containing the non-aqueous electrolyte described above has a problem that the battery is swollen or the discharge capacity is lowered when the battery is left in a charged state at a high temperature or repeatedly charged and discharged at a high temperature. .
The reason why the battery swells as described above is that the battery is left in a high temperature environment, so that the nonaqueous electrolyte decomposes on the positive electrode and the negative electrode to generate gas.
In addition, the discharge capacity decreases because the decomposition reaction of the nonaqueous electrolyte proceeds on the positive electrode and the negative electrode, the reaction resistance of the electrode increases, the electric conductivity of the nonaqueous electrolyte decreases, the separator clogs, and the battery This is because the gap between the electrodes increases due to the swelling of the electrode.
In order to improve these performances, an additive having a function of stabilizing the electrode surface is added to the nonaqueous electrolyte. As such additives, carbonate compounds having a carbon-carbon unsaturated bond such as vinylene carbonate, and sulfate compounds such as 1,3-propane sultone, ethylene sulfite, and ethylene sulfate are disclosed in Patent Documents 1 to 3. .
Patent Document 4 discloses an invention of a nonaqueous electrolyte additive containing an organometallic compound in which a phenyl group, an alkoxy group, and a hydroxyl group are coordinated to a predetermined metal.
Japanese Patent Application Laid-Open No. 08-045545 JP 2002-329528 A JP-A-10-189042 Special table 2004-520700 gazette “Lithium Battery” edited by Jean-Paul Gabano, ACADMIC PRESS (1983)

しかしながら、上述の添加剤を非水電解質に含有させた場合においても、電池の保存性及び充放電サイクル特性が不十分であるという問題があった。特に、高温で充放電を繰り返した場合に、容量保持率が低下し、すなわち充放電サイクル寿命が短くなるという問題、及び電池厚みが増大して使用電子機器への電池の装着性が悪くなるという問題が発生していた。
また、エチルボロン酸、フェニルボロン酸等の特許文献4の有機金属化合物を添加した非水電解質を用いた電池は、充放電サイクル寿命特性が低下し、高温放置時に電池の膨れが大きくなることが確認されている。
これらの問題を解決するために、正極、及び負極表面上における非水電解質の分解を良好に抑制する添加剤の開発が求められている。
However, even when the above-mentioned additive is contained in the nonaqueous electrolyte, there is a problem that the storage stability and charge / discharge cycle characteristics of the battery are insufficient. In particular, when charging / discharging is repeated at high temperatures, the capacity retention rate is lowered, that is, the charge / discharge cycle life is shortened, and the battery thickness is increased and the battery is not easily mounted on the electronic device used. There was a problem.
In addition, it was confirmed that the battery using the non-aqueous electrolyte to which the organometallic compound of Patent Document 4 such as ethyl boronic acid and phenyl boronic acid was added has deteriorated charge / discharge cycle life characteristics, and the swelling of the battery increases when left at high temperature. Has been.
In order to solve these problems, development of an additive that favorably suppresses the decomposition of the nonaqueous electrolyte on the positive electrode and negative electrode surfaces is required.

本発明は斯かる事情に鑑みてなされたものであり、所定の含ホウ素化合物を含有することにより、非水電解質二次電池を作製した場合に、高温で充放電を繰り返した際の放電容量の低下が少なく、高温で放置した際の電池の膨れが抑制されており、電池の充放電サイクル寿命特性、及び高温放置特性が良好である非水電解質を提供することを目的とする。   The present invention has been made in view of such circumstances, and when a non-aqueous electrolyte secondary battery is produced by containing a predetermined boron-containing compound, the discharge capacity at the time of repeated charge and discharge at a high temperature. An object of the present invention is to provide a non-aqueous electrolyte that is less deteriorated and suppresses swelling of the battery when left at high temperature, and has good charge / discharge cycle life characteristics and high-temperature storage characteristics.

また、本発明は、前記非水電解質を含むことにより、高温時の電池の充放電サイクル寿命特性、及び高温放置特性が良好である非水電解質二次電池を提供することを目的とする。   Another object of the present invention is to provide a non-aqueous electrolyte secondary battery that includes the non-aqueous electrolyte and has good charge / discharge cycle life characteristics and high-temperature storage characteristics at high temperatures.

本発明者は、前記課題を解決するために、含ホウ素化合物に注目し、鋭意検討を行なった。その結果、下記含ホウ素化合物を含有する非水電解質を用いて非水電解質二次電池を構成することにより、前記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、第1発明に係る非水電解質は、下記一般式(1)、又は一般式(2)で表される含ホウ素化合物を含有することを特徴とする。
In order to solve the above-mentioned problems, the present inventor has paid attention to the boron-containing compound and conducted intensive studies. As a result, it has been found that the above problem can be solved by constituting a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing the following boron-containing compound, and the present invention has been completed.
That is, the nonaqueous electrolyte according to the first invention contains a boron-containing compound represented by the following general formula (1) or general formula (2).

Figure 2009245829
Figure 2009245829

Figure 2009245829
Figure 2009245829

前記一般式(1)及び(2)中、Xは、有機基であり、同一であっても異なっていてもよい。また、Xはボロン酸基、又はボリン酸基を置換基として含み得る。さらに、X同士が結合してもよい。但し、Xはアルキル基、アルコキシ基、フェニル基、及びハロゲン基のみを置換基として有するフェニル基を除く。n及びmは、1又は2の整数であり、m+n=3である。   In the general formulas (1) and (2), Xs are organic groups, which may be the same or different. X may contain a boronic acid group or a borinic acid group as a substituent. Furthermore, Xs may be bonded. However, X excludes the phenyl group which has only an alkyl group, an alkoxy group, a phenyl group, and a halogen group as a substituent. n and m are integers of 1 or 2, and m + n = 3.

ここで、非水電解質とは、非水溶媒に支持塩を溶解した電解液、又は固体電解質に前記電解液を含有させたものをいう。
本発明においては、非水電解質に前記含ホウ素化合物を添加しているので、この非水電解質を用いて非水電解質二次電池を作製した場合に、高温で充放電を繰り返したときの放電容量の低下が抑制され、良好な充放電サイクル寿命特性を有し、高温で放置したときの電池の膨れが抑制され、良好な高温放置特性を有する。従って、電子機器への装着性が悪くなり、また、電池の寿命が短くなることが抑制されている。
Here, the non-aqueous electrolyte means an electrolytic solution in which a supporting salt is dissolved in a non-aqueous solvent, or a solid electrolyte containing the electrolytic solution.
In the present invention, since the boron-containing compound is added to the non-aqueous electrolyte, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, the discharge capacity when charging and discharging are repeated at a high temperature. Is suppressed, the battery has good charge / discharge cycle life characteristics, the swelling of the battery when left at high temperature is suppressed, and the battery has good high temperature storage characteristics. Therefore, it is suppressed that the mounting property to the electronic device is deteriorated and the life of the battery is shortened.

このような効果が得られる詳細な理由は不明であるが、含ホウ素化合物が電極(活物質)の表面に作用して、電極と非水電解質との界面に高温でも安定な保護皮膜が形成され、正極及び負極における非水電解質(非水溶媒)の分解が抑制されるので、高温で充放電を繰り返した場合の容量保持率が良好になるとともに、高温で放置した場合の電池厚みの増加(膨れ)が抑制されると考えられる。この効果は前記含ホウ素化合物の添加により初めて発現される。   Although the detailed reason why such an effect is obtained is unknown, the boron-containing compound acts on the surface of the electrode (active material), and a protective film that is stable even at high temperatures is formed at the interface between the electrode and the nonaqueous electrolyte. Since the decomposition of the non-aqueous electrolyte (non-aqueous solvent) in the positive electrode and the negative electrode is suppressed, the capacity retention when charging / discharging is repeated at a high temperature is improved, and the battery thickness is increased when left at a high temperature ( It is thought that (blowing) is suppressed. This effect is manifested only by the addition of the boron-containing compound.

なお、Xが二重結合を有しないアルキル基、電子吸引性のアルコキシ基である場合、負極において含ホウ素化合物が反応しにくく、皮膜形成が不十分であり、高温時の負極皮膜の安定性が不十分であるため、高温で充放電を繰り返した際に負極上で非水電解質の分解が進行し、非水溶媒の枯渇、及び負極上における抵抗が大きくなるため、充放電の繰り返しに伴い、放電容量が低下すると考えられる。
フェニル基は、後述する比較例3にあるように、高温放置時の電池の膨れが大きくなり、また高温で充放電を繰り返した際の放電容量の低下が大きい。この理由は定かではないが、フェニル基のみであると、負極及び正極上で形成される皮膜の安定性が低いことが原因であると考えられる。
そして、電子吸引性が高いハロゲン基のみを置換基として有するフェニル基を含ホウ素化合物が含む場合、さらに正極上で反応しにくくなり、また、酸化電位が高くなるため、正極上で高温放置時に非水溶媒の分解を抑制する皮膜が形成されにくくなり、高温放置時の電池の膨れがより大きくなると考えられる。そして、高温で充放電を繰り返した際の劣化がより進行しやすくなると考えられる。また、理由は明らかではないが、負極上で形成される皮膜の安定性が悪いことも原因であると考えられる。
In addition, when X is an alkyl group having no double bond or an electron-withdrawing alkoxy group, the boron-containing compound hardly reacts in the negative electrode, the film formation is insufficient, and the stability of the negative electrode film at high temperatures is high. Since it is insufficient, the decomposition of the nonaqueous electrolyte proceeds on the negative electrode when repeated charging and discharging at a high temperature, the depletion of the nonaqueous solvent, and the resistance on the negative electrode increase. It is considered that the discharge capacity decreases.
As in Comparative Example 3 to be described later, the phenyl group has a large swelling of the battery when left at high temperature, and has a large decrease in discharge capacity when repeated charging and discharging at a high temperature. The reason for this is not clear, but if it is only a phenyl group, it is considered that the reason is that the stability of the film formed on the negative electrode and the positive electrode is low.
When the boron-containing compound contains a phenyl group having only a halogen group having a high electron-withdrawing property as a substituent, it becomes more difficult to react on the positive electrode and the oxidation potential becomes higher. It is difficult to form a film that suppresses the decomposition of the aqueous solvent, and the swelling of the battery when left at high temperature is considered to be larger. And it is thought that deterioration at the time of repeating charging / discharging at high temperature will progress more easily. Moreover, although the reason is not clear, it is thought that the cause is that the stability of the film formed on the negative electrode is poor.

第2発明に係る非水電解質は、第一発明において、Xが炭素炭素不飽和結合を含む有機基であること特徴とする。   The nonaqueous electrolyte according to the second invention is characterized in that, in the first invention, X is an organic group containing a carbon-carbon unsaturated bond.

本発明においては、Xが炭素炭素不飽和結合を含む有機基であるので、この非水電解質を用いて非水電解質二次電池を作製した場合に、電極、特に負極において安定な保護皮膜がより形成されやすく、高温で充放電を繰り返したときの放電容量の低下が良好に抑制され、充放電サイクル寿命特性が良好になるとともに、高温放置時の電池の膨れが抑制される。   In the present invention, since X is an organic group containing a carbon-carbon unsaturated bond, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, a more stable protective film is provided on the electrode, particularly the negative electrode. It is easy to form, and the decrease in discharge capacity when charging / discharging is repeated at a high temperature is suppressed well, the charge / discharge cycle life characteristics are improved, and the swelling of the battery when left at high temperature is suppressed.

第3発明に係る非水電解質は、第1又は第2発明において、Xが、S原子を含む有機基であることを特徴とする。   The nonaqueous electrolyte according to the third invention is characterized in that, in the first or second invention, X is an organic group containing an S atom.

本発明においては、Xが、S原子を含むので、この非水電解質を用いて非水電解質二次電池を作製した場合に、負極で分解されやすく、負極で安定な保護皮膜が形成されるとともに、分解物が非水溶媒に溶解して正極において作用し、正極でも安定な保護皮膜が形成されるので、高温で充放電を繰り返したときの放電容量の低下が良好に抑制され、充放電サイクル寿命特性が良好になり、高温放置時の電極の膨れが良好に抑制される。   In the present invention, since X contains S atoms, when a nonaqueous electrolyte secondary battery is produced using this nonaqueous electrolyte, it is easily decomposed at the negative electrode, and a stable protective film is formed at the negative electrode. Since the decomposition product dissolves in the non-aqueous solvent and acts on the positive electrode, and a stable protective film is formed even on the positive electrode, the decrease in discharge capacity when charging / discharging is repeated at a high temperature is well suppressed, and the charge / discharge cycle The life characteristics are good, and the swelling of the electrode when left at high temperature is well suppressed.

第4発明に係る非水電解質二次電池は、第1乃至第3発明において、Xが、チオフェン構造を含む有機基であることを特徴とする。   A nonaqueous electrolyte secondary battery according to a fourth invention is characterized in that, in the first to third inventions, X is an organic group containing a thiophene structure.

本発明においては、Xが、チオフェン構造を含むので、S原子に加えて二重結合も有しており、この非水電解質を用いて非水電解質二次電池を作製した場合に、正極及び負極で安定な保護皮膜が形成されるので、高温で充放電を繰り返したときの放電容量の低下が良好に抑制され、充放電サイクル寿命特性が良好になり、高温放置時の電極の膨れが良好に抑制される。   In the present invention, since X includes a thiophene structure, it has a double bond in addition to the S atom. When a nonaqueous electrolyte secondary battery is produced using this nonaqueous electrolyte, the positive electrode and the negative electrode Since a stable protective film is formed, the decrease in discharge capacity when charging / discharging is repeated at high temperatures is suppressed well, the charge / discharge cycle life characteristics are improved, and the electrode swells when left at high temperatures. It is suppressed.

第5発明に係る非水電解質は、第1及至第2発明において、Xが、ビニル基、ピリジル基、ビフェニル基、メトキシ基,カルボキシル基,若しくはビニル基を置換基として有するフェニル基、又はビニル基を置換基として有するシクロヘキシル基を含む有機基であることを特徴とする。   A nonaqueous electrolyte according to a fifth invention is the first to second invention, wherein X is a phenyl group having a vinyl group, a pyridyl group, a biphenyl group, a methoxy group, a carboxyl group, or a vinyl group as a substituent, or a vinyl group. It is an organic group containing a cyclohexyl group having as a substituent.

本発明においては、この非水電解質を用いて非水電解質二次電池を作製した場合に、高温で充放電を繰り返したときの放電容量の低下が良好に抑制され、かつ高温放置時の電池の膨れが良好に抑制されるので、充放電サイクル寿命特性及び高温放置特性が良好になる。   In the present invention, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, a decrease in discharge capacity when charging and discharging is repeated at a high temperature is well suppressed, and the battery of the battery when left at high temperature is Since swelling is suppressed well, charge / discharge cycle life characteristics and high temperature storage characteristics are improved.

第6発明に係る非水電解質二次電池は、第1又至第5発明に係る非水電解質を含むことを特徴とする。   A nonaqueous electrolyte secondary battery according to a sixth aspect of the invention includes the nonaqueous electrolyte according to the first or fifth aspect of the invention.

本発明においては、第1乃至第5発明のいずれかの非水電解質を含むので、電池の充放電サイクル寿命特性、特に、高温時の充放電サイクル寿命特性が良好であり、高温放置時の電池の膨れが抑制され、使用電子機器への装着性が悪くなることが抑制されている。   In the present invention, since the nonaqueous electrolyte according to any one of the first to fifth inventions is included, the charge / discharge cycle life characteristics of the battery, in particular, the charge / discharge cycle life characteristics at high temperature are good, and the battery when left at high temperature It is suppressed that the swelling | deflection of this is suppressed and the mounting property to an electronic device to use worsens.

本発明の非水電解質によれば、この非水電解質を用いて非水電解質二次電池を作製した場合に、充放電サイクル寿命特性及び高温放置特性が良好である非水電解質二次電池が得られる。   According to the non-aqueous electrolyte of the present invention, when a non-aqueous electrolyte secondary battery is produced using this non-aqueous electrolyte, a non-aqueous electrolyte secondary battery having good charge / discharge cycle life characteristics and high temperature storage characteristics is obtained. It is done.

本発明の非水電解質二次電池によれば、高充放電サイクル寿命特性及び高温放置特性が良好である。   According to the nonaqueous electrolyte secondary battery of the present invention, high charge / discharge cycle life characteristics and high temperature storage characteristics are good.

以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
本発明の電池(非水電解質二次電池)は、正極、負極、セパレータ及び非水電解質を有する。
Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof.
The battery (nonaqueous electrolyte secondary battery) of the present invention has a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte.

(1)非水電解質
本発明に係る非水電解質は、後述する非水溶媒、及びリチウム塩に、前記一般式(1)又は(2)で表される含ホウ素化合物を含有してなる。
前記一般式(1)及び(2)において、Xは、有機基であり、同一であっても異なっていてもよい。また、Xはボロン酸基、又はボリン酸基を置換基として含み得る。さらに、X同士が結合してもよい。但し、Xはアルキル基、アルコキシ基、フェニル基、及びハロゲン基のみを置換基として有するフェニル基を除く。n及びmは、1又は2の整数であり、m+n=3である。
(1) Non-aqueous electrolyte The non-aqueous electrolyte according to the present invention contains a boron-containing compound represented by the general formula (1) or (2) in a non-aqueous solvent and a lithium salt described later.
In the general formulas (1) and (2), Xs are organic groups and may be the same or different. X may contain a boronic acid group or a borinic acid group as a substituent. Furthermore, Xs may be bonded. However, X excludes the phenyl group which has only an alkyl group, an alkoxy group, a phenyl group, and a halogen group as a substituent. n and m are integers of 1 or 2, and m + n = 3.

本発明の効果の良好な発現及び含ホウ素化合物の非水電解質への溶解性という観点から、nは2であるのがさらに好ましい。   From the viewpoint of good expression of the effect of the present invention and solubility of the boron-containing compound in the non-aqueous electrolyte, n is more preferably 2.

前記含ホウ素化合物において、Xは、アルキル基、アルコキシ基、フェニル基、及びハロゲン基のみを置換基として有するフェニル基を除く全ての有機基を含み得る。   In the boron-containing compound, X may include all organic groups except an alkyl group, an alkoxy group, a phenyl group, and a phenyl group having only a halogen group as a substituent.

本発明の効果の良好な発現という観点から、含ホウ素化合物は負極への作用が良好になるものが好ましく、Xが炭素炭素不飽和結合を含む有機基であることが好ましい。
鎖状の有機基の具体例としては、アルケニル基、及びアルキニル基等の炭素炭素不飽和結合を有する電子供与性の炭化水素基が好ましく、高温で充放電を繰り返した場合の放電容量の低下を抑制するのみでなく、高温で放置した場合の電極の厚み増加の抑制にも寄与することからビニル基、1−プロペニル基、アリル基(2−プロペニル基)、エチニル基、及びプロパルギル基等の炭素炭素不飽和結合を有する炭化水素基であることがより好ましく、ビニル基であることがさらに好ましい。
From the viewpoint of good expression of the effect of the present invention, the boron-containing compound preferably has a good effect on the negative electrode, and X is preferably an organic group containing a carbon-carbon unsaturated bond.
As specific examples of the chain organic group, an electron-donating hydrocarbon group having a carbon-carbon unsaturated bond such as an alkenyl group and an alkynyl group is preferable, and a reduction in discharge capacity when charging and discharging are repeated at a high temperature. Carbon such as vinyl group, 1-propenyl group, allyl group (2-propenyl group), ethynyl group, and propargyl group because it contributes not only to suppression but also to suppression of electrode thickness increase when left at high temperature. A hydrocarbon group having a carbon unsaturated bond is more preferable, and a vinyl group is more preferable.

また、Xは、負極及び正極への作用が良好であるので、S原子を含む有機基であることが好ましく、例えば、チオフェン基、チアントレン基、フェノキサチイン基、ベンゾチオフェン基が挙げられる。この中でも、電極との反応性の観点からチオフェン基がより好ましい。   X is preferably an organic group containing an S atom because of its favorable effect on the negative electrode and the positive electrode, and examples thereof include a thiophene group, a thianthrene group, a phenoxathiin group, and a benzothiophene group. Among these, a thiophene group is more preferable from the viewpoint of reactivity with the electrode.

そして、Xは、主に負極での非水電解質の分解を良好に抑制することができるので、ピリジン構造を含んでいることが好ましい。   And since X can suppress the decomposition | disassembly of the nonaqueous electrolyte in a negative electrode favorably, it is preferable that X contains the pyridine structure.

また、負極及び正極上での非水電解質の分解を良好に抑制できるので、Xは、ビフェニル基、メトキシ基,カルボキシル基,若しくはビニル基を置換基として有するフェニル基、又はビニル基を置換基として有するシクロヘキシル基であることが好ましい。   In addition, since the decomposition of the nonaqueous electrolyte on the negative electrode and the positive electrode can be satisfactorily suppressed, X is a phenyl group having a biphenyl group, a methoxy group, a carboxyl group, or a vinyl group as a substituent, or a vinyl group as a substituent. It is preferable that it is a cyclohexyl group.

前記一般式(1)で表され、m=1、n=2である場合の含ホウ素化合物の具体例としては、ビニルボロン酸(下記化合物1)、2−プロペニル−ボロン酸、アリルボロン酸、エチニルボロン酸、2−チオフェンボロン酸(下記化合物2)、3−チオフェンボロン酸(下記化合物3)、2,5−チオフェンジボロン酸(下記化合物4:Xが置換基としてボロン酸基を含む場合)、ベンゾ[b]チオフェン−2−ボロン酸(下記化合物5)、4−(メチルチオ)フェニルボロン酸(下記化合物6)、4−ビニルフェニルボロン酸(下記化合物7)、4−ビフェニルボロン酸(下記化合物8)、3−ピリジンボロン酸(下記化合物9)、4−ピリジンボロン酸(下記化合物10)、4−メトキシフェニルボロン酸(下記化合物11)、5−フルオロ−2−メトキシフェニルボロン酸(下記化合物12)、2−カルボキシルフェニルボロン酸(下記化合物13)、2,2−ジメチルエテニルボロン酸、2−シクロヘキシルエテニルボロン酸、フェニルエチルボロン酸、α−フリルエテニルボロン酸、4−メチルフェニルボロン酸、4−アセチルフェニルボロン酸、4−アミノフェニルボロン酸、4−ジメチルアミノフェニルボロン酸、4−(エチルチオ)フェニルボロン酸、4−トリフルオロメトキシフェニルボロン酸、4−フェノキシフェニルボロン酸、4,4′−ビフェニルジボロン酸(前記一般式(1)でX同士が結合している場合)、ナフタレン−1−ボロン酸、1,4−ベンゾジオキサン−6−ボロン酸、3,4−メチレンジオキシフェニルボロン酸、ベンゾオキサゾール−6−ボロン酸、ベンゾチアゾール−6−ボロン酸、6−インドリルボロン酸、7−キノリンボロン酸、7−キノキサリンボロン酸、ジベンゾチオフェン−4−ボロン酸、チアントレン−2−ボロン酸、フェノキサチイン−2−ボロン酸、9−フェナントレンボロン酸、4−トリフルオロメチルフェニルボロン酸、4−ヒドロキシフェニルボロン酸、4−メチルスルホニルフェニルボロン酸、4−ホルミルフェニルボロン酸、4−ニトロフェニルボロン酸、4−(メチルスルホニルアミノ)フェニルボロン酸、4−(トリメチルシリル)フェニルボロン酸、4−メルカプトフェニルボロン酸、1,4−ベンゼンジボロン酸(Xが置換基としてボロン酸基を含む場合)、4−シアノフェニルボロン酸、4−シクロヘキシルフェニルボロン酸、4−(モルホリノ)フェニルボロン酸、4−(ピペリジノ)フェニルボロン酸、5−ジメチルアミノチオフェン−2−ボロン酸、5−シアノチオフェンボロン酸、5−フェニルチオフェン−2ボロン酸、2,2′−ビチオフェン−5−ボロン酸、5−メチルチオフェン−2−ボロン酸、チアナフテン−3−ボロン酸、フラン−2−ボロン酸、ベンゾ[b]フラン−2−ボロン酸、4−キノリンボロン酸、4′−(4−ビニル−ビフェニル)ボロン酸、B−[1,1′:2′,1′′−ターフェニル]−4−イルボロン酸、B−[ビニル−1,1′:2′,1′′−ターフェニル]−4−イルボロン酸、(2−ビニル−ピリジニル)−4−イルボロン酸、4−(チオフェン−3−ボリニル)−チオフェン−2イルボロン酸(Xが置換基としてボリン酸基を含む場合)、4−(フェニル−ボリニル)−フェニルボロン酸(Xが置換基としてボリン酸基を含む場合)等が挙げられる。   Specific examples of the boron-containing compound represented by the general formula (1) where m = 1 and n = 2 include vinyl boronic acid (the following compound 1), 2-propenyl-boronic acid, allyl boronic acid, and ethynyl boron. Acid, 2-thiopheneboronic acid (the following compound 2), 3-thiopheneboronic acid (the following compound 3), 2,5-thiophene diboronic acid (when the following compound 4: X contains a boronic acid group as a substituent), Benzo [b] thiophene-2-boronic acid (the following compound 5), 4- (methylthio) phenylboronic acid (the following compound 6), 4-vinylphenylboronic acid (the following compound 7), 4-biphenylboronic acid (the following compound) 8), 3-pyridineboronic acid (the following compound 9), 4-pyridineboronic acid (the following compound 10), 4-methoxyphenylboronic acid (the following compound 11), 5-fluoro 2-methoxyphenylboronic acid (compound 12 below), 2-carboxylphenylboronic acid (compound 13 below), 2,2-dimethylethenylboronic acid, 2-cyclohexylethenylboronic acid, phenylethylboronic acid, α- Furylethenylboronic acid, 4-methylphenylboronic acid, 4-acetylphenylboronic acid, 4-aminophenylboronic acid, 4-dimethylaminophenylboronic acid, 4- (ethylthio) phenylboronic acid, 4-trifluoromethoxyphenyl Boronic acid, 4-phenoxyphenylboronic acid, 4,4'-biphenyldiboronic acid (when X is bonded to each other in the general formula (1)), naphthalene-1-boronic acid, 1,4-benzodioxane -6-boronic acid, 3,4-methylenedioxyphenylboronic acid, benzoxazole-6- Boronic acid, benzothiazole-6-boronic acid, 6-indolylboronic acid, 7-quinolineboronic acid, 7-quinoxaline boronic acid, dibenzothiophene-4-boronic acid, thianthrene-2-boronic acid, phenoxathiin-2 -Boronic acid, 9-phenanthreneboronic acid, 4-trifluoromethylphenylboronic acid, 4-hydroxyphenylboronic acid, 4-methylsulfonylphenylboronic acid, 4-formylphenylboronic acid, 4-nitrophenylboronic acid, 4- (Methylsulfonylamino) phenylboronic acid, 4- (trimethylsilyl) phenylboronic acid, 4-mercaptophenylboronic acid, 1,4-benzenediboronic acid (when X contains a boronic acid group as a substituent), 4-cyano Phenylboronic acid, 4-cyclohexylphenylboronic acid, 4- (molybdenum Holino) phenylboronic acid, 4- (piperidino) phenylboronic acid, 5-dimethylaminothiophene-2-boronic acid, 5-cyanothiopheneboronic acid, 5-phenylthiophene-2-boronic acid, 2,2'-bithiophene-5 -Boronic acid, 5-methylthiophene-2-boronic acid, thianaphthene-3-boronic acid, furan-2-boronic acid, benzo [b] furan-2-boronic acid, 4-quinolineboronic acid, 4 '-(4 -Vinyl-biphenyl) boronic acid, B- [1,1 ': 2', 1 "-terphenyl] -4-ylboronic acid, B- [vinyl-1,1 ': 2', 1" -ter Phenyl] -4-ylboronic acid, (2-vinyl-pyridinyl) -4-ylboronic acid, 4- (thiophen-3-borinyl) -thiophen-2-ylboronic acid (wherein X contains a borinic acid group as a substituent) And 4- (phenyl-borinyl) -phenylboronic acid (when X contains a borinic acid group as a substituent), and the like.

Figure 2009245829
Figure 2009245829

Figure 2009245829
Figure 2009245829

Figure 2009245829
Figure 2009245829

前記一般式(1)で表され、m=2、n=1である場合の含ホウ素化合物の具体例としては、B,B−ジビニルボリン酸、B,B−ビス(2,2−ジメチルエテニル)ボリン酸、B,B−ビス(2−プロペニル)ボリン酸、B,B−ジアリルボリン酸、B,B−ジエチニルボリン酸、B,B−ビス(4−ビニルフェニル)ボリン酸、B,B−ビス(4−メトキシフェニル)ボリン酸、B,B−ビス(4−(メチルチオ)フェニル)ボリン酸、B,B−ビス(4−(ボロニル)フェニル)ボリン酸(Xがボロン酸基を置換基として含む場合)、B,B−ビス(2−チオフェニル)ボリン酸、B,B−ビス(3−チオフェニル)ボリン酸等が挙げられる。   Specific examples of the boron-containing compound represented by the general formula (1) where m = 2 and n = 1 include B, B-divinylborinic acid, B, B-bis (2,2-dimethylethenyl). ) Borinic acid, B, B-bis (2-propenyl) borinic acid, B, B-diallylborinic acid, B, B-diethynylborinic acid, B, B-bis (4-vinylphenyl) borinic acid, B, B -Bis (4-methoxyphenyl) borinic acid, B, B-bis (4- (methylthio) phenyl) borinic acid, B, B-bis (4- (boronyl) phenyl) borinic acid (X replaces boronic acid group) And B, B-bis (2-thiophenyl) borinic acid, B, B-bis (3-thiophenyl) borinic acid, and the like.

前記一般式(2)で表される場合の含ホウ素化合物の具体例としては、2−(ヒドロキシメチル)フェニルボロン酸サイクリックモノエステル(前記化合物14)、1H−ベンゾ[c]ボロル−2(3H)−オール、2,3−ジヒドロベンゾ[b]ボロル−1−オール、ベンゾ[c][1,2]チアボロル−1(3H)−オール、3−ビニルベンゾ[c][1,2]オキサボロル−1(3H)−オール、1−ヒドロキシ−2,3−ジヒドロ−1H−ベンゾ[b]ボロル−5−イルボロン酸、1−ヒドロキシ−1,3−ジヒドロベンゾ[c][1,2]オキサボロル−5イルボロン酸、1−ヒドロキシ−3−ビニル−1,3−ジヒドロベンゾ[c][1,2]オキサボロル−5イルボロン酸等が挙げられる。
前記一般式(1)又は(2)で表される含ホウ素化合物の含有量としては、非水電解質の総質量に対して、0.001%質量%以上5質量%以下であり、好ましくは、0.01質量%以上3質量%以下であり、特に好ましくは、0.01質量%以上1質量%以下である。この範囲であれば、本発明の目的を達成するのに好ましい。
Specific examples of the boron-containing compound represented by the general formula (2) include 2- (hydroxymethyl) phenylboronic acid cyclic monoester (the compound 14), 1H-benzo [c] borol-2 ( 3H) -ol, 2,3-dihydrobenzo [b] borol-1-ol, benzo [c] [1,2] thiaborol-1 (3H) -ol, 3-vinylbenzo [c] [1,2] oxaborole -1 (3H) -ol, 1-hydroxy-2,3-dihydro-1H-benzo [b] borol-5-ylboronic acid, 1-hydroxy-1,3-dihydrobenzo [c] [1,2] oxaborol -5ylboronic acid, 1-hydroxy-3-vinyl-1,3-dihydrobenzo [c] [1,2] oxaborol-5ylboronic acid, and the like.
The content of the boron-containing compound represented by the general formula (1) or (2) is 0.001% by mass to 5% by mass with respect to the total mass of the nonaqueous electrolyte, It is 0.01 mass% or more and 3 mass% or less, Most preferably, it is 0.01 mass% or more and 1 mass% or less. This range is preferable for achieving the object of the present invention.

本発明の非水電解質に用いられる非水溶媒としては、少なくとも、環状の非プロトン性溶媒及び/又は鎖状の非プロトン性溶媒を含むことが好ましい。
環状の非プロトン性溶媒としては、エチレンカーボネート等の環状カーボネート、γ−ブチロラクトン等の環状エステル、スルホラン等の環状スルホン、ジオキソラン等の環状エーテルが例示される。
鎖状の非プロトン性溶媒としては、ジメチルカーボネート等の鎖状カーボネート、プロピオン酸メチル等の鎖状カルボン酸エステル、ジメトキシエタン等の鎖状エーテルが例示される。
The nonaqueous solvent used in the nonaqueous electrolyte of the present invention preferably contains at least a cyclic aprotic solvent and / or a chain aprotic solvent.
Examples of the cyclic aprotic solvent include cyclic carbonates such as ethylene carbonate, cyclic esters such as γ-butyrolactone, cyclic sulfones such as sulfolane, and cyclic ethers such as dioxolane.
Examples of the chain aprotic solvent include chain carbonates such as dimethyl carbonate, chain carboxylic acid esters such as methyl propionate, and chain ethers such as dimethoxyethane.

特に電池の負荷特性、及び低温特性の向上を意図する場合には、非水溶媒を環状の非プロトン性溶媒と鎖状の非プロトン性溶媒との混合物にすることが好ましい。さらに、非水電解質の電気化学的安定性を重視する場合には、環状の非プロトン性溶媒として環状カーボネートを、鎖状の非プロトン性溶媒として鎖状カーボネートを用いることが好ましい。
環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、トランス−2,3−ブチレンカーボネート、シス−2,3−ブチレンカーボネート、1,2−ペンチレンカーボネート、トランス−2,3−ペンチレンカーボネート、シス−2,3−ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート等が挙げられる。
これらのうち、誘電率が高いエチレンカーボネート及びプロピレンカーボネートが好ましい。負極活物質に黒鉛を使用する場合、エチレンカーボネートを使用するのがさらに好ましい。また、これらの環状カーボネートは2種以上混合して使用してもよい。
In particular, when the load characteristics and low temperature characteristics of the battery are intended to be improved, the non-aqueous solvent is preferably a mixture of a cyclic aprotic solvent and a chain aprotic solvent. Furthermore, when importance is attached to the electrochemical stability of the non-aqueous electrolyte, it is preferable to use a cyclic carbonate as the cyclic aprotic solvent and a chain carbonate as the chain aprotic solvent.
Specific examples of cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, trans-2,3-butylene carbonate, cis-2,3-butylene carbonate, 1,2-pentylene carbonate, trans Examples include -2,3-pentylene carbonate, cis-2,3-pentylene carbonate, trifluoromethylethylene carbonate, fluoroethylene carbonate, 4,5-difluoroethylene carbonate, and the like.
Of these, ethylene carbonate and propylene carbonate having a high dielectric constant are preferable. When graphite is used for the negative electrode active material, it is more preferable to use ethylene carbonate. Moreover, you may use these cyclic carbonates in mixture of 2 or more types.

鎖状カーボネートとして、具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート、メチルトリフルオロエチルカーボネート等が挙げられる。 これらのうち、粘度が低いので、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートが好ましい。これらの鎖状カーボネートは2種以上混合して使用してもよい。   Specific examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, ethyl propyl carbonate, and methyl trifluoroethyl carbonate. Can be mentioned. Of these, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate are preferred because of their low viscosity. These chain carbonates may be used in combination of two or more.

環状カーボネートと鎖状カーボネートとの混合割合は、環状カーボネート:鎖状カーボネート(体積比)が、好ましくは5:95〜70:30であり、より好ましくは10:90〜60:40である。このような比率にすることにより、非水電解質の粘度上昇を抑制し、非水電解質の解離度を高めることができるので、電池の充放電特性に寄与する非水電解質の伝導度を高めることができる。   As for the mixing ratio of the cyclic carbonate and the chain carbonate, the cyclic carbonate: chain carbonate (volume ratio) is preferably 5:95 to 70:30, more preferably 10:90 to 60:40. By setting such a ratio, the increase in the viscosity of the nonaqueous electrolyte can be suppressed and the dissociation degree of the nonaqueous electrolyte can be increased, so that the conductivity of the nonaqueous electrolyte contributing to the charge / discharge characteristics of the battery can be increased. it can.

本発明に係る非水電解質においては、本発明の目的を妨げない範囲で、非水溶媒中に、上述した含ホウ素化合物以外の他の化合物を添加剤として含んでもよい。他の化合物として具体的にはジメチルホルムアミド等のアミド類;メチル−N,N−ジメチルカーバメート等の鎖状カーバメート類;N−メチルピロリドン等の環状アミド類;N,N−ジメチルイミダゾリジノン等の環状ウレア類;ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリ(トリメチルシリル)等のホウ酸エステル類;リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリ(トリメチルシリル)、リン酸トリフェニル等のリン酸エステル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテル等のエチレングリコール誘導体;ビフェニル、フルオロビフェニル、o−ターフェニル、トルエン、エチルベンゼン、フルオロベンゼン、シクロヘキシルベンゼン、2−フルオロアニソール、4-フルオロアニソール等の芳香族炭化水素等;1,3−プロパンスルトン、1,4−ブタンスルトン、1,3−プロパ−1−エンスルトン、1−メチル−1,3−プロパ−1−エンスルトン、2−メチル−1,3−プロパ−1−エンスルトン、3−メチル−1,3−プロパ−1−エンスルトン、亜硫酸エチレン、亜硫酸プロピレン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセン、硫酸ビニレン、3−スルホレン、ジビニルスルホン、硫酸ジメチル、硫酸ジエチル等のイオウ系化合物;並びに無水マレイン酸、ノルボルネンジカルボン酸無水物等の炭素炭素不飽和化合物を有するカルボン酸無水物を挙げることができる。   In the non-aqueous electrolyte according to the present invention, a compound other than the above-described boron-containing compound may be included as an additive in the non-aqueous solvent as long as the object of the present invention is not hindered. Examples of other compounds include amides such as dimethylformamide; chain carbamates such as methyl-N, N-dimethylcarbamate; cyclic amides such as N-methylpyrrolidone; N, N-dimethylimidazolidinone and the like. Cyclic ureas: boric acid esters such as trimethyl borate, triethyl borate, tributyl borate, trioctyl borate, tri (trimethylsilyl) borate; trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, phosphorus Phosphate esters such as tri (trimethylsilyl) acid and triphenyl phosphate; ethylene glycol derivatives such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and polyethylene glycol dimethyl ether; biphenyl, fluorobiphenyl, o-terfe , Toluene, ethylbenzene, fluorobenzene, cyclohexylbenzene, 2-fluoroanisole, 4-fluoroanisole and other aromatic hydrocarbons; 1,3-propane sultone, 1,4-butane sultone, 1,3-prop-1- Ene sultone, 1-methyl-1,3-prop-1-ene sultone, 2-methyl-1,3-prop-1-ene sultone, 3-methyl-1,3-prop-1-ene sultone, ethylene sulfite, propylene sulfite, Sulfur compounds such as ethylene sulfate, propylene sulfate, butene sulfate, hexene sulfate, vinylene sulfate, 3-sulfolene, divinyl sulfone, dimethyl sulfate, diethyl sulfate; and carbon-carbon unsaturated compounds such as maleic anhydride and norbornene dicarboxylic acid anhydride Carboxylic anhydride having

これらの化合物は単独で加えてもよく、2種類以上併用してもよい。これらのうち、炭素炭素不飽和化合物を有するカルボン酸無水物を含む場合には、負極における電解質の安定性がさらに高まり、かつ、電極の厚みの増加も大幅に抑制されるので好ましい。また、1,3−プロパ−1−エンスルトン、硫酸エチレン、硫酸プロピレン、硫酸ブテン、硫酸ヘキセンも好ましい。これらの化合物の含有量は、非水電解質の総質量に対して0.1〜10質量%であるのが好ましく、0.5〜5質量%であるのがさらに好ましい。   These compounds may be added alone or in combination of two or more. Among these, it is preferable to include a carboxylic acid anhydride having a carbon-carbon unsaturated compound because the stability of the electrolyte in the negative electrode is further increased and the increase in the thickness of the electrode is greatly suppressed. 1,3-prop-1-ene sultone, ethylene sulfate, propylene sulfate, butene sulfate, and hexene sulfate are also preferable. The content of these compounds is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass with respect to the total mass of the nonaqueous electrolyte.

そして、本発明に係る非水電解質は、炭素炭素不飽和結合を有する炭酸エステル化合物を添加剤として含有することが好ましい。
炭酸エステル化合物を非水電解質に含有させることにより、特に負極における非水電解質の安定性が高まる効果があるが、電池を高温で放置した際の電池の膨れが大きくなるという問題があった。
しかしながら、本発明の含ホウ素化合物と併用することにより、電極の厚みの増加が大幅に抑制され、高温における充放電繰り返し時の容量保持率が向上し、高温における保存特性と、高温における充放電サイクル寿命特性とに優れた非水電解質を得ることができる。
And it is preferable that the nonaqueous electrolyte which concerns on this invention contains the carbonate ester compound which has a carbon-carbon unsaturated bond as an additive.
By containing the carbonate compound in the non-aqueous electrolyte, there is an effect of increasing the stability of the non-aqueous electrolyte particularly in the negative electrode, but there is a problem that the battery swells when left at high temperature.
However, when used in combination with the boron-containing compound of the present invention, the increase in the thickness of the electrode is greatly suppressed, the capacity retention during repeated charge / discharge at high temperature is improved, the storage characteristics at high temperature, and the charge / discharge cycle at high temperature A nonaqueous electrolyte excellent in life characteristics can be obtained.

この炭素炭素不飽和結合を有する炭酸エステル化合物としては、ビニレンカーボネート、ジメチルビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等が例示される。これらの化合物は単独で加えてもよく、2種類以上を併用してもよい。
これらのうち、ビニレンカーボネート、ジメチルビニレンカーボネート等の環内に炭素炭素不飽和結合を有する炭酸エステル化合物が好ましい。
前記炭酸エステル化合物の含有量は、非水電解質の総質量に対して0.1〜10質量%であるのが好ましく、0.5〜5質量%であるのがより好ましい。
Examples of the carbonate compound having a carbon-carbon unsaturated bond include vinylene carbonate, dimethyl vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate. These compounds may be added alone or in combination of two or more.
Of these, carbonate compounds having a carbon-carbon unsaturated bond in the ring such as vinylene carbonate and dimethyl vinylene carbonate are preferred.
The content of the carbonate ester compound is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass with respect to the total mass of the nonaqueous electrolyte.

本発明の非水電解質に含有されるリチウム塩としては、通常の非水電解質として使用されているものであれば、いずれも使用することができる。
リチウム塩の具体例としては、LiPF6 、LiBF4 、LiClO4 、LiAsF6 Li2 SiF6 、LiOSO2 k (2k+1)(k=1〜8の整数)、LiN(SO2 k (2k+1)2 (k=1〜8の整数)、LiPFn (Ck (2k+1)(6-n)(n=1〜5、k=1〜8の整数)、LiBFn k (2k+1)(n=1〜3、k=1〜8の整数)、LiB(C2 4 2 (リチウムビスオキサリルボレ−ト)、LiBF2 (C2 4 )(リチウムジフルオロオキサリルボレ−ト)、LiPF3 (C2 4 )(リチウムトリフルオロオキサリルフォスフェート)が挙げられる。
また、次の一般式(3)〜(5)で示されるリチウム塩も使用することができる。
LiC(SO2 11)(SO2 12)(SO2 13) …(3)
LiN(SO2 OR14)(SO2 OR15) …(4)
LiN(SO2 16)(SO2 OR17) …(5)
(式中、R11〜R17は、互いに同一であっても異なっていてもよく、炭素数1〜8のパーフルオロアルキル基である)。
これらのリチウム塩は単独で使用してもよく、また2種以上を混合して使用してもよい。
これらのうち、特に、LiPF6 、LiBF4 、LiN(SO2 k (2k+1)2 (k=1〜8の整数)が好ましい。
以上のリチウム塩は、好ましくは0.1〜3モル/リットル、より好ましくは0.5〜2モル/リットルの濃度で非水電解質中に含有される。
As the lithium salt contained in the non-aqueous electrolyte of the present invention, any lithium salt that is used as a normal non-aqueous electrolyte can be used.
Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiN (SO 2 C k F (2k + 1)) 2 (k = 1~8 integer), LiPF n (C k F (2k + 1)) (6-n) (n = 1~5, k = 1~8 integer) LiBF n C k F (2k + 1) (n = 1 to 3, k = 1 to 8), LiB (C 2 O 4 ) 2 (lithium bisoxalyl borate), LiBF 2 (C 2 O 4 ) (lithium difluorooxalyl borate), LiPF 3 (C 2 O 4 ) (lithium trifluorooxalyl phosphate).
Further, lithium salts represented by the following general formulas (3) to (5) can also be used.
LiC (SO 2 R 11 ) (SO 2 R 12 ) (SO 2 R 13 ) (3)
LiN (SO 2 OR 14 ) (SO 2 OR 15 ) (4)
LiN (SO 2 R 16 ) (SO 2 OR 17 ) (5)
(In formula, R < 11 > -R < 17 > may mutually be same or different, and is a C1-C8 perfluoroalkyl group).
These lithium salts may be used alone or in combination of two or more.
Of these, LiPF 6 , LiBF 4 , and LiN (SO 2 C k F (2k + 1) ) 2 (k = 1 to 8) are particularly preferable.
The above lithium salt is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 to 3 mol / liter, more preferably 0.5 to 2 mol / liter.

(2)正極
本発明の電池に用いられる正極活物質としては、リチウムを吸蔵・放出可能な化合物である、組成式Lix MO2 、Liy 2 4 (但し、Mは遷移金属から選ばれる一種又は複数種、0≦x≦1、0≦y≦2)で表される複合酸化物、トンネル構造及び層状構造の金属カルコゲン化物又は金属酸化物を用いることができる。その具体例としては、LiCoO2 、LiCox Ni1-x 2 、LiMn2 4 、Li2 Mn2 4 、MnO2 、FeO2 、V2 5 、V6 13、TiO2 、TiS2 等が挙げられる。
また、有機化合物としては、例えばポリアニリン等の導電性ポリマー等が挙げられる。 さらに、無機化合物及び有機化合物を問わず、上述の各種の活物質を混合して用いてもよい。
粒状の正極活物質を用いる場合には、正極は、例えば、正極活物質粒子と導電助剤と結着剤とからなる合剤をアルミニウム等の金属集電体上に形成することで作製される。
(2) Positive electrode As the positive electrode active material used in the battery of the present invention, a composition formula Li x MO 2 , Li y M 2 O 4 (where M is selected from transition metals), which is a compound capable of inserting and extracting lithium. Or a composite oxide represented by 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), a metal chalcogenide or a metal oxide having a tunnel structure and a layered structure can be used. Specific examples thereof include LiCoO 2 , LiCo x Ni 1-x O 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS. 2 etc. are mentioned.
Examples of the organic compound include conductive polymers such as polyaniline. Furthermore, the above-mentioned various active materials may be mixed and used regardless of an inorganic compound or an organic compound.
When a granular positive electrode active material is used, the positive electrode is produced, for example, by forming a mixture of positive electrode active material particles, a conductive additive and a binder on a metal current collector such as aluminum. .

(3)負極
本発明の負極活物質には、金属リチウム、リチウム合金、リチウムの吸蔵放出が可能な炭素材料等、一般に知られているものすべてを使用することができる。この負極活物質としては、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金、LiFe2 3 、WO2 、MoO2 、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質材料、Li3 N等の窒化リチウム、若しくは金属リチウム、又はこれらの混合物を用いることができる。
(3) Negative electrode As the negative electrode active material of the present invention, all generally known materials such as metallic lithium, lithium alloys, and carbon materials capable of occluding and releasing lithium can be used. Examples of the negative electrode active material include alloys of lithium such as Al, Si, Pb, Sn, Zn, and Cd, metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, and CuO, graphite, and carbon. A carbonaceous material, lithium nitride such as Li 3 N, metallic lithium, or a mixture thereof can be used.

(4)セパレータ
本発明のセパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製の微多孔膜、又はこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚み、膜強度、膜抵抗等の面で好適に用いられる。
また、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。
さらに、合成樹脂微多孔膜と高分子固体電解質等とを組み合わせて使用してもよい。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用い、高分子固体電解質にさらに電解液を含有させることにしてもよい。
(4) Separator As the separator of the present invention, a woven fabric, a nonwoven fabric, a synthetic resin microporous membrane, or the like can be used, and a synthetic resin microporous membrane can be suitably used. Among these, a microporous membrane made of polyethylene and polypropylene, or a polyolefin microporous membrane such as a microporous membrane composed of these is preferably used in terms of thickness, membrane strength, membrane resistance, and the like.
Moreover, it can also serve as a separator by using solid electrolytes, such as a polymer solid electrolyte.
Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the polymer solid electrolyte may further contain an electrolytic solution.

本発明の電池の形状は特に限定されるものではなく、角形、長円筒形、コイン形、ボタン形、シート形、円筒型電池等の様々な形状の非水電解質二次電池に適用することが可能であるが、角形、長円筒形、コイン形、ボタン形、シート形等、電池ケースが変形しやすい電池において、効果が良好に発現される。   The shape of the battery of the present invention is not particularly limited, and can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, a long cylinder, a coin, a button, a sheet, and a cylindrical battery. Although it is possible, the effect is satisfactorily exhibited in a battery in which the battery case is easily deformed, such as a rectangular shape, a long cylindrical shape, a coin shape, a button shape, and a sheet shape.

以下、本発明を好適な実施例を用いて説明するが、本発明は、本実施例により、何ら限定されるものではなく、その主旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the present invention will be described with reference to preferred embodiments. However, the present invention is not limited to the embodiments in any way, and can be implemented with appropriate modifications within a range not changing the gist thereof. .

(実施例1)
図1は、本発明に係る非水電解質二次電池を示す断面図である。図1において、1は角型の非水電解質二次電池(以下、電池という)、2は電極群、3は負極、4は正極、5はセパレータ、6は電池ケース、7はケース蓋、8は安全弁、9は負極端子、10は負極リードである。電極群2は、負極3と正極4とをセパレータ5を介して扁平状に巻回して得られる。電極群2及び非水電解質は電池ケース6に収納され、電池ケース6の開口部は、安全弁8が設けられたケース蓋7をレーザー溶接することで密閉される。負極端子9は負極リード10を介して負極3と接続され、正極4は電池ケース6の内面と接続されている。
Example 1
FIG. 1 is a cross-sectional view showing a nonaqueous electrolyte secondary battery according to the present invention. In FIG. 1, 1 is a square nonaqueous electrolyte secondary battery (hereinafter referred to as a battery), 2 is an electrode group, 3 is a negative electrode, 4 is a positive electrode, 5 is a separator, 6 is a battery case, 7 is a case lid, 8 Is a safety valve, 9 is a negative electrode terminal, and 10 is a negative electrode lead. The electrode group 2 is obtained by winding the negative electrode 3 and the positive electrode 4 in a flat shape with the separator 5 interposed therebetween. The electrode group 2 and the nonaqueous electrolyte are housed in a battery case 6, and the opening of the battery case 6 is sealed by laser welding a case lid 7 provided with a safety valve 8. The negative electrode terminal 9 is connected to the negative electrode 3 via the negative electrode lead 10, and the positive electrode 4 is connected to the inner surface of the battery case 6.

正極4は、以下のようにして作製した。
正極活物質としてのLiCoO2 90質量%と、導電助剤としてのアセチレンブラック5質量%と、結着剤としてのポリフッ化ビニリデン(PVDF)5質量%とを混合して正極合剤とし、これをN−メチル−2−ピロリドンに分散させることによりペーストを得た。このペーストを厚み20μmのアルミニウム集電体に均一に塗布して乾燥させた後、ロールプレスで圧縮成型することにより正極4を得た。
The positive electrode 4 was produced as follows.
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of acetylene black as a conductive additive, and 5% by mass of polyvinylidene fluoride (PVDF) as a binder are mixed to form a positive electrode mixture. A paste was obtained by dispersing in N-methyl-2-pyrrolidone. This paste was uniformly applied to an aluminum current collector with a thickness of 20 μm and dried, and then compression molding was performed with a roll press to obtain the positive electrode 4.

負極3は次のようにして作製した。
負極活物質としての黒鉛97質量%と、結着剤としてのカルボキシメチルセルロース1.5質量%及びスチレンブタジエンゴム1.5質量%とを混合し、蒸留水を適宜加えて分散させ、スラリーを調製した。このスラリーを厚み15μmの銅集電体に均一に塗布、乾燥させ、100℃で5時間乾燥させた後、結着剤及び活物質からなる負極活物質層の密度が1.40g/cm3になるように、ロールプレスで圧縮成形することにより負極3を得た。
The negative electrode 3 was produced as follows.
A slurry was prepared by mixing 97% by mass of graphite as a negative electrode active material, 1.5% by mass of carboxymethyl cellulose and 1.5% by mass of styrene butadiene rubber as a binder, and adding and dispersing distilled water as appropriate. . This slurry was uniformly applied to a 15 μm thick copper current collector, dried, dried at 100 ° C. for 5 hours, and then the density of the negative electrode active material layer composed of the binder and the active material was 1.40 g / cm 3 . Thus, the negative electrode 3 was obtained by compression molding with a roll press.

セパレータとしては、厚み20μmの微多孔性ポリエチレンフィルムを用いた。
非水電解質としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジエチルカーボネート(DEC)との体積比1:1:1の混合溶媒に、LiPF6 を1.1mol/L溶解させ、ビニレンカーボネートを非水電解質の総質量に対して1質量%添加し、さらに、非水電解質の総質量に対して、前記一般式(1)で表される含ホウ素化合物としてのビニルボロン酸(前記化合物1)を0.2質量%添加したものを用いた。
As the separator, a microporous polyethylene film having a thickness of 20 μm was used.
As a non-aqueous electrolyte, 1.1 mol / L of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of 1: 1: 1 to obtain vinylene. 1% by mass of carbonate is added to the total mass of the nonaqueous electrolyte, and further, vinylboronic acid (the compound 1) as the boron-containing compound represented by the general formula (1) with respect to the total mass of the nonaqueous electrolyte. ) Was added at 0.2% by mass.

(実施例2)
非水電解質の総質量に対して2−チオフェンボロン酸(前記化合物2)を0.01質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例3)
非水電解質の総質量に対して前記化合物2を0.1質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例4)
非水電解質の総質量に対して前記化合物2を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例5)
非水電解質の総質量に対して前記化合物2を0.5質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that 0.01% by mass of 2-thiopheneboronic acid (compound 2) was added to the total mass of the nonaqueous electrolyte.
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.1% by mass of Compound 2 was added to the total mass of the nonaqueous electrolyte.
Example 4
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of Compound 2 was added to the total mass of the nonaqueous electrolyte.
(Example 5)
A battery was fabricated in the same manner as in Example 1 except that 0.5% by mass of Compound 2 was added to the total mass of the nonaqueous electrolyte.

(実施例6)
非水電解質の総質量に対して前記化合物2を1.0質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(実施例7)
非水電解質の総質量に対して前記化合物2を3.0質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 6)
A battery was fabricated in the same manner as in Example 1 except that 1.0% by mass of Compound 2 was added to the total mass of the nonaqueous electrolyte.
(Example 7)
A battery was fabricated in the same manner as in Example 1 except that 3.0% by mass of Compound 2 was added to the total mass of the nonaqueous electrolyte.

(実施例8)
非水電解質の総質量に対して3−チオフェンボロン酸(前記化合物3)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 8)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 3-thiopheneboronic acid (compound 3) was added to the total mass of the nonaqueous electrolyte.

(実施例9)
非水電解質の総質量に対して2,5−チオフェンジボロン酸(前記化合物4)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
Example 9
A battery was fabricated in the same manner as in Example 1 except that 0.2 mass% of 2,5-thiophenediboronic acid (compound 4) was added to the total mass of the nonaqueous electrolyte.

(実施例10)
非水電解質の総質量に対してベンゾ[b]チオフェン−2−ボロン酸(前記化合物5)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 10)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of benzo [b] thiophene-2-boronic acid (compound 5) was added to the total mass of the nonaqueous electrolyte.

(実施例11)
非水電解質の総質量に対して4−(メチルチオ)フェニルボロン酸(前記化合物6)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
Example 11
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 4- (methylthio) phenylboronic acid (compound 6) was added to the total mass of the nonaqueous electrolyte.

(実施例12)
非水電解質の総質量に対して4−ビニルフェニルボロン酸(前記化合物7)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
Example 12
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 4-vinylphenylboronic acid (compound 7) was added to the total mass of the nonaqueous electrolyte.

(実施例13)
非水電解質の総質量に対して4−ビフェニルボロン酸(前記化合物8)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 13)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 4-biphenylboronic acid (compound 8) was added to the total mass of the nonaqueous electrolyte.

(実施例14)
非水電解質の総質量に対して3−ピリジンボロン酸(前記化合物9)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 14)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 3-pyridineboronic acid (compound 9) was added to the total mass of the nonaqueous electrolyte.

(実施例15)
非水電解質の総質量に対して4−ピリジンボロン酸(前記化合物10)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 15)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 4-pyridineboronic acid (compound 10) was added to the total mass of the nonaqueous electrolyte.

(実施例16)
非水電解質の総質量に対して4−メトキシフェニルボロン酸(前記化合物11)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 16)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 4-methoxyphenylboronic acid (compound 11) was added to the total mass of the nonaqueous electrolyte.

(実施例17)
非水電解質の総質量に対して5−フルオロ−2−メトキシフェニルボロン酸(前記化合物12)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 17)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of 5-fluoro-2-methoxyphenylboronic acid (compound 12) was added to the total mass of the nonaqueous electrolyte.

(実施例18)
非水電解質の総質量に対して前記一般式(1)で表される2−カルボキシルフェニルボロン酸(前記化合物13)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Example 18)
A battery is prepared in the same manner as in Example 1 except that 0.2% by mass of 2-carboxylphenylboronic acid (compound 13) represented by the general formula (1) is added to the total mass of the nonaqueous electrolyte. Was made.

(実施例19)
非水電解質の総質量に対して前記一般式(2)で表される2−(ヒドロキシメチル)フェニルボロン酸サイクリックモノエステル(前記化合物14)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
Example 19
0.2 mass% of 2- (hydroxymethyl) phenylboronic acid cyclic monoester represented by the general formula (2) (the compound 14) is added with respect to the total mass of the nonaqueous electrolyte, and the rest is carried out. A battery was produced in the same manner as in Example 1.

(比較例1)
非水電解質に、前記一般式(1)又は(2)で表される含ホウ素化合物は添加せず、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 1)
A battery was fabricated in the same manner as in Example 1 except that the boron-containing compound represented by the general formula (1) or (2) was not added to the nonaqueous electrolyte.

(比較例2)
非水電解質の総質量に対してエチルボロン酸(下記化合物15)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of ethyl boronic acid (the following compound 15) was added to the total mass of the nonaqueous electrolyte.

Figure 2009245829
Figure 2009245829

(比較例3)
非水電解質の総質量に対してフェニルボロン酸(前記化合物16)を0.2質量%添加し、それ以外は実施例1と同様にして電池を作製した。
(Comparative Example 3)
A battery was fabricated in the same manner as in Example 1 except that 0.2% by mass of phenylboronic acid (compound 16) was added to the total mass of the nonaqueous electrolyte.

上述した各実施例及び比較例の電池に対して、以下の性能評価を行った。   The following performance evaluation was performed on the batteries of the above-described Examples and Comparative Examples.

[初期容量確認試験]
各実施例及び各比較例の電池に対して、初期容量(mAh)を測定した。各実施例及び各比較例の電池を夫々5セルずつ作製し、各電池につき、800mAの電流で4.2Vまで3時間定電流定電圧充電を行い、その後800mAの電流で3Vまで放電を行い、放電容量(初期容量)を測定し、5セルの平均値を求めた。
[Initial capacity check test]
The initial capacity (mAh) was measured for the batteries of each Example and each Comparative Example. The batteries of each Example and each Comparative Example were prepared in 5 cells, and each battery was charged at a constant current and a constant voltage for 3 hours up to 4.2 V at a current of 800 mA, and then discharged to 3 V at a current of 800 mA. The discharge capacity (initial capacity) was measured, and the average value of 5 cells was determined.

[高温充放電サイクル試験]
常温充放電サイクル試験は、以下に示す条件で行った。
初期容量確認試験後の電池を、45℃の恒温槽中で、初期容量の測定と同一の条件の充放電サイクルを500サイクル繰り返した後、初期容量に対する500サイクル目の容量保持率(=500サイクル目の放電容量÷初期容量×100)を求めた。
[High-temperature charge / discharge cycle test]
The room temperature charge / discharge cycle test was performed under the following conditions.
The battery after the initial capacity confirmation test was repeated for 500 cycles of charge / discharge cycles under the same conditions as the initial capacity measurement in a 45 ° C. thermostat, and then the capacity retention rate at the 500th cycle relative to the initial capacity (= 500 cycles). The discharge capacity of the eye ÷ initial capacity × 100) was determined.

[高温放置試験]
高温放置後の厚み増分の測定は、作製した各電池を、800mAの電流で4.2Vまで3時間定電流定電圧充電して電池厚さを測定した後、85℃の恒温槽中で100時間放置して電池厚さを測定し、放置前後での電池厚さの差(厚さ増分)を求めた。
[High temperature storage test]
The thickness increment after standing at high temperature is measured by charging each manufactured battery at a constant current and constant voltage for 3 hours at a current of 800 mA up to 4.2 V for 3 hours, and then measuring the battery thickness for 100 hours in an 85 ° C. constant temperature bath. The battery thickness was measured by allowing it to stand, and the difference (thickness increment) in the battery thickness before and after being left was determined.

下記の表1に、初期容量確認試験、高温放置試験、及び高温充放電サイクル試験の結果を示す。   Table 1 below shows the results of the initial capacity confirmation test, the high temperature storage test, and the high temperature charge / discharge cycle test.

Figure 2009245829
Figure 2009245829

〔試験結果〕
以下に、実施例及び比較例の結果について考察する。
実施例1〜19の電池は全て、比較例1〜3の電池より容量保持率が大きく、電池の膨れが小さい。以下に、各化合物の構造と結果について考察する。
〔Test results〕
Below, the result of an Example and a comparative example is considered.
All the batteries of Examples 1 to 19 have a larger capacity retention rate than the batteries of Comparative Examples 1 to 3, and the swelling of the batteries is small. Below, the structure and result of each compound are considered.

ビニル基を含む場合(実施例1、比較例2)
構造内にビニル基を含む化合物1を非水電解質の添加剤として用いた実施例1の電池は、エチル基を含む化合物を用いた比較例2の電池と比較して、容量保持率が向上し、高温放置時の膨れが小さくなった。詳細な理由は明らかではないが、ビニル基を含む化合物1が負極で分解して安定な保護皮膜が形成され、負極上における非水電解質(非水溶媒)の分解反応が抑制されたためであると考えられる。
When containing a vinyl group (Example 1, Comparative Example 2)
The battery of Example 1 using Compound 1 containing a vinyl group in the structure as a non-aqueous electrolyte additive has improved capacity retention compared to the battery of Comparative Example 2 using a compound containing an ethyl group. The blistering when left at high temperature is reduced. Although the detailed reason is not clear, it is because the compound 1 containing a vinyl group was decomposed at the negative electrode to form a stable protective film, and the decomposition reaction of the nonaqueous electrolyte (nonaqueous solvent) on the negative electrode was suppressed. Conceivable.

S原子を含む場合(実施例2〜11、比較例1)
構造内にS原子を含む化合物2〜6を非水電解質の添加剤として用いた実施例2〜11の電池は、比較例1の電池と比較して、容量保持率がより大きくなり、高温放置時の膨れがより小さくなった。
また、添加量が同一である場合、化合物2〜5に示すチオフェン構造を有する化合物を用いた実施例4、8、9、及び10の電池は、メチルチオフェニル基を有する化合物を用いた実施例11の電池より、容量保持率が大きいことが分かる。詳細な理由は明らかではないが、チオフェン構造を有する、これらの化合物は、環状構造の中にS原子、及び二重結合を有し、負極で分解して、より安定な保護皮膜が形成されるとともに、分解物が非水溶媒に溶解して正極においてもより良好に保護皮膜が形成され、充放電の繰り返し時、及び高温放置時における非水電解質の酸化分解が抑制されたためであると考えられる。
また、ボロン酸基は、チオフェンのどの部位にあってもよく、ボロン酸基が2つあってもよい。ボロン酸基が1である実施例8と、ボロン酸基が2である実施例9とを比較することにより、ボロン酸の基の数が多い方が、高温放置時の電池の膨れが小さくなることが分かる。
When containing S atoms (Examples 2 to 11, Comparative Example 1)
The batteries of Examples 2 to 11 using the compounds 2 to 6 containing S atoms in the structure as the additive for the nonaqueous electrolyte have higher capacity retention than the battery of Comparative Example 1, and are allowed to stand at high temperature. The swelling of time has become smaller.
In addition, when the addition amount is the same, the batteries of Examples 4, 8, 9, and 10 using the compounds having the thiophene structure shown in Compounds 2 to 5 are the Examples 11 using the compound having a methylthiophenyl group. It can be seen that the capacity retention rate is larger than that of the battery. Although the detailed reason is not clear, these compounds having a thiophene structure have an S atom and a double bond in the cyclic structure, and decompose at the negative electrode to form a more stable protective film. At the same time, the decomposition product is dissolved in the non-aqueous solvent, so that a better protective film is formed even in the positive electrode, and it is considered that the oxidative decomposition of the non-aqueous electrolyte during charging / discharging and standing at high temperature is suppressed. .
Further, the boronic acid group may be in any part of thiophene, and there may be two boronic acid groups. A comparison between Example 8 where the boronic acid group is 1 and Example 9 where the boronic acid group is 2 shows that the larger the number of boronic acid groups, the smaller the swelling of the battery when left at high temperature. I understand that.

そして、化合物2の添加量を変えた実施例2〜7を比較した場合、添加量が多くなる程、高温放置時の電池の膨れが小さくなるが、添加量が1質量%を超えると充放電繰り返し時の容量保持率が低下するので、添加量は0.01質量%以上1質量%以下であるのが特に好ましいことが分かる。   And when Examples 2-7 which changed the addition amount of the compound 2 were compared, the swelling of the battery at the time of leaving at high temperature became small, so that addition amount increased, but when addition amount exceeds 1 mass%, it is charging / discharging. Since the capacity retention rate at the time of repetition decreases, it can be seen that the addition amount is particularly preferably 0.01% by mass or more and 1% by mass or less.

ビニル基を置換基として有するフェニル基を含む場合(実施例12と比較例3)
ビニル基を置換基として有するフェニル基を含む化合物7を用いた実施例12の電池は、フェニル基を含む化合物16を用いた比較例3の電池と比較して、充放電サイクル時の容量保持率が大幅に向上し、また高温放置時の電池の膨れも小さくなった。フェニル基に置換基としてビニル基を有するので、化合物7は負極で分解されやすく、安定な保護皮膜が形成され、負極上での非水電解質の分解反応が抑制されたためであると考えられる。
また、化合物7を用いた実施例12の電池は、化合物1を用いた実施例1の電池より高温放置時の電池の膨れが小さかった。これは、化合物7のフェニル基は電子供与性基であるビニル基を置換基として有するので、正極でボロン酸基がより分解されやすく、正極に非水電解質の分解を抑制する保護皮膜がより良好に形成されたためであると考えられる。
When a phenyl group having a vinyl group as a substituent is included (Example 12 and Comparative Example 3)
The battery of Example 12 using the compound 7 containing a phenyl group having a vinyl group as a substituent was compared with the battery of Comparative Example 3 using a compound 16 containing a phenyl group. Was greatly improved, and the swelling of the battery when left at high temperature was reduced. Since the phenyl group has a vinyl group as a substituent, it is considered that Compound 7 is easily decomposed at the negative electrode, a stable protective film is formed, and the decomposition reaction of the nonaqueous electrolyte on the negative electrode is suppressed.
Further, the battery of Example 12 using Compound 7 had a smaller swelling of the battery when left at a higher temperature than the battery of Example 1 using Compound 1. This is because the phenyl group of compound 7 has a vinyl group which is an electron donating group as a substituent, so that the boronic acid group is more easily decomposed at the positive electrode, and the protective film that suppresses the decomposition of the nonaqueous electrolyte is better at the positive electrode. It is thought that this is because it was formed.

ビフェニル基を有する化合物(実施例13、比較例3)
ビフェニル基を有する化合物8を用いた実施例13の電池は、フェニル基を有する化合物16を用いた比較例3の電池と比較して、充放電繰り返し時の容量保持率が向上し、また高温放置時の電池の膨れも小さくなった。ビフェニル基を有する化合物8が正極で分解して、正極で安定な皮膜が形成され、非水電解質の分解反応が抑制されたためであると考えられる。
Compound having biphenyl group (Example 13, Comparative Example 3)
The battery of Example 13 using the compound 8 having a biphenyl group has an improved capacity retention during repeated charge and discharge, as compared with the battery of Comparative Example 3 using the compound 16 having a phenyl group. The swelling of the battery at the time also became smaller. This is probably because the compound 8 having a biphenyl group was decomposed at the positive electrode, a stable film was formed at the positive electrode, and the decomposition reaction of the nonaqueous electrolyte was suppressed.

ピリジル基を有する化合物(実施例14、15)
ピリジル基を有する化合物9、10を用いた実施例14、15の電池は、充放電繰り返し時の容量保持率が大きく向上し、また高温放置時の電池の膨れも小さくなった。ピリジル基をもつ化合物により、負極で安定な皮膜が形成され、負極上での非水電解質の分解反応が抑制されたためであると考えられる。理由は不明だが、ボロン酸は3位に付加しているより、4位に付加している方が、容量保持率が大きく、また、高温放置時の電池膨れが小さいので好ましい。
Compounds having a pyridyl group (Examples 14 and 15)
In the batteries of Examples 14 and 15 using the compounds 9 and 10 having a pyridyl group, the capacity retention rate during repeated charging and discharging was greatly improved, and the swelling of the battery when left at high temperature was also reduced. This is probably because the compound having a pyridyl group formed a stable film on the negative electrode, and the decomposition reaction of the nonaqueous electrolyte on the negative electrode was suppressed. The reason is unknown, but boronic acid is added to the 4th position rather than the 3rd position because the capacity retention rate is large and the battery bulge when left at high temperature is small.

メトキシ基、又はカルボキシル基を有する化合物(実施例16、17、18、比較例3)
メトキシ基を置換基として有するフェニル基を含む化合物11を用いた実施例16の電池、及びカルボキシル基を置換基として有するフェニル基を含む化合物13を用いた実施例18の電池は、置換基を有しないフェニル基を含む化合物16を用いた比較例3の電池より、容量保持率が向上し、高温放置時の膨れが小さくなった。
化合物11のベンゼン環上のメトキシ基は電子供与性基であり、化合物11が正極及び負極で分解して、良好に保護皮膜が形成され、非水電解質の分解が抑制されたたためであると考えられる。
また、カルボキシル基を有する化合物13は、酸化電位が低いので、化合物13が正極及び負極で分解して、良好に保護皮膜が形成され、正極及び負極上で皮膜が形成され、非水電解質の分解を抑制したためであると考えられる。
実施例16の電池は、実施例18の電池より容量保持率が大きく、実施例18の電池は実施例16の電池より電池の膨れが小さい。
Compounds having a methoxy group or a carboxyl group (Examples 16, 17, 18 and Comparative Example 3)
The battery of Example 16 using the compound 11 containing a phenyl group having a methoxy group as a substituent and the battery of Example 18 using a compound 13 containing a phenyl group having a carboxyl group as a substituent have a substituent. As compared with the battery of Comparative Example 3 using the compound 16 containing a non-phenyl group, the capacity retention rate was improved and the swelling when left at high temperature was reduced.
The methoxy group on the benzene ring of Compound 11 is an electron donating group, and it is considered that Compound 11 was decomposed at the positive electrode and the negative electrode, a protective film was formed satisfactorily, and decomposition of the nonaqueous electrolyte was suppressed. It is done.
In addition, since the compound 13 having a carboxyl group has a low oxidation potential, the compound 13 decomposes at the positive electrode and the negative electrode to form a good protective film, and a film is formed on the positive electrode and the negative electrode, thereby decomposing the nonaqueous electrolyte. This is considered to be because of the suppression.
The battery of Example 16 has a larger capacity retention rate than the battery of Example 18, and the battery of Example 18 has a smaller swelling of the battery than the battery of Example 16.

そして、メトキシ基に加え、さらにフッ素を置換基として有するフェニル基を含む化合物12を用いた実施例17の電池は、実施例16及び18の電池より、高温放置時の電池の膨れの抑制効果が大きい。これは、化合物12は、電子供与性のメトキシ基を含んでおり、酸化電位が低く、高温放置時において正極で分解し、正極で皮膜が形成されるが、その際、フッ素を含むので、皮膜がより安定になり、高温放置時の非水電解質の分解がより抑制されたためであると考えられる。
電子吸引性のフッ素のみを置換基として有するフェニル基を含む含ホウ素化合物は、フェニル基を含む含ホウ素化合物を用いた比較例3の電池よりもさらに酸化分解電位が高くなるので、正極上で皮膜が形成されにくくなり、高温放置時の非水電解質の分解が抑制されにくくなると考えられる。
Further, the battery of Example 17 using the compound 12 containing a phenyl group having fluorine as a substituent in addition to the methoxy group is more effective in suppressing the swelling of the battery when left at a high temperature than the batteries of Examples 16 and 18. large. This is because compound 12 contains an electron-donating methoxy group, has a low oxidation potential, decomposes at the positive electrode when left at high temperature, and forms a film at the positive electrode. This is considered to be because the decomposition of the nonaqueous electrolyte during standing at high temperatures was further suppressed.
Since the boron-containing compound containing a phenyl group having only electron-withdrawing fluorine as a substituent has a higher oxidative decomposition potential than the battery of Comparative Example 3 using a boron-containing compound containing a phenyl group, a film is formed on the positive electrode. It is considered that is difficult to be formed, and decomposition of the non-aqueous electrolyte during standing at high temperature is hardly suppressed.

一般式(2)で表される含ホウ素化合物(実施例19)
一般式(2)で表される含ホウ素化合物14を用いた実施例19の電池は、一般式(1)で表される含ホウ素化合物を用いた他の実施例と同様に、電池容量保持率が大きく、電池の膨れの抑制効果が大きい。
Boron-containing compound represented by the general formula (2) (Example 19)
The battery of Example 19 using the boron-containing compound 14 represented by the general formula (2) is similar to the other examples using the boron-containing compound represented by the general formula (1). And the effect of suppressing the swelling of the battery is large.

以上より、非水電解質が前記一般式(1)又は(2)で表される含ホウ素化合物を含むことにより、負極において安定な保護皮膜が形成され、正極においても安定な保護皮膜が形成され、高温時のサイクル寿命性能が良好になるとともに、高温放置時に、非水電解質が正極上及び負極上で分解して、多量のガスが発生し、電池が膨れるのが抑制されることが分かる。   From the above, when the nonaqueous electrolyte contains the boron-containing compound represented by the general formula (1) or (2), a stable protective film is formed in the negative electrode, and a stable protective film is formed in the positive electrode, It can be seen that the cycle life performance at a high temperature is improved, and the nonaqueous electrolyte is decomposed on the positive electrode and the negative electrode when left at a high temperature, so that a large amount of gas is generated and the battery is prevented from expanding.

本発明に係る非水電解質二次電池を示す断面図である。It is sectional drawing which shows the nonaqueous electrolyte secondary battery which concerns on this invention.

符号の説明Explanation of symbols

1 非水電解質二次電池
2 電極群
3 負極板
4 正極板
5 セパレータ
6 電池ケース
7 ケース蓋
8 安全弁
9 負極端子
10 負極リード
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2 Electrode group 3 Negative electrode plate 4 Positive electrode plate 5 Separator 6 Battery case 7 Case cover 8 Safety valve 9 Negative electrode terminal 10 Negative electrode lead

Claims (6)

下記一般式(1)、又は一般式(2)で表される含ホウ素化合物を含有することを特徴とする非水電解質。
Figure 2009245829
Figure 2009245829
(前記一般式(1)及び(2)中、Xは、有機基であり、同一であっても異なっていてもよい。また、Xはボロン酸基、又はボリン酸基を置換基として含み得る。さらに、X同士が結合してもよい。但し、Xはアルキル基、アルコキシ基、フェニル基、及びハロゲン基のみを置換基として有するフェニル基を除く。n及びmは、1又は2の整数であり、m+n=3である。)
A nonaqueous electrolyte comprising a boron-containing compound represented by the following general formula (1) or general formula (2).
Figure 2009245829
Figure 2009245829
(In the general formulas (1) and (2), X is an organic group, which may be the same or different. X may also contain a boronic acid group or a borinic acid group as a substituent. Further, X may be bonded to each other, provided that X is an alkyl group, an alkoxy group, a phenyl group, and a phenyl group having only a halogen group as a substituent, and n and m are integers of 1 or 2. Yes, m + n = 3.)
Xは、炭素炭素不飽和結合を含む有機基である請求項1に記載の非水電解質。   The nonaqueous electrolyte according to claim 1, wherein X is an organic group containing a carbon-carbon unsaturated bond. Xは、S原子を含む有機基である請求項1又は2に記載の非水電解質。   The nonaqueous electrolyte according to claim 1, wherein X is an organic group containing an S atom. Xは、チオフェン構造を含む有機基である請求項1乃至3のいずれかに記載の非水電解質。   The nonaqueous electrolyte according to any one of claims 1 to 3, wherein X is an organic group containing a thiophene structure. Xは、ビニル基、ピリジル基、ビフェニル基、メトキシ基,カルボキシル基,若しくはビニル基を置換基として有するフェニル基、又はビニル基を置換基として有するシクロヘキシル基を含む有機基である請求項1又は2に記載の非水電解質。   X is an organic group including a vinyl group, a pyridyl group, a biphenyl group, a methoxy group, a carboxyl group, a phenyl group having a vinyl group as a substituent, or a cyclohexyl group having a vinyl group as a substituent. The nonaqueous electrolyte described in 1. 請求項1乃至5のいずれかに記載の非水電解質を含むことを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the nonaqueous electrolyte according to claim 1.
JP2008092542A 2008-03-31 2008-03-31 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery Active JP5112148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092542A JP5112148B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092542A JP5112148B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery

Publications (2)

Publication Number Publication Date
JP2009245829A true JP2009245829A (en) 2009-10-22
JP5112148B2 JP5112148B2 (en) 2013-01-09

Family

ID=41307480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092542A Active JP5112148B2 (en) 2008-03-31 2008-03-31 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery

Country Status (1)

Country Link
JP (1) JP5112148B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094459A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Lithium ion secondary battery
JP2015173103A (en) * 2014-02-18 2015-10-01 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrodes, and negative electrode arranged by use thereof, and nonaqueous secondary battery
JP2017182973A (en) * 2016-03-29 2017-10-05 株式会社Gsユアサ Nonaqueous electrolyte for secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
CN108288728A (en) * 2018-01-23 2018-07-17 广东卡达克汽车科技有限公司 It is a kind of adaptation silicon carbon material lithium-ion battery electrolytes and its application
JP2018170236A (en) * 2017-03-30 2018-11-01 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
US10177407B2 (en) 2014-02-20 2019-01-08 Murata Manufacturing Co., Ltd. Nonaqueous electrolyte solution for secondary battery, secondary battery, battery pack, electrically driven vehicle, power storage system, electrically driven tool, and electronic apparatus
CN109755648A (en) * 2017-11-01 2019-05-14 宁德时代新能源科技股份有限公司 Electrolyte and battery using same
US10476108B2 (en) 2015-11-05 2019-11-12 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for secondary battery, and secondary battery
CN113130999A (en) * 2021-04-15 2021-07-16 东莞维科电池有限公司 Lithium ion battery electrolyte and lithium ion battery
CN113764738A (en) * 2021-10-12 2021-12-07 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN114094190A (en) * 2021-11-23 2022-02-25 湖北亿纬动力有限公司 Electrolyte and preparation method and application thereof
CN114497733A (en) * 2021-12-15 2022-05-13 广东省豪鹏新能源科技有限公司 Electrolyte and battery thereof
WO2022160099A1 (en) * 2021-01-26 2022-08-04 宁德新能源科技有限公司 Electrolyte, electrochemical device, and electronic device
CN115692855A (en) * 2022-12-29 2023-02-03 湖南法恩莱特新能源科技有限公司 Overcharge-preventing additive for lithium battery electrolyte and lithium battery electrolyte comprising same
CN113764738B (en) * 2021-10-12 2024-05-14 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09120825A (en) * 1995-10-25 1997-05-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11191417A (en) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2004520700A (en) * 2001-05-22 2004-07-08 エルジー ケミカル エルティーディー. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery containing the same
JP2006172982A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Polymerizable boron compound for electrochemical device, its manufacturing method, polymerizable composition and ion conductive polyelectrolyte
JP2007194152A (en) * 2006-01-20 2007-08-02 Nitto Denko Corp Ionic conductor
JP2008027782A (en) * 2006-07-24 2008-02-07 Hitachi Vehicle Energy Ltd Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321313A (en) * 1995-05-24 1996-12-03 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH09120825A (en) * 1995-10-25 1997-05-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH11191417A (en) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof
JP2004520700A (en) * 2001-05-22 2004-07-08 エルジー ケミカル エルティーディー. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery containing the same
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2006172982A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Polymerizable boron compound for electrochemical device, its manufacturing method, polymerizable composition and ion conductive polyelectrolyte
JP2007194152A (en) * 2006-01-20 2007-08-02 Nitto Denko Corp Ionic conductor
JP2008027782A (en) * 2006-07-24 2008-02-07 Hitachi Vehicle Energy Ltd Lithium secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094459A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Lithium ion secondary battery
JP2015173103A (en) * 2014-02-18 2015-10-01 三菱化学株式会社 Active material for nonaqueous secondary battery negative electrodes, and negative electrode arranged by use thereof, and nonaqueous secondary battery
US10177407B2 (en) 2014-02-20 2019-01-08 Murata Manufacturing Co., Ltd. Nonaqueous electrolyte solution for secondary battery, secondary battery, battery pack, electrically driven vehicle, power storage system, electrically driven tool, and electronic apparatus
US10476108B2 (en) 2015-11-05 2019-11-12 Mitsui Chemicals, Inc. Non-aqueous electrolyte solution for secondary battery, and secondary battery
JP2017182973A (en) * 2016-03-29 2017-10-05 株式会社Gsユアサ Nonaqueous electrolyte for secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
JP2018170236A (en) * 2017-03-30 2018-11-01 三井化学株式会社 Nonaqueous electrolyte solution for battery, and lithium secondary battery
CN109755648A (en) * 2017-11-01 2019-05-14 宁德时代新能源科技股份有限公司 Electrolyte and battery using same
CN108288728A (en) * 2018-01-23 2018-07-17 广东卡达克汽车科技有限公司 It is a kind of adaptation silicon carbon material lithium-ion battery electrolytes and its application
WO2022160099A1 (en) * 2021-01-26 2022-08-04 宁德新能源科技有限公司 Electrolyte, electrochemical device, and electronic device
CN113130999A (en) * 2021-04-15 2021-07-16 东莞维科电池有限公司 Lithium ion battery electrolyte and lithium ion battery
CN113130999B (en) * 2021-04-15 2023-08-29 东莞维科电池有限公司 Lithium ion battery electrolyte and lithium ion battery
CN113764738A (en) * 2021-10-12 2021-12-07 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN113764738B (en) * 2021-10-12 2024-05-14 远景动力技术(江苏)有限公司 Electrolyte for improving high-temperature storage characteristics of battery and lithium ion battery
CN114094190A (en) * 2021-11-23 2022-02-25 湖北亿纬动力有限公司 Electrolyte and preparation method and application thereof
CN114094190B (en) * 2021-11-23 2023-01-13 湖北亿纬动力有限公司 Electrolyte and preparation method and application thereof
CN114497733A (en) * 2021-12-15 2022-05-13 广东省豪鹏新能源科技有限公司 Electrolyte and battery thereof
CN114497733B (en) * 2021-12-15 2024-03-12 广东省豪鹏新能源科技有限公司 Electrolyte and battery thereof
CN115692855A (en) * 2022-12-29 2023-02-03 湖南法恩莱特新能源科技有限公司 Overcharge-preventing additive for lithium battery electrolyte and lithium battery electrolyte comprising same

Also Published As

Publication number Publication date
JP5112148B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5112148B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte for secondary battery
JP5364890B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP5463581B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP6017697B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP5258353B2 (en) Nonaqueous electrolyte secondary battery
JP4703203B2 (en) Nonaqueous electrolyte secondary battery
JP2009176534A (en) Non-aqueous electrolyte secondary battery
JP5378367B2 (en) Non-aqueous electrolyte and electrochemical device including the same
JP6285332B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
KR102276985B1 (en) Nonaqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
JP6607689B2 (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP2018172357A (en) Lithium salt complex compound, additive for battery, nonaqueous electrolyte for battery and lithium secondary battery
WO2015020074A1 (en) Non-aqueous electrolyte, and electrochemical device provided with said electrolyte
JP4955201B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP2016051600A (en) Nonaqueous electrolytic solution for power storage device
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP2013191486A (en) Electrolytic solution for nonaqueous secondary battery and secondary battery
JP5063448B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP2016004751A (en) Lithium secondary battery and nonaqueous electrolyte
JP5499359B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the nonaqueous electrolyte
JP6081262B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2017157327A (en) Nonaqueous electrolyte solution for power storage device
JP6879799B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
CN108352571B (en) Nonaqueous electrolyte for secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250