JP2009244280A - Multi-coil probe for eddy current flaw detection - Google Patents

Multi-coil probe for eddy current flaw detection Download PDF

Info

Publication number
JP2009244280A
JP2009244280A JP2009173835A JP2009173835A JP2009244280A JP 2009244280 A JP2009244280 A JP 2009244280A JP 2009173835 A JP2009173835 A JP 2009173835A JP 2009173835 A JP2009173835 A JP 2009173835A JP 2009244280 A JP2009244280 A JP 2009244280A
Authority
JP
Japan
Prior art keywords
coil
eddy current
probe
flaw detection
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173835A
Other languages
Japanese (ja)
Other versions
JP5083280B2 (en
Inventor
Yoshio Nonaka
善夫 野中
Akira Nishimizu
亮 西水
Masahiro Koike
正浩 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009173835A priority Critical patent/JP5083280B2/en
Publication of JP2009244280A publication Critical patent/JP2009244280A/en
Application granted granted Critical
Publication of JP5083280B2 publication Critical patent/JP5083280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain lift-off noise from being generated even when an unevenness exists on a surface of an inspected object, in non-contact inspection using a multi-coil for eddy current flaw detection. <P>SOLUTION: The multi-coil probe for eddy current flaw detection includes a frame, a plurality of coils for eddy current flaw detection provided on the frame so as to advance and retreat in a direction of the inspected object, and a plurality of protrusions integrated with the coils and arranged on a side of the coils for eddy current flaw direction facing the inspected object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、渦電流探傷法に用いられる渦電流探傷用マルチコイルプローブに係わり、特に表面凹凸を有する被検査体の探傷を行うのに好適な渦電流探傷用マルチコイルプローブに関する技術である。   The present invention relates to a multi-coil probe for eddy current flaw detection used in an eddy current flaw detection method, and more particularly to a technique relating to a multi-coil probe for eddy current flaw detection suitable for flaw detection of a test object having surface irregularities.

渦電流探傷法(以下、ECTと呼称する。)とは、主に表面欠陥を被検査体表面に流れる渦電流の変化から検出する手法であり、非破壊検査手法として広く普及している。更に、近年ではECT検査の高速化を図るために、複数のコイルを規則的に配列した渦電流探傷用マルチコイルプローブ(以下、マルチコイルECTプローブと呼称する。)が普及しており、曲面形状等の複雑形状を有する被検査体の探傷を行うために、例えば、柔軟性を有する基板上にコイルを配置したフレキシブル型マルチコイルプローブが提案されている(例えば、特許文献1参照)。柔軟性を有する基板には、基板上に配置した渦電流探傷用のコイルに電流を流すための配線が施されたものもある(例えば、非特許文献1参照)。   The eddy current flaw detection method (hereinafter referred to as ECT) is a method that mainly detects surface defects from changes in eddy current flowing on the surface of an object to be inspected, and is widely used as a nondestructive inspection method. Furthermore, in recent years, in order to increase the speed of ECT inspection, an eddy current flaw detection multi-coil probe (hereinafter referred to as a multi-coil ECT probe) in which a plurality of coils are regularly arranged has become widespread and has a curved surface shape. For example, a flexible multi-coil probe in which a coil is arranged on a flexible substrate has been proposed (for example, see Patent Document 1). Some flexible substrates are provided with wiring for passing a current through an eddy current flaw detection coil disposed on the substrate (for example, see Non-Patent Document 1).

特開2003−344360号公報JP 2003-344360 A

財団法人エネルギー総合工学研究所 平成15年度 革新的実用原子力技術開発提案公募事業 「構造材適応型の電磁誘導非破壊検査システムの実用化開発」 成果報告書、p.37 平成15年3月Institute of Energy Engineering, FY2003 Innovative practical nuclear technology development proposal open call for participants project “Development of practical application of structural induction type electromagnetic induction nondestructive inspection system” Result report, p.37 March 2003

上記特許文献1及び非特許文献1に記されているフレキシブル型マルチコイルECTプローブは、滑らかな表面状態を有する曲面形状被検査体の探傷を行うのに、柔軟な基板がその表面状態に沿って柔軟に屈曲するので好適である。   The flexible multi-coil ECT probe described in Patent Document 1 and Non-Patent Document 1 performs a flaw detection of a curved object having a smooth surface state, and a flexible substrate follows the surface state. It is suitable because it bends flexibly.

しかしながら、例えば、被検査体の曲面がグラインダ加工を受けて、局所的に表面に凹凸を有する曲面形状被検査体の検査においては、渦電流探傷用のコイルと被検査体の表面との間の間隔(リフトオフ)が変動するためにリストオフノイズと称するノイズ信号が本来探傷したい欠陥による検出信号と同時に渦電流探傷用のコイルが発生させる。   However, for example, in the inspection of a curved surface inspection object having a locally uneven surface after the curved surface of the inspection object is subjected to grinder processing, the gap between the coil for eddy current testing and the surface of the inspection object Since the interval (lift-off) fluctuates, a noise signal called wrist-off noise is generated at the same time as a detection signal due to a defect to be flaw-detected and an eddy current flaw detection coil.

そのため、被検査体の表面の欠陥の検出性,長さ測定性及び高さ測定性などの探傷性能を著しく低下させる問題があった。また、被検査体と基板が直接接触する構造であったため、基板が摩耗することで基板に施された配線が断線する問題があった。   Therefore, there has been a problem that the flaw detection performance such as detectability of the surface of the object to be inspected, length measurement property, and height measurement property is remarkably lowered. In addition, since the object to be inspected and the substrate are in direct contact with each other, there is a problem in that the wiring applied to the substrate is disconnected when the substrate is worn.

したがって、本発明の目的は、探傷性能の低下を抑制できるマルチコイルECTプローブを提供することにある。   Accordingly, an object of the present invention is to provide a multi-coil ECT probe that can suppress a decrease in flaw detection performance.

本発明の目的を達成するための手段は、フレームと、前記フレームに被検査体の方向へ進退自在に設けられた複数個の渦電流探傷用コイルと、前記渦電流探傷用コイルの前記被検査体に面する側に配置されて前記コイルと一体にされている複数個の突起物とを備えていることを特徴としている渦電流探傷用マルチコイルプローブである。   Means for achieving the object of the present invention includes a frame, a plurality of eddy current flaw detection coils provided on the frame so as to be able to advance and retreat in the direction of the inspection object, and the inspection of the eddy current flaw detection coil. An eddy current flaw detection multi-coil probe comprising a plurality of protrusions arranged on the body-facing side and integrated with the coil.

本発明は、渦電流探傷用マルチコイルプローブを走査した際にも、複数の突起物が渦電流探傷用マルチコイルプローブのコイルと被検査体表面との間隔を極力一定に保つので、探傷性能の低下を抑制できる。   In the present invention, even when the multi-coil probe for eddy current testing is scanned, the plurality of protrusions keep the distance between the coil of the multi-coil probe for eddy current testing and the surface of the object to be inspected as constant as possible. Reduction can be suppressed.

そのため、表面凹凸を有する曲面形状被検査体においても、好適な検査を実施でき、ECT検査の適用範囲の拡大に貢献する。   Therefore, it is possible to carry out a suitable inspection even on a curved object having a surface irregularity, which contributes to the expansion of the application range of ECT inspection.

本発明の第1実施例によるフレキシブル型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。1A and 1B are diagrams showing a flexible multi-coil ECT probe according to a first embodiment of the present invention, in which FIG. 1A is an elevation view of the probe, FIG. 2B is a bottom view of the probe, and FIG. FIG. 4D is a cross-sectional view of the probe taken along the line aa when a partially spherical projection is used, and FIG. 5E is the aa of the probe when a weight-like projection is used. FIG. 5A is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 4D, and FIG. 5G is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 本発明の第2実施例によるフレキシブル型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。FIGS. 2A and 2B are diagrams showing a flexible multi-coil ECT probe according to a second embodiment of the present invention, in which FIG. 1A is an elevation view of the probe, FIG. 2B is a bottom view of the probe, and FIG. FIG. 4D is a cross-sectional view of the probe taken along the line aa when a partially spherical projection is used, and FIG. 5E is the aa of the probe when a weight-like projection is used. FIG. 5A is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 4D, and FIG. 5G is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 本発明の第3実施例によるフレキシブル型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。FIG. 4 is a diagram showing a flexible multi-coil ECT probe according to a third embodiment of the present invention, wherein (a) is an elevation view of the probe, (b) is a bottom view of the probe, and (c) is the probe. FIG. 4D is a cross-sectional view of the probe taken along the line aa when a partially spherical projection is used, and FIG. 5E is the aa of the probe when a weight-like projection is used. FIG. 5A is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 4D, and FIG. 5G is an enlarged cross-sectional view of a portion surrounded by a circle in FIG. 本発明の第4実施例によるコイル押付型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。FIG. 4 is a view showing a coil pressing type multi-coil ECT probe according to a fourth embodiment of the present invention, wherein (a) is an elevation view of the probe, (b) is a bottom view of the probe, and (c) is a view thereof. FIG. 4D is a right side view of the probe, FIG. 4D is a cross-sectional view of the probe when a partially spherical protrusion is used, and FIG. 5E is an a of the probe when a weight-like protrusion is used. -A sectional view, (f) figure is an enlarged sectional view of a part surrounded by a circle in (d) figure, and (g) figure is an enlarged sectional view of a part surrounded by a circle in (e) figure. 本発明の第5実施例によるコイル押付型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。FIG. 5 is a view showing a coil pressing type multi-coil ECT probe according to a fifth embodiment of the present invention, wherein (a) is an elevation view of the probe, (b) is a bottom view of the probe, and (c) is a view thereof. FIG. 4D is a right side view of the probe, FIG. 4D is an aa cross-sectional view of the probe when a partially spherical protrusion is used, and FIG. 5E is an a of the probe when a weight-like protrusion is used. -A sectional view, (f) figure is an enlarged sectional view of a part surrounded by a circle in (d) figure, and (g) figure is an enlarged sectional view of a part surrounded by a circle in (e) figure. 本発明の第6実施例によるコイル押付型マルチコイルECTプローブを示す図にして、(a)図はそのプローブの立面図、(b)図はそのプローブの下面図、(c)図はそのプローブの右側面図、(d)図は部分球面状の突起物を用いた場合のそのプローブのa−a断面図、(e)図は錘状の突起物を用いた場合のそのプローブのa−a断面図、(f)図は(d)図の丸印で囲った部位の拡大断面図、(g)図は(e)図の丸印で囲った部位の拡大断面図である。FIG. 6 is a view showing a coil pressing type multi-coil ECT probe according to a sixth embodiment of the present invention, wherein (a) is an elevation view of the probe, (b) is a bottom view of the probe, and (c) is a view thereof. FIG. 4D is a right side view of the probe, FIG. 4D is an aa cross-sectional view of the probe when a partially spherical protrusion is used, and FIG. 5E is an a of the probe when a weight-like protrusion is used. -A sectional view, (f) figure is an enlarged sectional view of a part surrounded by a circle in (d) figure, and (g) figure is an enlarged sectional view of a part surrounded by a circle in (e) figure. 従来例と本発明の実施例によるECT検査で、フレキシブル型マルチコイルECTプローブを表面凹凸を有する被検査体の曲面部にそのプローブをあてがった状態を説明する図である。It is a figure explaining the state which has applied the probe to the curved surface part of the to-be-inspected object which has a surface unevenness | corrugation by the ECT inspection by a prior art example and the Example of this invention.

本発明の実施例では、渦電流探傷用マルチコイルプローブの被検査体との接触部が前記被検査体に点接触する形状の複数の突起物に形成されている渦電流探傷用マルチコイルプローブの構成を有する。   In an embodiment of the present invention, there is provided an eddy current flaw detection multi-coil probe in which contact portions of the multi-coil probe for eddy current flaw detection are formed on a plurality of protrusions having a shape in point contact with the inspection subject. It has a configuration.

その構成によれば、渦電流探傷用マルチコイルプローブを走査しても、突起物が被検査体の表面との間隔を一定の間隔に維持するので、リフトオフノイズが抑制できる。そのため、渦電流探傷用マルチコイルプローブの探傷性能の低下が抑制できる。   According to this configuration, even when the multi-coil probe for eddy current flaw detection is scanned, the protrusions maintain the distance from the surface of the object to be inspected at a constant distance, so that lift-off noise can be suppressed. Therefore, it is possible to suppress a decrease in flaw detection performance of the multi-coil probe for eddy current flaw detection.

第1実施例による渦電流探傷用マルチコイルプローブは、図1のように、屈曲性に富んで柔軟性のあるプラスチック製の基板1と、その基板の上面に固定された複数個の渦電流探傷用コイル2と、その基板1の下面に各渦電流探傷用コイル2の真下において形成された部分球面形状又は錘状の突起物4と、前記基板1にエッチングで高密度に配線した銅配線とから構成される。基板1としては、プラスチックの中でも耐熱性や機械的強度の良いポリイミド樹脂製のフィルム(フィルム厚が0.15ミリ)を用いることが好ましい。   The multi-coil probe for eddy current testing according to the first embodiment, as shown in FIG. 1, has a flexible and flexible plastic substrate 1 and a plurality of eddy current testing fixed on the upper surface of the substrate. Coil 2, a partially spherical or weight-like projection 4 formed on the lower surface of the substrate 1 directly below each eddy current flaw detection coil 2, and copper wiring that is densely wired on the substrate 1 by etching; Consists of As the substrate 1, it is preferable to use a polyimide resin film (film thickness: 0.15 mm) having good heat resistance and mechanical strength among plastics.

その渦電流探傷用コイル2とは、励磁コイル,検出コイル又は励磁・検出兼用コイルであり、それらのコイルには、銅配線が結線されて、渦電流探傷用マルチコイルプローブ外の電源からコイルへ通電したり、コイルからの信号を渦電流探傷用マルチコイルプローブに接続されている渦電流探傷装置の信号処理装置へと電送する際の渦電流探傷用マルチコイルプローブ内での電送路として用いられる。   The eddy current flaw detection coil 2 is an excitation coil, a detection coil, or an excitation / detection coil. Copper wiring is connected to these coils, and the power supply from the power source outside the multi-coil probe for eddy current flaw detection is used. Used as a power transmission path in the multi-coil probe for eddy current testing when energizing or transmitting the signal from the coil to the signal processing device of the eddy current testing device connected to the multi-coil probe for eddy current testing .

このような基板1は、屈曲性がよく物体表面形状に沿って柔軟に変形するので、フレキシブルプリント基板と称せられ、フレキシブルプリント基板を採用した電流探傷用マルチコイルプローブは基板がリジッドなものに比較して柔軟性があることからフレキシブル型マルチコイルECTプローブと称せられている。   Such a substrate 1 is flexible and deforms flexibly along the shape of the surface of the object, so it is called a flexible printed circuit board. The multi-coil probe for current flaws that employs a flexible printed circuit board is compared with a rigid circuit board. Because of its flexibility, it is called a flexible multi-coil ECT probe.

基板1は、成型用の金型にプラスチックを流し込む成型加工やプラスチック板を切削加工する方法などで製造される。基板1に装備される突起物4は、金型に突起物の型も加工しておき、その金型による成型加工によって、あるいは、プラスチック板から基板1を切削加工で製造する際に、突起物4も同時に切削加工で成型することによって基板1と一体に製造される。   The substrate 1 is manufactured by a molding process in which plastic is poured into a molding die or a method of cutting a plastic plate. The protrusions 4 provided on the substrate 1 are processed when the protrusions are processed into a mold and the substrate 1 is manufactured by molding using the mold or by cutting the substrate 1 from a plastic plate. 4 is also manufactured integrally with the substrate 1 by being simultaneously molded by cutting.

基板1内に銅配線を電気配線として施すことで、渦電流探傷用コイル2から直接的に電線をフレキシブル型マルチコイルECTプローブの外に引き出すものに比べてそのプローブの取扱い時の断線防止が可能となる。また、部分球面または錘状の突起物4を備えたことで突起物4を被検査体の表面に接触させてそのプローブを走査するので、基板1の摩耗による基板内の電気配線(銅配線)の断線を抑えることができる。更に、基板1に熱や触媒等で硬化する材料を用いてある場合には、基板1を作成した後に、突起物4を熱や触媒等で硬くすれば、基板1の耐摩耗性を向上し、フレキシブル型マルチコイルECTプローブの寿命を向上できる。   By providing copper wiring in the substrate 1 as electrical wiring, it is possible to prevent disconnection when handling the probe compared to the case where the electric wire is directly drawn out of the flexible multi-coil ECT probe from the coil 2 for eddy current testing. It becomes. Further, since the projection 4 is brought into contact with the surface of the object to be inspected by providing the partial spherical surface or the weight-shaped projection 4, the electrical wiring (copper wiring) in the substrate due to the wear of the substrate 1 is scanned. Can be prevented. Further, when the substrate 1 is made of a material that can be cured by heat or a catalyst, the abrasion resistance of the substrate 1 can be improved by making the protrusions 4 hard by heat or a catalyst after the substrate 1 is formed. The lifetime of the flexible multi-coil ECT probe can be improved.

突起物4は、図1(d)図のように球面の一部分を成す形状である部分球面形状と、図1(e)図のように円錐や多角錘などの錘状の例がかかげられるが、被検査体の表面に点接触で接触する形状であればどの様な形状でも良い。いずれの場合も、渦電流探傷用コイル2の中心線5の延長上に突起物4の最突端部位が位置するように渦電流探傷用コイル2と突起物4との配置関係が整えられている。   The protrusion 4 has a partial spherical shape that is a part of a spherical surface as shown in FIG. 1D, and a weight-like example such as a cone or a polygonal pyramid as shown in FIG. 1E. Any shape can be used as long as it is in point contact with the surface of the object to be inspected. In any case, the arrangement relationship between the eddy current flaw detection coil 2 and the protrusion 4 is arranged so that the most protruding end portion of the protrusion 4 is positioned on the extension of the center line 5 of the eddy current flaw detection coil 2. .

本発明を適用したフレキシブル型マルチコイルECTプローブでは、表面凹凸を有する曲面形状部の検査においても、リフトオフによるノイズ信号が発生しない原理を以下に説明する。図7のように、滑らかな曲面を表面6に有する被検査体7のその表面に対して、従来のフレキシブル型マルチコイルECTプローブを適用して探傷した場合は、基板を被検査体の表面に押し付けると、基板と被検査体との間に隙間が生じないので、フレキシブル型マルチコイルECTプローブをその表面に沿って走査しても、基板上に配置した渦電流探傷用コイルと被検査体の間隔(リフトオフ)が常に一定に保たれる。そのため、リストオフによるノイズ信号が発生しない探傷が可能である。   In the flexible multi-coil ECT probe to which the present invention is applied, the principle that a noise signal due to lift-off is not generated even in the inspection of a curved surface portion having surface irregularities will be described below. When the conventional flexible multi-coil ECT probe is used for flaw detection on the surface of the inspection object 7 having a smooth curved surface on the surface 6 as shown in FIG. 7, the substrate is placed on the surface of the inspection object. When pressed, there is no gap between the substrate and the object to be inspected. Therefore, even if the flexible multi-coil ECT probe is scanned along the surface, the eddy current flaw detection coil disposed on the substrate and the object to be inspected The interval (lift-off) is always kept constant. Therefore, flaw detection can be performed without generating a noise signal due to wrist-off.

しかし、グラインダ等で被検査体7の表面6を研摩した後においては、その表面6が図7の中央の図のように凹凸状態となる。そのような凹凸状態では、局所的な表面凹凸により、基板上に配置した渦電流探傷用コイルと被検査体7の表面との間隔がフレキシブル型マルチコイルECTプローブを走査する際に変動する。そのため、リフトオフによるノイズ信号が発生し、探傷性能が悪化する等の問題が生じる。また、従来のフレキシブル型マルチコイルECTプローブでは、被検査体7と基板とが直接接触するため、フレキシブル型マルチコイルECTプローブを走査する際に基板が摩耗し、基盤内に施されている電気配線が断線する等の問題があった。   However, after the surface 6 of the object 7 to be inspected is polished with a grinder or the like, the surface 6 becomes uneven as shown in the center diagram of FIG. In such an uneven state, due to local surface unevenness, the distance between the eddy current flaw detection coil arranged on the substrate and the surface of the inspection object 7 varies when the flexible multi-coil ECT probe is scanned. For this reason, a noise signal is generated due to lift-off, and problems such as deterioration in flaw detection performance occur. Further, in the conventional flexible multi-coil ECT probe, the inspected object 7 and the substrate are in direct contact with each other, so that the substrate is worn when scanning the flexible multi-coil ECT probe, and the electrical wiring provided in the base There was a problem such as disconnection.

一方、本発明の実施例を適用したフレキシブル型マルチコイルECTプローブでは、基板1の被検査体7の表面6との接触部に、部分球面状の突起物4を備えている。そのため、本発明の実施例における基板1を被検査体7の表面6に押し付けた際に突起物4が凸凹状の表面6に点接触して、基板1上に配置した渦電流探傷用コイル2と被検査体7の距離が突起物4の突出長さ相当の一定に保たれる。   On the other hand, in the flexible multi-coil ECT probe to which the embodiment of the present invention is applied, a partial spherical projection 4 is provided at the contact portion of the substrate 1 with the surface 6 of the inspection object 7. Therefore, when the substrate 1 in the embodiment of the present invention is pressed against the surface 6 of the object 7 to be inspected, the protrusion 4 comes into point contact with the uneven surface 6 and the eddy current flaw detection coil 2 arranged on the substrate 1. The distance between the object 7 and the object to be inspected 7 is kept constant corresponding to the protrusion length of the protrusion 4.

そのため、表面6が凹凸状態においても、渦電流探傷用コイル2と被検査体7の表面6との間の間隔がフレキシブル型マルチコイルECTプローブを走査した際にも変化せず、リフトオフの変動によるノイズ信号が渦電流探傷用コイル内に誘導されることは無く、リフトオフノイズの発生を抑制できる。   For this reason, even when the surface 6 is uneven, the distance between the eddy current flaw detection coil 2 and the surface 6 of the inspection object 7 does not change even when the flexible multi-coil ECT probe is scanned. The noise signal is not induced in the eddy current flaw detection coil, and the occurrence of lift-off noise can be suppressed.

また、突起物4が被検査体7に接触するので、フレキシブル型マルチコイルプローブの基板1に施されている電気配線にまで摩耗が進行するまでに従来よりも時間がかかり、断線防止事故にいたるまでのプローブ寿命が飛躍的に延命化できる。   In addition, since the protrusions 4 come into contact with the object to be inspected 7, it takes more time than before until the electrical wiring applied to the substrate 1 of the flexible type multi-coil probe progresses, leading to a disconnection prevention accident. Probe life can be dramatically extended.

本発明の実施例2を、図2に示す。実施例2は、既述の実施例1を改良したもので、改良内容を以下に解説し、その他の構成や作用は既述の実施例1と同じである。   A second embodiment of the present invention is shown in FIG. The second embodiment is an improvement of the first embodiment described above. The details of the improvement will be described below, and the other configurations and operations are the same as those of the first embodiment described above.

図2に示したフレキシブル型マルチコイルECTプローブの基板1は、表裏両面が平坦なフレキシブルプリント基板1に突起物4を機械的に固定したものである。突起物4は部分球面状あるいは錘状の形状を有し、材質は炭化ホウ素,工業用ダイヤモンド,工業用ルビー等の高硬度材料を採用している。その材料の硬度は被検査体7の表面6の硬度よりも高い硬度を示している。   A substrate 1 of the flexible multi-coil ECT probe shown in FIG. 2 is obtained by mechanically fixing a protrusion 4 to a flexible printed circuit board 1 having flat front and back surfaces. The protrusion 4 has a partial spherical shape or a weight-like shape, and a high-hardness material such as boron carbide, industrial diamond, or industrial ruby is adopted as the material. The hardness of the material is higher than the hardness of the surface 6 of the inspection object 7.

その突起物4は、図2(a)(b)(c)(d)(e)(f)のように、渦電流探傷用コイル2の中心線5の延長上に突起物4の最突端部位が位置するように渦電流探傷用コイル2と突起物4との配置関係が整えられている。このように配置された突起物4は、基板1に接着した複数層のプラスチック板8で突起物4の周囲を基板1とで挟んで基板に固定されている。プラスチック板8は基板の柔軟性を損なわないように、及び突起物4の最突端部がプラスチック板8よりの外側に突き出るようにその厚さを配慮する。   As shown in FIGS. 2 (a), (b), (c), (d), (e), and (f), the protrusion 4 is the most protruding end of the protrusion 4 on the extension of the center line 5 of the coil 2 for eddy current testing. The arrangement relationship between the eddy current flaw detection coil 2 and the protrusion 4 is arranged so that the part is located. The protrusions 4 arranged in this way are fixed to the substrate by sandwiching the periphery of the protrusions 4 with the substrate 1 with a plurality of plastic plates 8 bonded to the substrate 1. The thickness of the plastic plate 8 is taken into consideration so as not to impair the flexibility of the substrate, and so that the most protruding end portion of the protrusion 4 protrudes outside the plastic plate 8.

そのほかの機械的固定方法としては、基板1に雌ネジ穴を開け、突起物4に加工した雄ネジをそのネジ穴に螺合させて基板1と突起物4とを固定する方法もある。   As another mechanical fixing method, there is also a method in which a female screw hole is formed in the substrate 1 and a male screw processed into a protrusion 4 is screwed into the screw hole to fix the substrate 1 and the protrusion 4.

本発明の実施例3を、図3に示す。実施例3は、既述の実施例1を改良したもので、改良内容を以下に解説し、その他の構成や作用は既述の実施例1と同じである。   A third embodiment of the present invention is shown in FIG. The third embodiment is an improvement of the first embodiment described above. The details of the improvement will be described below, and the other configurations and operations are the same as those of the first embodiment described above.

図3に示したフレキシブル型マルチコイルECTプローブの基板1は、表裏両面が平坦なフレキシブルプリント基板1に突起物4を接着剤9で固定したものである。突起物4は部分球面状あるいは錘状の形状を有し、材質は炭化ホウ素,工業用ダイヤモンド,工業用ルビー等の高硬度材料を採用している。その材料の硬度は被検査体7の表面6の硬度よりも高い硬度を示している。   The substrate 1 of the flexible multi-coil ECT probe shown in FIG. 3 is obtained by fixing a projection 4 with an adhesive 9 on a flexible printed substrate 1 having flat front and back surfaces. The protrusion 4 has a partial spherical shape or a weight-like shape, and a high-hardness material such as boron carbide, industrial diamond, or industrial ruby is adopted as the material. The hardness of the material is higher than the hardness of the surface 6 of the inspection object 7.

その突起物4は、図3(a)(b)(c)(d)(e)(f)のように、渦電流探傷用コイル2の中心線5の延長上に突起物4の最突端部位が位置するように渦電流探傷用コイル2と突起物4との配置関係が整えられている。このように配置された突起物4は基板1に接着剤9で接着されて固定される。   As shown in FIGS. 3A, 3 </ b> B, 3 </ b> C, 3 </ b> D, 3 </ b> E, and 3 </ b> F, the protrusion 4 is the most protruding end of the protrusion 4 on the extension of the center line 5 of the eddy current flaw detection coil 2. The arrangement relationship between the eddy current flaw detection coil 2 and the protrusion 4 is arranged so that the part is located. The protrusions 4 arranged in this manner are bonded and fixed to the substrate 1 with an adhesive 9.

このタイプのフレキシブル型マルチコイルECTプローブは簡単に突起物4を取付けられるが、突起物4の脱落が問題となりそうな接着剤9の接着力低下を引き起こす環境で使用する場合は別の実施例1や実施例2の固定方法を採用した方がよい。   In this type of flexible multi-coil ECT probe, the protrusion 4 can be easily attached, but when used in an environment that causes a decrease in the adhesive strength of the adhesive 9 where the protrusion 4 is likely to drop off, another embodiment 1 is used. It is better to adopt the fixing method of the second embodiment.

図4に示した第4実施例は、コイル押付型マルチコイルECTプローブの例である。コイル押付型マルチコイルECTプローブのフレーム10には、図2(a)(b)(c)のように、被検査体の表面に対向する面に、複数のコイルホルダ3をフレーム10から突き出る方向へ進出したりフレーム10側へ戻る方向へ退避したり出来るようにされている。このような被検査体の方向へ進退自在にされているコイルホルダ3は次のようにしてフレーム10に装着される。このフレーム10は探傷作業中に被検査体側へ押しあてがわれても変形することの無い剛性を持たせてある。   The fourth embodiment shown in FIG. 4 is an example of a coil pressing type multi-coil ECT probe. In the frame 10 of the coil pressing type multi-coil ECT probe, as shown in FIGS. 2 (a), 2 (b), and 2 (c), a direction in which a plurality of coil holders 3 protrude from the frame 10 on the surface facing the surface of the object to be inspected. Or retreating in the direction of returning to the frame 10 side. The coil holder 3 that can be moved forward and backward in the direction of the object to be inspected is attached to the frame 10 as follows. The frame 10 has such rigidity that it will not be deformed even if it is pushed to the inspection object side during the flaw detection operation.

即ち、フレーム10に形成されている開口11は、フレーム10の下面において狭い口径とされ、内側ではそれよりも広い口径とされている。その開口11の内側には、前記狭い開口よりも幅広なつば部12を有するコイルホルダ3が上下動自在に挿入され、その一部下部がフレーム10の下面から下方へ突き出ている。そのコイルホルダ3の上端部分と開口の上端部分との間にはコイルバネ13が設けられて、そのコイルバネ13が常にコイルホルダ3を開口11から突き出すようにコイルホルダ3にバネ力を加えている。   That is, the opening 11 formed in the frame 10 has a narrow diameter on the lower surface of the frame 10 and has a wider diameter on the inside. Inside the opening 11, a coil holder 3 having a flange portion 12 wider than the narrow opening is inserted so as to be movable up and down, and a part of the lower portion protrudes downward from the lower surface of the frame 10. A coil spring 13 is provided between the upper end portion of the coil holder 3 and the upper end portion of the opening, and the coil spring 13 applies a spring force to the coil holder 3 so that the coil holder 3 always protrudes from the opening 11.

開口から突き出されたコイルホルダ3の突端部は、図2(d)(f)のような部分球面状または図2(e)(g)のような円錐や多角錐などの錘状の形状を有する突起物4として成型され、その突起物4がその最突端部で被検査体の表面に点接触する形状とされている。   The protruding end of the coil holder 3 protruding from the opening has a partial spherical shape as shown in FIGS. 2 (d) and 2 (f) or a weight-like shape such as a cone or a polygonal pyramid as shown in FIGS. 2 (e) and 2 (g). The protrusion 4 has a shape in which the protrusion 4 is in point contact with the surface of the object to be inspected at the most protruding end portion.

コイルホルダ3の内側は、中空となっていて、その中には渦電流探傷用コイル2が内蔵され、渦電流探傷用コイル2の中心線5の延長線上に突起物4の最突端部が位置するように渦電流探傷用コイル2と突起物4との位置関係が配慮されている。渦電流探傷用コイル2には電気配線が結線され励磁用の電力や検出信号の伝送用に用いられる。このようにして、コイルホルダ3の先端に成型した突起物4は渦電流探傷用コイル2とコイルホルダ3を介して一体となっている。   The inside of the coil holder 3 is hollow, and the eddy current flaw detection coil 2 is incorporated therein, and the most protruding end portion of the projection 4 is positioned on the extension line of the center line 5 of the eddy current flaw detection coil 2. Thus, the positional relationship between the eddy current flaw detection coil 2 and the protrusion 4 is considered. An electrical wiring is connected to the eddy current flaw detection coil 2 and is used for transmitting excitation power and detection signals. Thus, the protrusion 4 molded at the tip of the coil holder 3 is integrated with the eddy current flaw detection coil 2 and the coil holder 3.

このようなコイル押付型マルチコイルECTプローブは、渦電流探傷用コイル2が渦電流探傷装置の信号処理装置や電源に接続されて用いられる。渦電流探傷検査を実施する際には、フレーム10を被検査体の表面に向けて押すことによって、コイルホルダ3をその表面に押し付ける。その押し付けにより、被検査体の表面に突起物4が点接触する。その被検査体の表面が凹凸を有する場合には、凸部に接触した突起部が成型されているコイルホルダ3は、凹部に接触したコイルホルダ3よりも大きく開口11内にコイルバネ13の力に逆らって押し入る。   Such a coil pressing type multi-coil ECT probe is used with the eddy current flaw detection coil 2 connected to a signal processing device or a power source of the eddy current flaw detection device. When the eddy current flaw detection inspection is performed, the coil holder 3 is pressed against the surface of the object by pressing the frame 10 toward the surface of the object to be inspected. By the pressing, the protrusion 4 comes into point contact with the surface of the object to be inspected. When the surface of the object to be inspected has irregularities, the coil holder 3 in which the protrusions that are in contact with the protrusions are molded is larger than the coil holder 3 that is in contact with the recesses, and the force of the coil spring 13 is within the opening 11. Push it in.

このようにして、その凹凸によって各コイルホルダ3の開口11内への押し入り寸法が相違しますが、その押し入り動作には、渦電流探傷用コイル2がコイルホルダ3と同量だけ押し入れ方向に移動しますので、渦電流探傷用コイル2と被検査体の表面との間隔(リフトオフ量)は一定に保たれます。そのため、リフトオフノイズの発生を抑制することが出来ます。   In this manner, the indentation dimensions of the coil holders 3 into the openings 11 differ depending on the unevenness, but the eddy current flaw detection coil 2 moves in the indentation direction by the same amount as the coil holder 3 in the indentation operation. Therefore, the distance (lift-off amount) between the eddy current testing coil 2 and the surface of the object to be inspected is kept constant. Therefore, the occurrence of lift-off noise can be suppressed.

コイル押付型マルチコイルECTプローブを走査して検査位置を被検査体の表面に沿って移動させても、渦電流探傷用コイル2と被検査体の表面との間隔(リフトオフ量)は一定に保たれますので、リフトオフノイズの発生を抑制することが出来ます。   Even when the coil pressing type multi-coil ECT probe is scanned to move the inspection position along the surface of the object to be inspected, the distance (lift-off amount) between the eddy current flaw detection coil 2 and the surface of the object to be inspected is kept constant. Because it sags, the occurrence of lift-off noise can be suppressed.

図4の例ではコイルバネ13をコイルホルダ3のサスペンションとして用いて検査表面の凹凸に追従させたが、コイルバネ13の代わりにガス圧,水圧,油圧を用いたシリンダ装置でコイルホルダ3のサスペンションを構成しても良い。また、ゴム等の弾性体の中にコイルホルダ3を抜けないように埋め込み、その弾性体の弾性力を利用してコイルホルダ3をサスペンスしてもよい。   In the example of FIG. 4, the coil spring 13 is used as a suspension of the coil holder 3 to follow the unevenness of the inspection surface. You may do it. Alternatively, the coil holder 3 may be embedded in an elastic body such as rubber so as not to come out, and the coil holder 3 may be suspended using the elastic force of the elastic body.

コイル押付型マルチコイルECTプローブを走査する際に、コイルホルダ3と同材質の突起物4の摩耗が問題となる場合は、コイルホルダや突起物4の材料として熱硬化性プラスチックを採用して、少なくとも突起物4を熱硬化により耐摩耗性を向上できる。   When scanning the coil pressing type multi-coil ECT probe, if wear of the projection 4 made of the same material as the coil holder 3 becomes a problem, a thermosetting plastic is used as the material of the coil holder or projection 4. At least the protrusions 4 can be improved in wear resistance by thermosetting.

図5に示した第5実施例は、既述の第4実施例のコイル押付型マルチコイルECTプローブを改良した例である。改良内容を以下に説明し、ここで説明しない構成や作用は第4実施例と同じなのでその説明を省略する。即ち、改良点は、コイルホルダ3と突起物4とを別々に作成し、コイルホルダ3の端部に突起物4をはめ込むことで機械的にコイルホルダ3と突起物4を一体化する。   The fifth embodiment shown in FIG. 5 is an example in which the coil pressing type multi-coil ECT probe of the fourth embodiment described above is improved. The details of the improvement will be described below. Since the configuration and operation not described here are the same as those in the fourth embodiment, the description thereof will be omitted. That is, the improvement is that the coil holder 3 and the projection 4 are separately formed, and the projection 4 is fitted into the end of the coil holder 3 to mechanically integrate the coil holder 3 and the projection 4.

その一体化のために、コイルホルダ3の端部には逆ハの字型の断面を有する孔14を加工しておく。その孔14には、図5(d)(e)(f)(g)のように、突起物4をはめ込んで、突起物4の突端はコイルホルダ3から突き出しておく。   For the integration, a hole 14 having an inverted cross section is processed at the end of the coil holder 3. As shown in FIGS. 5D, 5 </ b> E, 5 </ b> F, and 5 </ b> G, the protrusion 4 is fitted into the hole 14, and the protruding end of the protrusion 4 protrudes from the coil holder 3.

突起物4の摩耗が問題となる場合は、突起物4の材料として、炭化ホウ素,工業用ダイヤモンド,工業用ルビー等の高硬度材料を採用することで耐摩耗性の問題は解決する。このように、突起物4の材料をコイルホルダ3の材料とは相違する材料に選択して、必要に応じた材料が選択できる。   When wear of the protrusion 4 becomes a problem, the problem of wear resistance is solved by adopting a high-hardness material such as boron carbide, industrial diamond, or industrial ruby as the material of the protrusion 4. Thus, the material of the protrusion 4 can be selected as a material different from the material of the coil holder 3, and the material according to need can be selected.

図6に示した第6実施例は、既述の第4実施例のコイル押付型マルチコイルECTプローブを改良した例である。改良内容を以下に説明し、ここで説明しない構成や作用は第4実施例と同じなのでその説明を省略する。即ち、改良点は、コイルホルダ3と突起物4とを別々に作成し、図5(d)(e)(f)(g)のように、コイルホルダ3の端部に突起物4を接着剤9で接着してコイルホルダ3と突起物4を一体化する。   The sixth embodiment shown in FIG. 6 is an example in which the coil pressing type multi-coil ECT probe of the fourth embodiment described above is improved. The details of the improvement will be described below. Since the configuration and operation not described here are the same as those in the fourth embodiment, description thereof will be omitted. In other words, the improvement is that the coil holder 3 and the projection 4 are made separately, and the projection 4 is bonded to the end of the coil holder 3 as shown in FIGS. 5 (d) (e) (f) (g). The coil holder 3 and the protrusion 4 are integrated by bonding with the agent 9.

突起物4の摩耗が問題となる場合は、突起物4の材料として、炭化ホウ素,工業用ダイヤモンド,工業用ルビー等の高硬度材料を採用することで耐摩耗性の問題は解決する。このように、突起物4の材料をコイルホルダ3の材料とは相違する材料に選択して、必要に応じた材料が選択できる。   When wear of the protrusion 4 becomes a problem, the problem of wear resistance is solved by adopting a high-hardness material such as boron carbide, industrial diamond, or industrial ruby as the material of the protrusion 4. Thus, the material of the protrusion 4 can be selected as a material different from the material of the coil holder 3, and the material according to need can be selected.

このタイプのコイル押付型マルチコイルECTプローブは簡単に突起物4をコイルホルダ3に取付けられるが、突起物4の脱落が問題となりそうな環境で使用する場合は第4実施例や第5実施例のような別の固定方法を突起物4をコイルホルダ3へ固定する方法として採用することが好ましい。   In this type of coil pressing type multi-coil ECT probe, the protrusion 4 can be easily attached to the coil holder 3, but the fourth embodiment and the fifth embodiment are used in an environment where the dropout of the protrusion 4 is likely to be a problem. It is preferable to employ another fixing method as described above as a method for fixing the protrusion 4 to the coil holder 3.

本発明は、渦電流探傷法による非破壊検査を実施する際に、渦電流探傷装置に接続して用いられる渦電流探傷用マルチコイルプローブに利用される。   The present invention is used for an eddy current flaw detection multi-coil probe that is connected to an eddy current flaw detector when performing a nondestructive inspection by an eddy current flaw detection method.

1…基板、2…渦電流探傷用コイル、3…コイルホルダ、4…突起物、5…中心線、6…表面、7…被検査体、8…プラスチック板、9…接着剤、10…フレーム、11…開口、12…つば部、13…コイルバネ、14…孔。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Coil for eddy current test, 3 ... Coil holder, 4 ... Projection, 5 ... Center line, 6 ... Surface, 7 ... Test object, 8 ... Plastic board, 9 ... Adhesive, 10 ... Frame , 11 ... opening, 12 ... collar, 13 ... coil spring, 14 ... hole.

Claims (3)

フレームと、前記フレームに被検査体の方向へ進退自在に設けられた複数個の渦電流探傷用コイルと、
前記渦電流探傷用コイルの前記被検査体に面する側に配置されて前記コイルと一体にされている複数個の突起物と、
を備えている渦電流探傷用マルチコイルプローブ。
A frame, and a plurality of eddy current flaw detection coils provided in the frame so as to be movable forward and backward in the direction of the object to be inspected
A plurality of protrusions arranged on the side of the eddy current testing coil facing the object to be inspected and integrated with the coil;
Multi coil probe for eddy current testing.
請求項1において、前記突起物の硬度は、前記被検査体の硬度以上とされている渦電流探傷用マルチコイルプローブ。   2. The multi-coil probe for eddy current flaw detection according to claim 1, wherein the hardness of the projection is equal to or higher than the hardness of the object to be inspected. 請求項1から請求項2までのいずれか一項において、前記突起物の前記被検査体側の部分は部分球面状又は錘状の形状に形成されている渦電流探傷用マルチコイルプローブ。   3. The multi-coil probe for eddy current testing according to claim 1, wherein a portion of the protrusion on the side of the object to be inspected is formed in a partial spherical shape or a weight-like shape.
JP2009173835A 2009-07-27 2009-07-27 Multi-coil probe for eddy current testing Active JP5083280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173835A JP5083280B2 (en) 2009-07-27 2009-07-27 Multi-coil probe for eddy current testing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173835A JP5083280B2 (en) 2009-07-27 2009-07-27 Multi-coil probe for eddy current testing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005124412A Division JP4442501B2 (en) 2005-04-22 2005-04-22 Multi-coil probe for eddy current testing

Publications (2)

Publication Number Publication Date
JP2009244280A true JP2009244280A (en) 2009-10-22
JP5083280B2 JP5083280B2 (en) 2012-11-28

Family

ID=41306301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173835A Active JP5083280B2 (en) 2009-07-27 2009-07-27 Multi-coil probe for eddy current testing

Country Status (1)

Country Link
JP (1) JP5083280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038549A1 (en) * 2010-07-28 2012-02-02 Federal-Mogul Nürnberg GmbH Testing apparatus for testing geometry of combustion chamber trough of piston for petrol engine, has carrier attached to eddy current sensors, where sensors are movably mounted to carrier
KR20220106588A (en) * 2021-01-22 2022-07-29 한국수력원자력 주식회사 Flexible arrayed and current probe for non-destructive testing of welds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941186U (en) * 1972-07-10 1974-04-11
JPS57156855U (en) * 1981-03-30 1982-10-02
JPS62128362U (en) * 1986-02-07 1987-08-14
JP2003344360A (en) * 2002-05-23 2003-12-03 Central Res Inst Of Electric Power Ind Apparatus for inspecting three-dimensional object
JP2005091208A (en) * 2003-09-18 2005-04-07 Tdk Corp Eddy current probe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941186U (en) * 1972-07-10 1974-04-11
JPS57156855U (en) * 1981-03-30 1982-10-02
JPS62128362U (en) * 1986-02-07 1987-08-14
JP2003344360A (en) * 2002-05-23 2003-12-03 Central Res Inst Of Electric Power Ind Apparatus for inspecting three-dimensional object
JP2005091208A (en) * 2003-09-18 2005-04-07 Tdk Corp Eddy current probe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010038549A1 (en) * 2010-07-28 2012-02-02 Federal-Mogul Nürnberg GmbH Testing apparatus for testing geometry of combustion chamber trough of piston for petrol engine, has carrier attached to eddy current sensors, where sensors are movably mounted to carrier
DE102010038549B4 (en) 2010-07-28 2019-01-17 Federal-Mogul Nürnberg GmbH Test device and use of a test device for testing the geometry of the combustion bowl of a piston for an internal combustion engine
KR20220106588A (en) * 2021-01-22 2022-07-29 한국수력원자력 주식회사 Flexible arrayed and current probe for non-destructive testing of welds
KR102487591B1 (en) 2021-01-22 2023-01-11 한국수력원자력 주식회사 Flexible arrayed and current probe for non-destructive testing of welds

Also Published As

Publication number Publication date
JP5083280B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP4311416B2 (en) Surface defect length evaluation method by eddy current testing
JP4442501B2 (en) Multi-coil probe for eddy current testing
US20040056656A1 (en) Molded eddy current array probe
JP2017521668A (en) Contact probe for test head and corresponding manufacturing method
JP2016505155A (en) Test socket with high density conductive part
JP2011145279A (en) Probe card and inspection device
KR100764040B1 (en) Retainer ring of chemical mechanical polishing apparatus
JP5083280B2 (en) Multi-coil probe for eddy current testing
KR20190077497A (en) Wire rope tester
JP2006226829A (en) Inspection method of probe head and electron device
KR101827736B1 (en) Connector pin device for testing semi-conductor chip and manufacturing method thereof
JP4608322B2 (en) Eddy current flaw detection multi-coil probe manufacturing method
JP6386923B2 (en) Semiconductor evaluation apparatus and chuck stage inspection method
US20190049410A1 (en) Eddy current inspection probe
JP2014091190A (en) Service life detection method for abrasive pad
JP2006194815A (en) Eddy current flaw detection multi-coil probe and its manufacuring method
JP2006046909A (en) Multi-coil type probe of eddy current flaw detector
JP5155917B2 (en) Eddy current flaw detection probe and manufacturing method thereof
JP2009287921A (en) Vertical coil spring probe
US11233352B2 (en) Electro-conductive part protecting member for signal transmission connector
JP2006337080A (en) Probe for current test
WO2005022696A1 (en) Anisotropic conductive sheet process for producing the same, and circuit board inspection apparatus
JP2005300279A (en) Anisotropic conductive connector device, its manufacturing method, and inspection device of circuit device
TW201020550A (en) An electric conductor with good current capability and a method for improving the current capability of a electric conductor
JP6237441B2 (en) Electrode structure, inspection jig, and manufacturing method of electrode structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5083280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3