JP2009243358A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2009243358A
JP2009243358A JP2008090179A JP2008090179A JP2009243358A JP 2009243358 A JP2009243358 A JP 2009243358A JP 2008090179 A JP2008090179 A JP 2008090179A JP 2008090179 A JP2008090179 A JP 2008090179A JP 2009243358 A JP2009243358 A JP 2009243358A
Authority
JP
Japan
Prior art keywords
fuel
slit
spray
injection valve
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008090179A
Other languages
Japanese (ja)
Other versions
JP4872959B2 (en
Inventor
Kiyomi Kawamura
清美 河村
Yoshihiro Nomura
佳洋 野村
Reiko Ueda
玲子 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008090179A priority Critical patent/JP4872959B2/en
Publication of JP2009243358A publication Critical patent/JP2009243358A/en
Application granted granted Critical
Publication of JP4872959B2 publication Critical patent/JP4872959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve capable of improving the dispersibility of fuel spray. <P>SOLUTION: Each of slit-like nozzle holes 21, 22 is shaped to spread at a predetermined spread angle θ such that its slit length increases gradually as it goes from an entrance 21a, 22a to an exit 21b, 22b; the two slit-like nozzle holes 21, 22 form a predetermined inclination angle α such that the distance therebetween increases gradually as they go from the entrances 21a, 22a to the exits 21b, 22b; wherein an expression 30° ≤ α ≤6 x θ<SP>0.5</SP>is established with respect to the spread angle θ and the inclination angle α. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2つのスリット状噴口から燃料を噴射する燃料噴射弁に関する。   The present invention relates to a fuel injection valve that injects fuel from two slit-shaped nozzle holes.

2つのスリット状噴口から燃料を噴射する燃料噴射弁の関連技術が下記特許文献1に開示されている。特許文献1の燃料噴射弁においては、互いに平行に形成された2つのスリット状噴口からエンジン筒内に噴出した燃料噴霧は上面から見て八の字形に広がる噴霧を形成し、燃料噴霧の各々は側面から見て上下の両方向に広がる扇形の噴霧を形成する。この形状の燃料噴霧により、円錐形状の燃料噴霧と比較して貫徹力を大きくしている。   A related art of a fuel injection valve that injects fuel from two slit-shaped nozzle holes is disclosed in Patent Document 1 below. In the fuel injection valve of Patent Document 1, the fuel spray injected into the engine cylinder from two slit-shaped nozzle holes formed in parallel to each other forms a spray that spreads in an eight shape when viewed from above, and each fuel spray is It forms a fan-shaped spray that spreads in both the top and bottom directions when viewed from the side. This shape of fuel spray increases the penetration force compared to the conical fuel spray.

特開2006−258012号公報JP 2006-258812 A

スリット状噴口から噴出した燃料噴霧の分散性を高めるためには、燃料噴霧が巻き上がるようにスリット状噴口から燃料を噴射することが望ましい。特許文献1の燃料噴射弁においては、2つのスリット状噴口の各々から燃料噴霧が巻き上がることなくほぼ直線的に噴出している。そのため、燃料噴霧の貫徹力は大きいものの、燃料噴霧の形成が局所的になりやすく、燃料噴霧を広範囲に分散させることは困難である。   In order to improve the dispersibility of the fuel spray ejected from the slit-shaped nozzle, it is desirable to inject fuel from the slit-shaped nozzle so that the fuel spray is rolled up. In the fuel injection valve of Patent Document 1, fuel spray is ejected substantially linearly from each of the two slit-shaped nozzle holes. Therefore, although the penetration force of the fuel spray is large, the formation of the fuel spray is likely to be local, and it is difficult to disperse the fuel spray over a wide range.

本発明は、スリット状噴口から噴出した燃料噴霧の分散性を高めることができる燃料噴射弁を提供することを目的とする。   An object of this invention is to provide the fuel injection valve which can improve the dispersibility of the fuel spray injected from the slit-shaped nozzle hole.

本発明に係る燃料噴射弁は、上述した目的を達成するために以下の手段を採った。   The fuel injection valve according to the present invention employs the following means in order to achieve the above-described object.

本発明に係る燃料噴射弁は、2つのスリット状噴口から燃料を噴射する燃料噴射弁であって、各スリット状噴口は、入口から出口へ向かうにつれてスリット長さが徐々に増大するように所定の広がり角度θで広がる形状を呈しており、2つのスリット状噴口は、入口から出口へ向かうにつれて互いの間隔が徐々に増大するように所定の傾斜角度αを成しており、前記広がり角度θと前記傾斜角度αとに関して、
30°≦α≦6×θ0.5
が成立することを要旨とする。
The fuel injection valve according to the present invention is a fuel injection valve that injects fuel from two slit-shaped nozzle holes. Each of the slit-shaped nozzle holes has a predetermined length so that the slit length gradually increases from the inlet toward the outlet. The two slit-shaped nozzle holes have a predetermined inclination angle α so that the distance between the two slit-shaped nozzle holes gradually increases from the inlet toward the outlet. Regarding the inclination angle α,
30 ° ≦ α ≦ 6 × θ 0.5
The gist is that

本発明の一態様では、前記広がり角度θと前記傾斜角度αとに関して、
40°≦α≦1.3×θ0.78
が成立することが好適である。
In one aspect of the present invention, regarding the spread angle θ and the tilt angle α,
40 ° ≦ α ≦ 1.3 × θ 0.78
Is preferably satisfied.

本発明においては、2つのスリット状噴口から燃料噴霧をそれぞれ噴出させると、2つの燃料噴霧に挟まれた領域の空気が噴霧流によって吸い出されてその圧力が低下し、燃料噴霧外側との圧力差によって一対の空気の循環流が形成される。この一対の循環流に乗って2つの燃料噴霧が外側(互いに離れる側)に巻き上がることで、燃料噴霧の分散性を高めることができる。   In the present invention, when fuel spray is ejected from the two slit-shaped nozzle holes, the air in the region sandwiched between the two fuel sprays is sucked out by the spray flow, and the pressure is reduced. Due to the difference, a pair of air circulation flows is formed. The dispersibility of the fuel spray can be increased by riding the pair of circulation flows and rolling up the two fuel sprays outward (sides away from each other).

以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1A,1B,1Cは、本発明の実施形態に係る燃料噴射弁1の概略構成を示す図であり、噴射弁先端部の概略構成を示す。図1Aは燃料噴射弁1の中心軸と直交する方向から見た内部構成図を示し、図1Bは図1AのA−A断面図を示し、図1Cは図1AのB−B断面図を示す。本実施形態に係る燃料噴射弁1は、内開弁形式の噴射弁であり、例えば直噴ガソリンエンジン等の筒内噴射式内燃機関にて用いられるものである。なお、噴射弁先端部以外の構成については、公知の構成を適用可能であるため、図1A,1B,1Cでは図示を省略している。   1A, 1B, and 1C are diagrams showing a schematic configuration of a fuel injection valve 1 according to an embodiment of the present invention, and show a schematic configuration of a tip portion of the injection valve. 1A shows an internal configuration diagram viewed from a direction orthogonal to the central axis of the fuel injection valve 1, FIG. 1B shows an AA cross-sectional view of FIG. 1A, and FIG. 1C shows a BB cross-sectional view of FIG. . The fuel injection valve 1 according to the present embodiment is an internal opening type injection valve, and is used in, for example, a direct injection internal combustion engine such as a direct injection gasoline engine. In addition, since a well-known structure is applicable about structures other than the injection valve front-end | tip part, illustration is abbreviate | omitted in FIG. 1A, 1B, 1C.

ノズルボディ7の中空部にはニードル4が内挿されており、ニードル4はノズルボディ7の内周面に沿って摺動可能な状態で支持されている。ノズルボディ7の内部(ニードル4の外周面とノズルボディ7の内周面との間)には燃料室18が形成されており、図示しない燃料ポンプにより圧送された燃料が燃料室18に供給される。ニードル4は図示しないニードル駆動機構(例えばソレノイドやピエゾ素子等を用いた電磁アクチュエータ)により駆動可能である。例えばニードル駆動機構を駆動していない場合は、ニードル4が図示しないばねによりノズルボディ7のシート部6側(図1A,1B,1Cの下側)へ付勢されていることで、ニードル4がシート部6に密着している。この場合は、燃料が噴射されない。一方、ニードル駆動機構を駆動すると、ニードル4がシート部6から離れることで、燃料室18に供給された燃料が後述する構成の噴口を通って内燃機関(例えば直噴ガソリンエンジン)の筒内に噴射される。   A needle 4 is inserted in the hollow portion of the nozzle body 7, and the needle 4 is supported in a state in which it can slide along the inner peripheral surface of the nozzle body 7. A fuel chamber 18 is formed inside the nozzle body 7 (between the outer peripheral surface of the needle 4 and the inner peripheral surface of the nozzle body 7), and fuel pumped by a fuel pump (not shown) is supplied to the fuel chamber 18. The The needle 4 can be driven by a needle driving mechanism (not shown) (for example, an electromagnetic actuator using a solenoid, a piezoelectric element, or the like). For example, when the needle drive mechanism is not driven, the needle 4 is urged toward the seat portion 6 side of the nozzle body 7 (the lower side of FIGS. 1A, 1B, and 1C) by a spring (not shown). The sheet portion 6 is in close contact. In this case, fuel is not injected. On the other hand, when the needle drive mechanism is driven, the needle 4 is separated from the seat portion 6 so that the fuel supplied to the fuel chamber 18 passes through a nozzle hole configured as described later into the cylinder of the internal combustion engine (for example, a direct injection gasoline engine). Be injected.

ノズルボディ先端部17は概ね半球形状を呈しており、ノズルボディ先端部17とニードル4との間に概ね半球形状のサック室19が形成されている。ノズルボディ先端部17には、2つのスリット状噴口21,22が形成されている。各スリット状噴口21,22の入口21a,22aはサック室19に開口しており、各スリット状噴口21,22の出口21b,22bは噴射弁外部(例えば内燃機関の筒内)に開口している。各スリット状噴口21,22の入口21a,22aは、スリット長手方向において出口21b,22b側へ湾曲して凹んだ凹曲線形状(円弧形状)を呈しており、各スリット状噴口21,22の出口21b,22bは、スリット長手方向において噴射弁外部へ湾曲した凸曲線形状(円弧形状)を呈している。図1Aに示す例では、各スリット状噴口21,22におけるスリット厚さTは、入口21a,22aから出口21b,22bにかけて一定(あるいはほぼ一定)である。2つのスリット状噴口21,22は、スリット長手方向と垂直方向に関して互いに間隔をおいて形成されている。スリット状噴口21,22の入口21a,22a間の間隔はスリット長手方向の一端から他端にかけて一定(あるいはほぼ一定)であり、スリット状噴口21,22の入口21a,22aは互いに平行である。同様に、スリット状噴口21,22の出口21b,22b間の間隔もスリット長手方向の一端から他端にかけて一定(あるいはほぼ一定)であり、スリット状噴口21,22の出口21b,22bも互いに平行である。   The nozzle body tip 17 has a generally hemispherical shape, and a generally hemispherical sac chamber 19 is formed between the nozzle body tip 17 and the needle 4. Two slit-shaped nozzle holes 21 and 22 are formed in the nozzle body tip portion 17. The inlets 21a and 22a of the slit nozzles 21 and 22 are opened to the sack chamber 19, and the outlets 21b and 22b of the slit nozzles 21 and 22 are opened to the outside of the injection valve (for example, in the cylinder of the internal combustion engine). Yes. The inlets 21a and 22a of the slit nozzles 21 and 22 have a concave curve shape (arc shape) that is curved and recessed toward the outlets 21b and 22b in the slit longitudinal direction, and the outlets of the slit nozzles 21 and 22 are provided. 21b and 22b are exhibiting the convex curve shape (arc shape) curved to the exterior of the injection valve in the slit longitudinal direction. In the example shown in FIG. 1A, the slit thickness T in each slit-shaped nozzle 21 and 22 is constant (or substantially constant) from the inlets 21a and 22a to the outlets 21b and 22b. The two slit-shaped nozzle holes 21 and 22 are formed to be spaced from each other with respect to the slit longitudinal direction and the vertical direction. The interval between the inlets 21a and 22a of the slit-shaped nozzles 21 and 22 is constant (or substantially constant) from one end to the other end in the slit longitudinal direction, and the inlets 21a and 22a of the slit-shaped nozzles 21 and 22 are parallel to each other. Similarly, the interval between the outlets 21b and 22b of the slit-shaped nozzle holes 21 and 22 is also constant (or substantially constant) from one end to the other end in the slit longitudinal direction, and the outlets 21b and 22b of the slit-shaped nozzle holes 21 and 22 are also parallel to each other. It is.

本実施形態では、スリット状噴口21,22の各々は、入口21a,22aから出口21b,22bへ向かうにつれてスリット長さが徐々に増大するように所定の広がり角度θ°で広がる末広がりの略扇形状を呈している。そして、2つのスリット状噴口21,22は、入口21a,22aから出口21b,22bへ向かうにつれて互いの間隔が徐々に増大するように所定の傾斜角度(以下、挟み角度とする)α°を成して互いに傾斜している。   In the present embodiment, each of the slit-shaped nozzle holes 21 and 22 has a substantially fan shape that spreads at a predetermined spread angle θ ° so that the slit length gradually increases from the inlets 21a and 22a toward the outlets 21b and 22b. Presents. The two slit-shaped nozzles 21 and 22 form a predetermined inclination angle (hereinafter referred to as a sandwiching angle) α ° so that the interval between the inlets 21a and 22a gradually increases from the inlets 21a and 22a toward the outlets 21b and 22b. Are inclined to each other.

さらに、本実施形態では、各スリット状噴口21,22の広がり角度θ°と挟み角度α°とに関して、以下の(1)式が成立する。   Further, in the present embodiment, the following expression (1) is established with respect to the spread angle θ ° and the sandwiching angle α ° of each slit-shaped nozzle hole 21, 22.

30°≦α≦6×θ0.5 (1) 30 ° ≦ α ≦ 6 × θ 0.5 (1)

図2A,2Bに示すように、所定の広がり角度θ°と挟み角度α°に設定した2つのスリット状噴口21,22から略扇形状の燃料噴霧31,32をそれぞれ噴出させると、噴霧根元付近で噴霧流によって空気が吸い込まれ、噴霧先端付近で流出するような空気流動が発生する。2つの燃料噴霧31,32に挟まれた領域33の空気は噴霧流によって吸い出されて圧力Piが低下し、燃料噴霧31,32外側の圧力Paとの圧力差によって一対の空気の循環流41,42が形成される。この空気の循環流41,42に燃料粒子が乗って燃料噴霧31,32が外側(互いに離れる側)に巻き上がり、燃料噴出方向に対して垂直方向への燃料噴霧31,32の分散が促進される。   As shown in FIGS. 2A and 2B, when substantially fan-shaped fuel sprays 31 and 32 are respectively ejected from two slit-shaped nozzles 21 and 22 set at a predetermined spread angle θ ° and sandwiching angle α °, the vicinity of the spray base As a result, air is sucked in by the spray flow, and an air flow that flows out near the spray tip is generated. The air in the region 33 sandwiched between the two fuel sprays 31 and 32 is sucked out by the spray flow, and the pressure Pi decreases, and the pair of air circulation flows 41 due to the pressure difference with the pressure Pa outside the fuel sprays 31 and 32. , 42 are formed. Fuel particles ride on the air circulation flows 41 and 42 and the fuel sprays 31 and 32 roll up outward (sides away from each other), and the dispersion of the fuel sprays 31 and 32 in the direction perpendicular to the fuel ejection direction is promoted. The

図3に、本実施形態に係る燃料噴射弁1から噴射された燃料噴霧の挙動を計測した実験結果の一例を示す。図3は、広がり角度θ°が60°で、挟み角度α°が30°であり、大気圧の静止雰囲気場に12MPaの噴射圧力で燃料を噴射したときの燃料噴霧の挙動を示している。また、図3(a)は、スリット状噴口21,22のスリット長手方向と平行方向から見た燃料噴霧の側面像を示し、図3(b)は、スリット長手方向及び噴射弁中心軸と垂直方向から見た燃料噴霧の正面像を示す。図3(a)の側面像に示すように、互いに対向する2つの燃料噴霧の先端部が外側に巻き上がり、燃料噴霧が広範囲に分散していることがわかる。なお、図3(a)中の矢印は燃料噴霧の主流部の挙動を表す。   In FIG. 3, an example of the experimental result which measured the behavior of the fuel spray injected from the fuel injection valve 1 which concerns on this embodiment is shown. FIG. 3 shows the behavior of the fuel spray when the spread angle θ ° is 60 °, the sandwiching angle α ° is 30 °, and the fuel is injected into the static atmosphere field at atmospheric pressure with an injection pressure of 12 MPa. FIG. 3A shows a side view of the fuel spray viewed from a direction parallel to the slit longitudinal direction of the slit-shaped nozzle holes 21 and 22, and FIG. 3B shows a direction perpendicular to the slit longitudinal direction and the central axis of the injection valve. The front image of the fuel spray seen from the direction is shown. As shown in the side view of FIG. 3A, it can be seen that the tip portions of the two fuel sprays facing each other roll up outward, and the fuel sprays are dispersed in a wide range. In addition, the arrow in Fig.3 (a) represents the behavior of the main stream part of fuel spray.

例えば直噴ガソリンエンジンにおいては、均質燃焼時にエンジン筒内での混合気の空間分布が不均一であると、窒素酸化物(NOx)やスモークの生成を招きやすくなる。NOxやスモークの生成を抑えるためには、エンジン筒内に均一な混合気を形成することが望ましい。本実施形態に係る燃料噴射弁1の構成により、2つのスリット状噴口21,22から噴出した燃料噴霧31,32が外側に巻き上がることで、燃料噴霧31,32の分散性を高めることができ、エンジン筒内に混合気を均一に形成することができる。これによって、NOxやスモークの生成を抑えることができる。   For example, in a direct-injection gasoline engine, if the spatial distribution of the air-fuel mixture in the engine cylinder is not uniform during homogeneous combustion, nitrogen oxide (NOx) and smoke are likely to be generated. In order to suppress the generation of NOx and smoke, it is desirable to form a uniform air-fuel mixture in the engine cylinder. With the configuration of the fuel injection valve 1 according to the present embodiment, the fuel sprays 31 and 32 ejected from the two slit-shaped nozzles 21 and 22 roll up outward, so that the dispersibility of the fuel sprays 31 and 32 can be improved. The air-fuel mixture can be formed uniformly in the engine cylinder. Thereby, the generation of NOx and smoke can be suppressed.

燃料噴霧31,32の巻き上がり発生の有無や巻き上がりの大きさは、スリット状噴口21,22の広がり角度θ°と挟み角度α°の影響を受ける。例えば、空気の循環流41,42は、図2A,2Bに示すように、挟み角度α°が大きくなるにつれてスケールの大きなものが形成される。ただし、挟み角度α°を大きくしすぎると、図2Cに示すように、2つの燃料噴霧31,32に挟まれた領域33の下側から空気が補充されるために圧力Piの低下が起きず、Pi≒Paとなり、上述のような空気の循環流41,42が発生せず、燃料噴霧31,32が外側に巻き上がらなくなる。また、広がり角度θ°が小さすぎる場合にも、燃料噴霧31,32の側方方向(図2A〜2Cの紙面の垂直方向)から2つの燃料噴霧31,32に挟まれた領域33に空気が流入するため、上述のような空気の循環流41,42が発生せず、燃料噴霧31,32が外側に巻き上がらなくなる。   Whether or not the fuel sprays 31 and 32 are rolled up and the magnitude of the winding are affected by the spread angle θ ° and the sandwiching angle α ° of the slit-shaped nozzle holes 21 and 22. For example, as shown in FIGS. 2A and 2B, the air circulation flows 41 and 42 have a larger scale as the sandwiching angle α ° increases. However, if the sandwiching angle α ° is too large, as shown in FIG. 2C, the air Pi is replenished from the lower side of the region 33 sandwiched between the two fuel sprays 31 and 32, so that the pressure Pi does not decrease. Pi≈Pa, the air circulation flows 41 and 42 as described above are not generated, and the fuel sprays 31 and 32 do not roll up outward. In addition, even when the spread angle θ ° is too small, air flows into the region 33 sandwiched between the two fuel sprays 31 and 32 from the side direction of the fuel sprays 31 and 32 (the vertical direction of the paper surface of FIGS. 2A to 2C). Since the air flows in, the air circulation flows 41 and 42 as described above are not generated, and the fuel sprays 31 and 32 do not roll outward.

なお、広がり角度θ°が大きい場合であっても、燃料噴霧31,32の側方方向から2つの燃料噴霧31,32に挟まれた領域33に空気が流入する。そのため、燃料噴霧31,32の扇の両端部付近では、空気の循環流41,42が弱められて渦(巻き上がり)のスケールが燃料噴霧31,32の中央部と比較して小さくなるが、燃料噴霧31,32の扇の中央部付近では、2つの燃料噴霧31,32に挟まれた領域33への空気の流入の影響を受けにくいため、スケールの大きな渦(巻き上がり)が形成される。図4A〜Cに、図3に示した燃料噴霧に対してPIV計測(噴霧速度を計測)した実験結果を示す。図4Bは、燃料噴霧の扇の中央部(ζ=0°、図4A参照)での噴霧速度の実験結果を示し、図4Cは、燃料噴霧の扇の端部(ζ=25°、図4A参照)での噴霧速度の実験結果を示す。図4B、Cにおいて、矢印は噴霧速度の方向を示す。燃料噴霧の扇の中央部(ζ=0°)では、図4Bに示すように、スケールの大きな噴霧の巻き上がりが発生している。これに対して燃料噴霧の扇の端部(ζ=25°)では、図4Cに示すように、2つの燃料噴霧に挟まれた領域に噴霧側方方向から空気が流入することで、燃料噴霧の扇の中央部(ζ=0°)と比較して、噴霧の巻き上がりのスケールがやや小さくなっているものの、噴霧の巻き上がりによる分散性の促進効果がみられる。   Even when the spread angle θ ° is large, air flows from the lateral direction of the fuel sprays 31 and 32 into the region 33 sandwiched between the two fuel sprays 31 and 32. Therefore, in the vicinity of both ends of the fans of the fuel sprays 31 and 32, the air circulation flows 41 and 42 are weakened, and the scale of the vortex (rolling up) becomes smaller than the central part of the fuel sprays 31 and 32. In the vicinity of the center of the fan of the fuel sprays 31 and 32, since it is difficult to be influenced by the inflow of air into the region 33 sandwiched between the two fuel sprays 31 and 32, a large scale vortex (roll-up) is formed. . 4A to 4C show experimental results obtained by performing PIV measurement (measuring spray speed) on the fuel spray shown in FIG. FIG. 4B shows the experimental result of the spray speed at the center of the fuel spray fan (ζ = 0 °, see FIG. 4A), and FIG. 4C shows the end of the fuel spray fan (ζ = 25 °, FIG. 4A). The experimental result of the spraying speed in the reference) is shown. In FIG. 4B and C, the arrow shows the direction of spraying speed. At the center of the fuel spray fan (ζ = 0 °), as shown in FIG. 4B, a large-scale spray roll-up occurs. On the other hand, at the end of the fuel spray fan (ζ = 25 °), as shown in FIG. 4C, the air flows into the region sandwiched between the two fuel sprays from the side of the spray, thereby fuel spray. Compared with the central part of the fan (ζ = 0 °), the spray roll-up scale is slightly smaller, but the effect of promoting dispersibility by the roll-up of the spray is seen.

本願発明者は、燃料噴霧の分散性に対するスリット状噴口21,22の広がり角度θ°と挟み角度α°との関係を把握するための数値計算を行った。この数値計算の結果を図5に示す。図5に示す数値計算結果は、直噴ガソリンエンジンの均質燃焼時(早期噴射)の噴霧挙動を模擬するために、大気圧の静止雰囲気場に12MPaの噴射圧力で燃料(n−ヘプタンの物性値を使用)を噴射したときの噴霧挙動(燃料粒子群の挙動)を計算したものである。図5(a)はθ=60°、α=10°の場合における噴霧挙動(左側が正面像、右側が側面像)を示し、図5(b)はθ=60°、α=20°の場合における噴霧挙動を示し、図5(c)はθ=60°、α=30°の場合における噴霧挙動を示し、図5(d)はθ=60°、α=40°の場合における噴霧挙動を示し、図5(e)はθ=60°、α=50°の場合における噴霧挙動を示し、図5(f)はθ=60°、α=60°の場合における噴霧挙動を示す。さらに、挟み角度α°だけでなく広がり角度θ°も変化させながら同様の噴霧挙動を調べる計算を行った。また、図6には、比較対象として1つのスリット状噴口からのみ燃料を噴射したときの噴霧挙動を計算した結果を示す。図5に示すように、挟み角度α°の増加に伴って燃料噴霧の巻き上がりによる噴霧の分散が促進される(渦のスケールがおおきくなる)が、挟み角度α°が50°以上の条件では噴霧の顕著な巻き上がりがみられなくなる。また、挟み角度α°が10°の条件では、噴霧の扇面と垂直方向(側面像の左右方向)に関する分散は、図6に示す1つの噴霧の扇面と垂直方向(側面像の左右方向)に関する分散を2倍したものとほとんど差がないことがわかる。   The inventor of the present application performed a numerical calculation for grasping the relationship between the spread angle θ ° of the slit-shaped nozzle holes 21 and 22 and the sandwiching angle α ° with respect to the dispersibility of the fuel spray. The result of this numerical calculation is shown in FIG. The numerical calculation results shown in FIG. 5 show the physical properties of fuel (n-heptane) at an injection pressure of 12 MPa in a static atmosphere at atmospheric pressure in order to simulate the spray behavior during homogeneous combustion (early injection) of a direct injection gasoline engine. The spray behavior (the behavior of the fuel particle group) is calculated. FIG. 5 (a) shows the spray behavior when θ = 60 ° and α = 10 ° (the left side is a front image and the right side is a side image), and FIG. 5 (b) is θ = 60 ° and α = 20 °. 5 (c) shows the spray behavior when θ = 60 ° and α = 30 °, and FIG. 5 (d) shows the spray behavior when θ = 60 ° and α = 40 °. FIG. 5E shows the spray behavior when θ = 60 ° and α = 50 °, and FIG. 5F shows the spray behavior when θ = 60 ° and α = 60 °. Furthermore, the calculation which investigates the same spraying behavior was performed while changing not only the sandwiching angle α ° but also the spreading angle θ °. FIG. 6 shows the result of calculating the spray behavior when fuel is injected only from one slit-like nozzle as a comparison target. As shown in FIG. 5, the dispersion of the spray due to the rising of the fuel spray is promoted as the sandwiching angle α ° increases (the vortex scale increases), but the sandwiching angle α ° is 50 ° or more. No noticeable roll-up of spray is observed. Further, under the condition where the sandwiching angle α ° is 10 °, the dispersion in the direction perpendicular to the spray fan surface (left-right direction of the side image) relates to the direction perpendicular to the fan surface of one spray shown in FIG. It can be seen that there is almost no difference from the doubled variance.

上述のような、広がり角度θ°及び挟み角度α°を変化させた場合の噴霧挙動を調べた計算結果を基にして、燃料噴霧の分散に対する広がり角度θ°と挟み角度α°との関係を整理した結果を図7に示す。図7中の縦軸は、2つの燃料噴霧によって形成される噴霧の幅Wを、1つのスリット状噴口からのみ燃料を噴射したときの噴霧の幅を2倍した値W0で割って無次元化(W/W0)したものである。ここでの噴霧の幅Wは、図8(a)に示すように、スリット状噴口21,22が噴出した噴霧が合流する場合は、側面像の左右方向に関する噴霧全体の幅で表され、図8(b)に示すように、スリット状噴口21,22が噴出した噴霧が2つに分かれている場合は、扇面と垂直方向に関する各噴霧の幅の和で表される。この無次元化した噴霧の幅W/W0は、噴霧の分散性を示す指標であり、W/W0の値が大きいほど噴霧の分散性が高いことを示す。図7の計算結果から、1)挟み角度α°の増加に伴って噴霧の幅(分散性)W/W0が増加するが、ある挟み角度α°を超えると噴霧の幅W/W0が減少すること、2)噴霧の幅W/W0の減少が始まる挟み角度α°は広がり角度θ°が大きいほど大きな角度であること、3)挟み角度α°が30°よりも小さい場合は噴霧の幅W/W0に対する広がり角度θ°の影響がそれほど大きくないこと、がわかる。   Based on the calculation results obtained by examining the spray behavior when the spread angle θ ° and the sandwich angle α ° are changed as described above, the relationship between the spread angle θ ° and the sandwich angle α ° with respect to the dispersion of the fuel spray is shown. The organized results are shown in FIG. The vertical axis in FIG. 7 is made dimensionless by dividing the spray width W formed by two fuel sprays by a value W0 that is twice the spray width when fuel is injected from only one slit-like nozzle. (W / W0). As shown in FIG. 8A, the spray width W is expressed by the width of the entire spray in the left-right direction of the side image when the sprays ejected from the slit nozzles 21 and 22 merge. As shown in FIG. 8B, when the spray ejected from the slit-shaped nozzles 21 and 22 is divided into two, it is represented by the sum of the widths of the sprays in the direction perpendicular to the fan surface. The dimensionless spray width W / W0 is an index indicating the dispersibility of the spray, and the greater the value of W / W0, the higher the dispersibility of the spray. From the calculation results of FIG. 7, 1) the spray width (dispersibility) W / W0 increases as the sandwich angle α ° increases, but the spray width W / W0 decreases when the sandwich angle α ° is exceeded. 2) The sandwiching angle α ° at which the reduction of the spray width W / W0 starts is larger as the spread angle θ ° is larger. 3) When the sandwiching angle α ° is smaller than 30 °, the spray width W is larger. It can be seen that the influence of the spread angle θ ° on / W0 is not so great.

エンジン筒内に噴出する燃料の噴霧の幅が広くなるほど噴霧の分散性が良好になって空気との混合が促進され、エンジン筒内に均一な混合気が形成されやすくなる。無次元化した噴霧の幅W/W0が1.5以上、すなわち1つのスリット状噴口からのみ燃料を噴射した場合と比較して空気と燃料との混合領域が1.5倍以上に増加すれば、エンジン筒内における空気と燃料との混合状態が大きく改善され、エンジン筒内に形成される混合気の均一性を大きく向上させることが可能となる。したがって、図7中のW/W0=1.5を表す破線以上の領域が混合気の均一性を高めることができる領域となる。   As the spray width of the fuel sprayed into the engine cylinder becomes wider, the dispersibility of the spray becomes better and mixing with the air is promoted, and a uniform air-fuel mixture is easily formed in the engine cylinder. If the dimensionless spray width W / W0 is 1.5 or more, that is, the mixing region of air and fuel is increased by 1.5 times or more compared to the case where fuel is injected only from one slit-like nozzle. The mixing state of air and fuel in the engine cylinder is greatly improved, and the uniformity of the air-fuel mixture formed in the engine cylinder can be greatly improved. Therefore, the area | region beyond the broken line showing W / W0 = 1.5 in FIG. 7 becomes an area | region which can improve the uniformity of air-fuel | gaseous mixture.

図7に示す計算結果を基にして、それぞれの広がり角度θ°において噴霧の幅W/W0≧1.5を満足する挟み角度α°の範囲を整理した結果を図9に示す。図9に示すように、W/W0≧1.5を満足する挟み角度α°の下限値は30°で表される。一方、W/W0≧1.5を満足する挟み角度α°の上限値は、広がり角度θ°の関数となり、α=6×θ0.5で表される。 Based on the calculation results shown in FIG. 7, FIG. 9 shows the results of arranging the range of the sandwich angle α ° that satisfies the spray width W / W0 ≧ 1.5 at each spread angle θ °. As shown in FIG. 9, the lower limit value of the sandwiching angle α ° that satisfies W / W0 ≧ 1.5 is represented by 30 °. On the other hand, the upper limit of scissors angle alpha ° satisfies W / W0 ≧ 1.5 is a function of the spread angle theta °, represented by α = 6 × θ 0.5.

挟み角度α°が30°よりも小さいと、空気の循環流41,42のスケールが小さいために、燃料噴霧31,32の巻き上がりによる噴霧の幅W/W0の増加(噴霧の分散)がそれほど大きくない。一方、α>6×θ0.5の条件では、広がり角度θ°に対して挟み角度α°が大きすぎるために、2つの燃料噴霧31,32に挟まれた領域33の圧力低下が顕著ではなく、前述のような空気の循環流41,42が発生しない、あるいは空気の循環流41,42のスケールが非常に小さいために燃料噴霧31,32の巻き上がりが発生しない、あるいは燃料噴霧31,32の巻き上がりが小さく燃料噴霧31,32の分散が小さい。これに対して前述の(1)式を満たすように広がり角度θ°と挟み角度α°を設定することで、大きいスケールの空気の循環流41,42を発生させて、大きいスケールの燃料噴霧31,32の巻き上がりを発生させることができ、噴霧の幅W/W0を1.5以上に増加させる、すなわち1つのスリット状噴口からのみ燃料を噴射した場合と比較して空気と燃料との混合領域を1.5倍以上に増加させることができる。その結果、燃料噴霧31,32の分散性を高めることができる。そして、燃料噴霧31,32が広範囲に分散することで、燃料噴霧31,32と空気との混合が促進され、均質性の高い混合気を得ることができる。 When the sandwiching angle α ° is smaller than 30 °, the scale of the air circulation flows 41 and 42 is small, so that the increase in the spray width W / W0 (spray dispersion) due to the rolling up of the fuel sprays 31 and 32 is so much. not big. On the other hand, under the condition of α> 6 × θ 0.5, since the sandwich angle α ° is too large with respect to the spread angle θ °, the pressure drop in the region 33 sandwiched between the two fuel sprays 31 and 32 is not significant. The air circulation flows 41 and 42 as described above are not generated, or the scales of the air circulation flows 41 and 42 are so small that the fuel sprays 31 and 32 do not roll up, or the fuel sprays 31 and 32 Rolling up is small and dispersion of the fuel sprays 31 and 32 is small. On the other hand, by setting the spread angle θ ° and the sandwiching angle α ° so as to satisfy the above-described equation (1), the large scale air circulation flows 41 and 42 are generated, and the large scale fuel spray 31 is generated. , 32 can be generated and the spray width W / W0 is increased to 1.5 or more, that is, the mixture of air and fuel is compared with the case where fuel is injected only from one slit-like nozzle. The area can be increased by a factor of 1.5 or more. As a result, the dispersibility of the fuel sprays 31 and 32 can be improved. Then, the fuel sprays 31 and 32 are dispersed in a wide range, so that mixing of the fuel sprays 31 and 32 and air is promoted, and a highly homogenous mixture can be obtained.

さらに、図9には、図7に示す計算結果を基にして、それぞれの広がり角度θ°において噴霧の幅W/W0≧2.0を満足する挟み角度α°の範囲も示してある。図9に示すように、W/W0≧2.0を満足する挟み角度α°の下限値は40°で表される。一方、W/W0≧2.0を満足する挟み角度α°の上限値は、広がり角度θ°の関数となり、α=1.3×θ0.78で表される。したがって、以下の(2)式が成立するように広がり角度θ°と挟み角度α°を設定することで、噴霧の幅W/W0を2.0以上に増加させる(1つのスリット状噴口からのみ燃料を噴射した場合と比較して空気と燃料との混合領域を2.0倍以上に増加させる)ことができ、燃料噴霧31,32の分散性をさらに高めることができる。その結果、燃料噴霧31,32と空気との混合をさらに促進させることができ、より均質性の高い混合気を得ることができる。 Further, FIG. 9 also shows the range of the sandwich angle α ° that satisfies the spray width W / W0 ≧ 2.0 at each spread angle θ ° based on the calculation result shown in FIG. As shown in FIG. 9, the lower limit value of the sandwiching angle α ° that satisfies W / W0 ≧ 2.0 is represented by 40 °. On the other hand, the upper limit value of the sandwiching angle α ° that satisfies W / W0 ≧ 2.0 is a function of the spread angle θ °, and is expressed as α = 1.3 × θ 0.78 . Therefore, by setting the spread angle θ ° and the sandwiching angle α ° so that the following expression (2) is satisfied, the spray width W / W0 is increased to 2.0 or more (from only one slit-like nozzle) Compared with the case where fuel is injected, the mixing region of air and fuel can be increased by 2.0 times or more), and the dispersibility of the fuel sprays 31 and 32 can be further enhanced. As a result, mixing of the fuel sprays 31 and 32 and air can be further promoted, and an air-fuel mixture with higher homogeneity can be obtained.

40°≦α≦1.3×θ0.78 (2) 40 ° ≦ α ≦ 1.3 × θ 0.78 (2)

本実施形態に係る燃料噴射弁1の筒内噴射式内燃機関(例えば直噴ガソリンエンジン)への配置例を図10A,10Bに示す。図10Aはシリンダ軸線方向上側から見た図を示し、図10Bはシリンダ軸線方向と直交する方向から見た図を示す。図10A,10Bは、スリット状噴口21,22がシリンダ軸線方向に関して互いに間隔をおいて配置されるように、燃料噴射弁1をエンジン筒内13に臨ませて配置する例を示している。例えば吸気行程にて燃料噴射弁1のスリット状噴口21,22からエンジン筒内13に燃料を噴射することで、エンジン筒内13には、シリンダ軸線方向の上側及び下側に巻き上がる燃料噴霧31,32が形成される。   An arrangement example of the fuel injection valve 1 according to the present embodiment in a direct injection internal combustion engine (for example, a direct injection gasoline engine) is shown in FIGS. 10A and 10B. FIG. 10A shows a view seen from the upper side in the cylinder axial direction, and FIG. 10B shows a view seen from a direction orthogonal to the cylinder axial direction. FIGS. 10A and 10B show an example in which the fuel injection valve 1 is arranged facing the engine cylinder 13 so that the slit-shaped injection holes 21 and 22 are arranged at intervals with respect to the cylinder axial direction. For example, by injecting fuel into the engine cylinder 13 from the slit-like nozzles 21 and 22 of the fuel injection valve 1 in the intake stroke, the fuel spray 31 is wound up in the engine cylinder 13 upward and downward in the cylinder axial direction. , 32 are formed.

また、本実施形態に係る燃料噴射弁1の筒内噴射式内燃機関(例えば直噴ガソリンエンジン)への他の配置例を図11A,11Bに示す。図11Aはシリンダ軸線方向と直交する方向から見た図を示し、図11Bは図11AのA−A断面図を示す。図11A,11Bは、スリット状噴口21,22がシリンダ径方向に関して互いに間隔をおいて配置されるように、燃料噴射弁1をエンジン筒内13の中央部に臨ませて配置する例を示している。例えば吸気行程にて燃料噴射弁1のスリット状噴口21,22からエンジン筒内13に燃料を噴射することで、エンジン筒内13には、シリンダ径方向外側に巻き上がる燃料噴霧31,32が形成される。   Moreover, the other example of arrangement | positioning to the cylinder injection type internal combustion engine (for example, direct injection gasoline engine) of the fuel injection valve 1 which concerns on this embodiment is shown to FIG. 11A, 11B. 11A shows a view seen from a direction orthogonal to the cylinder axis direction, and FIG. 11B shows a cross-sectional view taken along the line AA of FIG. 11A. FIGS. 11A and 11B show an example in which the fuel injection valve 1 is arranged facing the center of the engine cylinder 13 so that the slit-shaped injection holes 21 and 22 are arranged at intervals with respect to the cylinder radial direction. Yes. For example, by injecting fuel into the engine cylinder 13 from the slit-like nozzles 21 and 22 of the fuel injection valve 1 in the intake stroke, fuel sprays 31 and 32 are formed in the engine cylinder 13 so as to wind outward in the cylinder radial direction. Is done.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

本発明の実施形態に係る燃料噴射弁の概略構成を示す図である。It is a figure showing a schematic structure of a fuel injection valve concerning an embodiment of the present invention. 本発明の実施形態に係る燃料噴射弁の概略構成を示す図である。It is a figure showing a schematic structure of a fuel injection valve concerning an embodiment of the present invention. 本発明の実施形態に係る燃料噴射弁の概略構成を示す図である。It is a figure showing a schematic structure of a fuel injection valve concerning an embodiment of the present invention. 2つのスリット状噴口の挟み角度αが大きい場合の燃料噴霧の挙動を説明する図である。It is a figure explaining the behavior of fuel spraying when the sandwiching angle α between two slit-shaped nozzle holes is large. 2つのスリット状噴口の挟み角度αが小さい場合の燃料噴霧の挙動を説明する図である。It is a figure explaining the behavior of fuel spraying when the sandwiching angle α between two slit-shaped nozzle holes is small. 2つのスリット状噴口の挟み角度αが大きすぎる場合の燃料噴霧の挙動を説明する図である。It is a figure explaining the behavior of fuel spraying when the sandwiching angle α between two slit-shaped nozzle holes is too large. 本実施形態に係る燃料噴射弁から噴射された燃料噴霧の挙動を計測した実験結果の一例を示す図である。It is a figure which shows an example of the experimental result which measured the behavior of the fuel spray injected from the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁から噴射された燃料噴霧の噴霧速度を計測した実験結果の一例を示す図である。It is a figure which shows an example of the experimental result which measured the spraying speed of the fuel spray injected from the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁から噴射された燃料噴霧の噴霧速度を計測した実験結果の一例を示す図である。It is a figure which shows an example of the experimental result which measured the spraying speed of the fuel spray injected from the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁から噴射された燃料噴霧の噴霧速度を計測した実験結果の一例を示す図である。It is a figure which shows an example of the experimental result which measured the spraying speed of the fuel spray injected from the fuel injection valve which concerns on this embodiment. 2つのスリット状噴口から噴出した燃料噴霧の挙動を計算した結果の一例を示す図である。It is a figure which shows an example of the result of having calculated the behavior of the fuel spray injected from two slit-shaped nozzle holes. 1つのスリット状噴口から噴出した燃料噴霧の挙動を計算した結果の一例を示す図である。It is a figure which shows an example of the result of having calculated the behavior of the fuel spray ejected from one slit-shaped nozzle hole. 噴霧の幅W/W0に対するスリット状噴口の広がり角度θと挟み角度αとの関係を示す図である。It is a figure which shows the relationship between the spreading angle (theta) of the slit-shaped nozzle hole with respect to the spray width W / W0, and the pinching angle (alpha). 2つの燃料噴霧によって形成される噴霧の幅を説明する図である。It is a figure explaining the width | variety of the spray formed by two fuel sprays. 本発明の実施形態に係る燃料噴射弁におけるスリット状噴口の広がり角度θと挟み角度αとの関係を示す図である。It is a figure which shows the relationship between the spreading angle (theta) of the slit-shaped nozzle hole, and the pinching angle (alpha) in the fuel injection valve which concerns on embodiment of this invention. 本実施形態に係る燃料噴射弁の筒内噴射式内燃機関への配置例を示す図である。It is a figure which shows the example of arrangement | positioning to the cylinder injection type internal combustion engine of the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁の筒内噴射式内燃機関への配置例を示す図である。It is a figure which shows the example of arrangement | positioning to the cylinder injection type internal combustion engine of the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁の筒内噴射式内燃機関への他の配置例を示す図である。It is a figure which shows the other example of arrangement | positioning to the cylinder injection type internal combustion engine of the fuel injection valve which concerns on this embodiment. 本実施形態に係る燃料噴射弁の筒内噴射式内燃機関への他の配置例を示す図である。It is a figure which shows the other example of arrangement | positioning to the cylinder injection type internal combustion engine of the fuel injection valve which concerns on this embodiment.

符号の説明Explanation of symbols

1 燃料噴射弁、4 ニードル、7 ノズルボディ、17 ノズルボディ先端部、18 燃料室、19 サック室、21,22 スリット状噴口、31,32 燃料噴霧、41,42 循環流。   DESCRIPTION OF SYMBOLS 1 Fuel injection valve, 4 Needle, 7 Nozzle body, 17 Nozzle body front-end | tip part, 18 Fuel chamber, 19 Suck chamber, 21,22 Slit-shaped nozzle, 31, 32 Fuel spray, 41, 42 Circulation flow.

Claims (2)

2つのスリット状噴口から燃料を噴射する燃料噴射弁であって、
各スリット状噴口は、入口から出口へ向かうにつれてスリット長さが徐々に増大するように所定の広がり角度θで広がる形状を呈しており、
2つのスリット状噴口は、入口から出口へ向かうにつれて互いの間隔が徐々に増大するように所定の傾斜角度αを成しており、
前記広がり角度θと前記傾斜角度αとに関して、
30°≦α≦6×θ0.5
が成立する、燃料噴射弁。
A fuel injection valve for injecting fuel from two slit-shaped nozzles,
Each slit-like nozzle has a shape that spreads at a predetermined spread angle θ so that the slit length gradually increases from the entrance to the exit,
The two slit-shaped nozzle holes have a predetermined inclination angle α such that the distance between the slit-shaped nozzle holes gradually increases from the inlet to the outlet.
Regarding the spread angle θ and the inclination angle α,
30 ° ≦ α ≦ 6 × θ 0.5
The fuel injection valve is established.
請求項1に記載の燃料噴射弁であって、
前記広がり角度θと前記傾斜角度αとに関して、
40°≦α≦1.3×θ0.78
が成立する、燃料噴射弁。
The fuel injection valve according to claim 1,
Regarding the spread angle θ and the inclination angle α,
40 ° ≦ α ≦ 1.3 × θ 0.78
The fuel injection valve is established.
JP2008090179A 2008-03-31 2008-03-31 Fuel injection valve Expired - Fee Related JP4872959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090179A JP4872959B2 (en) 2008-03-31 2008-03-31 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090179A JP4872959B2 (en) 2008-03-31 2008-03-31 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2009243358A true JP2009243358A (en) 2009-10-22
JP4872959B2 JP4872959B2 (en) 2012-02-08

Family

ID=41305544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090179A Expired - Fee Related JP4872959B2 (en) 2008-03-31 2008-03-31 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4872959B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025835A (en) * 2015-07-24 2017-02-02 株式会社デンソー Fuel injection device
JP2018150943A (en) * 2018-07-05 2018-09-27 株式会社デンソー Fuel injection device
WO2020255953A1 (en) * 2019-06-20 2020-12-24 株式会社デンソー Fuel injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028078A (en) * 2002-05-10 2004-01-29 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine, and fuel injection valve thereof
JP2006233842A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Fuel injection device
JP2006258035A (en) * 2005-03-18 2006-09-28 Denso Corp Fuel injection valve
JP2008038815A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Fuel injection system and internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028078A (en) * 2002-05-10 2004-01-29 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine, and fuel injection valve thereof
JP2006233842A (en) * 2005-02-24 2006-09-07 Toyota Motor Corp Fuel injection device
JP2006258035A (en) * 2005-03-18 2006-09-28 Denso Corp Fuel injection valve
JP2008038815A (en) * 2006-08-08 2008-02-21 Toyota Motor Corp Fuel injection system and internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025835A (en) * 2015-07-24 2017-02-02 株式会社デンソー Fuel injection device
WO2017018193A1 (en) * 2015-07-24 2017-02-02 株式会社デンソー Fuel injection device
JP2018150943A (en) * 2018-07-05 2018-09-27 株式会社デンソー Fuel injection device
WO2020255953A1 (en) * 2019-06-20 2020-12-24 株式会社デンソー Fuel injection valve
JP2021001560A (en) * 2019-06-20 2021-01-07 株式会社デンソー Fuel injection valve
JP7272645B2 (en) 2019-06-20 2023-05-12 株式会社デンソー fuel injector

Also Published As

Publication number Publication date
JP4872959B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
US7651038B2 (en) Fuel injection valve for internal combustion engine
JPWO2012001802A1 (en) Fuel injection valve and internal combustion engine
JP5319780B2 (en) Injection nozzle
JP4872959B2 (en) Fuel injection valve
JP5494508B2 (en) Fuel injection valve
JP6036354B2 (en) Fuel injection valve
US20100107641A1 (en) Method and apparatus for affecting a recirculation zone in a cross flow
JP2004076723A (en) Fuel injection device
US8794549B2 (en) Fuel injection valve of internal combustion engine
JP2014532835A (en) Injection nozzle
US20130181068A1 (en) Injection device having improved spray preparation
US9951736B2 (en) Fuel injector tip
JP2013249826A (en) Fuel injection valve and fuel injection device for internal combustion engine
JP2007327736A (en) Air-cooled heat exchanger
JP2008121531A (en) Fluid ejector
JP4302744B2 (en) Fuel injection device
JP6160301B2 (en) Fuel injection valve
JP2003184707A (en) Fuel injection valve for internal combustion engine
JP2008232117A (en) Fuel injection valve
JP4166792B2 (en) Fuel injection device
JP5217402B2 (en) Fuel injection valve
JP7060263B2 (en) Fuel injection valve
JP2014227913A (en) Fuel injection valve
JPH0299758A (en) Fuel feeding device
JP2020153280A (en) Spray dispersion degree variable valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees