JP2009242899A - SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF - Google Patents

SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP2009242899A
JP2009242899A JP2008092618A JP2008092618A JP2009242899A JP 2009242899 A JP2009242899 A JP 2009242899A JP 2008092618 A JP2008092618 A JP 2008092618A JP 2008092618 A JP2008092618 A JP 2008092618A JP 2009242899 A JP2009242899 A JP 2009242899A
Authority
JP
Japan
Prior art keywords
sic
particles
composite
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008092618A
Other languages
Japanese (ja)
Inventor
Katsuaki Tanaka
勝章 田中
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008092618A priority Critical patent/JP2009242899A/en
Publication of JP2009242899A publication Critical patent/JP2009242899A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-void formation SiC/Al sintered compact and to provide a production method thereof. <P>SOLUTION: The SiC/Al composite sintered compact 1 is characterized by being prepared by sintering a mixed powder 9 comprising a composite particle powder each comprising a composite particle 10 comprising a silicon carbide (SiC) particle 11 and aluminum (Al) microparticles 12 which adhere to the surface of the SiC particle 11 so as to coat the surface and having smaller particle diameters than the SiC particle 11 and a matrix forming powder comprising Al particles 20. Because of its high thermal conductivity, the SiC/Al composite sintered compact is desirable as a material for heat-dissipation members of electronic equipment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属基複合材料のひとつである炭化珪素/アルミニウム複合材料に関するものである。   The present invention relates to a silicon carbide / aluminum composite material which is one of metal matrix composite materials.

近年、アルミニウムからなる母材中にセラミックス粒子を分散させた種々のアルミニウム基複合材料が開発されている。これらの複合材料は、アルミニウムにくらべて強度、剛性が高く、耐摩耗性や高温特性に優れていることから幅広い分野での使用が期待されている。特に、高熱伝導性を満足する炭化珪素/アルミニウム(SiC/Al)複合材料は、半導体チップ等を備える電子機器から発生する熱を外部に伝熱または放熱する電子機器用放熱部材などとして用いられている。   In recent years, various aluminum-based composite materials in which ceramic particles are dispersed in a base material made of aluminum have been developed. These composite materials are expected to be used in a wide range of fields because they have higher strength and rigidity than aluminum and are excellent in wear resistance and high temperature characteristics. In particular, a silicon carbide / aluminum (SiC / Al) composite material that satisfies high thermal conductivity is used as a heat radiating member for an electronic device that transfers or radiates heat generated from an electronic device including a semiconductor chip to the outside. Yes.

SiC/Al複合材料の製造方法としては、SiC粉末を金型に充填した後その金型にAl溶湯を注湯してSiC粉末に含浸させる高圧鋳造法、SiC粉末とAl粉末との混合粉末を焼結する粉末焼結法、SiC粉末のグリーンシートをAl溶湯に接触させる非加圧浸透法、などが挙げられる。   The SiC / Al composite material is produced by a high pressure casting method in which a SiC powder is filled in a mold and then molten Al is poured into the mold to impregnate the SiC powder. A mixed powder of SiC powder and Al powder is used. Examples thereof include a powder sintering method for sintering, a non-pressure permeation method in which a green sheet of SiC powder is brought into contact with Al molten metal, and the like.

高圧鋳造法の一例として、特許文献1には、平均粒径の異なる2種類のSiC粒子を金型に充填した後、その金型にAl溶湯を注湯して加圧してSiC粉末に含浸させることで、SiC/Al複合材料を得る方法が開示されている。   As an example of the high-pressure casting method, Patent Document 1 describes that after filling a mold with two types of SiC particles having different average particle diameters, the molten aluminum is poured into the mold and pressurized to impregnate the SiC powder. Thus, a method for obtaining a SiC / Al composite material is disclosed.

また、引用文献2には、SiC粒子の表面にAl微粉末を被覆した複合粉末が開示されている。複合粉末は、たとえば、SiC粉末と硫酸アルミニウム水溶液とを混合後、乾燥、加熱処理して得られる。複合粉末では、SiC粒子の表面がアルミニウム微粉末に覆われているため、複合粉末を焼結すると、組織が均一な焼結体が得られる。
特開2002−285259号公報 特開昭57−71868号公報
In addition, cited document 2 discloses a composite powder in which the surface of SiC particles is coated with Al fine powder. The composite powder is obtained, for example, by mixing SiC powder and an aluminum sulfate aqueous solution, followed by drying and heat treatment. In the composite powder, since the surface of the SiC particles is covered with the aluminum fine powder, when the composite powder is sintered, a sintered body having a uniform structure can be obtained.
JP 2002-285259 A JP-A-57-71868

粉末焼結法のような焼結法によりSiC/Al複合材料を作製した場合には、SiC粒子とAl粒子との間に空隙ができる。空隙により熱の移動が妨げられるため、SiC/Al複合材料の熱伝導率は低下する。   When the SiC / Al composite material is produced by a sintering method such as a powder sintering method, a void is formed between the SiC particles and the Al particles. Since the heat transfer is hindered by the air gap, the thermal conductivity of the SiC / Al composite material is lowered.

また、特許文献2に記載のように、SiC粒子の表面にAl微粉末を被覆した複合粉末を焼結しても、同様に、空隙ができやすい。なお、特許文献2に記載の複合粉末において、SiC粒子の表面を被覆するAl微粉末は、溶液を前駆体として得られる微細なものである。したがって、この複合粉末を用いて得られる焼結体は、微量のAlを焼結助剤としたSiC焼結体であって、SiC/Al複合材料とは言い難い。   Further, as described in Patent Document 2, even when a composite powder in which the surface of SiC particles is coated with Al fine powder is sintered, voids are easily formed. In the composite powder described in Patent Document 2, the Al fine powder covering the surface of the SiC particles is a fine one obtained using a solution as a precursor. Therefore, the sintered body obtained by using this composite powder is a SiC sintered body using a small amount of Al as a sintering aid, and is hardly called a SiC / Al composite material.

すなわち、焼結法では、空隙の存在により、理論値に近い熱伝導率をもつSiC/Al複合材料の作製は、困難である。   That is, in the sintering method, it is difficult to produce a SiC / Al composite material having a thermal conductivity close to the theoretical value due to the presence of voids.

また、非加圧浸透法では、焼結法ほど空隙は形成されないものの、SiCとAlとの界面に、熱伝導性を低下させる金属間化合物が生成される問題がある。   Further, in the non-pressure infiltration method, although voids are not formed as in the sintering method, there is a problem that an intermetallic compound that reduces thermal conductivity is generated at the interface between SiC and Al.

本発明は、上記の問題点に鑑み、空隙の形成が低減されたSiC/Al複合焼結体を提供することを目的とする。また、SiC/Al複合焼結体の製造方法を提供することを目的とする。   An object of this invention is to provide the SiC / Al composite sintered compact in which formation of the space | gap was reduced in view of said problem. Moreover, it aims at providing the manufacturing method of a SiC / Al composite sintered compact.

本発明のSiC/Al複合焼結体は、
炭化珪素(SiC)粒子と該SiC粒子の表面に付着して該表面を覆う該SiC粒子よりも粒径の小さいアルミニウム(Al)微粒子との複合粒子からなる複合粒子粉末と、
Al粒子からなるマトリックス形成粉末と、
の混合粉末を焼結してなることを特徴とする。
The SiC / Al composite sintered body of the present invention is
A composite particle powder comprising composite particles of silicon carbide (SiC) particles and aluminum (Al) fine particles having a particle diameter smaller than that of the SiC particles that adhere to and cover the surface of the SiC particles;
A matrix-forming powder comprising Al particles;
The mixed powder is sintered.

また、本発明のSiC/Al複合焼結体の製造方法は、
炭化珪素(SiC)粒子の表面に該表面を覆うように該SiC粒子よりも粒径の小さいアルミニウム(Al)微粒子を付着させて複合粒子を作製する複合粒子製造工程と、
前記複合粒子からなる複合粒子粉末とAl粒子からなるマトリックス形成粉末とを混合して混合粉末を調製する混合粉末調製工程と、
前記混合粉末を成形して成形体とする混合粉末成形工程と、
前記成形体を焼結する焼結工程と、
を含むことを特徴とする。
Moreover, the manufacturing method of the SiC / Al composite sintered body of the present invention is as follows.
A composite particle manufacturing process for producing composite particles by attaching aluminum (Al) fine particles having a particle diameter smaller than that of the SiC particles so as to cover the surface of the silicon carbide (SiC) particles;
A mixed powder preparation step of preparing a mixed powder by mixing a composite particle powder composed of the composite particles and a matrix-forming powder composed of Al particles;
A mixed powder molding step in which the mixed powder is molded into a molded body; and
A sintering step of sintering the molded body;
It is characterized by including.

本発明のSiC/Al複合焼結体および本発明のSiC/Al複合焼結体の製造方法では、SiC粒子とAl微粒子との複合粒子からなる複合粒子粉末を用いる。SiC粒子は、SiC粒子よりも粒径の小さいAl微粒子にその表面が覆われるため、複合粒子粉末を成形・焼結するときに大径のSiC粒子同士が直接隣り合うことが妨げられる。その結果、SiC/Al複合焼結体に形成される空隙が減少する。   In the SiC / Al composite sintered body of the present invention and the method for producing the SiC / Al composite sintered body of the present invention, composite particle powder composed of composite particles of SiC particles and Al fine particles is used. Since the surface of the SiC particles is covered with Al fine particles having a particle diameter smaller than that of the SiC particles, large-sized SiC particles are prevented from being directly adjacent to each other when the composite particle powder is molded and sintered. As a result, voids formed in the SiC / Al composite sintered body are reduced.

さらに、本発明のSiC/Al複合焼結体および本発明のSiC/Al複合焼結体の製造方法では、複合粒子粉末と、Al粒子からなるマトリックス形成粉末と、の混合粉末を原料粉末とする。複合粒子粉末とともにマトリックス形成粉末を用いることで、得られるSiC/Al複合焼結体に形成される空隙がさらに減少する。   Furthermore, in the SiC / Al composite sintered body of the present invention and the SiC / Al composite sintered body of the present invention, a mixed powder of composite particle powder and matrix-forming powder made of Al particles is used as a raw material powder. . By using the matrix-forming powder together with the composite particle powder, voids formed in the obtained SiC / Al composite sintered body are further reduced.

また、本発明のSiC/Al複合焼結体は、電子機器用放熱部材の材料として好適である。   Moreover, the SiC / Al composite sintered body of the present invention is suitable as a material for a heat dissipation member for electronic equipment.

以下に、本発明のSiC/Al複合焼結体および本発明のSiC/Al複合焼結体の製造方法を実施するための最良の形態を説明する。   The best mode for carrying out the SiC / Al composite sintered body of the present invention and the method for producing the SiC / Al composite sintered body of the present invention will be described below.

[SiC/Al複合焼結体]
本発明のSiC/Al複合焼結体は、複合粒子粉末とマトリックス形成粉末との混合粉末を焼結してなる。以下に、複合粒子粉末およびマトリックス形成粉末について、図を用いて説明する。
[SiC / Al composite sintered body]
The SiC / Al composite sintered body of the present invention is obtained by sintering a mixed powder of composite particle powder and matrix forming powder. Hereinafter, the composite particle powder and the matrix-forming powder will be described with reference to the drawings.

複合粒子粉末は、複合粒子からなる。図1は、複合粒子を模式的に示す断面図である。複合粒子10は、SiC粒子11とAl微粒子12とからなる。SiC粒子11は、複合粒子10の核となる。Al微粒子12は、SiC粒子11の表面に付着してSiC粒子11の表面を覆う。Al微粒子12の粒径は、SiC粒子11よりも小さい。なお、Al微粒子12は、図1では真球状であるが、必ずしも球である必要はなく、SiC粒子11の表面に沿って扁平に変形していてもよい。また、図1では、SiC粒子11の表面に、粒子1つ分を一層の厚さとしてAl微粒子12が覆っているが、表面全体あるいは一部が二層以上のAl微粒子に覆われていてもよい。なお、以下「粒径」は、Al微粒子を2本の平行線で挟んだとき、その平行線の間隔の最大値とする。   The composite particle powder is composed of composite particles. FIG. 1 is a cross-sectional view schematically showing composite particles. The composite particle 10 includes SiC particles 11 and Al fine particles 12. The SiC particles 11 serve as the nucleus of the composite particle 10. The Al fine particles 12 adhere to the surface of the SiC particles 11 and cover the surface of the SiC particles 11. The particle diameter of the Al fine particles 12 is smaller than that of the SiC particles 11. The Al fine particles 12 are spherical in FIG. 1, but are not necessarily spherical and may be deformed flat along the surface of the SiC particles 11. In FIG. 1, the surface of the SiC particle 11 is covered with Al fine particles 12 with one particle as a single layer, but the entire surface or part of the surface may be covered with two or more layers of Al fine particles. Good. Hereinafter, the “particle diameter” is the maximum value of the interval between parallel lines when Al fine particles are sandwiched between two parallel lines.

SiC粒子の表面は、Al微粒子により少なくとも一部が覆われていれば、大径のSiC粒子同士が直接隣接することを防止できるため、空隙の形成が抑制される。Al微粒子によるSiC粒子の表面の被覆率が高い程、空隙の形成を抑制する効果は高いため、SiC粒子の表面は全面に渡って密に覆われているのが好ましい。   If at least a part of the surface of the SiC particles is covered with Al fine particles, the large-diameter SiC particles can be prevented from being directly adjacent to each other, so that the formation of voids is suppressed. The higher the coverage of the surface of the SiC particles with the Al fine particles, the higher the effect of suppressing the formation of voids. Therefore, it is preferable that the surface of the SiC particles is densely covered over the entire surface.

複合粒子粉末に含まれるSiC粒子の平均粒径は、50〜150μmが好ましく、さらに好ましくは70〜130μm、80〜120μmである。SiC粒子が大きい程、SiC/Al複合焼結体の加工性が低下するため、150μm以下とするのが好ましい。また、SiC粒子が50μm未満では、SiC粒子が凝集することで、SiC粒子同士が直接隣接してしまい、空隙が形成されやすいため好ましくない。   The average particle diameter of the SiC particles contained in the composite particle powder is preferably 50 to 150 μm, more preferably 70 to 130 μm, and 80 to 120 μm. The larger the SiC particles, the lower the workability of the SiC / Al composite sintered body. Therefore, the thickness is preferably 150 μm or less. In addition, if the SiC particles are less than 50 μm, the SiC particles are agglomerated so that the SiC particles are directly adjacent to each other and voids are easily formed.

複合粒子粉末に含まれるAl微粒子の平均粒径は、1〜15μmが好ましく、さらに好ましくは3〜13μm、5〜10μmである。Al微粒子の平均粒径が15μmを超えると、SiC粒子の表面を緻密に覆うことができない。Al微粒子が1μm未満では、SiC粒子表面を覆うAl微粒子の厚さが薄くなることに起因して空隙が形成されやすくなるため好ましくない。   The average particle size of the Al fine particles contained in the composite particle powder is preferably 1 to 15 μm, more preferably 3 to 13 μm and 5 to 10 μm. When the average particle diameter of the Al fine particles exceeds 15 μm, the surface of the SiC particles cannot be densely covered. If the Al fine particles are less than 1 μm, voids are likely to be formed due to the thin Al fine particles covering the SiC particle surfaces, which is not preferable.

また、Al微粉末に対するSiC粒子の配合量が少ないと、SiC粒子の表面にAl微粒子を付着させる作業が困難になるため好ましくない。Al微粉末に対するSiC粒子の配合量が多すぎるとSiC粒子の表面がAl微粒子で十分に覆われにくくなるため好ましくない。したがって、複合粒子粉末に含まれるSiC粒子は、Al微粒子とSiC粒子との質量比で(Al微粒子の質量):(SiC粒子の質量)=1:8〜1:12であるのが好ましい。   Further, if the amount of SiC particles blended in the Al fine powder is small, it is not preferable because the operation of attaching the Al fine particles to the surface of the SiC particles becomes difficult. If the amount of SiC particles blended in the Al fine powder is too large, the surface of the SiC particles is not sufficiently covered with Al fine particles, which is not preferable. Therefore, it is preferable that the SiC particles contained in the composite particle powder have a mass ratio of Al fine particles to SiC particles (mass of Al fine particles) :( mass of SiC particles) = 1: 8 to 1:12.

マトリックス形成粉末は、Al粒子からなる。マトリックス形成粉末は、上記複合粒子粉末と混合され、本発明のSiC/Al複合焼結体の原料である混合粉末を構成する。   The matrix-forming powder is made of Al particles. The matrix-forming powder is mixed with the composite particle powder to constitute a mixed powder that is a raw material of the SiC / Al composite sintered body of the present invention.

マトリックス形成粉末の平均粒径は、1〜15μmが好ましく、さらに好ましくは3〜13μm、5〜10μmである。マトリックス形成粉末の平均粒径が15μmを超えると、得られる焼結体に空隙が形成されやすい。マトリックス形成粉末の平均粒径が小さい程、焼結体の空隙は減少するが、1μm未満では、取り扱いが困難になるほか、Al粒子が凝集してSiC粒子が偏析することがある。   The average particle size of the matrix-forming powder is preferably 1 to 15 μm, more preferably 3 to 13 μm, and 5 to 10 μm. When the average particle size of the matrix-forming powder exceeds 15 μm, voids are easily formed in the obtained sintered body. The smaller the average particle size of the matrix-forming powder, the smaller the voids in the sintered body. However, if it is less than 1 μm, handling becomes difficult, and Al particles may aggregate to segregate SiC particles.

また、マトリックス形成粉末に用いるAl粒子として、上記複合粒子粉末に用いるAl微粒子を用いてもよい。なお、複合粒子を構成するAl微粒子およびマトリックス形成粉末を構成するAl粒子は、純Alからなる粒子であっても、Al合金からなる粒子であっても、いずれも構わない。Alの含有量を規定するのであれば、全体を100質量%としたときにAlを30質量%以上含むのが好ましい。   Moreover, you may use Al microparticles | fine-particles used for the said composite particle powder as Al particle | grains used for matrix formation powder. The Al fine particles constituting the composite particles and the Al particles constituting the matrix-forming powder may be either particles made of pure Al or particles made of an Al alloy. If the content of Al is specified, it is preferable to contain 30% by mass or more of Al when the entire content is 100% by mass.

図2に、本発明のSiC/Al複合焼結体の原料粉末である混合粉末を模式的に示す。混合粉末9は、上記複合粒子粉末10とマトリックス形成粉末20とからなる。混合粉末9は、所望の形状に成形して焼結することで、本発明のSiC/Al複合焼結体となる。本発明のSiC/Al複合焼結体は、焼結体全体を100質量%としたときに、SiC粒子を50〜70質量%、さらには55〜65質量%、55〜60質量%含むのが好ましい。SiC粒子が50質量%未満では、複合材料としての性質(たとえば所望の熱膨張率)が良好に発揮されない。SiC粒子が70質量%を超えると、焼結体の加工性が低下するため好ましくない。   FIG. 2 schematically shows a mixed powder that is a raw material powder of the SiC / Al composite sintered body of the present invention. The mixed powder 9 is composed of the composite particle powder 10 and the matrix forming powder 20. The mixed powder 9 is formed into a desired shape and sintered to form the SiC / Al composite sintered body of the present invention. The SiC / Al composite sintered body of the present invention contains 50 to 70% by mass of SiC particles, further 55 to 65% by mass, and 55 to 60% by mass when the entire sintered body is taken as 100% by mass. preferable. If the SiC particles are less than 50% by mass, properties as a composite material (for example, a desired coefficient of thermal expansion) are not satisfactorily exhibited. If the SiC particles exceed 70% by mass, the workability of the sintered body is lowered, which is not preferable.

本発明のSiC/Al複合焼結体は、上記複合粒子粉末とともに上記マトリックス形成粉末を用いて作製されることで、空隙の少ない焼結体となる。つまり、図3に示すように、本発明のSiC/Al複合焼結体1は、Alマトリックス21中にSiC粒子11が分散してなり、空隙はほとんどみられない。一方、複合粒子粉末のみを焼結すると、図4に示すように、得られる焼結体2は、Alマトリックス22中に均一に分散するSiC粒子11と空隙Cをもつ。また、SiC粒子とAl粒子を単に混合して焼結すると、図5に示すように、得られる焼結体3は、SiC粒子11とAlマトリックス23との間に空隙Cをもつ。図4および図5に示す焼結体では、複合材料とすることで見込まれる性質が良好に発現せず、たとえば、熱伝導率が低くなる。   The SiC / Al composite sintered body of the present invention is produced using the matrix-forming powder together with the composite particle powder, thereby forming a sintered body with few voids. That is, as shown in FIG. 3, in the SiC / Al composite sintered body 1 of the present invention, the SiC particles 11 are dispersed in the Al matrix 21, and voids are hardly observed. On the other hand, when only the composite particle powder is sintered, the obtained sintered body 2 has SiC particles 11 and voids C uniformly dispersed in the Al matrix 22, as shown in FIG. Further, when the SiC particles and Al particles are simply mixed and sintered, the obtained sintered body 3 has voids C between the SiC particles 11 and the Al matrix 23 as shown in FIG. In the sintered body shown in FIG. 4 and FIG. 5, the properties expected by using a composite material do not appear well, and, for example, the thermal conductivity decreases.

[用途]
本発明のSiC/Al複合焼結体は、高熱伝導性をもつことから、電子部品の放熱材料、基板材料、配線材料などに好適である。以下に、本発明のSiC/Al複合焼結体を電子機器用放熱部材の材料として用いた具体例を示す。
[Usage]
Since the SiC / Al composite sintered body of the present invention has high thermal conductivity, it is suitable for a heat dissipation material, a substrate material, a wiring material, etc. for electronic components. Below, the specific example which used the SiC / Al composite sintered compact of this invention as a material of the thermal radiation member for electronic devices is shown.

図6は、半導体装置の主要部の構成を示す断面図である。半導体装置60は、金属製の放熱板64の表面に絶縁膜63が形成され、絶縁膜63の表面に接合材62、緩衝層61が順次積層される。緩衝層61には、はんだ層68を介してIGBT素子等の半導体素子69が搭載される。本発明のSiC/Al複合焼結体からなる緩衝層61は、熱伝導率が高いため、半導体素子69で発生した熱は放熱板64へと流れる。また、緩衝層61は、熱膨張率が低いSiCと熱膨張率が高いAlとの複合材であるため、放熱板64と半導体素子69との中間の熱膨張率を有する。その結果、放熱板64と半導体素子69との熱膨張率の差に起因する半導体素子69の反り、割れまたは剥がれなどの発生が防止される。   FIG. 6 is a cross-sectional view illustrating a configuration of a main part of the semiconductor device. In the semiconductor device 60, an insulating film 63 is formed on the surface of a metal heat sink 64, and a bonding material 62 and a buffer layer 61 are sequentially stacked on the surface of the insulating film 63. A semiconductor element 69 such as an IGBT element is mounted on the buffer layer 61 via a solder layer 68. Since the buffer layer 61 made of the SiC / Al composite sintered body of the present invention has high thermal conductivity, the heat generated in the semiconductor element 69 flows to the heat radiating plate 64. Further, since the buffer layer 61 is a composite material of SiC having a low coefficient of thermal expansion and Al having a high coefficient of thermal expansion, the buffer layer 61 has an intermediate coefficient of thermal expansion between the heat sink 64 and the semiconductor element 69. As a result, the occurrence of warping, cracking or peeling of the semiconductor element 69 due to the difference in thermal expansion coefficient between the heat sink 64 and the semiconductor element 69 is prevented.

[SiC/Al複合焼結体の製造方法]
以下に説明する本発明のSiC/Al複合焼結体の製造方法は、上記本発明のSiC/Al複合焼結体の製造に好適である。本発明のSiC/Al複合焼結体の製造方法は、複合粒子製造工程と、混合粉末調整工程と、混合粉末成形工程と、焼成工程と、を含む。
[Method for producing SiC / Al composite sintered body]
The manufacturing method of the SiC / Al composite sintered body of the present invention described below is suitable for manufacturing the SiC / Al composite sintered body of the present invention. The method for producing a SiC / Al composite sintered body according to the present invention includes a composite particle manufacturing process, a mixed powder adjusting process, a mixed powder forming process, and a firing process.

複合粒子製造工程は、SiC粒子の表面にAl微粒子を付着させて複合粒子を作製する工程である。SiC粒子の表面は、Al微粒子により覆われる。複合粒子製造工程において用いられるSiC粒子およびAl微粒子、これらの配合量などは、既に述べた通りである。   The composite particle manufacturing process is a process for producing composite particles by attaching Al fine particles to the surface of SiC particles. The surface of the SiC particles is covered with Al fine particles. The SiC particles and Al fine particles used in the composite particle production process, the blending amounts thereof, and the like are as described above.

複合粒子製造工程において、SiC粒子の表面にAl微粒子を付着させる方法としては、従来から知られている各種粉末コーティング方法を用いればよい。特に、高速気流中衝撃法を用いたハイブリダイゼーションが望ましい。ハイブリダイゼーションに使用される装置(後述のハイブリダイザー)は、高速回転するロータ、ステータおよび循環回路で構成されている。装置内に投入された粉体は、回転するロータにより衝撃を受けて気流とともに外周部へと運ばれる。外周部の粉体は、循環回路により気流とともにロータの中心部へと移送され、同様に衝撃を受ける。この衝撃の繰り返しにより、集中したエネルギーが粒子表面に作用する。そのため、2種以上の粉体を分散した場合には、母粒子の表面に子粒子が埋没、母粒子の表面で子粒子が展延または溶融するなどして、複合化処理が可能となる。   In the composite particle manufacturing process, various conventionally known powder coating methods may be used as a method for adhering Al fine particles to the surface of SiC particles. In particular, hybridization using a high-speed air impact method is desirable. An apparatus (hybridizer described later) used for hybridization includes a rotor that rotates at high speed, a stator, and a circulation circuit. The powder charged in the apparatus is impacted by the rotating rotor and is carried to the outer peripheral portion together with the air current. The powder on the outer periphery is transferred to the center of the rotor together with the airflow by the circulation circuit, and similarly receives an impact. By repeating this impact, concentrated energy acts on the particle surface. Therefore, when two or more kinds of powders are dispersed, the child particles are buried in the surface of the mother particles, and the child particles are spread or melted on the surface of the mother particles, so that the composite treatment can be performed.

混合粉末調製工程は、複合粒子からなる複合粒子粉末とAl粒子からなるマトリックス形成粉末とを混合して混合粉末を調製する工程である。混合粉末調製工程で用いられるAl粒子については、既に述べた通りである。また、粉末の混合方法は、従来から行われている方法であればよい。   The mixed powder preparation step is a step of preparing a mixed powder by mixing a composite particle powder made of composite particles and a matrix-forming powder made of Al particles. The Al particles used in the mixed powder preparation step are as described above. Moreover, the mixing method of powder should just be the method conventionally performed.

また、混合粉末調製工程にて調製される混合粉末は、混合粉末全体を100質量%としたときに、マトリックス形成粉末を20〜40質量%含むのが好ましい。マトリックス形成粉末が20質量%未満では、得られる焼結体に空隙が形成されやすい。マトリックス形成粉末の割合が多い程、焼結体の空隙は減少するが、40質量%を超えると、焼結体のうちのSiCの占める割合が減少し、複合材料としての性質(たとえば所望の熱膨張率)が良好に発揮されない。   Moreover, it is preferable that the mixed powder prepared in the mixed powder preparation step includes 20 to 40% by mass of the matrix-forming powder when the entire mixed powder is 100% by mass. When the matrix-forming powder is less than 20% by mass, voids are easily formed in the obtained sintered body. As the ratio of the matrix-forming powder increases, the voids in the sintered body decrease. However, when the amount exceeds 40% by mass, the proportion of SiC in the sintered body decreases, and the properties of the composite material (for example, desired heat (Expansion coefficient) is not exhibited well.

混合粉末成形工程は、混合粉末を所望の形状に成形して成形体とする工程である。また、焼結工程は、その成形体を焼結する工程である。混合粉末成形工程では、混合粉末を型に充填し、必要に応じて加圧することで、所望の形状の成形体を得るとよい。所望の形状に成形された成形体は、脱型した後に焼結工程に供してもよいし、型に充填された状態で加熱して焼結させてもよい。   The mixed powder forming step is a step of forming the mixed powder into a desired shape by forming the mixed powder into a desired shape. The sintering step is a step of sintering the molded body. In the mixed powder molding step, the molded powder having a desired shape may be obtained by filling the mixed powder into a mold and pressurizing as necessary. The molded body formed into a desired shape may be subjected to a sintering step after being removed from the mold, or may be heated and sintered in a state filled in the mold.

焼結工程は、550〜590℃さらには560〜570℃で焼結を行う工程であるのが望ましい。焼結温度が550℃未満ではアルミニウムの粒子の表面が溶融せず、焼結温度が590℃を超えるとアルミニウムが軟化してSiC粒子の隙間に吸い込まれることにより、表面に凹凸が形成されることがあるため望ましくない。   The sintering step is desirably a step of sintering at 550 to 590 ° C, more preferably 560 to 570 ° C. When the sintering temperature is less than 550 ° C., the surface of the aluminum particles does not melt, and when the sintering temperature exceeds 590 ° C., the aluminum softens and is sucked into the gaps between the SiC particles, thereby forming irregularities on the surface. This is not desirable.

焼結工程は、成形体に圧力をかけつつ焼結を行う工程であるのが望ましい。また、焼結雰囲気に特に限定はなく、空気中、真空中、窒素やアルゴン等の不活性ガス雰囲気中、のいずれでもよい。   The sintering step is preferably a step of performing sintering while applying pressure to the molded body. Moreover, there is no limitation in particular in sintering atmosphere, Any in air, a vacuum, and inert gas atmosphere, such as nitrogen and argon, may be sufficient.

以上、本発明のSiC/Al複合焼結体および本発明のSiC/Al複合焼結体の製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the manufacturing method of the SiC / Al composite sintered compact of this invention and the SiC / Al composite sintered compact of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明のSiC/Al複合焼結体および本発明のSiC/Al複合焼結体の製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples of the SiC / Al composite sintered body of the present invention and the method for producing the SiC / Al composite sintered body of the present invention.

[複合粒子の製造]
平均粒径が100μmのSiC粉末および平均粒径が8μmのAl粉末を準備した。これらを、(SiC粉末の質量):(Al粉末の質量)=10:1となるように秤量し、ハイブリダイゼーションシステム(株式会社奈良機械製作所製)を用いて複合粒子を作製した。ハイブリダイゼーションシステムの概略を図7に示す。ハイブリダイゼーションシステム70は、OMダイザー71、計量器72、ハイブリダイザー73、捕集器74および制御装置75を備える。秤量したSiC粉末およびAl粉末を、OMダイザー71に投入し、静電付着等によりSiC粒子の表面にAl微粒子を付着させてオーダードミクスチュアーとした。次いで、オーダードミクスチュアーを計量器72にて一定量計量して、ハイブリダイザー73に順次供給した。オーダードミクスチュアーでは微弱な付着であったSiC粒子とAl微粒子とが、ハイブリダイザー73にて固定化された。その後、捕集器74によりハイブリダイザー73により得られた複合粒子を捕集した。
[Production of composite particles]
A SiC powder having an average particle diameter of 100 μm and an Al powder having an average particle diameter of 8 μm were prepared. These were weighed so that (mass of SiC powder) :( mass of Al powder) = 10: 1, and composite particles were produced using a hybridization system (manufactured by Nara Machinery Co., Ltd.). An outline of the hybridization system is shown in FIG. The hybridization system 70 includes an OM dither 71, a measuring instrument 72, a hybridizer 73, a collector 74, and a control device 75. The weighed SiC powder and Al powder were put into the OM dither 71, and Al fine particles were adhered to the surface of the SiC particles by electrostatic adhesion or the like to obtain an ordered mixture. Next, the ordered mixture was weighed by a meter 72 and supplied to the hybridizer 73 sequentially. SiC particles and Al fine particles, which were weakly adhered in the ordered mixture, were fixed by the hybridizer 73. Thereafter, the composite particles obtained by the hybridizer 73 were collected by the collector 74.

[SiC/Al複合焼結体の製造]
上記手順により得られた複合粒子粉末とAl粉末とをボールミルにより混合し、混合粉末を得た。混合粉末は、複合粒子粉末:66質量%、Al粉末:34質量%とした。この混合粉末を金型により所定の形状に成形し、加圧した状態で560℃で焼成した。
[Production of SiC / Al composite sintered body]
The composite particle powder obtained by the above procedure and the Al powder were mixed by a ball mill to obtain a mixed powder. The mixed powder was composite particle powder: 66% by mass and Al powder: 34% by mass. This mixed powder was molded into a predetermined shape with a mold and fired at 560 ° C. in a pressurized state.

得られたSiC/Al複合焼結体は、高い熱伝導率を示した。   The obtained SiC / Al composite sintered body showed high thermal conductivity.

本発明のSiC/Al複合焼結体の原料粉末として用いられる複合粒子の断面を模式的に示す。The cross section of the composite particle used as a raw material powder of the SiC / Al composite sintered compact of this invention is shown typically. 本発明のSiC/Al複合焼結体の原料粉末である混合粉末を模式的に示す。The mixed powder which is the raw material powder of the SiC / Al composite sintered compact of this invention is typically shown. 本発明のSiC/Al複合焼結体を模式的に示す断面図である。It is sectional drawing which shows typically the SiC / Al composite sintered compact of this invention. SiC/Al複合焼結体の比較例を模式的に示す断面図である。It is sectional drawing which shows typically the comparative example of a SiC / Al composite sintered compact. SiC/Al複合焼結体の従来例を模式的に示す断面図である。It is sectional drawing which shows typically the prior art example of a SiC / Al composite sintered compact. 本発明のSiC/Al複合焼結体を用いた半導体装置の主要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the semiconductor device using the SiC / Al composite sintered compact of this invention. ハイブリダイゼーションシステムのフロー説明図である。It is flow explanatory drawing of a hybridization system.

符号の説明Explanation of symbols

1:SiC/Al複合焼結体
9:混合粉末
10:複合粒子 11:SiC粒子 12:Al微粒子
20:Al粒子 21:Alマトリックス
60:半導体装置
70:ハイブリダイゼーションシステム
1: SiC / Al composite sintered body 9: Mixed powder 10: Composite particles 11: SiC particles 12: Al fine particles 20: Al particles 21: Al matrix 60: Semiconductor device 70: Hybridization system

Claims (11)

炭化珪素(SiC)粒子と該SiC粒子の表面に付着して該表面を覆う該SiC粒子よりも粒径の小さいアルミニウム(Al)微粒子との複合粒子からなる複合粒子粉末と、
Al粒子からなるマトリックス形成粉末と、
の混合粉末を焼結してなることを特徴とするSiC/Al複合焼結体。
A composite particle powder comprising composite particles of silicon carbide (SiC) particles and aluminum (Al) fine particles having a particle diameter smaller than that of the SiC particles that adhere to and cover the surface of the SiC particles;
A matrix-forming powder comprising Al particles;
A SiC / Al composite sintered body obtained by sintering a mixed powder of
全体を100質量%としたときに、SiC粒子を50〜70質量%含む請求項1記載のSiC/Al複合焼結体。   The SiC / Al composite sintered body according to claim 1, comprising 50 to 70% by mass of SiC particles when the whole is 100% by mass. 前記複合粒子粉末に含まれる前記SiC粒子の平均粒径は、50〜150μmである請求項1記載のSiC/Al複合焼結体。   The SiC / Al composite sintered body according to claim 1, wherein an average particle diameter of the SiC particles contained in the composite particle powder is 50 to 150 µm. 前記複合粒子粉末に含まれる前記Al微粒子の平均粒径は、1〜15μmである請求項1記載のSiC/Al複合焼結体。   The SiC / Al composite sintered body according to claim 1, wherein an average particle diameter of the Al fine particles contained in the composite particle powder is 1 to 15 μm. 前記複合粒子粉末に含まれる前記SiC粒子の割合は、前記Al微粒子と該SiC粒子との質量比で1:8〜1:12である請求項1記載のSiC/Al複合焼結体。   The SiC / Al composite sintered body according to claim 1, wherein a ratio of the SiC particles contained in the composite particle powder is 1: 8 to 1:12 in terms of a mass ratio of the Al fine particles to the SiC particles. 前記マトリックス形成粉末の平均粒径は、1〜15μmである請求項1記載のSiC/Al複合焼結体。   The SiC / Al composite sintered body according to claim 1, wherein the matrix-forming powder has an average particle diameter of 1 to 15 μm. 炭化珪素(SiC)粒子の表面に該表面を覆うように該SiC粒子よりも粒径の小さいアルミニウム(Al)微粒子を付着させて複合粒子を作製する複合粒子製造工程と、
前記複合粒子からなる複合粒子粉末とAl粒子からなるマトリックス形成粉末とを混合して混合粉末を調製する混合粉末調製工程と、
前記混合粉末を成形して成形体とする混合粉末成形工程と、
前記成形体を焼結する焼結工程と、
を含むことを特徴とするSiC/Al複合焼結体の製造方法。
A composite particle manufacturing process for producing composite particles by attaching aluminum (Al) fine particles having a particle diameter smaller than that of the SiC particles so as to cover the surface of the silicon carbide (SiC) particles;
A mixed powder preparation step of preparing a mixed powder by mixing a composite particle powder composed of the composite particles and a matrix-forming powder composed of Al particles;
A mixed powder molding step in which the mixed powder is molded into a molded body; and
A sintering step of sintering the molded body;
The manufacturing method of the SiC / Al compound sintered compact characterized by including this.
前記混合粉末調製工程は、前記混合粉末全体を100質量%としたときに、前記マトリックス形成粉末が20〜40質量%となるように混合する工程である請求項7記載のSiC/Al複合焼結体の製造方法。   The SiC / Al composite sintering according to claim 7, wherein the mixed powder preparation step is a step of mixing so that the matrix-forming powder is 20 to 40% by mass when the entire mixed powder is 100% by mass. Body manufacturing method. 前記焼結工程は、550〜590℃で焼結を行う工程である請求項7記載のSiC/Al複合焼結体の製造方法。   The said sintering process is a process of sintering at 550-590 degreeC, The manufacturing method of the SiC / Al compound sintered compact of Claim 7. 前記複合粒子製造工程は、高速気流中衝撃法により前記SiC粒子の表面に前記Al微粒子を付着させる工程である請求項7記載のSiC/Al複合焼結体の製造方法。   8. The method of manufacturing a SiC / Al composite sintered body according to claim 7, wherein the composite particle manufacturing step is a step of attaching the Al fine particles to the surface of the SiC particles by a high-speed air current impact method. 請求項1に記載のSiC/Al複合焼結体からなる電子機器用放熱部材。   A heat dissipating member for electronic equipment comprising the SiC / Al composite sintered body according to claim 1.
JP2008092618A 2008-03-31 2008-03-31 SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF Pending JP2009242899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092618A JP2009242899A (en) 2008-03-31 2008-03-31 SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092618A JP2009242899A (en) 2008-03-31 2008-03-31 SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2009242899A true JP2009242899A (en) 2009-10-22

Family

ID=41305129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092618A Pending JP2009242899A (en) 2008-03-31 2008-03-31 SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2009242899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP5695780B1 (en) * 2014-07-09 2015-04-08 株式会社ジーエル・マテリアルズホールディングス High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
CN109732077A (en) * 2019-01-23 2019-05-10 宁波合盛专用车辆有限公司 A kind of full compact silicon carbide reinforced aluminum matrix composites billet and preparation method thereof
CN114807894A (en) * 2022-05-18 2022-07-29 湖南工业职业技术学院 Surface modified silicon carbide particle reinforced copper-based composite material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225556A (en) * 2012-04-20 2013-10-31 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP5695780B1 (en) * 2014-07-09 2015-04-08 株式会社ジーエル・マテリアルズホールディングス High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
CN109732077A (en) * 2019-01-23 2019-05-10 宁波合盛专用车辆有限公司 A kind of full compact silicon carbide reinforced aluminum matrix composites billet and preparation method thereof
CN114807894A (en) * 2022-05-18 2022-07-29 湖南工业职业技术学院 Surface modified silicon carbide particle reinforced copper-based composite material and preparation method thereof
CN114807894B (en) * 2022-05-18 2023-07-04 湖南工业职业技术学院 Surface modified silicon carbide particle reinforced copper-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI333688B (en) Carbon nanotubes solder composite for high performance interconnect
TW201819069A (en) Microelectronic modules with sinter-bonded heat dissipation structures and methods for the fabrication thereof
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
JP2007518875A (en) High thermal conductivity metal matrix composite
JP6813685B2 (en) Electronic modules and methods
WO2020013300A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
JP2009242899A (en) SiC/Al COMPOSITE SINTERED COMPACT AND PRODUCTION METHOD THEREOF
JP7273374B2 (en) Composite material and method for manufacturing composite material
CN109371303B (en) Heat-conducting composite material, preparation method thereof and heat dissipation piece
JP5691901B2 (en) Power module manufacturing method
JP5695780B1 (en) High thermal conductivity / electrical insulation / low thermal expansion powder, heat dissipation structure using the same, and method for producing the powder
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
US20220394882A1 (en) Composite material and heat dissipation part
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP6428121B2 (en) Composite powder material for thermal spraying and thermal spray insulating substrate
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP6606514B2 (en) Conductive bonding material and conductive bonding structure using metal particles and conductive material particles
TWI640495B (en) Composite component, use and manufacturing method of the same
EP1174400A1 (en) Porous silicon carbide sintered compact and silicon carbide metal composite suitable for use in table for wafer polishing machine
JP5842457B2 (en) HEAT SPREADER AND MANUFACTURING METHOD THEREOF, SEMICONDUCTOR DEVICE, ELECTRONIC DEVICE
JP3371874B2 (en) Power module
WO2023013501A1 (en) Heat dissipation member and electronic device
WO2023074633A1 (en) Heat dissipation member and electronic device