JP2009242635A - Antistatic styrenic resin foamed molding and its manufacturing method - Google Patents

Antistatic styrenic resin foamed molding and its manufacturing method Download PDF

Info

Publication number
JP2009242635A
JP2009242635A JP2008091640A JP2008091640A JP2009242635A JP 2009242635 A JP2009242635 A JP 2009242635A JP 2008091640 A JP2008091640 A JP 2008091640A JP 2008091640 A JP2008091640 A JP 2008091640A JP 2009242635 A JP2009242635 A JP 2009242635A
Authority
JP
Japan
Prior art keywords
weight
mold
parts
heating
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091640A
Other languages
Japanese (ja)
Other versions
JP5216388B2 (en
Inventor
Yuichi Gondo
裕一 権藤
Hideo Matsumura
英保 松村
Yoshio Hirobe
義男 廣部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2008091640A priority Critical patent/JP5216388B2/en
Publication of JP2009242635A publication Critical patent/JP2009242635A/en
Application granted granted Critical
Publication of JP5216388B2 publication Critical patent/JP5216388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method which, relating to a method of obtaining a styrenic resin foamed molding by impregnating styrenic resin particles with an easily-volatile foaming agent and a surfactant, filling the pre-expanded particles obtained by heating into a mold and subjecting to heating and cooling processes, eliminates portion-to-portion fluctuations of the antistatic properties of the obtained foamed molding. <P>SOLUTION: In carrying out in-mold foam molding by impregnating styrenic resin particles with an easily-volatile foaming agent and a nonionic surfactant, filling the pre-expanded particles obtained by heating into a mold and subjecting to heating processes, the time of the water cooling process after the in-mold foaming, relative to the total time of the heating processes, is prolonged compared with the conventional one. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、帯電防止性スチレン系樹脂発泡成形体及びその製造方法に関する。   The present invention relates to an antistatic styrene resin foam molded article and a method for producing the same.

スチレン系樹脂発泡成形体は、その優れた耐衝撃性、耐磨耗性及び耐油性から、自動車部品等の機械部品の通い箱、電気製品等の緩衝包装材として広く利用されている。
しかしながら、スチレン系樹脂は、電気絶縁性が高いゆえに、摩擦によって容易に帯電し、ほこりの付着によって発泡成形体の外観を損ねるばかりか、内容物に集塵よる汚染や静電破壊を起こすため、液晶等の電子部品の包装材として使用するには問題があった。
Styrenic resin foam moldings are widely used as cushioning packaging materials for mechanical parts such as automobile parts and electrical products because of their excellent impact resistance, wear resistance and oil resistance.
However, since the styrene resin has high electrical insulation, it is easily charged by friction, and not only the appearance of the foamed molded product is damaged by the adhesion of dust, but also the contents are contaminated by dust collection and electrostatic breakdown. There was a problem in using it as a packaging material for electronic parts such as liquid crystals.

国際公開番号WO2004/090029号公報(特許文献1)には、スチレン改質オレフィン系樹脂粒子に揮発性発泡剤を含浸させて発泡性樹脂粒子を得た後、該発泡性樹脂粒子100重量部に対して界面活性剤0.1〜2.0重量部を含浸させることで、帯電防止性の優れた発泡性スチレン改質オレフィン系樹脂粒子から帯電防止性スチレン系樹脂発泡成形体を得る方法が記載されている。   In International Publication No. WO2004 / 090029 (Patent Document 1), styrene-modified olefin resin particles are impregnated with a volatile foaming agent to obtain expandable resin particles, and then 100 parts by weight of the expandable resin particles are added. On the other hand, a method for obtaining an antistatic styrene resin foam molded article from expandable styrene modified olefin resin particles having excellent antistatic properties by impregnating with 0.1 to 2.0 parts by weight of a surfactant is described. Has been.

一方、特開2000−71271号公報(特許文献2)には、成形型に予備発泡粒子を充填し、加熱工程後、短時間水冷工程を行なう方法が記載されている。この特許文献2には帯電防止性能についての記載はなく、更に、この方法で用いられている水冷時間は、通常のスチレン系樹脂の型内発泡体の製造に要する水冷時間又はそれ以下の時間である。   On the other hand, Japanese Patent Application Laid-Open No. 2000-71271 (Patent Document 2) describes a method in which pre-foamed particles are filled in a mold and a water cooling step is performed for a short time after the heating step. This patent document 2 does not describe antistatic performance, and the water cooling time used in this method is a water cooling time required for the production of a normal styrenic resin in-mold foam or less. is there.

国際公開番号WO2004/090029号公報International Publication Number WO2004 / 090029 特開2000−71271号公報JP 2000-71271 A

しかしながら、上記特許文献1に記載の方法で得られるスチレン系樹脂発泡成形体は、発泡成形体全体として見た場合の帯電防止性能は良好であるが、発泡成形体の部位によってその性能にバラツキある。   However, the styrenic resin foam molded article obtained by the method described in Patent Document 1 has good antistatic performance when viewed as the whole foam molded article, but the performance varies depending on the part of the foam molded article. .

従って、スチレン系樹脂粒子に易揮発性発泡剤及び界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し加熱及び冷却工程に付してスチレン系樹脂発泡成形体を得る方法で、得られる発泡成形体の部位による帯電防止性能にバラツキのない型内発泡成形方法が望まれていた。   Therefore, impregnating the styrene resin particles with a readily volatile foaming agent and a surfactant, heating the pre-expanded particles obtained in the mold, filling the mold and subjecting to heating and cooling processes, the styrene resin foam molding As a method for obtaining a body, an in-mold foam molding method in which the antistatic performance does not vary depending on the portion of the obtained foam molded body has been desired.

本発明の発明者等は、鋭意検討した結果、スチレン系樹脂粒子に易揮発性発泡剤及び非イオン系界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し加熱工程に付して型内発泡成形を行なうに際し、型内発泡後の水冷工程の時間を、総加熱工程時間に対して従来のものよりも長く行なうと、得られる発泡成形体の部位による帯電防止性能にバラツキのないことを意外にも見出し、本発明に至った。   As a result of intensive studies, the inventors of the present invention have impregnated styrene resin particles with a readily volatile foaming agent and a nonionic surfactant, and filled the pre-expanded particles obtained by heating into the mold. When performing the in-mold foam molding in the heating step, if the time of the water cooling step after in-mold foaming is longer than the conventional one with respect to the total heating process time, it depends on the part of the foam molded body obtained The present inventors have unexpectedly found that there is no variation in antistatic performance, and have reached the present invention.

かくして本発明によれば、スチレン系樹脂粒子に易揮発性発泡剤及びスチレン系樹脂粒子100重量部に対して非イオン系界面活性剤を0.5〜3.5重量部含浸させ、加熱して予備発泡粒子とし、前記予備発泡粒子を金型内に充填し加熱工程に付して型内発泡成形を行なうに際し、型内発泡後の水冷工程の時間を、総加熱工程時間の1.2〜10倍とする帯電防止性スチレン系樹脂発泡成形体の製造方法が提供される。   Thus, according to the present invention, the styrene resin particles are impregnated with 0.5 to 3.5 parts by weight of a non-volatile surfactant with respect to 100 parts by weight of the volatile foaming agent and the styrene resin particles, and heated. When pre-foamed particles are used, the pre-foamed particles are filled in a mold and subjected to a heating step to perform in-mold foam molding. The time of the water-cooling step after in-mold foaming is 1.2 to the total heating step time. A method for producing an antistatic styrene resin foamed molded article having a magnification of 10 times is provided.

また、本発明によれば、上記製造方法によって得られる発泡成形体であり、前記発泡成形体が1.0以下の表面抵抗率の標準偏差と、1×1012Ω以下の平均表面抵抗率とを有する帯電防止性スチレン系樹脂発泡成形体が提供される。 Further, according to the present invention, there is provided a foam molded product obtained by the above production method, wherein the foam molded product has a standard deviation of a surface resistivity of 1.0 or less and an average surface resistivity of 1 × 10 12 Ω or less. An antistatic styrenic resin foam molded article having the following is provided.

本発明によれば、発泡成形体の部位による帯電防止性能にバラツキのない帯電防止性に優れたスチレン系樹脂発泡成形体が得られる。   According to the present invention, it is possible to obtain a styrenic resin foam molded article having excellent antistatic properties without variation in antistatic performance depending on the portion of the foam molded article.

以下、本発明をより詳細に説明する。
本発明におけるスチレン系樹脂粒子としては、ポリスチレン、ポリメチルスチレン、スチレン−アクリロニトリル共重合体、スチレン−アクリロニトリルブタジエン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸メチル共重合体、ポリスチレンとポリエチレンもしくはポリプロピレンとの架橋樹脂等からなる粒子が挙げられる。こられの樹脂は混合されていてもよく、スチレン系樹脂以外の他の樹脂を混合してもよい。他の樹脂としてはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等が挙げられる。本発明では、特に、ポリオレフィン改質スチレン系樹脂が好ましく、更にはポリエチレン改質スチレン系樹脂が好ましい。
Hereinafter, the present invention will be described in more detail.
As the styrene resin particles in the present invention, polystyrene, polymethylstyrene, styrene-acrylonitrile copolymer, styrene-acrylonitrile butadiene copolymer, styrene-acrylic acid ester copolymer, styrene-methyl methacrylate copolymer, polystyrene And particles made of a crosslinked resin of polyethylene and polypropylene. These resins may be mixed, or other resins other than the styrene resin may be mixed. Examples of other resins include polyolefin resins such as polyethylene and polypropylene. In the present invention, a polyolefin-modified styrene resin is particularly preferable, and a polyethylene-modified styrene resin is more preferable.

ポリエチレン改質スチレン系樹脂は、例えば、特公昭51−46138号公報、特公昭59−3487号公報、特公昭63−28443号公報に記載されているように、ポリオレフィン系樹脂粒子が分散保持された水性媒体中にスチレン系モノマーを加えて重合させることで得られる。ここで、ポリエチレン系樹脂とスチレン系モノマーとの比率に制限はない。   Polyethylene-modified styrene-based resin has polyolefin resin particles dispersed and held as described in, for example, Japanese Patent Publication No. 51-46138, Japanese Patent Publication No. 59-3487, and Japanese Patent Publication No. 63-28443. It can be obtained by adding a styrenic monomer to an aqueous medium for polymerization. Here, there is no restriction | limiting in the ratio of a polyethylene-type resin and a styrene-type monomer.

一方、スチレン系樹脂粒子は易揮発性発泡剤を含浸させることによって、発泡性スチレン系樹脂粒子を得ることができる。易揮発性発泡剤としては、例えばプロパン、ブタン、イソブタン、ペンタン、イソペンタン、シクロペンタン、ヘキサン等の炭化水素等を単独もしくは2種以上混合して用いることができる。発泡剤の使用量は、目的とする成形体の発泡倍数によって決定されるが、スチレン系樹脂粒子100重量部に対して、10〜30重量部であることが好ましい。   On the other hand, expandable styrene resin particles can be obtained by impregnating the styrene resin particles with a readily volatile foaming agent. As the readily volatile foaming agent, for example, hydrocarbons such as propane, butane, isobutane, pentane, isopentane, cyclopentane, hexane and the like can be used alone or in admixture of two or more. Although the usage-amount of a foaming agent is determined by the foaming multiple of the target molded object, it is preferable that it is 10-30 weight part with respect to 100 weight part of styrene resin particles.

更に、発泡性スチレン系樹脂粒子の発泡及び成形を容易に行なうために、シクロヘキサン、エチルベンゼン、トルエン等の発泡助剤を使用してもよい。発泡助剤は、スチレン系樹脂粒子100重量部に対して、2重量部以下であることが好ましい。   Furthermore, a foaming aid such as cyclohexane, ethylbenzene, or toluene may be used to facilitate foaming and molding of the expandable styrene resin particles. The foaming assistant is preferably 2 parts by weight or less with respect to 100 parts by weight of the styrene resin particles.

更に、この段階で添加する非イオン系界面活性剤の添加量はスチレン系樹脂粒子100重量部に対し、0.5〜3.5重量部であり、好ましくは1.0〜3.0重量部である。0.5重量部以下であると帯電防止性が十分でないことがあり、3.5重量部以上であると発泡成形体にベトツキが生じることがあり、ほこりがかえって付着しやすくなってしまう。   Furthermore, the addition amount of the nonionic surfactant added at this stage is 0.5 to 3.5 parts by weight, preferably 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the styrene resin particles. It is. If it is 0.5 parts by weight or less, the antistatic property may not be sufficient, and if it is 3.5 parts by weight or more, the foamed molded product may become sticky, and dust may be easily attached.

本発明のスチレン系樹脂粒子に含浸させる非イオン系界面活性剤としては、ポリオキシエチレンアルキルアミン(例えば、ポリオキシエチレンラウリルアミン等)、ポリエチレングリコール脂肪酸エステル、アルキルジエタノールアミド、アルキルジエタノールアミン、アルキルモノエタノールアミン、ポリアルキレングリコール誘導体等のHLB値7以下の界面活性剤を使用することができる。それらの中で、好ましくはポリオキシエチレンアルキルアミン(より好ましくは、ポリオキシエチレンラウリルアミン)、アルキルジエタノールアミン及びアルキルモノエタノールアミンが挙げられる。上記アルキルは、炭素数8〜18のアルキルが好ましく、炭素数11〜13のアルキルがより好ましい。   Examples of the nonionic surfactant impregnated in the styrene resin particles of the present invention include polyoxyethylene alkylamine (for example, polyoxyethylene laurylamine), polyethylene glycol fatty acid ester, alkyldiethanolamide, alkyldiethanolamine, alkylmonoethanol. Surfactants having an HLB value of 7 or less, such as amines and polyalkylene glycol derivatives, can be used. Among them, preferably, polyoxyethylene alkylamine (more preferably, polyoxyethylene laurylamine), alkyldiethanolamine, and alkylmonoethanolamine are used. The alkyl is preferably an alkyl having 8 to 18 carbon atoms, and more preferably an alkyl having 11 to 13 carbon atoms.

得られた発泡性スチレン系樹脂粒子を予備発泡粒子にする場合には、これに水蒸気を接触させて所定の密度まで発泡する。この発泡粒子は通常24時間程度保管し熟成させる。
その後、金型内に予備発泡粒子を充填し、再度加熱して予備発泡粒子を型内発泡させて粒子同士を熱融着させ、冷却を行なうことで発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.15MPaの水蒸気が好適に使用される。
When the obtained expandable styrenic resin particles are used as pre-expanded particles, water vapor is brought into contact therewith to expand to a predetermined density. The expanded particles are usually stored and aged for about 24 hours.
Thereafter, the pre-expanded particles are filled in the mold, heated again, the pre-expanded particles are expanded in-mold, the particles are heat-fused, and cooled to obtain a foam-molded article. As the heating medium, water vapor with a gauge pressure of 0.05 to 0.15 MPa is preferably used.

スチレン系予備発泡粒子を用いた型内成形における加熱工程は一般的に、型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程の順に行なわれる。本発明における総加熱工程時間とは、上記に示した工程以外にも、水蒸気及びその他の加熱媒体よって型内及び金型を加熱する工程全ての時間を示している。
加熱時間は、金型に水蒸気及びその他の加熱媒体を入れ始める時点から加熱媒体を止める時点までの時間である。
Generally, the heating process in the in-mold molding using the styrene-based pre-expanded particles is performed in the order of the mold heating process, the one heating process, the reverse one heating process, and the double-side heating process. The total heating process time in the present invention indicates the time of all processes for heating the inside of the mold and the mold with water vapor and other heating media, in addition to the processes shown above.
The heating time is the time from when the steam and other heating medium are put into the mold to when the heating medium is stopped.

一連の加熱工程終了後、冷却を行なう。スチレン系樹脂の成形方法では、冷却工程は水冷工程、排水工程及び放冷工程に分けられる。
水冷工程の水は常温(約25℃)の水が用いられる。
Cooling is performed after a series of heating steps. In the styrene resin molding method, the cooling process is divided into a water cooling process, a draining process, and a cooling process.
Water at room temperature (about 25 ° C.) is used for the water cooling process.

このうち水冷工程は通常時間で表され、その水冷時間とは、金型に水を入れ始める時点から水を止める時点までの時間であり、通常5〜30秒程度で、総加熱時間の0.15〜0.6倍程度である。しかしながら、本発明では、水冷時間を総加熱工程時間の1.2〜10倍、好ましくは1.2〜6倍、より好ましくは1.2〜4.5倍、更に好ましくは1.2〜3倍とすることで良好な帯電防止効果を持つ発泡成形体を得ることができる。例えば、一連の総加熱工程時間が35秒である場合、水冷工程は42秒から350秒取ることを示している。1.2倍以下の水冷時間では、帯電防止性能のバラツキが大きく、10倍以上では金型が極度に冷却されてしまうので、この金型を用いて新たに成形体を製造するには、長時間加熱せねばならないことや、帯電防止性能が10倍以上にしても変化のないことから、生産性が低下することがある。   Of these, the water-cooling step is usually expressed in time, and the water-cooling time is the time from the time when water is put into the mold until the time when the water is stopped. It is about 15 to 0.6 times. However, in the present invention, the water cooling time is 1.2 to 10 times the total heating process time, preferably 1.2 to 6 times, more preferably 1.2 to 4.5 times, and still more preferably 1.2 to 3 times. A foamed molded article having a good antistatic effect can be obtained by making the ratio twice. For example, if the total heating process time is 35 seconds, the water cooling process takes 42 to 350 seconds. When the water cooling time is 1.2 times or less, the variation in the antistatic performance is large, and when the water cooling time is 10 times or more, the mold is extremely cooled. Productivity may decrease because it must be heated for a certain period of time, and since there is no change even when the antistatic performance is 10 times or more.

本発明において、帯電防止性の有無に関しては、発泡成形体の表面抵抗率を測定して判断する。
更に、本発明の発泡成形体の部位による帯電防止性能のバラツキに関しては、上記表面抵抗率のバラツキ度について標準偏差を求めて判断する。
In the present invention, the presence or absence of antistatic properties is determined by measuring the surface resistivity of the foamed molded product.
Furthermore, regarding the variation in the antistatic performance due to the portion of the foamed molded article of the present invention, the standard deviation is determined for the degree of variation in the surface resistivity.

以下に本発明を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例及び比較例で得られた発泡成形体の表面抵抗率の測定方法及び表面抵抗率のバラツキ度の評価方法を下記する。
EXAMPLES The present invention will be described in detail below by examples, but the present invention is not limited to these examples.
In addition, the measuring method of the surface resistivity of the foaming molding obtained by the Example and the comparative example and the evaluation method of the variation degree of surface resistivity are described below.

(表面抵抗率測定方法)
JIS K6911:1995「熱硬化性プラスチック一般試験方法」記載の方法により測定した。即ち、試験装置((株)アドバンテスト製デジタル超高抵抗/微少電流計R8340及びレジスティビティ・チェンバR12702A)を使用し、試料サンプルに、約30Nの荷重にて電極を圧着させ500V1分間充電後の抵抗値を測定し、次式により算出した。試料サンプルは、100×100×原厚み(10以下)mmとし、同一発泡成形体から10個のサンプルを切り出し、それぞれについて測定を行なった。表面抵抗率が1×1012Ω以下であれば、その発泡成形体は帯電防止性を有すると判断した。
(Surface resistivity measurement method)
Measured by the method described in JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. In other words, using a test device (digital super high resistance / microammeter R8340 manufactured by Advantest Co., Ltd. and resiliency chamber R12702A), an electrode is crimped to a sample sample with a load of about 30 N, and the resistance after charging for 500 V for 1 minute. The value was measured and calculated by the following formula. The sample sample was 100 × 100 × original thickness (10 or less) mm, and 10 samples were cut out from the same foamed molded article and measured for each. If the surface resistivity was 1 × 10 12 Ω or less, the foamed molded article was judged to have antistatic properties.

ρs=π(D+d)/(D-d)×Rs
ρs : 表面抵抗率(MΩ)
D : 表面の環状電極の内径(cm)
d : 表面電極の内円の外径(cm)
Rs: 表面抵抗(MΩ)
ρs = π (D + d) / (D−d) × Rs
ρs: Surface resistivity (MΩ)
D: Inner diameter (cm) of surface annular electrode
d: outer diameter of inner circle of surface electrode (cm)
Rs: Surface resistance (MΩ)

(表面抵抗率のバラツキ度の評価方法)
表面抵抗率のバラツキ度は次のように求めた。n=10で測定した表面抵抗率をそれぞれ対数(log10)で返し、その対数について標準偏差を求めた。標準偏差が1.0以下であれば非常にバラツキが少ないと判断した。
(Evaluation method for variation in surface resistivity)
The degree of variation in surface resistivity was determined as follows. The surface resistivity measured at n = 10 was returned in logarithm (log 10 ), and the standard deviation was determined for the logarithm. If the standard deviation was 1.0 or less, it was judged that there was very little variation.

(メルトフローレートの測定方法)
メルトフローレートは、JIS K 7210:1999「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」B法記載の方法により測定した。
(Measuring method of melt flow rate)
The melt flow rate was measured by the method described in JIS K 7210: 1999 “Testing method for melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastic plastic” B method.

製造例1(ポリエチレン系樹脂ペレットの作成)
メルトフローレートが0.3g/10分、酢酸ビニル含量が5.5重量%であるエチレン−酢酸ビニル共重合体100重量部に対して、気泡調整剤としてケイ酸カルシウム0.3重量部とステアリン酸カルシウム0.1重量部を加えて押出機で均一に混練した後造粒し、ポリエチレン系樹脂のペレットを得た。
Production Example 1 (Preparation of polyethylene resin pellets)
With respect to 100 parts by weight of an ethylene-vinyl acetate copolymer having a melt flow rate of 0.3 g / 10 minutes and a vinyl acetate content of 5.5% by weight, 0.3 part by weight of calcium silicate as a foam regulator and steer After adding 0.1 parts by weight of calcium phosphate and uniformly kneading with an extruder, the mixture was granulated to obtain polyethylene resin pellets.

製造例2(ポリエチレン改質スチレン系樹脂粒子の作成)
内容積100リットルの攪拌機付き耐圧容器に、前記ポリエチレン系樹脂ペレット40重量部、水120重量部、ピロリン酸マグネシウム0.45重量部、ドデシルベンゼンスルホン酸ソーダ0.02重量部を添加し、攪拌しながら85℃まで昇温した。別にラジカル重合開始剤としてベンゾイルパーオキサイド0.3重量部、及びt−ブチルパーオキシベンゾエート0.02重量部、架橋剤としてジクミルパーオキサイド0.8重量部を60重量部のスチレン単量体に溶解させて溶液とし、これを前記水中に加えてポリエチレン系樹脂ペレット粒子に吸収させながら4時間維持して重合を行なった。その後、140℃に昇温して3時間保持した後、冷却してポリエチレン改質スチレン系樹脂粒子を取り出した。
Production Example 2 (Preparation of polyethylene-modified styrene resin particles)
In a pressure-resistant container with a stirrer having an internal volume of 100 liters, 40 parts by weight of the polyethylene resin pellets, 120 parts by weight of water, 0.45 parts by weight of magnesium pyrophosphate and 0.02 parts by weight of sodium dodecylbenzenesulfonate are added and stirred. The temperature was raised to 85 ° C. Separately, 0.3 parts by weight of benzoyl peroxide as a radical polymerization initiator and 0.02 parts by weight of t-butylperoxybenzoate and 0.8 parts by weight of dicumyl peroxide as a crosslinking agent were added to 60 parts by weight of styrene monomer. The solution was dissolved to form a solution, and this was added to the water and absorbed in polyethylene resin pellet particles, and maintained for 4 hours for polymerization. Thereafter, the temperature was raised to 140 ° C. and held for 3 hours, and then cooled to take out polyethylene-modified styrene resin particles.

実施例1(発泡剤の含浸及び発泡成形)
内容積50リットルの耐圧で密閉可能なV型ブレンダーにポリエチレン改質スチレン系樹脂粒子を100重量部、非イオン系界面活性剤としてポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)を2.0重量部加え、密閉し攪拌しながら、ブタン14重量部を圧入した。そして、器内を50℃に4時間維持した後、冷却して発泡性の樹脂粒子を取り出した。取り出した発泡性の樹脂粒子は直ちにバッチ式発泡機で嵩倍数30倍(嵩密度0.033g/cm3)に予備発泡し、その後室温で24時間保存した。この予備発泡粒子を400×300×30mmの成形機の金型内に充填し、金型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程をゲージ圧力0.08MPaの水蒸気を用いて、それぞれ5秒、5秒、5秒、20秒間注入して加熱発泡させ、水冷工程を100秒取り、排水工程を経て、所定の取り出し発泡圧になるまで真空放冷工程を行ない、倍数30倍(密度0.033g/cm3)の発泡成形体を取り出した。得られた発泡成形体は、40℃の乾燥室にて8時間以上乾燥させた。
Example 1 (Impregnation of foaming agent and foam molding)
100 parts by weight of polyethylene-modified styrene resin particles and 2 polyoxyethylene laurylamine (Elegant S-100 manufactured by NOF Corporation) as a nonionic surfactant in a V-type blender with an internal volume of 50 liters that can be sealed with pressure resistance. 0.0 part by weight was added, and 14 parts by weight of butane was press-fitted while sealing and stirring. And after maintaining the inside of a container at 50 degreeC for 4 hours, it cooled and took out the foamable resin particle. The taken-out foamable resin particles were immediately pre-foamed to a bulk multiple of 30 times (bulk density 0.033 g / cm 3 ) with a batch type foaming machine, and then stored at room temperature for 24 hours. The pre-expanded particles are filled in a mold of a 400 × 300 × 30 mm molding machine, and the mold heating step, one heating step, the opposite one heating step, and the double-side heating step are performed using water vapor with a gauge pressure of 0.08 MPa, Injected for 5 seconds, 5 seconds, and 20 seconds respectively for heating and foaming, taking a water cooling step for 100 seconds, going through a draining step, performing a vacuum cooling step until a predetermined foaming pressure is reached, and a multiple of 30 times ( A foamed molded product having a density of 0.033 g / cm 3 ) was taken out. The obtained foamed molded article was dried in a drying room at 40 ° C. for 8 hours or more.

実施例2
水冷時間を50秒としたこと以外は実施例1と同様に行なった。
実施例3
水冷時間を150秒としたこと以外は実施例1と同様に行なった。
Example 2
The same procedure as in Example 1 was performed except that the water cooling time was 50 seconds.
Example 3
The same procedure as in Example 1 was performed except that the water cooling time was 150 seconds.

実施例4
ポリオキシエチレンラウリルアミンの添加量を3.0重量部としたこと以外は実施例1と同様に行なった。
実施例5
ポリオキシエチレンラウリルアミンの添加量を1.0重量部としたこと以外は実施例1と同様に行なった。
Example 4
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 3.0 parts by weight.
Example 5
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 1.0 part by weight.

実施例6
ポリオキシエチレンラウリルアミンの添加量を1.0重量部とし、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
実施例7
ポリオキシエチレンラウリルアミンの添加量を1.0重量部とし、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
Example 6
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 1.0 part by weight and the water cooling time was 50 seconds.
Example 7
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 1.0 part by weight and the water cooling time was 150 seconds.

実施例8
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)としたこと以外は実施例1と同様に行なった。
実施例9
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし水冷時間を50秒としたこと以外は実施例1と同様に行なった。
Example 8
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymine L-201, manufactured by NOF Corporation).
Example 9
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymeen L-201 manufactured by NOF Corporation) and the water cooling time was 50 seconds.

実施例10
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし水冷時間を150秒としたこと以外は実施例1と同様に行なった。
実施例11
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし添加量を1.0重量部としたこと以外は実施例1と同様に行なった。
Example 10
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymeen L-201 manufactured by NOF Corporation) and the water cooling time was 150 seconds.
Example 11
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymeen L-201 manufactured by NOF Corporation) and the addition amount was 1.0 part by weight. .

実施例12
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、添加量を1.0重量部、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
実施例13
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、添加量を1.0重量部、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
Example 12
Implemented except that polyoxyethylene laurylamine, which is a nonionic surfactant, is alkyl monoethanolamine (Nymine L-201, NOF Corporation), the addition amount is 1.0 part by weight, and the water cooling time is 50 seconds. Performed as in Example 1.
Example 13
Implemented except that polyoxyethylene laurylamine, a nonionic surfactant, was alkyl monoethanolamine (Nymine L-201, NOF Corporation), the addition amount was 1.0 part by weight, and the water cooling time was 150 seconds. Performed as in Example 1.

実施例14
内容量100リットルの攪拌機付き重合容器に、水40リットル、第三リン酸カルシウム100gおよびドデシルベンゼンスルホン酸カルシウム2.0gを入れ、続いて攪拌しながらスチレン40.0kg、ベンゾイルパーオキサイド96.0g、t−ブチルパーオキサイド28.0gを添加し、90℃で昇温して6時間保持した。更に、125℃に昇温してから2時間後冷却しスチレン樹脂粒子を得た。
Example 14
In a polymerization vessel equipped with a stirrer having an internal volume of 100 liters, 40 liters of water, 100 g of tribasic calcium phosphate and 2.0 g of calcium dodecylbenzenesulfonate were placed, followed by stirring with 40.0 kg of styrene, 96.0 g of benzoyl peroxide, t- 28.0 g of butyl peroxide was added, the temperature was raised at 90 ° C. and held for 6 hours. Further, the temperature was raised to 125 ° C. and then cooled for 2 hours to obtain styrene resin particles.

内容積50リットルの耐圧で密閉可能なV型ブレンダーに上記作成したスチレン樹脂粒子を100重量部、非イオン系界面活性剤としてポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)を2.0重量部加え、密閉し攪拌しながら、ブタン14重量部を圧入した。そして、器内を50℃に4時間維持した後、冷却して発泡性の樹脂粒子を取り出した。取り出した発泡性スチレン樹脂粒子は13℃の雰囲気下で5日間管理した後、バッチ式発泡機で嵩倍数30倍(嵩密度0.033g/cm3)に予備発泡し、その後室温で24時間保存した。この予備発泡粒子を400×300×30mmの成形機の金型内に充填し、金型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程をゲージ圧力0.08MPaの水蒸気を用いて、それぞれ5秒、5秒、5秒、20秒間注入して加熱発泡させ、水冷工程を100秒取り、排水工程を経て、所定の取り出し発泡圧になるまで真空放冷工程を行ない、倍数30倍(密度0.033g/cm3)の発泡成形体を取り出した。得られた発泡成形体は、40℃の乾燥室にて8時間以上乾燥させた。 1. 100 parts by weight of the styrene resin particles prepared above in a V-type blender having an internal volume of 50 liters that can be sealed with pressure resistance, and 2. polyoxyethylene laurylamine (ELEGAN S-100 manufactured by NOF Corporation) as a nonionic surfactant. 0 part by weight was added, and 14 parts by weight of butane was press-fitted while sealing and stirring. And after maintaining the inside of a container at 50 degreeC for 4 hours, it cooled and took out the foamable resin particle. After taking out the expandable styrene resin particles for 5 days in an atmosphere of 13 ° C., the foamed styrene resin particles are pre-foamed to a bulk multiple of 30 times (bulk density 0.033 g / cm 3 ) with a batch type foaming machine, and then stored at room temperature for 24 hours. did. The pre-expanded particles are filled in a mold of a 400 × 300 × 30 mm molding machine, and the mold heating step, one heating step, the opposite one heating step, and the double-side heating step are performed using water vapor with a gauge pressure of 0.08 MPa, Injected for 5 seconds, 5 seconds, and 20 seconds respectively for heating and foaming, taking a water cooling step for 100 seconds, going through a draining step, performing a vacuum cooling step until a predetermined foaming pressure is reached, and a multiple of 30 times ( A foamed molded product having a density of 0.033 g / cm 3 ) was taken out. The obtained foamed molded article was dried in a drying room at 40 ° C. for 8 hours or more.

実施例15
水冷時間を350秒としたこと以外は実施例1と同様に行なった。
実施例16
ポリオキシエチレンラウリルアミンの添加量を1.0重量部とし、水冷時間を350秒としたこと以外は実施例1と同様に行なった。
Example 15
The same procedure as in Example 1 was performed except that the water cooling time was 350 seconds.
Example 16
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 1.0 part by weight and the water cooling time was 350 seconds.

実施例17
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、水冷時間を350秒としたこと以外は実施例1と同様に行なった。
Example 17
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymine L-201, NOF Corporation) and the water cooling time was 350 seconds.

実施例18
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、添加量を1.0重量部、水冷時間を350秒としたこと以外は実施例1と同様に行なった。
Example 18
Implemented except that polyoxyethylene laurylamine, a nonionic surfactant, was alkyl monoethanolamine (Nymine L-201, NOF Corporation), the addition amount was 1.0 part by weight, and the water cooling time was 350 seconds. Performed as in Example 1.

比較例1
ポリオキシエチレンラウリルアミンの添加量を0.1重量部としたこと以外は実施例1と同様に行なった。
比較例2
ポリオキシエチレンラウリルアミンの添加量を0.1重量部とし、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
Comparative Example 1
The same procedure as in Example 1 was conducted except that the amount of polyoxyethylene laurylamine added was 0.1 parts by weight.
Comparative Example 2
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 0.1 parts by weight and the water cooling time was 50 seconds.

比較例3
ポリオキシエチレンラウリルアミンの添加量を0.1重量部とし、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
比較例4
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし添加量を0.1重量部としたこと以外は実施例1と同様に行なった。
Comparative Example 3
The same procedure as in Example 1 was conducted except that the amount of polyoxyethylene laurylamine added was 0.1 parts by weight and the water cooling time was 150 seconds.
Comparative Example 4
The same procedure as in Example 1 was conducted except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymeen L-201 manufactured by NOF Corporation) and the addition amount was 0.1 parts by weight. .

比較例5
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし添加量を0.1重量部、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
比較例6
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし添加量を0.1重量部、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
Comparative Example 5
Example except that polyoxyethylene laurylamine which is a nonionic surfactant is alkylmonoethanolamine (Nymine L-201 manufactured by NOF Corporation), the addition amount is 0.1 parts by weight, and the water cooling time is 50 seconds. 1 was performed.
Comparative Example 6
Example except that polyoxyethylene laurylamine which is a nonionic surfactant is alkylmonoethanolamine (Nymine L-201 manufactured by NOF Corporation), the addition amount is 0.1 parts by weight, and the water cooling time is 150 seconds. 1 was performed.

比較例7
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤である脂肪族第4級アンモニウム塩(第一工業製薬社製 カチオーゲンES−L)とし、添加量を1.5重量部としたこと以外は実施例1と同様に行なった。
比較例8
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤である脂肪族第4級アンモニウム塩(第一工業製薬社製 カチオーゲンES−L)とし、添加量を1.5重量部、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
Comparative Example 7
Polyoxyethylene laurylamine which is a nonionic surfactant is an aliphatic quaternary ammonium salt which is an ionic surfactant (Cathogen ES-L manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the addition amount is 1.5 parts by weight. The procedure was the same as in Example 1 except that.
Comparative Example 8
Polyoxyethylene laurylamine which is a nonionic surfactant is an aliphatic quaternary ammonium salt which is an ionic surfactant (Cathogen ES-L manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the addition amount is 1.5 parts by weight. The same procedure as in Example 1 was conducted except that the water cooling time was 50 seconds.

比較例9
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤である脂肪族第4級アンモニウム塩(第一工業製薬社製 カチオーゲンES−L)とし、添加量を1.5重量部、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
比較例10
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤であるドデシルベンゼンスルホン酸塩(25%水溶液、花王社製 ネオペレックスF−25)とし、添加量を1.5重量部としたこと以外は実施例1と同様に行なった。
Comparative Example 9
Polyoxyethylene laurylamine which is a nonionic surfactant is an aliphatic quaternary ammonium salt which is an ionic surfactant (Cathogen ES-L manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the addition amount is 1.5 parts by weight. The same procedure as in Example 1 was conducted except that the water cooling time was 150 seconds.
Comparative Example 10
Polyoxyethylene laurylamine, which is a nonionic surfactant, is changed to dodecylbenzenesulfonate (25% aqueous solution, Neo-Perex F-25 manufactured by Kao Corporation), which is an ionic surfactant, and the amount added is 1.5 parts by weight. The procedure was the same as in Example 1 except that.

比較例11
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤であるドデシルベンゼンスルホン酸塩(25%水溶液、花王社製 ネオペレックスF−25)とし、添加量を1.5重量部、水冷時間を50秒としたこと以外は実施例1と同様に行なった。
Comparative Example 11
Polyoxyethylene laurylamine, which is a nonionic surfactant, is changed to dodecylbenzenesulfonate (25% aqueous solution, Neo-Perex F-25 manufactured by Kao Corporation), which is an ionic surfactant, and the amount added is 1.5 parts by weight. The same procedure as in Example 1 was conducted except that the water cooling time was 50 seconds.

比較例12
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをイオン系界面活性剤であるドデシルベンゼンスルホン酸塩(25%水溶液、花王社製 ネオペレックスF−25)とし、添加量を1.5重量部、水冷時間を150秒としたこと以外は実施例1と同様に行なった。
Comparative Example 12
Polyoxyethylene laurylamine, which is a nonionic surfactant, is changed to dodecylbenzenesulfonate (25% aqueous solution, Neo-Perex F-25 manufactured by Kao Corporation), which is an ionic surfactant, and the amount added is 1.5 parts by weight. The same procedure as in Example 1 was conducted except that the water cooling time was 150 seconds.

比較例13
水冷時間を35秒としたこと以外は実施例1と同様に行なった。
比較例14
ポリオキシエチレンラウリルアミンの添加量を1.0重量部とし、水冷時間を35秒としたこと以外は実施例1と同様に行なった。
Comparative Example 13
The same procedure as in Example 1 was performed except that the water cooling time was 35 seconds.
Comparative Example 14
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine added was 1.0 part by weight and the water cooling time was 35 seconds.

比較例15
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、水冷時間を35秒としたこと以外は実施例1と同様に行なった。
比較例16
非イオン系界面活性剤であるポリオキシエチレンラウリルアミンをアルキルモノエタノールアミン(日油社製 ナイミーンL−201)とし、添加量を1.0重量部、水冷時間を35秒としたこと以外は実施例1と同様に行なった。
Comparative Example 15
The same procedure as in Example 1 was performed except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymine L-201, NOF Corporation) and the water cooling time was 35 seconds.
Comparative Example 16
Implemented except that polyoxyethylene laurylamine, which is a nonionic surfactant, was alkylmonoethanolamine (Nymine L-201, NOF Corporation), the addition amount was 1.0 part by weight, and the water cooling time was 35 seconds. Performed as in Example 1.

比較例17
ポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を5.0重量部としたこと以外は実施例1と同様に行なった。得られた予備発泡粒子及び発泡成形体は、表面にベトツキがあり、ほこりがかえって付着しやすいものであった。良好な発泡成形体ではなかったので、表面抵抗率の測定等は行なわなかった。
Comparative Example 17
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine (Elegan S-100 manufactured by NOF Corporation) was 5.0 parts by weight. The obtained pre-expanded particles and the foamed molded article had stickiness on the surface, and dust was easily changed and adhered. Since it was not a good foamed molded article, the surface resistivity was not measured.

上記で得られた発泡成形体について、帯電防止性能の測定を前記の表面抵抗率測定の測定方法に従って行なった。測定試料は得られた発泡成形体から切り出し、温度20℃、湿度65%の環境下にて24時間以上保存した後に測定を行なった。更に、得られた表面抵抗率から前記の方法によりそのバラツキ度の評価を行なった。それらの結果を、用いた界面活性剤の種類、量及び冷却時間/加熱時間の比と合わせて下記する。   About the foaming molding obtained above, the measurement of antistatic performance was performed according to the measuring method of the above-mentioned surface resistivity measurement. A measurement sample was cut out from the obtained foamed molded article and measured after being stored for 24 hours or more in an environment of a temperature of 20 ° C. and a humidity of 65%. Further, the degree of variation was evaluated from the obtained surface resistivity by the above method. These results are described below together with the type and amount of surfactant used and the ratio of cooling time / heating time.

Figure 2009242635
Figure 2009242635

表1における実施例1〜18と比較例1〜6との比較により、非イオン系界面活性剤の添加量が少ないと帯電防止性能が劣ることが判る。更に、実施例1〜18と比較例7〜12との比較により、イオン系界面活性剤を用いると帯電防止性能が劣ることが判る。また、実施例1〜18と比較例13〜16との比較により、冷却時間/加熱時間の比が低いと帯電防止性能が劣ることが判る。更に、実施例1〜18と比較例17との比較により、非イオン系界面活性剤の添加量が多いと、得られる予備発泡粒子及び発泡成形体にベタツキが生じ、ほこりがかえって付着しやすいものになることが判る。   From the comparison between Examples 1 to 18 and Comparative Examples 1 to 6 in Table 1, it can be seen that the antistatic performance is inferior when the addition amount of the nonionic surfactant is small. Furthermore, by comparing Examples 1 to 18 with Comparative Examples 7 to 12, it can be seen that antistatic performance is inferior when an ionic surfactant is used. Moreover, it turns out by comparison with Examples 1-18 and Comparative Examples 13-16 that antistatic performance is inferior when the ratio of cooling time / heating time is low. Furthermore, as a result of comparison between Examples 1 to 18 and Comparative Example 17, when the amount of the nonionic surfactant added is large, the resulting pre-foamed particles and the foamed molded product become sticky, and the dust is easily changed and adhered. It turns out that it becomes.

以上のように、本発明によれば、スチレン系樹脂に易揮発性発泡剤及び非イオン系界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し、加熱及び冷却する型内発泡成形方法において、冷却工程における水冷工程を総加熱工程時間の1.2〜10倍の時間行なえば、発泡成形体の部位による性能にバラツキのない帯電防止性に優れたスチレン系樹脂発泡成形体を得ることができる。   As described above, according to the present invention, a pre-expanded particle obtained by impregnating a styrene resin with a readily volatile foaming agent and a nonionic surfactant and heating it is filled in a mold and heated. In the in-mold foam molding method for cooling, if the water cooling step in the cooling step is performed 1.2 to 10 times as long as the total heating step time, the styrene has excellent antistatic properties with no variation in the performance depending on the part of the foam molded body. -Based resin foam moldings can be obtained.

Claims (3)

スチレン系樹脂粒子に易揮発性発泡剤及びスチレン系樹脂粒子100重量部に対して非イオン系界面活性剤を0.5〜3.5重量部含浸させ、加熱して予備発泡粒子とし、前記予備発泡粒子を金型内に充填し加熱工程に付して型内発泡成形を行なうに際し、型内発泡後の水冷工程の時間を、総加熱工程時間の1.2〜10倍とすることを特徴とする帯電防止性スチレン系樹脂発泡成形体の製造方法。 The styrene-based resin particles are impregnated with 0.5 to 3.5 parts by weight of a non-ionic surfactant with respect to 100 parts by weight of the readily volatile foaming agent and the styrene-based resin particles, and heated to obtain pre-expanded particles. When foamed particles are filled in a mold and subjected to a heating process to perform in-mold foam molding, the time of the water cooling process after foaming in the mold is 1.2 to 10 times the total heating process time. A method for producing an antistatic styrene-based resin foam molded article. 前記スチレン系樹脂粒子がポリオレフィン改質スチレン系樹脂粒子である請求項1に記載の帯電防止性スチレン系樹脂発泡成形体の製造方法。 The method for producing an antistatic styrene resin foam molded article according to claim 1, wherein the styrene resin particles are polyolefin-modified styrene resin particles. 請求項1又は2に記載の製造方法によって得られる発泡成形体であり、前記発泡成形体が1.0以下の表面抵抗率の標準偏差と、1×1012Ω以下の平均表面抵抗率とを有することを特徴とする帯電防止性スチレン系樹脂発泡成形体。 A foam molded article obtained by the production method according to claim 1 or 2, wherein the foam molded article has a standard deviation of a surface resistivity of 1.0 or less and an average surface resistivity of 1 × 10 12 Ω or less. An antistatic styrenic resin foam molded article comprising:
JP2008091640A 2008-03-31 2008-03-31 Antistatic styrenic resin foam molding and method for producing the same Expired - Fee Related JP5216388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091640A JP5216388B2 (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foam molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091640A JP5216388B2 (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foam molding and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009242635A true JP2009242635A (en) 2009-10-22
JP5216388B2 JP5216388B2 (en) 2013-06-19

Family

ID=41304917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091640A Expired - Fee Related JP5216388B2 (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foam molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP5216388B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030731A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding
WO2011030732A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Foam-molded articles and process for production thereof
JP2011162749A (en) * 2010-02-15 2011-08-25 Sekisui Plastics Co Ltd Pre-expanded particle, method for producing the same, and expansion-molded body
JP2011213900A (en) * 2010-03-31 2011-10-27 Sekisui Plastics Co Ltd Method for producing pre-foamed particle, pre-foamed particle and foamed molded product
JP2012214725A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Foamable styrenic resin particle having antistaticity, production method therefor, pre-foamed particle, and foamed molding
CN113619146A (en) * 2021-08-30 2021-11-09 青岛绿之都新材料有限公司 PE foamed co-extruded section product and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790105A (en) * 1993-07-30 1995-04-04 Sekisui Plastics Co Ltd Expandable styrene resin particle and molded styrene resin foam produced therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790105A (en) * 1993-07-30 1995-04-04 Sekisui Plastics Co Ltd Expandable styrene resin particle and molded styrene resin foam produced therefrom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030731A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding
WO2011030732A1 (en) * 2009-09-08 2011-03-17 積水化成品工業株式会社 Foam-molded articles and process for production thereof
JP2011162749A (en) * 2010-02-15 2011-08-25 Sekisui Plastics Co Ltd Pre-expanded particle, method for producing the same, and expansion-molded body
JP2011213900A (en) * 2010-03-31 2011-10-27 Sekisui Plastics Co Ltd Method for producing pre-foamed particle, pre-foamed particle and foamed molded product
JP2012214725A (en) * 2011-03-31 2012-11-08 Sekisui Plastics Co Ltd Foamable styrenic resin particle having antistaticity, production method therefor, pre-foamed particle, and foamed molding
CN113619146A (en) * 2021-08-30 2021-11-09 青岛绿之都新材料有限公司 PE foamed co-extruded section product and preparation method thereof

Also Published As

Publication number Publication date
JP5216388B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5548621B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5216388B2 (en) Antistatic styrenic resin foam molding and method for producing the same
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
JP3732418B2 (en) Expandable styrene resin particles
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP2006298956A (en) Pre-expanded particle of modified polyethylene-based resin and method for producing the same
JP2011026436A (en) Foamable composite resin particle, method for producing the same, prefoamed particle, and foam molded article
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP5528148B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP5346571B2 (en) Method for producing pre-expanded particles
JP5473731B2 (en) Method for producing pre-expanded particles
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP5338364B2 (en) Styrene resin particle foam molding
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP2009242634A (en) Antistatic styrenic resin foamed molding and its manufacturing method
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5545988B2 (en) Expandable resin particles and method for producing the same, pre-expanded particles and foamed molded article
JP2010229325A (en) Method for producing styrene-modified polyethylene resin pre-foamed particle and styrene-modified polyethylene resin foamed body
JP5885792B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP5290027B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP6043562B2 (en) Method for producing thermoplastic resin particles, method for producing foamable thermoplastic resin particles, method for producing pre-foamed particles, and method for producing foamed molded article
JP2017132971A (en) Styrenic resin foamed particle and styrenic resin foamed molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees