JP2009242214A - Highly oriented diamond film and method for producing the same - Google Patents

Highly oriented diamond film and method for producing the same Download PDF

Info

Publication number
JP2009242214A
JP2009242214A JP2008094377A JP2008094377A JP2009242214A JP 2009242214 A JP2009242214 A JP 2009242214A JP 2008094377 A JP2008094377 A JP 2008094377A JP 2008094377 A JP2008094377 A JP 2008094377A JP 2009242214 A JP2009242214 A JP 2009242214A
Authority
JP
Japan
Prior art keywords
diamond
layer
film
intermediate layer
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094377A
Other languages
Japanese (ja)
Other versions
JP5020147B2 (en
Inventor
Yoshihiro Yokota
嘉宏 横田
Takeshi Tachibana
武史 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008094377A priority Critical patent/JP5020147B2/en
Publication of JP2009242214A publication Critical patent/JP2009242214A/en
Application granted granted Critical
Publication of JP5020147B2 publication Critical patent/JP5020147B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a highly oriented diamond film, by which the degree of orientation can be enhanced by suppressing growth of unoriented crystal grains; and to provide the highly oriented diamond film. <P>SOLUTION: A ground diamond layer having a plurality of recesses and projections on its surface is formed on a substrate, then a metal film 3 (or ceramic film) is formed on the ground diamond layer, and the ground diamond layer and an intermediate layer are heated so as to cover the recessed parts 2b of the ground diamond layer with a metal film 4 so that a portion of each projected part 2a of the ground diamond layer is exposed from the metal film 4. Further, a highly oriented diamond layer 5 is grown on exposed projected parts and the metal film 4 in such a state that a portion of each projected part 2a of the ground diamond layer is exposed from the surface of the metal film 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、トランジスタ、ダイオード、及び各種センサ等の電子装置、ヒートシンク、表面弾性波素子、電子放出材料、X線及び光学関連部材、耐摩耗材、装飾材並びにそれらのコーティング等に使用される高配向ダイヤモンド膜及びその製造方法に関する。   The present invention is highly oriented for use in electronic devices such as transistors, diodes, and various sensors, heat sinks, surface acoustic wave elements, electron emission materials, X-ray and optical related members, wear resistant materials, decorative materials, and coatings thereof. The present invention relates to a diamond film and a manufacturing method thereof.

ダイヤモンドは耐熱性に優れ、バンドギャップが大きく(5.5eV)、通常は絶縁体であるが、不純物ドーピングにより半導体化できる。また、絶縁破壊電圧及び飽和ドリフト速度が大きく、誘電率が小さいという優れた電気的特性を有する。このような特徴により、ダイヤモンドは高温・高周波・高電界用の電子デバイス並びにセンサ用の材料として期待されている。   Diamond is excellent in heat resistance, has a large band gap (5.5 eV), and is usually an insulator, but can be made into a semiconductor by impurity doping. In addition, it has excellent electrical characteristics such as high dielectric breakdown voltage and saturation drift velocity and low dielectric constant. Due to these characteristics, diamond is expected as a material for electronic devices and sensors for high temperature, high frequency, and high electric fields.

また、ダイヤモンドは、バンドギャップが大きいことを利用した紫外線等の短波長領域に対応する光センサ及び発光素子への応用、熱伝導率が大きく、比熱が小さいことを利用した放熱基板材料への応用、物質中で最も硬いという特性を生かした表面弾性波素子への応用、高い光透過性・屈折率を利用したX線窓及び光学材料への応用等が進められている。更に、ダイヤモンドは工具の耐摩耗部にも使用されている。   Diamond is applied to optical sensors and light-emitting elements that use short wavelength regions such as ultraviolet rays by utilizing a large band gap, and applied to heat dissipation substrate materials by utilizing large thermal conductivity and low specific heat. Applications to surface acoustic wave devices that take advantage of the hardest properties among substances, applications to X-ray windows and optical materials using high light transmittance and refractive index, and the like are being promoted. Furthermore, diamond is also used in wear-resistant parts of tools.

これら種々の応用において、ダイヤモンドの特性を最大限に発揮させるには、ダイヤモンド結晶の構造欠陥を低減した高品質の結晶を合成することが必要である。   In these various applications, in order to maximize the characteristics of diamond, it is necessary to synthesize high-quality crystals with reduced structural defects in diamond crystals.

ダイヤモンドの気相合成法としては、マイクロ波化学気相蒸着(CVD)法(例えば、特許文献1及び特許文献2)、高周波プラズマCVD法、熱フィラメントCVD法、直流プラズマCVD法、プラズマジェット法、燃焼法、及び熱CVD法等が知られている。   Diamond vapor phase synthesis methods include microwave chemical vapor deposition (CVD) methods (for example, Patent Documents 1 and 2), high-frequency plasma CVD methods, hot filament CVD methods, direct current plasma CVD methods, plasma jet methods, A combustion method, a thermal CVD method, and the like are known.

シリコン等の非ダイヤモンド基板に気相合成されたダイヤモンド膜は一般にダイヤモンド粒子がランダムに凝集した多結晶であり、粒界が高密度に存在する。この粒界により、ダイヤモンド中を流れるキャリア(電子及びホール等の荷電粒子)がトラップされたり、散乱される。また、光学的にも、粒界で光が散乱され、透過度が低い。   A diamond film obtained by vapor phase synthesis on a non-diamond substrate such as silicon is generally a polycrystal where diamond particles are randomly aggregated, and grain boundaries exist at a high density. Carriers (charged particles such as electrons and holes) flowing in diamond are trapped or scattered by the grain boundaries. Also, optically, light is scattered at the grain boundary, and the transmittance is low.

このような多結晶ダイヤモンド膜の品質向上方法として、粒界をより少なくすることにより、ダイヤモンド結晶粒子がほぼ一定方向に揃った高配向膜の合成方法が開示されている。   As a method for improving the quality of such a polycrystalline diamond film, a method for synthesizing a highly oriented film in which diamond crystal particles are aligned in a substantially constant direction by reducing the number of grain boundaries is disclosed.

その1つは、Si(100)及びSiC等の基板に、ダイヤモンド成長前に負のバイアスを印加する方法がある。なお、Si基板の場合は、予め表面を炭化処理したものを用いる。これにより、基板の結晶方位を引き継いだダイヤモンドの成長核を形成できる。この第1段階を「バイアス核発生」と呼ぶことにする。第2段階として、<100>方位の成長速度が<111>より速い条件を選ぶことができ、これにより、基板に垂直に<100>に配向した成長核が最も早く高くなるので、この条件で成長を続けることにより、徐々に<100>配向した結晶粒、即ち配向粒子のみが残り、それ以外、即ち非配向粒子は埋もれてゆく。仮に、ここで成長を止めて観察すると、ダイヤモンド膜の表面形状はピラミッド状の四角錐が向きを揃えて寄り集まったものとなる。四角錐の1個1個が夫々1個の結晶粒である。四角錐の側斜面は{111}面になっている。   One of them is a method in which a negative bias is applied to a substrate such as Si (100) and SiC before diamond growth. In the case of a Si substrate, a substrate whose surface is previously carbonized is used. As a result, diamond growth nuclei inheriting the crystal orientation of the substrate can be formed. This first stage will be referred to as “bias nucleus generation”. As the second stage, a condition in which the growth rate in the <100> orientation is faster than <111> can be selected, and as a result, the growth nuclei oriented in the <100> direction perpendicular to the substrate become the earliest. By continuing the growth, only <100> -oriented crystal grains, that is, oriented grains remain, and the rest, that is, non-oriented grains are buried. If the growth is stopped here and observed, the surface shape of the diamond film is a collection of pyramidal quadrangular pyramids aligned in the same direction. Each one of the quadrangular pyramids is one crystal grain. The side slope of the quadrangular pyramid is a {111} plane.

全てが<100>配向粒子のみになった頃を見計らい、第3段階として成長条件を<111>方位の成長速度が<100>より速い条件に切り替えると、今度は頂点から水平方向に{100}面が広がり、一方、側斜面を構成していた{111}面が縮小していく。最終的に、{111}面は消え、{100}面が残る。この{100}面は基板に平行なため、ダイヤモンド膜全面が平面となる。   Looking at the time when all became <100> oriented grains and switching the growth condition to a condition where the growth rate of the <111> orientation is faster than <100> as the third stage, this time {100} from the apex to the horizontal direction On the other hand, the {111} plane that constitutes the side slope is reduced. Eventually, the {111} plane disappears and the {100} plane remains. Since this {100} plane is parallel to the substrate, the entire surface of the diamond film is flat.

実際には、非配向粒子が配向粒子に覆われて消えるためには、第2段階の成長をある程度の膜厚まで続けなければならない。長く成長を続けると、何れは完全に非配向粒子が消滅するはずであるが、製造コスト削減のためには、できるだけ短くしたい。そこで、ぎりぎりの膜厚を見極める必要があるが、もし少しでも非配向粒子、特に<111>方位を基板にほぼ垂直な結晶粒子が表面に残っていると、第3段階の平坦化成長条件はそもそもその方向の成長を促進するものであるので、周囲の{100}配向粒子の{100}面の高さを追い越し、凸形状となる。即ち、平坦面から突き出た形状(所謂ヒロック形状)になり、平坦化が困難となる。更に、同じ条件で成長を続けると、どんどん{100}配向粒子を覆うように拡大成長してしまう。   Actually, in order for the non-oriented particles to be covered with the oriented particles and disappear, the second stage growth must be continued to a certain thickness. As the growth continues for a long time, the non-oriented particles should disappear completely, but in order to reduce the manufacturing cost, we want to make it as short as possible. Therefore, it is necessary to determine the thickness of the film, but if even a little non-oriented particles, especially crystal particles whose <111> orientation is almost perpendicular to the substrate, remain on the surface, the third level flattening growth condition is In the first place, since the growth in that direction is promoted, the height of the {100} face of the surrounding {100} oriented particles is overtaken, resulting in a convex shape. That is, the shape protrudes from the flat surface (so-called hillock shape), and flattening becomes difficult. Furthermore, if the growth is continued under the same conditions, the growth will continue to expand so as to cover the {100} oriented grains.

また、第2段階で成長させた層は、実際には粒界が多く存在し、光学的に散乱要因となるだけでなく、内部応力が大きく、膜全体が反る要因の1つとなっている。また、成長条件が{111}セクタ成長となるので、窒素及びSi等の不純物の取り込みが{100}セクタ成長に比べ10倍多く、また、結晶欠陥も多いため、電気伝導に関する移動度が低い。   In addition, the layer grown in the second stage actually has many grain boundaries, which not only causes optical scattering, but also causes large internal stress and is one of the factors that cause the entire film to warp. . Further, since the growth condition is {111} sector growth, the incorporation of impurities such as nitrogen and Si is 10 times larger than that of {100} sector growth, and there are many crystal defects, so the mobility related to electrical conduction is low.

従って、この層(第2段階層)は、用途によっては基板とともに研磨等により除去する必要があるため、なるべく薄い方がよい。   Accordingly, this layer (second stage layer) needs to be removed together with the substrate by polishing or the like depending on the use, so it is preferable that the layer be as thin as possible.

その解決の1方法として、本願出願人は、第1のダイヤモンド上に金属膜を設け、その金属膜に意図的に前もってあるいは自発的に複数個の貫通孔を設け、その上に第2の高品質ダイヤモンドを成長させる高品質ダイヤモンド膜の製造方法を提案した(特許文献3)。   As one method for solving this problem, the applicant of the present application provided a metal film on the first diamond, and provided a plurality of through holes intentionally in advance or spontaneously on the metal film. A high-quality diamond film manufacturing method for growing high-quality diamond was proposed (Patent Document 3).

しかしながらこれは、既に形成された{100}面又は{111}面を持った結晶粒を基にし、金属膜マスク等で部分的に露出させ、ここから同じ面を再成長させることに関したものであり、基の結晶粒に存在する転位等の欠陥を低減することを目的としたものである。副次的に、埋められた金属膜を光の反射膜又は電極として使用したり、高品質な上層部の分離を容易にさせる効果が記載されている。   However, this is based on the crystal grains having the {100} face or {111} face already formed, partially exposed with a metal film mask or the like, and regrowing the same face from here. The purpose is to reduce defects such as dislocations existing in the crystal grains of the group. Secondary, there are described effects of using a buried metal film as a light reflection film or an electrode, and facilitating separation of a high-quality upper layer portion.

特公昭59?27754号公報Japanese Patent Publication No.59-27754 特公昭61?3320号公報Japanese Patent Publication No. 61-3320 特開2001−233695JP 2001-233695 A

しかしながら、この方法を用いても、もし金属マスクに覆われていない露出した部分のダイヤモンド表面に非配向粒子、例えば{100}面からなる高配向膜中に{111}面の非配向面を持つ結晶粒子が混じっていた場合、面方位を自発的に区別してその成長を抑制しようとするものではない。従って、そのまま成長させると、下地とほぼ同様に非配向面が残った上層膜ができてしまうという問題点がある。   However, even if this method is used, if the exposed diamond surface not covered with the metal mask has non-oriented particles, for example, a {111} -plane non-oriented surface in a highly-oriented film composed of {100} faces. When crystal grains are mixed, it does not attempt to suppress the growth by spontaneously distinguishing the plane orientation. Therefore, when grown as it is, there is a problem that an upper layer film in which a non-oriented surface remains is formed in substantially the same manner as the base.

本発明はかかる問題点に鑑みてなされたものであって、非配向結晶粒の成長を抑制し、配向度を高めることができる高配向ダイヤモンド膜及びその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a highly oriented diamond film capable of suppressing the growth of non-oriented crystal grains and increasing the degree of orientation, and a method for producing the same.

本発明に係る高配向ダイヤモンド膜の製造方法は、表面に複数の凹凸を有する下地ダイヤモンド層を、基板上に形成する下地ダイヤモンド層形成工程と、前記下地ダイヤモンド層上に金属膜又はセラミックス膜からなる中間層を形成する中間層形成工程と、前記下地ダイヤモンド層及び前記中間層を加熱し、前記下地ダイヤモンド層の凹部が前記中間層で覆われた状態で、前記下地ダイヤモンド層の凸部の一部を前記中間層から部分的に露出させる中間層加熱工程と、前記中間層の表面に前記ダイヤモンド層の凸部の一部が露出した状態で、その上に高配向ダイヤモンド層を成長させるダイヤモンド追成長工程と、を有し、前記下地ダイヤモンド層は、配向性ダイヤモンド粒子と非配向性ダイヤモンド粒子とが混在し、前記下地ダイヤモンド層の前記凸部は配向性ダイヤモンド粒子からなり、前記下地ダイヤモンド層の前記凹部は非配向性ダイヤモンド粒子からなり、前記中間層加熱工程において、前記凸部の少なくとも頂部が前記中間層から露出していることを特徴とする。   The method for producing a highly oriented diamond film according to the present invention comprises a base diamond layer forming step of forming a base diamond layer having a plurality of irregularities on a surface on a substrate, and a metal film or a ceramic film on the base diamond layer. An intermediate layer forming step of forming an intermediate layer, and heating the base diamond layer and the intermediate layer, and in a state where the concave portion of the base diamond layer is covered with the intermediate layer, a part of the convex portion of the base diamond layer Intermediate layer heating step of partially exposing the intermediate layer from the intermediate layer, and diamond additional growth for growing a highly oriented diamond layer on the intermediate layer with a part of the convex portion of the diamond layer exposed on the surface of the intermediate layer And the base diamond layer comprises a mixture of oriented diamond particles and non-oriented diamond particles, The convex portion is made of oriented diamond particles, and the concave portion of the base diamond layer is made of non-oriented diamond particles, and in the intermediate layer heating step, at least the top of the convex portion is exposed from the intermediate layer. It is characterized by that.

本発明において、例えば、前記中間層加熱工程は、水素プラズマ処理により前記下地ダイヤモンド層及び前記中間層を加熱するものである。   In the present invention, for example, the intermediate layer heating step heats the base diamond layer and the intermediate layer by hydrogen plasma treatment.

前記中間層が、白金、金、銀、銅、パラジウム、又はこれらの合金からなる金属膜である場合、前記金属膜の厚さは100nm乃至500nmであり、前記金属膜からなる中間層形成工程において前記基板は50℃乃至100℃に加熱され、前記中間層加熱工程において前記金属膜は600℃乃至1000℃に加熱される。   In the case where the intermediate layer is a metal film made of platinum, gold, silver, copper, palladium, or an alloy thereof, the thickness of the metal film is 100 nm to 500 nm, and in the intermediate layer forming step made of the metal film The substrate is heated to 50 ° C. to 100 ° C., and the metal film is heated to 600 ° C. to 1000 ° C. in the intermediate layer heating step.

また、前記中間層が、酸化珪素、酸化アルミニウム、窒素化珪素、酸化チタン、窒素化チタン、窒素化アルミニウム、窒素化ガリウム、又はこれらの混合物からなるセラミックス膜である場合、前記セラミックス膜の厚さは100nm乃至500nmであり、前記セラミックス膜からなる中間層形成工程において前記基板は50℃乃至100℃に加熱され、前記中間層加熱工程において前記セラミックス膜は600℃乃至1000℃に加熱される。   Further, when the intermediate layer is a ceramic film made of silicon oxide, aluminum oxide, silicon nitride, titanium oxide, titanium nitride, aluminum nitride, gallium nitride, or a mixture thereof, the thickness of the ceramic film Is 100 nm to 500 nm, and the substrate is heated to 50 ° C. to 100 ° C. in the intermediate layer forming step made of the ceramic film, and the ceramic film is heated to 600 ° C. to 1000 ° C. in the intermediate layer heating step.

前記下地ダイヤモンド層形成工程は、例えば、前記基板の表面を炭化させ、バイアス核を発生させ、配向粒子を成長させるものである。   In the base diamond layer forming step, for example, the surface of the substrate is carbonized, bias nuclei are generated, and oriented particles are grown.

また、前記基板は例えばシリコン基板であり、前記下地ダイヤモンド層の平均厚さは、0.5乃至5.0μmである。   The substrate is, for example, a silicon substrate, and the average thickness of the base diamond layer is 0.5 to 5.0 μm.

更にまた、前記ダイヤモンド追成長工程は、水素と炭化水素と酸素の混合ガスを用いて化学気相成長法によりダイヤモンドを成長させる配向粒子成長工程と、前記配向粒子成長工程よりも炭化水素の割合を低くした水素と炭化水素と酸素の混合ガスを用いて化学気相成長法によりダイヤモンドを成長させる平坦化成長工程とを有することが好ましい。   Furthermore, the diamond additional growth step includes an oriented particle growth step in which diamond is grown by chemical vapor deposition using a mixed gas of hydrogen, hydrocarbon, and oxygen, and a ratio of hydrocarbons than in the oriented particle growth step. It is preferable to have a flattening growth step in which diamond is grown by chemical vapor deposition using a mixed gas of hydrogen, hydrocarbon, and oxygen that has been lowered.

本発明に係る高配向ダイヤモンド膜は、基板と、この基板上に形成され表面が凹凸を有する下地ダイヤモンド層と、この下地ダイヤモンド層の前記凹凸の凹部を埋め込む金属膜又はセラミックス膜からなる中間層と、この中間層と中間層に覆われていない前記下地ダイヤモンド層上に形成された高配向ダイヤモンド層と、を有することを特徴とする。   The highly oriented diamond film according to the present invention includes a substrate, a base diamond layer formed on the substrate and having an uneven surface, and an intermediate layer made of a metal film or a ceramic film that fills the concave and convex portions of the base diamond layer. The intermediate layer and a highly oriented diamond layer formed on the base diamond layer not covered with the intermediate layer.

本発明においては、表面に凹凸を有する下地ダイヤモンド層を形成した後、金属膜又はセラミックス膜からなる中間層を形成してこれを加熱することにより、前記凹凸の凹部にのみ中間層を形成し、更に、ダイヤモンドを追成長させると、中間層が存在する凹部からのダイヤモンドの成長が抑制され、凸部のみからダイヤモンド膜が成長する。この凸部は、<100>配向粒子又は<111>配向粒子の何れかに選択することができる。このとき、非配向粒子があるとすれば、この非配向粒子は前記凹部の底近傍にある。このため、配向粒子のみからなる凸部のみを成長させ、凹部の底にある非配向粒子の成長を抑制することができるので、非配向成分が低減され、高品質の高配向ダイヤモンド膜を形成することができる。   In the present invention, after forming a base diamond layer having irregularities on the surface, an intermediate layer made of a metal film or a ceramic film is formed and heated to form an intermediate layer only in the concave and convex portions, Further, when diamond is further grown, the growth of diamond from the concave portion where the intermediate layer exists is suppressed, and the diamond film grows only from the convex portion. This convex part can be selected as either <100> oriented particles or <111> oriented particles. At this time, if there are non-oriented particles, the non-oriented particles are in the vicinity of the bottom of the recess. For this reason, it is possible to grow only the convex portion made of only the oriented particles and suppress the growth of the non-oriented particles at the bottom of the concave portion, thereby reducing the non-oriented component and forming a high-quality highly oriented diamond film. be able to.

本発明によれば、ダイヤモンド表面に非配向粒子、例えば{100}面からなる高配向膜中に{111}面の非配向面を持つ結晶粒子が混じっていても、それは、凹部に存在し、この凹部は金属膜又はセラミックス膜からなる中間層が形成されているので、その後のダイヤモンドの追成長工程においては、この非配向面をもつ結晶粒子の影響を受けずに、凸部から高品質の高配向ダイヤモンド膜を形成することができる。   According to the present invention, even when non-oriented particles, for example, crystal grains having {111} face non-oriented faces are mixed in a highly oriented film consisting of {100} faces on the diamond surface, they are present in the recesses, Since this concave portion is formed with an intermediate layer made of a metal film or a ceramic film, the subsequent diamond growth process is not affected by the crystal grains having the non-oriented plane, and the high quality from the convex portion. A highly oriented diamond film can be formed.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1(a)乃至(d)は、本発明の第1実施形態に係る高配向ダイヤモンド膜の製造方法を工程順示す断面図である。図1(a)に示すように、Si(100)ウェハ等の基板1上に、マイクロ波プラズマCVD装置により、下記表1の条件で、表面炭化工程を15〜30分実施して、炭化層(図示せず)を形成する。次に、下記表1に示す条件で、バイアス核発生工程を5〜15分、配向粒子成長工程を1〜4時間行い、表面に凹凸を有する下地ダイヤモンド層2を形成する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. 1A to 1D are cross-sectional views illustrating a method for manufacturing a highly oriented diamond film according to the first embodiment of the present invention in the order of steps. As shown in FIG. 1A, a surface carbonization step is performed on a substrate 1 such as a Si (100) wafer by a microwave plasma CVD apparatus for 15 to 30 minutes under the conditions shown in Table 1 below. (Not shown). Next, under the conditions shown in Table 1 below, the bias nucleus generation step is performed for 5 to 15 minutes and the oriented particle growth step is performed for 1 to 4 hours to form the underlying diamond layer 2 having irregularities on the surface.

上記条件で、下地ダイヤモンド層2を形成した結果、表面を電子顕微鏡観察すると、正射影面積の約50〜90%がピラミッド状の表面形態を有する配向粒子、残りが非配向粒子から構成されていることが確認された。なお、凸部2aはほぼ配向粒子であり、非配向粒子は、下地ダイヤモンド層2の表面の凹凸の凹部2bに存在することも確認された。   As a result of forming the base diamond layer 2 under the above conditions, when the surface is observed with an electron microscope, about 50 to 90% of the orthogonal projection area is composed of oriented particles having a pyramidal surface form, and the rest is composed of non-oriented particles. It was confirmed. In addition, it was confirmed that the convex part 2a is substantially oriented particles and the non-oriented particles are present in the concave and convex concave parts 2b on the surface of the underlying diamond layer 2.

Figure 2009242214
Figure 2009242214

配向粒子とは、結晶方位が基板の結晶方位にほぼ一致するものである。例えば、Si(100)基板上では、〈100〉方向が基板にほぼ垂直(仮に、偏り角5°以内)であるものを作成できる。気相合成によるダイヤモンド結晶は、ある程度合成条件を変化させても、{111}面と{100}面の2種類の面から主に構成される場合が多い。そのため、図4に示すように、{111}面が多く出る条件では、ちょうど、頂点の方位が〈100〉方位に相当する。その他、例えば、〈111〉配向したダイヤモンド薄膜としては、Pt(111)基板上で適切な合成条件を使用して作成可能である。なお、非配向粒子とは、上述のような配向粒子ではないものである。   The oriented particles are those in which the crystal orientation substantially coincides with the crystal orientation of the substrate. For example, on a Si (100) substrate, a substrate in which the <100> direction is substantially perpendicular to the substrate (assuming that the deviation angle is within 5 °) can be created. Diamond crystals by vapor phase synthesis are often composed mainly of two types of surfaces, {111} and {100}, even if the synthesis conditions are changed to some extent. Therefore, as shown in FIG. 4, under the condition that many {111} planes appear, the orientation of the apex corresponds to the <100> orientation. In addition, for example, a <111> -oriented diamond thin film can be prepared using appropriate synthesis conditions on a Pt (111) substrate. Non-oriented particles are not oriented particles as described above.

下地ダイヤモンド層の平均厚さは、0.5乃至5μmであることが望ましい。この下地ダイヤモンド層の平均厚さが0.5μm未満では、配向粒子の割合が50%を超えず、且つ、表面の凹凸(即ち、配向粒子と非配向粒子の高さの差)が200nm以下と小さくなる。このとき、中間膜を厚くすると配向粒子の先端を突出させられないし、中間膜を薄くすると、非配向粒子上で完全に覆えない部分が生じやすい。表1に記載した合成条件を使用すれば、5μm程度でほぼ90%が配向粒子で占められるようになる。実際には、これ以上に厚くすることが本発明の効果を妨げる要因にはならないが、厚いほど成膜に時間がかかり製造コストの上昇になること、また内部応力が大きくなり、反りやすいことにより、本発明の目的から外れていくため、望ましくない。   The average thickness of the underlying diamond layer is preferably 0.5 to 5 μm. When the average thickness of the underlying diamond layer is less than 0.5 μm, the proportion of oriented particles does not exceed 50%, and the surface unevenness (that is, the difference in height between oriented particles and non-oriented particles) is 200 nm or less. Get smaller. At this time, when the intermediate film is thickened, the tip of the oriented particles cannot be projected, and when the intermediate film is thinned, a portion that cannot be completely covered on the non-oriented particles tends to be generated. If the synthesis conditions described in Table 1 are used, approximately 90% of the particles are occupied by oriented particles at about 5 μm. Actually, it is not a factor that hinders the effect of the present invention to make it thicker than this, but the thicker the film, the longer it takes to increase the manufacturing cost, and the greater the internal stress. This is not desirable because it deviates from the object of the present invention.

配向粒子の割合が50%を超えないと、中間膜を形成して熱処理したとき、非配向粒子の表面上にも露出部ができてしまう。つまり、中間膜で非配向性粒子を完全に覆えなくなる。一方、90%以上を配向粒子で覆うためには、実際には、下地ダイヤモンド膜の膜厚を厚くしなければならない。これは、実用上、前述と同様に望ましくない。勿論、ほぼ100%が配向粒子になれば、中間層は不要になる。   If the ratio of the oriented particles does not exceed 50%, when the intermediate film is formed and heat-treated, an exposed portion is also formed on the surface of the non-oriented particles. That is, the non-oriented particles cannot be completely covered with the intermediate film. On the other hand, in order to cover 90% or more with oriented particles, the thickness of the underlying diamond film must actually be increased. This is not practically desirable as described above. Of course, if almost 100% of the particles are oriented particles, the intermediate layer is unnecessary.

次に、この表面に凹凸を有する下地ダイヤモンド層2の表面上に金属膜3を成膜する。この金属膜3は、例えば、白金、金、銀、銅、又はパラジウムのいずれかであり、この金属膜3を、例えば、スパッタリング法又は蒸着法により、100〜500nmの厚さに成膜する。上記条件で金属膜を成膜した結果、これを電子顕微鏡観察すると、ピンホールがない連続膜であることが確認された。   Next, a metal film 3 is formed on the surface of the underlying diamond layer 2 having irregularities on the surface. The metal film 3 is, for example, any one of platinum, gold, silver, copper, or palladium, and the metal film 3 is formed to a thickness of 100 to 500 nm by, for example, a sputtering method or a vapor deposition method. As a result of forming a metal film under the above conditions, it was confirmed that the film was a continuous film without pinholes when observed with an electron microscope.

次に、マイクロ波プラズマCVD装置を用い、表1の水素プラズマ処理工程の条件で、10〜30分間、水素プラズマ処理を行う。これにより、図1(b)に示すように、金属膜3は溶融軟化し、下地ダイヤモンド層2の凹部2b上に凝集する。上記条件で水素プラズマ処理した後、基板を室温に戻して取り出し、電子顕微鏡観察したところ、下地ダイヤモンド層2の凸部2aのみが金属膜4の上に露出し、凹部2bが金属膜4に被覆されていることが確認された。   Next, hydrogen plasma treatment is performed for 10 to 30 minutes using the microwave plasma CVD apparatus under the conditions of the hydrogen plasma treatment step shown in Table 1. Thereby, as shown in FIG. 1B, the metal film 3 is melted and softened and aggregates on the recess 2 b of the underlying diamond layer 2. After the hydrogen plasma treatment under the above conditions, the substrate was returned to room temperature and taken out and observed with an electron microscope. As a result, only the convex portion 2a of the underlying diamond layer 2 was exposed on the metal film 4, and the concave portion 2b was covered with the metal film 4. It has been confirmed.

この金属膜4による下地ダイヤモンド層2の凹部2bの被覆は、適度な膜厚の金属膜3を成膜した後、これを加熱することにより、凹部2bに金属膜4を凝集させ、凸部2aを露出させるものである。このような作用効果を奏する金属膜3の膜厚は、その後のダイヤモンド成長条件において配向粒子の頂点が露出し、非配向粒子が隠れる程度の膜厚を選択することになるが、非配向粒子が占める面積割合が多ければ厚くする必要があり、少なければ薄くてもよい。例えば、非配向粒子が正投影面積の1/2以下なら、金属膜3の膜厚は100〜500nmが好ましい。   The metal film 4 covers the recess 2b of the underlying diamond layer 2 by forming a metal film 3 having an appropriate thickness and then heating it to cause the metal film 4 to agglomerate in the recess 2b. To expose. The film thickness of the metal film 3 having such an effect is selected such that the vertex of the oriented particles is exposed and the non-oriented particles are hidden under the subsequent diamond growth conditions. If the area ratio is large, it is necessary to make it thick, and if it is small, it may be thin. For example, if the non-oriented particles are ½ or less of the orthographic area, the thickness of the metal film 3 is preferably 100 to 500 nm.

金属膜3の加熱は、真空中、又は不活性ガス雰囲気中で行うが、ダイヤモンドの成長環境の中で、水素プラズマ処理を選ぶことができる。この水素プラズマ処理を選ぶことにより、ダイヤモンドの追成長と同一の工程で金属膜を加熱することができ、ダイヤモンドの追成長の初期に金属膜の凝集が起きて、凸部2aのみ露出し、続けて凸部2aから高配向ダイヤモンド層5が成長していくので有利である。   The metal film 3 is heated in a vacuum or in an inert gas atmosphere, but hydrogen plasma treatment can be selected in a diamond growth environment. By selecting this hydrogen plasma treatment, the metal film can be heated in the same process as the diamond growth, and the metal film agglomerates in the initial stage of the diamond growth, and only the convex portion 2a is exposed. This is advantageous because the highly oriented diamond layer 5 grows from the convex portion 2a.

金属膜3としては、薄膜の状態で800〜1000℃の加熱処理又は水素プラズマ中で軟化及び凝集が可能なものであって、ダイヤモンドをほとんど溶解腐蝕しないものの中から選択することができる。この金属膜3の融点は、1300〜2300℃のものが適当と考えられる。例えば、白金、金、銀、銅、パラジウム等、又はその合金を使用することができる。   The metal film 3 can be selected from those that can be softened and agglomerated in a heat treatment at 800 to 1000 ° C. or hydrogen plasma in a thin film state and that hardly dissolves and corrodes diamond. The melting point of the metal film 3 is considered to be appropriate from 1300 to 2300 ° C. For example, platinum, gold, silver, copper, palladium, or an alloy thereof can be used.

その後、図1(c)に示すように、先ず、再度、表1の配向粒子成長条件でダイヤモンドを、0時間を超え、2時間以下、追成長させると、下地ダイヤモンド層2の凸部2aから高配向ダイヤモンド層5が成長し、更に、表1の平坦化成長工程の条件で、更に3〜10時間追成長を行うと、図1(d)に示すように、平坦化した高配向ダイヤモンド層6が形成される。上記条件で、凹凸を有する高配向ダイヤモンド層5及び平坦化高配向ダイヤモンド層6を成膜した結果、これを電子顕微鏡観察すると、非配向粒子が全くなく、配向粒子の{100}面のみで覆われた高配向ダイヤモンド膜が得られていることが確認された。   Thereafter, as shown in FIG. 1C, first, when the diamond is further grown for more than 0 hour and not more than 2 hours under the oriented particle growth conditions shown in Table 1, from the convex portion 2a of the underlying diamond layer 2 again. When the highly oriented diamond layer 5 is grown and further grown for 3 to 10 hours under the conditions of the planarization growth step shown in Table 1, as shown in FIG. 6 is formed. As a result of forming the highly-oriented diamond layer 5 having unevenness and the flattened highly-oriented diamond layer 6 under the above conditions, when observed with an electron microscope, there are no non-oriented particles, and only the {100} planes of the oriented particles are covered. It was confirmed that a highly oriented diamond film was obtained.

従って、本発明により、ほぼ完全な{100}配向性で、平坦性が高い高配向ダイヤモンド膜を作製することができる。   Therefore, according to the present invention, a highly oriented diamond film with almost perfect {100} orientation and high flatness can be produced.

なお、水素プラズマ処理後、これを室温に戻さず、ガス流量を調節することにより連続してダイヤモンド追成長を行っても、最終的に得られたダイヤモンド膜は同じである。   Even if the diamond plasma is continuously grown by adjusting the gas flow rate after the hydrogen plasma treatment without returning to room temperature, the diamond film finally obtained is the same.

このようにして、本実施形態においては、高配向ダイヤモンドの作製の途中で、表面形状に凹凸がある段階で、凹部の成長を抑制し、凸部のみ成長させる。この凹部のダイヤモンド成長は、金属膜で被覆することにより抑制する。即ち、本実施形態においては、金属膜を成膜した後、これを加熱することにより凝集が起こり、凹部2bに溜まるので、これを利用することにより、凸部2aは自動的に露出する。   In this way, in the present embodiment, during the production of highly oriented diamond, at the stage where the surface shape is uneven, the growth of the recess is suppressed and only the protrusion is grown. The diamond growth of the recess is suppressed by covering with a metal film. That is, in the present embodiment, after the metal film is formed, the metal film is heated and thereby agglomeration occurs and accumulates in the concave portion 2b. By using this, the convex portion 2a is automatically exposed.

下地ダイヤモンド層の凹部を金属膜で被覆した後、ダイヤモンド合成を行うと、露出部からのみ高配向ダイヤモンド層が成長していく。この高配向ダイヤモンド層はその先鋭な頂形状をそのまま残すこともできるが、通常はダイヤモンド合成の最終段で、水平方向の成長条件に切り替え、表面を平坦化させる。その結果、非配向成分が著しく低減され、配向性が向上すると共に、表面平坦化成長後の平坦性も向上する。これにより、本発明によれば、従来より膜厚が薄い段階で、配向性が向上するので、成膜時間を短くすることもできる。   When diamond synthesis is performed after the concave portion of the underlying diamond layer is covered with a metal film, a highly oriented diamond layer grows only from the exposed portion. Although this highly oriented diamond layer can leave its sharp top shape as it is, the surface is flattened by switching to the growth condition in the horizontal direction at the final stage of diamond synthesis. As a result, the non-alignment component is remarkably reduced, the orientation is improved, and the flatness after the surface flattening growth is also improved. Thereby, according to the present invention, since the orientation is improved at a stage where the film thickness is thinner than the conventional one, the film formation time can be shortened.

次に、図2(a)乃至(d)を参照して、本発明の第2実施形態に係る高配向ダイヤモンド膜の製造方法について説明する。本実施形態においては、図2(a)に示すように、下地ダイヤモンド層2を形成した後、セラミックス膜7を成膜する。   Next, with reference to FIGS. 2A to 2D, a method for producing a highly oriented diamond film according to the second embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 2A, after forming the base diamond layer 2, the ceramic film 7 is formed.

その後、このセラミックス膜7を加熱雰囲気又は水素プラズマ中に曝すことにより、セラミックス膜7を収縮させ、その結果、下地ダイヤモンド層2の凸部2aに亀裂を生じさせる。セラミックス材料によっては、加熱することにより、膨張し、その結果、凸部2aにせり上がりを生じ、それが亀裂状に剥離する場合もある。何れにせよ、熱又は水素プラズマにより、収縮又は膨張して変形するセラミックス材料を使用し、凸部2aで亀裂が生じ、下地ダイヤモンド層2の凸部2aが露出する。   Thereafter, the ceramic film 7 is contracted by exposing the ceramic film 7 to a heating atmosphere or hydrogen plasma, and as a result, a crack is generated in the convex portion 2 a of the underlying diamond layer 2. Depending on the ceramic material, it expands when heated, and as a result, the convex portion 2a is raised, and it may be peeled off in the form of a crack. In any case, a ceramic material that shrinks or expands due to heat or hydrogen plasma is used, cracks occur in the convex portions 2a, and the convex portions 2a of the underlying diamond layer 2 are exposed.

セラミックスとしては、酸化硅素、酸化アルミニウム、窒素化硅素、酸化チタン、窒素化チタン、窒素化アルミニウム、若しくは窒素化ガリウム又はこれらの混合物を使用することができる。   As the ceramic, silicon oxide, aluminum oxide, silicon nitride, titanium oxide, titanium nitride, aluminum nitride, gallium nitride, or a mixture thereof can be used.

具体的には、第1実施形態の金属膜3の成膜の代わりに、例えば、酸化硅素、酸化アルミニウム、窒素化硅素、酸化チタン、窒素化チタン、窒素化アルミニウム、又は窒素化ガリウムのいずれかを、スパッタリング法又は蒸着法により、100〜500nmの厚さに成膜する。上記条件で成膜した結果、これを電子顕微鏡観察すると、ピンホールがない連続膜であることが確認された。   Specifically, instead of forming the metal film 3 of the first embodiment, for example, any one of silicon oxide, aluminum oxide, silicon nitride, titanium oxide, titanium nitride, aluminum nitride, or gallium nitride is used. Is deposited to a thickness of 100 to 500 nm by sputtering or vapor deposition. As a result of film formation under the above conditions, it was confirmed by electron microscopy that the film was a continuous film without pinholes.

次に、マイクロ波プラズマCVD装置を用い、上記表1の水素プラズマ処理工程の条件で10〜30分処理を行うことにより、凸部2aの上のセラミックス膜8に亀裂が入り、下地ダイヤモンド層2の凸部2aが露出する。上記条件で水素プラズマ処理した結果、基板を室温に戻して取り出し、電子顕微鏡観察すると、凸部2aにのみ亀裂が入り、そこだけが下地ダイヤモンド2が露出していることが確認された。ただし、金属膜と異なる点は、頂部のみならず、頂部に近い四角錐の稜線も露出していた。   Next, using a microwave plasma CVD apparatus, the ceramic film 8 on the convex portion 2a is cracked by performing the treatment for 10 to 30 minutes under the conditions of the hydrogen plasma treatment step in Table 1 above, and the underlying diamond layer 2 The protrusion 2a is exposed. As a result of the hydrogen plasma treatment under the above conditions, it was confirmed that when the substrate was returned to room temperature and taken out and observed with an electron microscope, only the convex portion 2a was cracked and the underlying diamond 2 was exposed only there. However, the difference from the metal film was that not only the top but also the ridgeline of the quadrangular pyramid near the top was exposed.

このセラミックス膜の成膜及び亀裂生成以外は第1実施形態と同様である。   Except for the formation of the ceramic film and the generation of cracks, this is the same as in the first embodiment.

ダイヤモンドの追成長において、経過観察のため途中で中断して室温に戻し取り出したところ、四角錐の稜線からもダイヤモンドが成長していることが観察されたが、追成長時間が長くなるにつれ、金属膜使用の場合とほぼ同じ形状に近づき、最終的に得られたダイヤモンド膜の配向性及び平坦性は、ともに同等であった。   In the follow-up growth of diamond, it was interrupted halfway for follow-up and taken out to room temperature, and it was observed that diamond was also growing from the ridgeline of the quadrangular pyramid. The shape was almost the same as in the case of using the film, and the orientation and flatness of the finally obtained diamond film were both equal.

なお、水素プラズマ処理後、これを室温に戻さず、ガス流量を調節することにより連続してダイヤモンド追成長を行っても、また、追成長時、経過観察のための中断を入れなくても、最終的に同じダイヤモンド膜が得られる場合があるが、必ずしも亀裂が発生せず、うまく高配向ダイヤモンドが得られない場合もあった。水素プラズマ処理後、一度室温に戻した場合の方が高確率で同様な高配向性ダイヤモンド膜が得られた。   In addition, after hydrogen plasma treatment, without returning this to room temperature, it is possible to continuously perform diamond additional growth by adjusting the gas flow rate, or without additional interruption during follow-up, In some cases, the same diamond film may be finally obtained, but cracks do not necessarily occur, and highly oriented diamond may not be obtained successfully. After hydrogen plasma treatment, the same highly oriented diamond film was obtained with higher probability when the temperature was once returned to room temperature.

本実施形態でも、凹部2bをセラミックス膜8で被覆した後、ダイヤモンド合成を行うと、下地ダイヤモンド層2の露出部からのみダイヤモンドが成長していく。頂形状をそのまま残すこともできるが、通常は作製の最終段で水平方向成長条件に切り替え表面を平坦化させる。その結果、非配向成分が著しく低減され、配向性が向上する。また、表面平坦化成長後の平坦性も向上し、従来より膜厚が薄い段階で配向性が向上する。   Also in this embodiment, when diamond synthesis is performed after the recess 2b is covered with the ceramic film 8, diamond grows only from the exposed portion of the underlying diamond layer 2. Although the top shape can be left as it is, usually the surface is flattened by switching to the horizontal growth condition in the final stage of fabrication. As a result, non-oriented components are significantly reduced, and the orientation is improved. Further, the flatness after the surface flattening growth is improved, and the orientation is improved at a stage where the film thickness is thinner than the conventional one.

次に、図3(a)乃至(d)を参照して、本発明の第3実施形態に係る高配向ダイヤモンド膜の製造方法について説明する。本実施形態においては、図3(a)の金属膜成膜後及び図3(b)の水素プラズマ処理後の層構成は、図1(a)、(b)と同一である。本実施形態においては、金属膜形成後の工程が第1実施形態と異なる。即ち、本実施形態は、配向粒子成長条件での追成長工程がない。   Next, with reference to FIGS. 3A to 3D, a method for producing a highly oriented diamond film according to the third embodiment of the present invention will be described. In this embodiment, the layer structure after the metal film formation in FIG. 3A and after the hydrogen plasma treatment in FIG. 3B is the same as that in FIGS. 1A and 1B. In the present embodiment, the process after forming the metal film is different from that of the first embodiment. In other words, this embodiment does not have a subsequent growth step under oriented particle growth conditions.

図3(c)は平坦化工程の途中を示し、図3(d)は平坦化工程の最終形態を示す。図3(c)に示すように、下地ダイヤモンド層2の凸部2aから頂部が平坦な高配向ダイヤモンド層9が成長し、更に、表1の平坦化成長工程の条件で、更に3〜10時間追成長を行うと、図3(d)に示すように、平坦化した高配向ダイヤモンド層10が形成される。上記条件で、平坦化高配向ダイヤモンド層10を成膜した結果、これを電子顕微鏡観察すると、非配向粒子が全くなく、配向粒子の{100}面のみで覆われた高配向ダイヤモンド膜が得られていることが確認された。本実施形態においても、第1実施形態と同様の効果を奏する。   FIG. 3C shows the middle of the flattening process, and FIG. 3D shows the final form of the flattening process. As shown in FIG. 3 (c), a highly oriented diamond layer 9 having a flat top is grown from the convex portion 2a of the underlying diamond layer 2, and further 3 to 10 hours under the conditions of the flattening growth step shown in Table 1. When the additional growth is performed, a flattened highly oriented diamond layer 10 is formed as shown in FIG. As a result of forming the flattened highly oriented diamond layer 10 under the above conditions, when observed with an electron microscope, a highly oriented diamond film having no unoriented particles and covered only with {100} planes of oriented particles is obtained. It was confirmed that Also in this embodiment, there exists an effect similar to 1st Embodiment.

図4は図3(a)に示す工程の前の工程であって、金属膜を形成する前のダイヤモンド膜の形態を示し、約50%がピラミッド状の配向粒子、残りが非配向粒子で構成されたダイヤモンド多結晶膜を示す表面電子顕微鏡写真である。図5は同じダイヤモンド膜の断面写真である。Si基板上に配向粒子と非配向粒子とが混在するダイヤモンド膜が形成されている。   FIG. 4 is a step before the step shown in FIG. 3 (a), showing the form of the diamond film before forming the metal film, and about 50% is composed of pyramidal oriented particles and the rest is non-oriented particles. 3 is a surface electron micrograph showing a diamond polycrystalline film formed. FIG. 5 is a cross-sectional photograph of the same diamond film. A diamond film in which oriented particles and non-oriented particles are mixed is formed on a Si substrate.

図6は水素プラズマ処理後、配向粒子の追成長を行わず、平坦化工程を実施したときの平坦化工程途中(約2時間成長後)の表面形態を示す電子顕微鏡写真、図7は平坦化工程終了後のダイヤモンド膜の表面の電子顕微鏡写真である。なお、これらの図4乃至図7は、表1の各条件の範囲の中央値を採用して、成膜したときのものである。   FIG. 6 is an electron micrograph showing the surface morphology during the flattening step (after growth for about 2 hours) when the flattening step is performed without additional growth of oriented particles after hydrogen plasma treatment, and FIG. 7 is flattened. It is an electron micrograph of the surface of the diamond film after the end of the process. 4 to 7 are obtained when the median value in the range of each condition in Table 1 is adopted and the film is formed.

(a)乃至(d)は本発明の第1実施形態の製造方法を工程順に示す断面図である。(A) thru | or (d) are sectional drawings which show the manufacturing method of 1st Embodiment of this invention to process order. (a)乃至(d)は本発明の第2実施形態の製造方法を工程順に示す断面図である。(A) thru | or (d) are sectional drawings which show the manufacturing method of 2nd Embodiment of this invention to process order. (a)乃至(d)は本発明の第3実施形態の製造方法を工程順に示す断面図である。(A) thru | or (d) are sectional drawings which show the manufacturing method of 3rd Embodiment of this invention to process order. 金属膜形成前のダイヤモンド膜の形態を示し、約50%がピラミッド状の配向粒子、残りが非配向粒子で構成されたダイヤモンド多結晶膜の表面電子顕微鏡写真である。FIG. 5 is a surface electron micrograph of a polycrystalline diamond film showing a form of a diamond film before forming a metal film, in which about 50% is composed of pyramid-oriented particles and the rest are non-oriented particles. 同じダイヤモンド膜の断面写真である。It is a cross-sectional photograph of the same diamond film. 水素プラズマ処理後、配向粒子の追成長をしないときの平坦化成長工程の途中(約2時間成長後)の表面形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface form in the middle of the planarization growth process when the additional growth of oriented particles is not performed after hydrogen plasma treatment (after growth for about 2 hours). 同じダイヤモンド膜の平坦化工程終了後の表面の電子顕微鏡写真である。It is the electron micrograph of the surface after completion | finish of the planarization process of the same diamond film.

符号の説明Explanation of symbols

1:基板
2:下地ダイヤモンド層
3、4:金属膜
5、6、9、10:高配向ダイヤモンド層
7、8:セラミックス層
1: Substrate 2: Base diamond layer 3, 4: Metal films 5, 6, 9, 10: Highly oriented diamond layer 7, 8: Ceramic layer

Claims (8)

表面に複数の凹凸を有する下地ダイヤモンド層を、基板上に形成する下地ダイヤモンド層形成工程と、
前記下地ダイヤモンド層上に金属膜又はセラミックス膜からなる中間層を形成する中間層形成工程と、
前記下地ダイヤモンド層及び前記中間層を加熱し、前記下地ダイヤモンド層の凹部が前記中間層で覆われた状態で、前記下地ダイヤモンド層の凸部の一部を前記中間層から部分的に露出させる中間層加熱工程と、
前記中間層の表面に前記ダイヤモンド層の凸部の一部が露出した状態で、その上に高配向ダイヤモンド層を成長させるダイヤモンド追成長工程と、
を有し、
前記下地ダイヤモンド層は、配向性ダイヤモンド粒子と非配向性ダイヤモンド粒子とが混在し、前記下地ダイヤモンド層の前記凸部は配向性ダイヤモンド粒子からなり、前記下地ダイヤモンド層の前記凹部は非配向性ダイヤモンド粒子からなり、前記中間層加熱工程において、前記凸部の少なくとも頂部が前記中間層から露出していることを特徴とする高配向ダイヤモンド膜の製造方法。
A base diamond layer forming step of forming a base diamond layer having a plurality of irregularities on a surface on a substrate;
An intermediate layer forming step of forming an intermediate layer made of a metal film or a ceramic film on the underlying diamond layer;
The intermediate diamond layer and the intermediate layer are heated so that a part of the convex portion of the base diamond layer is partially exposed from the intermediate layer in a state where the concave portion of the base diamond layer is covered with the intermediate layer. A layer heating step;
A diamond additional growth step for growing a highly oriented diamond layer thereon, with a portion of the convex portion of the diamond layer exposed on the surface of the intermediate layer,
Have
The base diamond layer is a mixture of oriented diamond particles and non-oriented diamond particles, the convex portions of the base diamond layer are composed of oriented diamond particles, and the concave portions of the base diamond layer are non-oriented diamond particles. A method for producing a highly oriented diamond film, wherein, in the intermediate layer heating step, at least a top portion of the convex portion is exposed from the intermediate layer.
前記中間層加熱工程は、水素プラズマ処理により前記下地ダイヤモンド層及び前記中間層を加熱するものであることを特徴とする請求項1に記載の高配向ダイヤモンド膜の製造方法。 The method for producing a highly oriented diamond film according to claim 1, wherein the intermediate layer heating step heats the base diamond layer and the intermediate layer by hydrogen plasma treatment. 前記中間層は、白金、金、銀、銅、パラジウム、又はこれらの合金からなる金属膜であって、前記金属膜の厚さは100nm乃至500nmであり、
前記金属膜からなる中間層形成工程において前記基板は50℃乃至100℃に加熱され、前記中間層加熱工程において前記金属膜は600℃乃至1000℃に加熱されることを特徴とする請求項1又は2に記載の高配向ダイヤモンド膜の製造方法。
The intermediate layer is a metal film made of platinum, gold, silver, copper, palladium, or an alloy thereof, and the thickness of the metal film is 100 nm to 500 nm,
2. The substrate according to claim 1, wherein the substrate is heated to 50 ° C. to 100 ° C. in the intermediate layer forming step made of the metal film, and the metal film is heated to 600 ° C. to 1000 ° C. in the intermediate layer heating step. 3. A method for producing a highly oriented diamond film according to 2.
前記中間層は、酸化珪素、酸化アルミニウム、窒素化珪素、酸化チタン、窒素化チタン、窒素化アルミニウム、窒素化ガリウム、又はこれらの混合物からなるセラミックス膜であって、前記セラミックス膜の厚さは100nm乃至500nmであり、
前記セラミックス膜からなる中間層形成工程において前記基板は50℃乃至100℃に加熱され、前記中間層加熱工程において前記セラミックス膜は600℃乃至1000℃に加熱されることを特徴とする請求項1又は2に記載の高配向ダイヤモンド膜の製造方法。
The intermediate layer is a ceramic film made of silicon oxide, aluminum oxide, silicon nitride, titanium oxide, titanium nitride, aluminum nitride, gallium nitride, or a mixture thereof, and the thickness of the ceramic film is 100 nm. To 500 nm,
The substrate is heated to 50 ° C to 100 ° C in the intermediate layer forming step made of the ceramic film, and the ceramic film is heated to 600 ° C to 1000 ° C in the intermediate layer heating step. 3. A method for producing a highly oriented diamond film according to 2.
前記下地ダイヤモンド層形成工程は、前記基板の表面を炭化させ、バイアス核を発生させ、配向粒子を成長させるものであることを特徴とする請求項1乃至4のいずれか1項に記載の高配向ダイヤモンド膜の製造方法。 5. The high orientation according to claim 1, wherein the base diamond layer forming step carbonizes the surface of the substrate, generates bias nuclei, and grows oriented particles. Diamond film manufacturing method. 前記基板はシリコン基板であり、前記下地ダイヤモンド層の平均厚さは、0.5乃至5μmであることを特徴とする請求項1乃至5のいずれか1項に記載の高配向ダイヤモンド膜の製造方法。 The method for producing a highly oriented diamond film according to claim 1, wherein the substrate is a silicon substrate, and an average thickness of the base diamond layer is 0.5 to 5 μm. . 前記ダイヤモンド追成長工程は、水素と炭化水素と酸素の混合ガスを用いて化学気相成長法によりダイヤモンドを成長させる配向粒子成長工程と、前記配向粒子成長工程よりも炭化水素の割合を低くした水素と炭化水素と酸素の混合ガスを用いて化学気相成長法によりダイヤモンドを成長させる平坦化成長工程とを有することを特徴とする請求項1乃至6のいずれか1項に記載の高配向ダイヤモンド膜の製造方法。 The diamond additional growth step includes an oriented particle growth step in which diamond is grown by chemical vapor deposition using a mixed gas of hydrogen, hydrocarbon, and oxygen, and hydrogen in which the proportion of hydrocarbon is lower than that in the oriented particle growth step. And a planarizing growth step of growing diamond by chemical vapor deposition using a mixed gas of hydrocarbon, hydrocarbon and oxygen, and a highly oriented diamond film according to any one of claims 1 to 6 Manufacturing method. 基板と、この基板上に形成され表面が凹凸を有する下地ダイヤモンド層と、この下地ダイヤモンド層の前記凹凸の凹部を埋め込む金属膜又はセラミックス膜からなる中間層と、この中間層と中間層に覆われていない前記下地ダイヤモンド層上に形成された高配向ダイヤモンド層と、を有することを特徴とする高配向ダイヤモンド膜。 A substrate, a base diamond layer formed on the substrate and having an uneven surface, an intermediate layer made of a metal film or a ceramic film that fills the concave and convex portions of the base diamond layer, and the intermediate layer and the intermediate layer are covered. And a highly oriented diamond layer formed on the underlying diamond layer, the highly oriented diamond film.
JP2008094377A 2008-03-31 2008-03-31 Highly oriented diamond film and method for producing the same Expired - Fee Related JP5020147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094377A JP5020147B2 (en) 2008-03-31 2008-03-31 Highly oriented diamond film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094377A JP5020147B2 (en) 2008-03-31 2008-03-31 Highly oriented diamond film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009242214A true JP2009242214A (en) 2009-10-22
JP5020147B2 JP5020147B2 (en) 2012-09-05

Family

ID=41304579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094377A Expired - Fee Related JP5020147B2 (en) 2008-03-31 2008-03-31 Highly oriented diamond film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5020147B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162373A (en) * 2010-02-05 2011-08-25 Kobe Steel Ltd Method for producing highly oriented diamond film
CN114959699A (en) * 2022-08-02 2022-08-30 中国科学院宁波材料技术与工程研究所 Low-friction metal/ultra-nano diamond composite coating and preparation method thereof
US11896964B2 (en) 2018-12-06 2024-02-13 Element Six (Uk) Limited Polycrystalline diamond construction and method of making same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357195A (en) * 1991-06-03 1992-12-10 Kobe Steel Ltd Method for forming pseudo-single crystal of diamond
JPH0769793A (en) * 1993-08-30 1995-03-14 Canon Inc Method for selective growth of diamond crystal and method for selective epitaxial growth
JPH09309794A (en) * 1996-05-24 1997-12-02 Sumitomo Electric Ind Ltd Diamond film and its synthesis
JP2001233695A (en) * 2000-02-23 2001-08-28 Kobe Steel Ltd Diamond film and method for producing the same
JP2006176389A (en) * 2004-11-29 2006-07-06 Kobe Steel Ltd Highly-oriented diamond film, method for manufacturing the same, and electronic device having highly-oriented diamond film
JP2007204307A (en) * 2006-02-01 2007-08-16 Sumitomo Electric Ind Ltd Method for synthesizing diamond

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357195A (en) * 1991-06-03 1992-12-10 Kobe Steel Ltd Method for forming pseudo-single crystal of diamond
JPH0769793A (en) * 1993-08-30 1995-03-14 Canon Inc Method for selective growth of diamond crystal and method for selective epitaxial growth
JPH09309794A (en) * 1996-05-24 1997-12-02 Sumitomo Electric Ind Ltd Diamond film and its synthesis
JP2001233695A (en) * 2000-02-23 2001-08-28 Kobe Steel Ltd Diamond film and method for producing the same
JP2006176389A (en) * 2004-11-29 2006-07-06 Kobe Steel Ltd Highly-oriented diamond film, method for manufacturing the same, and electronic device having highly-oriented diamond film
JP2007204307A (en) * 2006-02-01 2007-08-16 Sumitomo Electric Ind Ltd Method for synthesizing diamond

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162373A (en) * 2010-02-05 2011-08-25 Kobe Steel Ltd Method for producing highly oriented diamond film
US11896964B2 (en) 2018-12-06 2024-02-13 Element Six (Uk) Limited Polycrystalline diamond construction and method of making same
CN114959699A (en) * 2022-08-02 2022-08-30 中国科学院宁波材料技术与工程研究所 Low-friction metal/ultra-nano diamond composite coating and preparation method thereof

Also Published As

Publication number Publication date
JP5020147B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4646752B2 (en) Highly oriented diamond film, manufacturing method thereof, and electronic device provided with highly oriented diamond film
JP4987792B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
TWI364777B (en) Multilayered semiconductor wafer and process for manufacturing the same
JP4719314B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP4444104B2 (en) Process for making gallium nitride films with low defect density by vapor phase epitaxy
JP4946264B2 (en) Method for manufacturing silicon carbide semiconductor epitaxial substrate
JP4786223B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
JP6262352B2 (en) Semiconductor device structure comprising polycrystalline CVD diamond with improved thermal conductivity near the substrate
JP4954593B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate
JP6298926B2 (en) Manufacturing method of semiconductor substrate
JP5316612B2 (en) Method for manufacturing silicon carbide semiconductor epitaxial substrate
JP2008074664A (en) Epitaxial silicon carbide single crystal substrate and its producing method
JP2005123619A (en) Nitride semiconductor formed on silicon substrate, and manufacturing method therefor
JP2009218575A (en) Method of manufacturing semiconductor substrate
JP2009209028A (en) Process of manufacturing diamond polycrystal substrate and diamond polycrystal substrate
JP7161158B2 (en) Method for manufacturing diamond substrate layer
JP5020147B2 (en) Highly oriented diamond film and method for producing the same
JP2006062931A (en) Sapphire substrate and its heat treatment method, and method of crystal growth
JP6052465B2 (en) Method for manufacturing epitaxial silicon carbide wafer
CN100550440C (en) The manufacture method of semiconductor element and semiconductor element
EP3967793A1 (en) Diamond crystal substrate and production method for diamond crystal substrate
JP3929669B2 (en) Method for producing diamond film
JPH07288243A (en) Electronic device
JP2005223215A (en) Method for producing silicon carbide single crystal film on si substrate and silicon carbide semiconductor device produced by using same
JP5363370B2 (en) Method for producing highly oriented diamond film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees