JP2009236466A - Waste treatment apparatus and operating method thereof - Google Patents

Waste treatment apparatus and operating method thereof Download PDF

Info

Publication number
JP2009236466A
JP2009236466A JP2008086484A JP2008086484A JP2009236466A JP 2009236466 A JP2009236466 A JP 2009236466A JP 2008086484 A JP2008086484 A JP 2008086484A JP 2008086484 A JP2008086484 A JP 2008086484A JP 2009236466 A JP2009236466 A JP 2009236466A
Authority
JP
Japan
Prior art keywords
filter
filter body
waste
temperature
partial oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008086484A
Other languages
Japanese (ja)
Inventor
Seiji Kinoshita
誠二 木ノ下
Tomohiro Denda
知広 傳田
Satoshi Matsui
聰 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2008086484A priority Critical patent/JP2009236466A/en
Publication of JP2009236466A publication Critical patent/JP2009236466A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an operating method capable of preventing a rise in base differential pressure of a filtration body of a dust collecting unit by regenerating the filtration body without deteriorating the filtration body and continuously operating a waste treatment apparatus. <P>SOLUTION: The operating method of the waste treatment apparatus for generating flammable gas from waste in a partial oxidation furnace 1, introducing the generated flammable gas into the dust collecting unit 2 and removing the dust in the flammable gas, and further burning the gas, includes a filtration body regenerating step for regenerating the filtration body by keeping the inside of the dust collecting unit 2 in an oxidizing atmosphere when the base differential pressure of the dust collecting unit 2 exceeds a prescribed value or when an increasing rate of the base differential pressure exceeds a prescribed value. In the filtration body regeneration step, any one of a filtration body temperature, a temperature at the downstream side of the filtration body, a temperature difference between the upstream side of the filtration body and the filtration body, and a temperature difference between the upstream side and the downstream side of the filtration body is detected, and when the detected value exceeds a prescribed value, the oxygen concentration of the flammable gas led into the dust collecting unit 2 is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、部分酸化炉にて廃棄物を部分酸化又は熱分解して可燃性ガスを発生させ、該発生した可燃性ガスを、ろ過体を備えてなる除塵装置に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置及びその運転方法に関する。
なお、本明細書において廃棄物というときは、都市ごみ、産業廃棄物、廃プラスチック、汚泥、バイオマスおよびこれらの混合物をいう。
In the present invention, waste is partially oxidized or pyrolyzed in a partial oxidation furnace to generate a combustible gas, and the generated combustible gas is introduced into a dust removing device provided with a filter body so as to generate the combustible gas. The present invention relates to a waste treatment apparatus that removes dust and further burns, and an operation method thereof.
In the present specification, the term “waste” refers to municipal waste, industrial waste, waste plastic, sludge, biomass, and a mixture thereof.

都市ごみ、産業廃棄物あるいはバイオマス等を部分酸化させて、ガス化した後に可燃性ガスを燃焼させる廃棄物処理装置が提案されている(例えば特許文献1参照)。
特許文献1に提案された廃棄物処理装置は、図3に示すように、廃棄物が投入されると共に部分酸化用の空気が供給され、部分酸化によって可燃性ガスを発生する部分酸化炉121と、部分酸化炉121で発生した可燃性ガスの除塵を行う除塵装置122と、除塵装置122で除塵された可燃性ガスを燃焼する燃焼炉123と、燃焼したガスの熱回収を行うボイラ124が順次接続されている。
廃棄物やバイオマス等からガス化した可燃性ガスにはボイラの腐食を引き起こすダストが含まれるが、燃焼炉に供給する可燃性ガス中のダストを除塵装置で除塵することにより、ボイラの腐食を防止することができ、より高温域の熱回収ができるため、廃棄物やバイオマス等を利用して発電する効率を高めることができる。
There has been proposed a waste treatment apparatus that partially oxidizes municipal waste, industrial waste, biomass, or the like and gasifies it, and then combusts a combustible gas (for example, see Patent Document 1).
As shown in FIG. 3, a waste treatment apparatus proposed in Patent Document 1 includes a partial oxidation furnace 121 in which waste is charged and air for partial oxidation is supplied and flammable gas is generated by partial oxidation. A dust removing device 122 for removing dust from the combustible gas generated in the partial oxidation furnace 121, a combustion furnace 123 for burning the combustible gas removed by the dust removing device 122, and a boiler 124 for recovering heat of the burned gas are sequentially provided. It is connected.
Combustible gas gasified from waste, biomass, etc. contains dust that causes boiler corrosion. By removing dust in the combustible gas supplied to the combustion furnace with a dust removal device, boiler corrosion is prevented. Since heat can be recovered in a higher temperature range, the efficiency of power generation using waste, biomass, or the like can be increased.

上記構成の廃棄物処理装置における除塵装置122においては、可燃性ガスを、その温度を250〜500℃に保ちつつ、ろ過体に導入して可燃性ガス中のダスト濃度を0.1g/Nm以下まで低減するとしている。可燃性ガスの温度を上記範囲に設定した理由は、250℃未満では可燃性ガスに含まれるタールの大部分が凝縮して液状であるため除塵装置へ可燃性ガスを導入するダクト内面や除塵装置入口付近に付着して、可燃性ガスの流通に支障が生じる問題があり、500℃より高いとダスト中の塩類が溶融してろ過体の目詰まりが生じる問題があるからである。
さらに、酸素濃度5%以下のガスあるいは窒素ガスで定期的にろ過体の付着物を払い落とすこととしている。
In the dust removing device 122 in the waste processing apparatus having the above configuration, the combustible gas is introduced into the filter body while maintaining the temperature at 250 to 500 ° C., and the dust concentration in the combustible gas is 0.1 g / Nm 3. It is supposed to be reduced to the following. The reason why the temperature of the flammable gas is set in the above range is that when the temperature is less than 250 ° C., most of the tar contained in the flammable gas is condensed and in a liquid state, and therefore the inside of the duct for introducing the flammable gas into the dust remover and the dust remover This is because it adheres to the vicinity of the inlet and causes a problem in the flow of the combustible gas. When the temperature is higher than 500 ° C., the salt in the dust melts and the filter body is clogged.
Furthermore, it is supposed that the deposits on the filter body are periodically removed with a gas having an oxygen concentration of 5% or less or nitrogen gas.

上記廃棄物処理装置における除塵装置122は、例えば図4に示すように、部分酸化炉から発生する可燃性ガスの通過路となるケーシング131の内部に複数のフィルタ133を有し、該フィルタ133に付着したダストを払い落とし用パルスジェットによって払い落とす払落し装置135を備えてなるものである。そして、この払落し装置135によって定期的にフィルタ内側からパルスジェット気体を吹込み、フィルタ133に付着したダストを払い落とすのである。   For example, as shown in FIG. 4, the dust removal device 122 in the waste treatment apparatus includes a plurality of filters 133 inside a casing 131 that serves as a passage for combustible gas generated from a partial oxidation furnace. It is provided with a removing device 135 that removes adhering dust by a pulse jet for removing. Then, a pulse jet gas is periodically blown from the inside of the filter by the removing device 135, and dust attached to the filter 133 is removed.

図5は払落し装置135による払い落とし動作とフィルタ133の差圧との関係を示すグラフであり、縦軸がフィルタ差圧、横軸が時間を示している。フィルタ差圧は、例えば除塵装置入口と出口の圧力差、フィルタ入口と出口の圧力差又はフィルタ入口と大気圧のを圧力差を計測して求められる。
図5に示すように、フィルタ133にはダストが付着することで差圧が上昇するが、定期的に行われる払い落とし操作(パルスジェット)によって付着したダストが払い落とされると、一旦上昇した差圧は低下する。この払い落とし操作によって付着物を払い落とした後の安定したフィルタ差圧をベース差圧という。このベース差圧が一つ前の払い落とし操作後のベース差圧と同じ場合(図5の状態)若しくは低い場合には、ベース差圧が上昇することはなく正常な除塵運転を継続できる。
FIG. 5 is a graph showing the relationship between the drop-off operation by the drop-off device 135 and the differential pressure of the filter 133, where the vertical axis shows the filter differential pressure and the horizontal axis shows time. The filter differential pressure is obtained, for example, by measuring the pressure difference between the dust removing device inlet and the outlet, the pressure difference between the filter inlet and the outlet, or the pressure difference between the filter inlet and the atmospheric pressure.
As shown in FIG. 5, the differential pressure rises due to dust adhering to the filter 133, but once the adhering dust is removed by a regular removal operation (pulse jet), the difference once increased. The pressure drops. The stable filter differential pressure after the deposits are removed by this removal operation is called the base differential pressure. When this base differential pressure is the same as the base differential pressure after the previous removal operation (the state of FIG. 5) or low, the base differential pressure does not increase and normal dust removal operation can be continued.

しかしながら、廃棄物の種類、性状や部分酸化炉への送風バランスの関係で可燃性ガスにタール分が含まれる場合には、このタール分やダストを含むタール分がフィルタに付着して、通常の払い落とし操作では落ちにくくなる。また、廃プラスチックを部分酸化した場合には可燃性ガス中にSOOT(煤、炭素質微粒子)のサブミクロンダストが含まれ、これがフィルタ表面に付着して通常の払い落とし操作では落ちにくくフィルタ表面が閉塞される。   However, if the combustible gas contains a tar component due to the type of waste, its properties, and the balance of air flow to the partial oxidation furnace, the tar component and the tar component including dust adhere to the filter, It becomes hard to drop by the withdrawal operation. In addition, when waste plastic is partially oxidized, flammable gas contains SOOT (soot, carbonaceous fine particles) sub-micron dust that adheres to the filter surface and is difficult to remove in a normal removal operation. Blocked.

図6はタール分やサブミクロンダストが含まれる可燃性ガスの除塵を行なったときのフィルタ133の差圧の変化を示したグラフであり、縦軸がフィルタ差圧を示し、横軸が時間を示している。
図6に示されるように、可燃性ガスにタールやサブミクロンダストが含まれる場合には、ベース差圧が一つ前の払い落とし操作後のベース差圧よりも若干高くなり、時間と共に徐々に上昇していく。これはフィルタ133に付着したタールやサブミクロンダストが通常の払い落とし操作では十分に払い落とすことができず、付着分が徐々に増加してベース差圧が増加しているからである。
FIG. 6 is a graph showing a change in the differential pressure of the filter 133 when the combustible gas containing tar content and submicron dust is removed. The vertical axis indicates the filter differential pressure, and the horizontal axis indicates the time. Show.
As shown in FIG. 6, when the combustible gas contains tar or submicron dust, the base differential pressure is slightly higher than the base differential pressure after the previous removal operation, and gradually increases with time. It rises. This is because tar and submicron dust adhering to the filter 133 cannot be sufficiently removed by a normal removal operation, and the amount of adhesion gradually increases and the base differential pressure increases.

可燃性ガス中のタールの上昇は、処理廃棄物の組成の変化や部分酸化炉内への送風量と処理廃棄物のバランスの崩れなどに起因するが、いずれにしても廃棄物処理においては処理廃棄物の組成や性状が大きく変化することはよくあることであり、可燃性ガス中にタールが多く発生することは避けられない。また、廃プラスチックを部分酸化した場合には可燃性ガス中にサブミクロンダストが含まれることも避けられない。そして、タールやサブミクロンダストの付着によってフィルタの差圧が高くなると、可燃性ガスの除塵に支障が生じたり、フィルタの破損や炉内圧上昇による可燃性ガスの炉外流出などが生じたりして、運転を継続することができなくなることもあることから、タールやサブミクロンダスト付着に起因するフィルタ差圧上昇は重要な問題である。   The rise in tar in the combustible gas is caused by changes in the composition of the processing waste and the balance between the amount of air blown into the partial oxidation furnace and the processing waste. It is common for the composition and properties of waste to change greatly, and it is inevitable that a large amount of tar is generated in the combustible gas. In addition, when waste plastic is partially oxidized, it is inevitable that submicron dust is contained in the combustible gas. And if the differential pressure of the filter increases due to the adhesion of tar and submicron dust, it may interfere with dust removal of the combustible gas, or the filter may be damaged or the combustible gas may flow out of the furnace due to an increase in the furnace pressure. Since the operation may not be continued, an increase in filter differential pressure due to adhesion of tar and submicron dust is an important problem.

そこで、このような除塵装置のフィルタへのタールやサブミクロンダストの付着によるベース差圧上昇に対する対策として、除塵装置のフィルタのベース差圧が所定値を超えたときに、部分酸化炉への廃棄物の供給を停止し、可燃性ガスの発生を停止して部分酸化炉から排出されるガスの酸素濃度を高めて、除塵装置内を酸化雰囲気にすることにより、ろ過体に付着したタールやサブミクロンダスト等の付着物をガス化、燃焼させ、あるいは付着物中のタールを燃焼、ガス化することにより付着物の付着力を低下させたり、付着物を脆くさせたりして付着物を剥離させて、付着物を除去しベース差圧を低下させることが開示されている。(特許文献2参照)   Therefore, as a countermeasure against the increase in the base differential pressure due to the adhesion of tar and submicron dust to the filter of such a dust remover, when the base differential pressure of the filter of the dust remover exceeds a predetermined value, it is discarded to the partial oxidation furnace. By stopping the supply of substances, stopping the generation of combustible gas, increasing the oxygen concentration of the gas discharged from the partial oxidation furnace, and making the inside of the dust remover an oxidizing atmosphere, tar and sub The deposits such as micron dust are gasified and burned, or the tar in the deposits is burned and gasified to reduce the adherence of the deposits or make the deposits brittle, thereby peeling the deposits. Thus, it is disclosed that the deposit is removed and the base differential pressure is reduced. (See Patent Document 2)

なお、特許文献2に記載の方法においては、除塵装置内を酸化雰囲気にする方法として、部分酸化炉への廃棄物の供給を停止し、可燃性ガスの発生を停止して部分酸化炉から排出されるガスの酸素濃度を高めるものが開示されているが、除塵装置内を酸化雰囲気にするには、部分酸化炉への廃棄物の供給量を低減すること、部分酸化炉への酸化剤(空気等)の供給量を増加すること又は除塵装置内へ酸化剤を供給することにより行うこともできる。
特開2000−161638号公報 特開2006−043515号公報
In the method described in Patent Document 2, as a method of making the inside of the dust removal apparatus an oxidizing atmosphere, the supply of waste to the partial oxidation furnace is stopped, the generation of combustible gas is stopped, and the partial oxidation furnace is discharged. In order to make the inside of the dust removal apparatus an oxidizing atmosphere, reducing the amount of waste supplied to the partial oxidation furnace, oxidizing agent to the partial oxidation furnace ( It is also possible to increase the supply amount of air or the like) or to supply the oxidizing agent into the dust removing device.
JP 2000-161638 A JP 2006-043515 A

特許文献2に記載の方法のように除塵装置内を酸化雰囲気にすることにより、ろ過体に付着した付着物をガス化、燃焼もしくは剥離させ、ベース差圧を低下させることをろ過体の再生というが、このようなろ過体の再生を行う際に、下記のような問題が生じることがある。
ろ過体としてセラミックファイバーフィルタを用いた除塵装置において、ろ過体のベース差圧を下げる再生運転を行ったところ、再生運転の途中でタール等の燃焼によりろ過体部のガス温度が過剰な高温度まで上昇した時間があった。再生運転終了後ろ過体を調査してみたところ、この温度上昇のためろ過体が熱損傷を受けその強度が低下し劣化していた。
また、ろ過体として、アルミナシリケート系のセラミックファイバーフィルタを用いる場合には、フィルタ成分のSiO2成分が付着したダストに含まれるNa、K、S、Clを含む化合物と水分と反応してガラス化してフィルタの強度が低下して劣化することが考えられる。
劣化したろ過体は耐用年数が著しく短くなり、短期間で交換しなければならないという問題が生じる。
Reducing the base differential pressure by reducing the base differential pressure by gasifying, burning, or peeling the deposits adhering to the filter body by making the inside of the dust removal apparatus an oxidizing atmosphere as in the method described in Patent Document 2 is called regeneration of the filter body. However, the following problems may occur when such a filter body is regenerated.
In a dust remover using a ceramic fiber filter as a filter body, when regeneration operation was performed to reduce the base differential pressure of the filter body, the gas temperature of the filter body was excessively high due to combustion of tar or the like during the regeneration operation. There was a rise time. When the filter was examined after completion of the regeneration operation, the filter was damaged by heat due to this temperature rise, and its strength was lowered and deteriorated.
Further, when an alumina silicate ceramic fiber filter is used as the filter body, it reacts with a compound containing Na, K, S, Cl contained in the dust to which the SiO2 component of the filter component adheres and moisture to form a glass. It is conceivable that the strength of the filter decreases and deteriorates.
A deteriorated filter body has a significantly short service life, which causes a problem that it must be replaced in a short period of time.

本発明はかかる問題を解決するためになされたものであり、ろ過体を劣化させることなくろ過体の再生を行うことにより、除塵装置のろ過体のベース差圧の上昇を可及的に防止して、廃棄物処理装置の運転継続を可能にすることができる廃棄物処理装置及びその運転方法を得ることを目的としている。   The present invention has been made to solve such a problem, and by regenerating the filter body without deteriorating the filter body, it is possible to prevent the increase in the base differential pressure of the filter body of the dust removing device as much as possible. Thus, an object of the present invention is to obtain a waste treatment apparatus and a method for operating the waste treatment apparatus capable of continuing the operation of the waste treatment apparatus.

発明者は上記課題を解決するために、ろ過体としてセラミックファイバーフィルタを用いた除塵装置で、ろ過体のベース差圧を下げる再生運転中にろ過体部の温度が過剰に上昇する現象を解析した。
図7はろ過体の再生運転中のろ過体部温度の時間変化とろ過体のベース差圧の時間変化を示すグラフであり、横軸が時間(分)を示し、縦軸がろ過体のベース差圧(KPa)、ろ過体上流側温度Ta(℃)及びろ過体部温度Tb(℃)を示す。
以下、図7に基づいて行なった解析結果について説明する。
In order to solve the above problems, the inventor analyzed a phenomenon in which the temperature of the filter body excessively increased during a regeneration operation for reducing the base differential pressure of the filter body with a dust removing device using a ceramic fiber filter as the filter body. .
FIG. 7 is a graph showing the change over time in the temperature of the filter body during the regeneration operation of the filter body and the change over time in the base differential pressure of the filter body. The horizontal axis shows time (minutes) and the vertical axis shows the base of the filter body. A differential pressure (KPa), a filter upstream side temperature Ta (° C.), and a filter body temperature Tb (° C.) are shown.
Hereinafter, the analysis result performed based on FIG. 7 will be described.

除塵運転を行っていると、ろ過体のベース差圧が上昇して所定値を超えたため、時刻αでろ過体の再生運転を開始した。
時刻αから部分酸化炉へ供給する酸化剤(空気)供給量を変えずに部分酸化炉への廃棄物の供給量を徐々に低減し、部分酸化炉で発生する可燃性ガス発生量を低減し除塵装置へ導入されるガスの酸素濃度を増加させ除塵装置内を酸化雰囲気にしたところ、ろ過体に付着した付着物を緩やかに除去でき、ろ過体のベース差圧が低減した。
During the dust removal operation, since the base differential pressure of the filter body increased and exceeded a predetermined value, the filter regeneration operation was started at time α.
The amount of waste supplied to the partial oxidation furnace is gradually reduced without changing the amount of oxidant (air) supplied to the partial oxidation furnace from time α, and the amount of combustible gas generated in the partial oxidation furnace is reduced. When the oxygen concentration of the gas introduced into the dust remover was increased to create an oxidizing atmosphere in the dust remover, the deposits adhering to the filter could be removed gently, and the base differential pressure of the filter was reduced.

ろ過体のベース差圧を好ましい差圧までさらに低減させるために、時刻βで部分酸化炉への廃棄物の供給を停止し、可燃性ガスの発生を停止し、他方、部分酸化炉に供給される酸化剤(空気)はそのまま除塵装置に供給した。すると、ろ過体部温度(Tb)が800℃まで上昇した。また、ろ過体部温度Tbとろ過体上流側温度Taとを比べると、時刻βまではTbはTaより低かったが、時刻βを過ぎるとTbがTaより高くなり、温度差(ΔT=Tb−Ta)が300℃程度にまで大きくなった。このろ過体部温度Tbが過剰に上昇した期間にろ過体は熱損傷を受け強度が低下して劣化したものと考えられる。
もっとも、ろ過体の再生運転ではろ過体表面に付着したダスト含有タールやサブミクロンダストを燃焼、熱分解・ガス化させるが、このろ過体表面付着物の燃焼等だけがろ過体の過剰な温度上昇の原因であると考えることができない。
In order to further reduce the base differential pressure of the filter body to the preferred differential pressure, the supply of waste to the partial oxidation furnace is stopped at time β, the generation of combustible gas is stopped, and the supply to the partial oxidation furnace is performed. The oxidant (air) was supplied to the dust removing device as it was. Then, the filter body temperature (Tb) rose to 800 ° C. Further, when the filter body temperature Tb is compared with the filter upstream temperature Ta, Tb was lower than Ta until time β, but after time β, Tb became higher than Ta, and the temperature difference (ΔT = Tb− Ta) increased to about 300 ° C. It is considered that during the period when the filter body temperature Tb increased excessively, the filter body was damaged by heat and deteriorated due to thermal damage.
However, the regeneration operation of the filter body burns, pyrolyzes and gasifies dust-containing tar and submicron dust adhering to the surface of the filter body, but only the combustion of this filter surface surface deposit causes an excessive temperature rise of the filter body. Cannot be considered the cause of

そこで、除塵運転中にろ過体部へのガスの導入を止め、自然冷却させた後、ろ過体断面を観察したところ、セラミックファイバーフィルタの繊維が黒く変色していた。ろ過体断面の成分分析を行ったところ、相当量の炭素質が含有されていた。除塵運転前のろ過体からは炭素質は検出されていなかったことから、除塵運転後に検出された炭素質は、可燃ガス中のタール分がろ過体を通過する際に、繊維と衝突し繊維に浸透したものと考えられる。そしてこのろ過体の繊維に浸透したタール分が燃焼したことと、ろ過体表面付着物の燃焼により、ろ過体部の温度上昇が起こったと考えられる。   Therefore, after the introduction of gas into the filter body was stopped during the dust removal operation and the filter was naturally cooled, the cross section of the filter body was observed. As a result, the fibers of the ceramic fiber filter turned black. When the component analysis of the filter body cross section was performed, a considerable amount of carbonaceous matter was contained. Since carbon was not detected from the filter before the dust removal operation, the carbon detected after the dust removal operation collides with the fiber when the tar content in the combustible gas passes through the filter. It is thought that it penetrated. And it is thought that the temperature rise of the filter body part occurred by burning of the tar content which permeated the fiber of this filter body, and combustion of the filter body surface deposit.

以上のことから、次のような知見を得た。すなわち、ろ過体のベース差圧が上昇する原因は、ダスト含有タールとサブミクロンダストがろ過体表面に付着することである。これらをガス化、燃焼もしくは剥離してろ過体を再生するために除塵装置内を酸化雰囲気にすると、ろ過体表面に付着したタール分が燃焼するとともにろ過体内部に浸透した炭素質が燃焼して、ろ過体部が過剰に高温になりろ過体を劣化させるという現象が生じている。
この新たに見出した現象に関する知見に基づき、この現象に対する対策を検討して、本発明を導き出したものである。
From the above, the following knowledge was obtained. That is, the cause that the base differential pressure of the filter increases is that dust-containing tar and submicron dust adhere to the filter surface. When these are gasified, burned or peeled to regenerate the filter body and the inside of the dust remover is made into an oxidizing atmosphere, the tar adhering to the surface of the filter body burns and the carbon that penetrates the filter body burns. The phenomenon that a filter body part becomes high temperature excessively and a filter body deteriorates has arisen.
Based on the knowledge about the newly found phenomenon, measures against this phenomenon are studied and the present invention is derived.

(1)本発明に係る廃棄物処理装置の運転方法は、部分酸化炉にて廃棄物から可燃性ガスを発生させ、該発生した可燃性ガスをろ過体を備えてなる除塵装置に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置の運転方法において、前記除塵装置のベース差圧が所定値を超えたとき又はベース差圧の増加率が所定値を超えたときに、前記除塵装置内を酸化雰囲気にすることにより、前記ろ過体に付着した付着物をガス化、燃焼もしくは剥離させることにより前記ろ過体の再生を行なうろ過体再生工程を有し、該ろ過体再生工程において、前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差、前記ろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、下記(A)〜(F)の操作のうちの少なくとも一つを行うことにより前記除塵装置に導く可燃性ガスの酸素濃度を低減することを特徴とするものである。
(A)前記部分酸化炉への廃棄物供給を停止していた場合においてこれを再開する
(B)前記部分酸化炉への廃棄物供給量を増加する
(C)前記部分酸化炉への酸化剤供給量を低減する
(D)前記部分酸化炉における空気比を低減する
(E)前記除塵装置への酸化剤供給量を低減する
(F)前記除塵装置への酸化剤供給を停止する
(1) A method for operating a waste treatment apparatus according to the present invention is to generate a combustible gas from waste in a partial oxidation furnace, and introduce the generated combustible gas into a dust removing device including a filter. In a method of operating a waste treatment apparatus that removes dust in the combustible gas and further burns, when the base differential pressure of the dust remover exceeds a predetermined value or the rate of increase of the base differential pressure exceeds a predetermined value A filter body regeneration step for regenerating the filter body by gasifying, burning, or peeling off the deposits attached to the filter body by making the inside of the dust removing device an oxidizing atmosphere, In the filter regeneration process, any of the temperature of the filter, the temperature downstream of the filter, the temperature difference between the upstream of the filter and the filter, and the temperature difference between the upstream and downstream of the filter And the detected value exceeds the specified value. When the time change amount of the detected value exceeds a predetermined value, the oxygen concentration of the combustible gas that is guided to the dust removing device by performing at least one of the following operations (A) to (F): It is characterized by reducing.
(A) When the supply of waste to the partial oxidation furnace has been stopped, this is resumed. (B) The amount of waste supply to the partial oxidation furnace is increased. (C) The oxidant to the partial oxidation furnace Reduce the supply amount (D) Reduce the air ratio in the partial oxidation furnace (E) Reduce the oxidant supply amount to the dust removal device (F) Stop the oxidant supply to the dust removal device

なお、部分酸化炉にて廃棄物から可燃性ガスを発生させる方法としては、部分酸化、熱分解、可燃性ガス化及び乾留によるものがある。
また、ダスト類を除去した可燃性ガスは燃焼されることで利用されるが、具体的には二次燃焼炉で燃焼し、その廃熱をボイラ等に利用したり、あるいはガスエンジン、ガスタービンの燃料として利用したりされる。
In addition, as a method of generating combustible gas from waste in a partial oxidation furnace, there are methods by partial oxidation, thermal decomposition, combustible gasification, and dry distillation.
In addition, combustible gas from which dust has been removed is used by being burned. Specifically, it is burned in a secondary combustion furnace, and its waste heat is used in boilers, etc., or gas engines, gas turbines are used. Or used as fuel.

なお、本発明に係る廃棄物処理装置の運転方法においては、ろ過体再生工程を終了すると定常運転(除塵運転)に戻る。ろ過体再生工程を終了するかどうかは、ベース差圧が所定値以下になったこと又はベース差圧の増加率が所定値以下になったことによって判断すればよい。   In the operation method of the waste treatment apparatus according to the present invention, when the filter regeneration process is completed, the operation returns to the steady operation (dust removal operation). Whether or not to end the filter regeneration process may be determined based on whether the base differential pressure has become a predetermined value or less or the increase rate of the base differential pressure has become a predetermined value or less.

(2)本発明に係る廃棄物処理装置は、部分酸化炉にて廃棄物から可燃性ガスを発生させ、該発生した可燃性ガスをろ過体を備えてなる除塵装置に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置であって、前記除塵装置の入口と出口の差圧を検知する差圧検知手段と、ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差、前記ろ過体の上流側と下流側の温度差のうちいずれかを検知する温度検知手段と、前記差圧検知手段で検知されたベース差圧と、前記温度検知手段で検知された前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかに基づいて除塵装置に導入されるガスの酸素濃度を制御する制御手段と、を備え、
該制御手段は、前記除塵装置のベース差圧が所定値を超えたとき又はベース差圧の増加率が所定値を超えたときに、前記除塵装置内を酸化雰囲気にするために下記の(a)〜(f)の操作の少なくとも一つの操作を行なうろ過体再生運転制御を行い、前記ろ過体再生運転中において、前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかの検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、下記(A)〜(F)の操作のうちの少なくとも一つの操作を行うろ過体熱損傷防止運転制御を行なうことを特徴とする廃棄物処理装置。
(a)廃棄物供給装置による部分酸化炉1への廃棄物供給を停止する。
(b)廃棄物供給装置による部分酸化炉1への廃棄物供給量を低減する。
(c)部分酸化炉1へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を増加する。
(d)部分酸化炉1における空気比を調整する空気比調整装置による空気比を増加する。
(e)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給を開始する。
(f)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給量を増加する。
(A)部分酸化炉1へ廃棄物を供給する廃棄物供給装置による廃棄物の供給を停止していた場合においては、廃棄物供給装置による部分酸化炉1への廃棄物の供給を再開する。
(B)部分酸化炉1へ廃棄物を供給する廃棄物供給装置による廃棄物の供給量を増加する。
(C)部分酸化炉1へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を低減する。
(D)部分酸化炉1における空気比を調整する空気比調整装置による部分酸化炉1に供給する空気比を低減する。
(E)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給量を低減する。
(F)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給を停止する。
(2) A waste treatment apparatus according to the present invention generates a combustible gas from waste in a partial oxidation furnace, and introduces the generated combustible gas into a dust removal apparatus including a filter body so as to generate the combustible gas. A waste treatment apparatus for removing dust in gas and further combusting, a differential pressure detecting means for detecting a differential pressure between an inlet and an outlet of the dust removing apparatus, a temperature of the filter body, and a downstream side of the filter body Temperature detecting means for detecting any one of the temperature difference between the upstream side of the filter body and the temperature difference between the filter body, the temperature difference between the upstream side and the downstream side of the filter body, and the base detected by the differential pressure detecting means Differential pressure, temperature of the filter body detected by the temperature detection means, temperature downstream of the filter body, temperature difference between the upstream side of the filter body and the filter body, and upstream side and downstream side of the filter body The oxygen concentration of the gas introduced into the dust remover is controlled based on one of the temperature differences. And a control unit that, the,
When the base differential pressure of the dust remover exceeds a predetermined value or when the increase rate of the base differential pressure exceeds a predetermined value, the control means is configured to (a) ) To (f) for performing the filter regeneration operation control, and during the filter regeneration operation, the temperature of the filter, the temperature downstream of the filter, and the upstream of the filter When the detected value of the temperature difference between the side and the filter body and the temperature difference between the upstream side and the downstream side of the filter body exceeds a predetermined value, or when the time change amount of the detected value exceeds a predetermined value A waste disposal apparatus that performs filter body heat damage prevention operation control for performing at least one of the following operations (A) to (F).
(A) The waste supply to the partial oxidation furnace 1 by the waste supply device is stopped.
(B) The amount of waste supplied to the partial oxidation furnace 1 by the waste supply device is reduced.
(C) The amount of oxidant supplied by the oxidant supply device that supplies oxidant to the partial oxidation furnace 1 is increased.
(D) The air ratio by the air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace 1 is increased.
(E) Oxidant supply to the dust removal apparatus 2 by the oxidant supply apparatus that supplies the oxidant to the dust removal apparatus 2 is started.
(F) The amount of oxidant supplied to the dust removal device 2 by the oxidant supply device that supplies the oxidant to the dust removal device 2 is increased.
(A) When the supply of waste by the waste supply apparatus that supplies waste to the partial oxidation furnace 1 is stopped, the supply of waste to the partial oxidation furnace 1 by the waste supply apparatus is resumed.
(B) Increase the amount of waste supplied by the waste supply device for supplying waste to the partial oxidation furnace 1.
(C) The amount of oxidant supplied by the oxidant supply device that supplies the oxidant to the partial oxidation furnace 1 is reduced.
(D) The air ratio supplied to the partial oxidation furnace 1 by the air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace 1 is reduced.
(E) The amount of oxidant supplied to the dust removing device 2 by the oxidant supplying device that supplies the oxidizing agent to the dust removing device 2 is reduced.
(F) The supply of the oxidant to the dust removal device 2 by the oxidant supply device that supplies the oxidant to the dust removal device 2 is stopped.

本発明においては、ろ過体に付着した付着物をガス化、燃焼もしくは剥離させることにより前記ろ過体の再生を行なうろ過体再生工程において、前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、除塵装置に導く可燃性ガスの酸素濃度を低減するようにしたので、ろ過体の熱損傷による劣化を防止して、通常の払い落し操作では払い落とせないタールやサブミクロンダスト等のろ過体の付着物をガス化・燃焼等により除去することができるろ過体の再生運転を行うことができ、ろ過体のベース差圧の上昇が抑制され、廃棄物処理装置の運転継続を可能にすることができる。   In the present invention, in the filter regeneration process for regenerating the filter by gasifying, burning, or separating the deposits attached to the filter, the temperature of the filter, the temperature downstream of the filter, Detecting either the temperature difference between the upstream side of the filter body and the filter body and the temperature difference between the upstream side and the downstream side of the filter body, and when the detected value exceeds a predetermined value, or the time of the detected value When the amount of change exceeds the specified value, the oxygen concentration of the flammable gas that leads to the dust removal device has been reduced, preventing deterioration due to thermal damage to the filter body, and tar that cannot be removed by normal wiping operations. The filter can be regenerated by removing the deposits of the filter body such as gas and submicron dust by gasification and combustion, etc., and the increase in the base differential pressure of the filter body is suppressed, and the waste treatment device Can continue operation It can be.

[実施の形態]
図1は本実施の形態の運転方法に用いる廃棄物処理装置の構成の説明図である。この廃棄物処理装置は、図1に示すように、廃棄物が投入されると共に酸化用の空気が供給され、部分酸化によって可燃性ガスを発生する部分酸化炉1と、部分酸化炉1で発生した可燃性ガスを導入してろ過するろ過体を備えてなる除塵装置2と、除塵装置2で除塵された可燃性ガスを燃焼しさらに燃焼したガスの熱回収を行うボイラを備えたボイラ付燃焼炉3と、前記除塵装置2の入口と出口の差圧を検知する差圧検知手段5と、ろ過体の上流側の温度を検知する上流側温度検知手段7と、ろ過体の温度を検知するろ過体温度検知手段9と、前記差圧検知手段5で検知されたベース差圧と、上流側温度検知手段7で検知された上流側温度と、ろ過体温度検知手段9で検知されたろ過体温度とに基づいて除塵装置2に導入されるガスの酸素濃度を制御する制御手段11と、を備えている。
[Embodiment]
FIG. 1 is an explanatory diagram of a configuration of a waste treatment apparatus used in the operation method of the present embodiment. As shown in FIG. 1, this waste treatment apparatus is generated in a partial oxidation furnace 1 that generates waste gas and is supplied with oxidation air and generates a combustible gas by partial oxidation. Combustion with a boiler equipped with a dust removing device 2 comprising a filter for introducing and filtering the combustible gas, and a boiler for burning the combustible gas removed by the dust removing device 2 and recovering the heat of the burned gas A furnace 3, a differential pressure detecting means 5 for detecting the differential pressure between the inlet and outlet of the dust removing device 2, an upstream temperature detecting means 7 for detecting the upstream temperature of the filter body, and the temperature of the filter body are detected. Filter body temperature detection means 9, base differential pressure detected by the differential pressure detection means 5, upstream temperature detected by the upstream temperature detection means 7, and filter body detected by the filter body temperature detection means 9 The oxygen concentration of the gas introduced into the dust removing device 2 based on the temperature And a control means 11 for controlling the, and a.

上記構成の廃棄物処理装置において、廃棄物は部分酸化炉1にて炉内温度500〜800℃、空気比0.15〜0.9程度の還元雰囲気で部分酸化された後、生成された可燃性ガスは250〜500℃にて除塵装置2に導入されて除塵され、さらにボイラ付燃焼炉3に送られ、ここで完全燃焼してボイラで燃焼ガスから熱回収される。
以下、各装置、手段について詳細に説明する。
In the waste treatment apparatus configured as described above, the waste is partially oxidized in the partial oxidation furnace 1 in a reducing atmosphere having a furnace temperature of 500 to 800 ° C. and an air ratio of about 0.15 to 0.9, and then the generated combustible gas is 250. It is introduced into the dust removing device 2 at ˜500 ° C. to remove dust, and further sent to the boiler-equipped combustion furnace 3, where it is completely burned and heat is recovered from the combustion gas in the boiler.
Hereinafter, each device and means will be described in detail.

<差圧検知手段>
差圧検出手段5は、除塵装置2の入口と出口の差圧を検知するものである。除塵装置2の入口と出口の差圧は、例えばろ過体の入口と出口の圧力差、除塵装置入口と出口の圧力差又はろ過体入口と大気圧のを圧力差を計測して求められる。
<Differential pressure detection means>
The differential pressure detection means 5 detects the differential pressure between the inlet and the outlet of the dust removing device 2. The differential pressure between the inlet and the outlet of the dust removing device 2 is obtained, for example, by measuring the pressure difference between the inlet and the outlet of the filter, the pressure difference between the dust collector and the outlet, or the pressure difference between the filter inlet and the atmospheric pressure.

<上流側温度検知手段>
上流側温度検知手段7は、ろ過体の上流側の温度を検知する。ろ過体の上流側の温度とは、例えば部分酸化炉出口のガス温度、部分酸化炉1と除塵装置2をつなぐダクト内のガス温度、ろ過体に導入される前の除塵装置入口のガス温度をいう。
<ろ過体温度検出手段>
ろ過体温度検出手段9は、ろ過体の温度を検知する。なお、ろ過体の温度を検知する場合には、ろ過体そのものの温度を検知してもよいし、あるいはろ過体の輻射を受ける除塵装置2の部位の温度を検知してこの温度で代替してもよい。
<Upstream temperature detection means>
The upstream temperature detection means 7 detects the temperature on the upstream side of the filter body. The temperature on the upstream side of the filter body means, for example, the gas temperature at the outlet of the partial oxidation furnace, the gas temperature in the duct connecting the partial oxidation furnace 1 and the dust removal device 2, and the gas temperature at the inlet of the dust removal device before being introduced into the filter body. Say.
<Filter body temperature detection means>
The filter body temperature detecting means 9 detects the temperature of the filter body. When the temperature of the filter body is detected, the temperature of the filter body itself may be detected, or the temperature of the part of the dust removing device 2 that receives the radiation of the filter body is detected and replaced with this temperature. Also good.

<制御手段>
制御手段11は、差圧検知手段5で検知されたベース差圧と、上流側温度検知手段7で検知された上流側温度と、ろ過体温度検知手段9で検知されたろ過体温度とに基づいて除塵装置2に導入されるガスの酸素濃度を制御する。
上流側温度検知手段7で検知された上流側温度計測値と、ろ過体温度検知手段9で検知されたろ過体温度とに基づくとは、より具体的には、例えば上流側温度検知手段7及びろ過体温度検知手段9で検知された温度計測値からろ過体の上流側とろ過体の温度差を算出し、この温度差に基づくことをいう。
もっとも、上流側とろ過体の温度差の代わりに、ろ過体の温度、ろ過体の下流側の温度又はろ過体の上流側とろ過体の下流側の温度差の検知値に基づいて制御してもよい。
ろ過体の下流側の温度とは、例えばろ過体から排出されるガス温度、除塵装置出口のガス温度をいう。
<Control means>
The control means 11 is based on the base differential pressure detected by the differential pressure detection means 5, the upstream temperature detected by the upstream temperature detection means 7, and the filter body temperature detected by the filter body temperature detection means 9. Thus, the oxygen concentration of the gas introduced into the dust removing device 2 is controlled.
More specifically, based on the upstream temperature measurement value detected by the upstream temperature detection means 7 and the filter body temperature detected by the filter body temperature detection means 9, for example, the upstream temperature detection means 7 and It means that the temperature difference between the upstream side of the filter body and the filter body is calculated from the temperature measurement value detected by the filter body temperature detection means 9 and is based on this temperature difference.
However, instead of the temperature difference between the upstream side and the filter body, control based on the detected value of the temperature of the filter body, the temperature downstream of the filter body, or the temperature difference between the upstream side of the filter body and the downstream side of the filter body. Also good.
The temperature on the downstream side of the filter body means, for example, the gas temperature discharged from the filter body and the gas temperature at the outlet of the dust remover.

ろ過体の上流側とろ過体の温度差又はろ過体の上流側と下流側の温度差に基づく制御を行うと、他の温度検知による制御に比べて、ろ過体でのタール燃焼等による温度上昇をより正確に検知することができる。なぜなら、ろ過体温度、ろ過体下流側温度は部分酸化炉1から導かれるガス温度が高くなったためにそれらの温度が高くなることもあるが、上記温度差をとることで、部分酸化炉1から導かれるガス温度が高くなった場合の温度上昇による影響を除いて、本来検出しようとするろ過体でのタール燃焼等による温度上昇を確実に検出できるからである。   When control is performed based on the temperature difference between the upstream side of the filter body and the filter body or the temperature difference between the upstream side and downstream side of the filter body, the temperature rises due to tar combustion, etc. in the filter body, compared to other temperature detection controls. Can be detected more accurately. This is because the temperature of the filter body and the downstream temperature of the filter body may be increased because the gas temperature led from the partial oxidation furnace 1 is increased, but by taking the above temperature difference, the temperature from the partial oxidation furnace 1 is increased. This is because the temperature rise due to tar combustion or the like in the filter body to be originally detected can be reliably detected except for the influence due to the temperature rise when the temperature of the introduced gas becomes high.

制御手段11による酸素濃度の制御とは、除塵装置2に導くガスの酸素濃度を除塵運転時に比べて増加させるための制御や、除塵装置2に導入されるガスの酸素濃度を低減するための制御を含み、各制御は各機器の操作を制御することによって行なわれる。
例えば、除塵運転時において除塵装置2内を酸化雰囲気にするために除塵装置2に導入される可燃性ガスの酸素濃度を増加させる(ろ過体再生運転をする)には、下記の(a)〜(f)操作の少なくとも一つを行えばよい。
(a)廃棄物供給装置による部分酸化炉1への廃棄物供給を停止する。
(b)廃棄物供給装置による部分酸化炉1への廃棄物供給量を低減する。
(c)部分酸化炉1へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を増加する。
(d)部分酸化炉1における空気比を調整する空気比調整装置による空気比を増加する。空気比とは、[部分酸化のため実際に供給する空気量]/[廃棄物の燃焼(完全酸化)に必要な理論空気量]をいう。
(e)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給を開始する。
(f)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給量を増加する。
The control of the oxygen concentration by the control means 11 is a control for increasing the oxygen concentration of the gas guided to the dust removal device 2 as compared with the dust removal operation, or a control for reducing the oxygen concentration of the gas introduced into the dust removal device 2. Each control is performed by controlling the operation of each device.
For example, the following (a) to (a) to increase the oxygen concentration of the combustible gas introduced into the dust removing device 2 in order to make the dust removing device 2 in an oxidizing atmosphere during the dust removing operation (perform the filter regeneration operation). (F) At least one of the operations may be performed.
(A) The waste supply to the partial oxidation furnace 1 by the waste supply device is stopped.
(B) The amount of waste supplied to the partial oxidation furnace 1 by the waste supply device is reduced.
(C) The amount of oxidant supplied by the oxidant supply device that supplies oxidant to the partial oxidation furnace 1 is increased.
(D) The air ratio by the air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace 1 is increased. The air ratio means [the amount of air actually supplied for partial oxidation] / [theoretical air amount necessary for combustion (complete oxidation) of waste].
(E) Oxidant supply to the dust removal apparatus 2 by the oxidant supply apparatus that supplies the oxidant to the dust removal apparatus 2 is started.
(F) The amount of oxidant supplied to the dust removal device 2 by the oxidant supply device that supplies the oxidant to the dust removal device 2 is increased.

また、ろ過体再生運転中において除塵装置2に導入されるガスの酸素濃度を低減するには、以下に示す(A)〜(F)の少なくとも一つの制御を行なう。
(A)部分酸化炉1へ廃棄物を供給する廃棄物供給装置による廃棄物の供給を停止していた場合においては、廃棄物供給装置による部分酸化炉1への廃棄物の供給を再開する。
(B)部分酸化炉1へ廃棄物を供給する廃棄物供給装置による廃棄物の供給量を増加する。
(C)部分酸化炉1へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を低減する。
(D)部分酸化炉1における空気比を調整する空気比調整装置による部分酸化炉1に供給する空気比を低減する。
(E)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給量を低減する。
(F)除塵装置2に酸化剤を供給する酸化剤供給装置による除塵装置2への酸化剤供給を停止する。
Moreover, in order to reduce the oxygen concentration of the gas introduced into the dust removing device 2 during the filter regeneration operation, at least one of the following controls (A) to (F) is performed.
(A) When the supply of waste by the waste supply apparatus that supplies waste to the partial oxidation furnace 1 is stopped, the supply of waste to the partial oxidation furnace 1 by the waste supply apparatus is resumed.
(B) Increase the amount of waste supplied by the waste supply device for supplying waste to the partial oxidation furnace 1.
(C) The amount of oxidant supplied by the oxidant supply device that supplies the oxidant to the partial oxidation furnace 1 is reduced.
(D) The air ratio supplied to the partial oxidation furnace 1 by the air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace 1 is reduced.
(E) The amount of oxidant supplied to the dust removing device 2 by the oxidant supplying device that supplies the oxidizing agent to the dust removing device 2 is reduced.
(F) The supply of the oxidant to the dust removal device 2 by the oxidant supply device that supplies the oxidant to the dust removal device 2 is stopped.

次に、上記のように構成された廃棄物処理装置の運転方法について説明する。
本実施の形態に係る廃棄物処理装置の運転方法は、部分酸化炉1にて廃棄物から可燃性ガスを発生させ、該発生した可燃性ガスをろ過体を備えてなる除塵装置2に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置の運転方法であって、前記除塵装置2のベース差圧が所定値を超えたとき又はベース差圧の増加率が所定値を超えたときにろ過体再生運転を行い、このろ過体再生運転中において、ろ過体の温度、ろ過体の下流側の温度、ろ過体の上流側とろ過体の温度差及びろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、除塵装置2に導く可燃性ガスの酸素濃度を低減してろ過体の熱損傷を防止するろ過体熱損傷防止運転を行なうというものである。
以下、ろ過体再生運程とろ過体熱損傷防止運転について説明する。
Next, an operation method of the waste treatment apparatus configured as described above will be described.
In the operation method of the waste treatment apparatus according to the present embodiment, a combustible gas is generated from waste in the partial oxidation furnace 1, and the generated combustible gas is introduced into a dust removing apparatus 2 including a filter body. An operation method of a waste treatment apparatus that removes dust in the combustible gas and further burns, wherein the base differential pressure of the dust removal apparatus 2 exceeds a predetermined value or the rate of increase of the base differential pressure is When the predetermined value is exceeded, the filter body regeneration operation is performed. During this filter body regeneration operation, the temperature of the filter body, the temperature downstream of the filter body, the temperature difference between the upstream side of the filter body and the filter body, and the filter body Combustibility to be detected when the temperature difference between the upstream side and the downstream side is detected and the detected value exceeds a predetermined value, or when the amount of time change of the detected value exceeds a predetermined value. Filter body heat damage prevention that reduces oxygen concentration of gas and prevents filter body heat damage Is that conduct rolling.
Hereinafter, the filter regeneration operation and the filter heat damage prevention operation will be described.

<ろ過体再生運転>
ろ過体再生運転は、ろ過体のベース差圧が所定値を超えた時、又はベース差圧の時間あたりの増加率が所定値を超えた時に行なう運転であって、除塵装置2内を酸化雰囲気にしてろ過体の再生操作を行なうものである。
除塵装置2内を酸化雰囲気にすることにより、ろ過体に付着したタールやサブミクロンダスト等の付着物をガス化、燃焼させ、あるいは付着物中のタールを燃焼、ガス化することにより付着物の付着力を低下させたり、付着物を脆くさせたりして付着物を剥離させて、ろ過体から付着物を除去してベース差圧を低下させる。
除塵装置2内を酸化雰囲気にするには、上述した(a)〜(f)操作の少なくとも一つを行い除塵装置2に導くガスの酸素濃度を除塵運転時に比べて増加させる。
<Filter body regeneration operation>
The filter regeneration operation is an operation performed when the base differential pressure of the filter exceeds a predetermined value or when the rate of increase of the base differential pressure per time exceeds a predetermined value, and the inside of the dust removing device 2 is oxidized in an atmosphere. Thus, the filter body is regenerated.
By making the inside of the dust removing device 2 an oxidizing atmosphere, the deposits such as tar and sub-micron dust adhered to the filter body are gasified and burned, or the tar in the deposits is burned and gasified to thereby remove the deposits. The adhesion force is reduced or the deposit is made brittle, the deposit is peeled off, and the deposit is removed from the filter body to reduce the base differential pressure.
In order to make the inside of the dust remover 2 in an oxidizing atmosphere, at least one of the above-described operations (a) to (f) is performed to increase the oxygen concentration of the gas led to the dust remover 2 as compared with the dust removal operation.

ろ過体再生運転時に除塵装置2に導く可燃性ガスの酸素濃度の好ましい範囲は5〜12%であり、その理由は以下に示す通りである。
酸素濃度が5%より低いと、ろ過体に付着したタール、サブミクロンダストをガス化、燃焼させる反応が生じないため、これらの付着物を除去できない。
他方、除塵装置2に導くガスの酸素濃度が12%より高いと、ろ過体に付着したタール、サブミクロンダストのガス化、燃焼反応が激しく生じろ過体の温度が過剰に高くなり、以下に説明するろ過体熱損傷防止のための制御を頻繁に行う必要があり、その結果、再生運転に長時間を要することとなり、部分酸化炉1の運転効率が低下する。
The preferable range of the oxygen concentration of the combustible gas led to the dust removing device 2 during the filter regeneration operation is 5 to 12%, and the reason is as follows.
When the oxygen concentration is lower than 5%, the reaction of gasifying and burning tar and submicron dust adhering to the filter body does not occur, so these adhering substances cannot be removed.
On the other hand, if the oxygen concentration of the gas leading to the dust removing device 2 is higher than 12%, tar and submicron dust gasified on the filter body and combustion reaction will occur vigorously, and the temperature of the filter body will become excessively high. Therefore, it is necessary to frequently perform control for preventing thermal damage to the filter body. As a result, a long time is required for the regeneration operation, and the operation efficiency of the partial oxidation furnace 1 is lowered.

<ろ過体熱損傷防止運転>
ろ過体熱損傷防止運転は、ろ過体再生運転中において、ろ過体の温度、ろ過体の下流側の温度、ろ過体の上流側とろ過体の温度差及びろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、除塵装置2に導く可燃性ガスの酸素濃度を低減してろ過体の熱損傷を防止する運転である。
除塵装置2に導く可燃性ガスの酸素濃度を低減するには、制御装置によって上記の(A)〜(F)のうちの少なくともいずれか一つの制御を行なう。
除塵装置2に導くガスの酸素濃度を低減することにより、ろ過体の表面に付着したタール、サブミクロンダスト、ろ過体の内面に浸透した炭素質の燃焼、ガス化を制御して、ろ過体が過剰に高温度になることを抑制する。
なお、ろ過体としてアルミナシリケート系セラミックファイバーフィルタを用いる場合、ろ過体の温度又はろ過体の下流側の温度を650℃未満に抑制することが好ましい。このようにろ過体の温度上昇を抑制することによりフィルタ成分がダストに含まれるNa、K、S、Clを含む化合物と水分と反応してガラス化してフィルタの強度が低下して劣化することを防ぐことができる。
また、ろ過体としてアルミナシリケート系セラミックファイバーフィルタを用いる場合、ろ過体の上流側とろ過体の温度差又はろ過体の上流側と下流側の温度差を、ろ過体の上流側の温度が250〜400℃の場合は250度未満に、ろ過体の上流側の温度が400〜500℃の場合は150度未満に抑制することが好ましい。
<Filter body heat damage prevention operation>
The filter heat damage prevention operation is performed during the filter regeneration operation, the temperature of the filter body, the temperature downstream of the filter body, the temperature difference between the upstream side of the filter body and the filter body, and the temperature upstream and downstream of the filter body. When any one of the differences is detected and the detected value exceeds a predetermined value, or when the amount of time change of the detected value exceeds a predetermined value, the oxygen concentration of the combustible gas led to the dust removing device 2 is reduced. This operation prevents thermal damage to the filter body.
In order to reduce the oxygen concentration of the combustible gas guided to the dust removing device 2, at least one of the above (A) to (F) is controlled by the control device.
By reducing the oxygen concentration of the gas leading to the dust removing device 2, the filter body is controlled by controlling the combustion and gasification of tar, submicron dust, carbonaceous material that has penetrated the inner surface of the filter body, and gasification. Suppresses excessively high temperatures.
In addition, when using an alumina silicate type | system | group ceramic fiber filter as a filter body, it is preferable to suppress the temperature of a filter body, or the temperature of the downstream of a filter body to less than 650 degreeC. By suppressing the temperature rise of the filter body in this way, the filter component reacts with the compound containing Na, K, S, and Cl contained in the dust and moisture to vitrify, and the strength of the filter decreases and deteriorates. Can be prevented.
When an alumina silicate ceramic fiber filter is used as the filter body, the temperature difference between the upstream side of the filter body and the filter body, or the temperature difference between the upstream side and the downstream side of the filter body, the temperature on the upstream side of the filter body is 250 to In the case of 400 degreeC, it is preferable to suppress to less than 250 degree | times, and when the temperature of the upstream of a filter body is 400-500 degreeC, it is suppressed to less than 150 degree | times.

[実施例]
図2は本実施の形態に係る廃棄物処理装置の運転方法を行ったときの除塵装置2のろ過体ベース差圧の変化と、ろ過体の上流側とろ過体部の温度変化を示したグラフであり、縦軸がろ過体ベース差圧(Kpa)と、ろ過体上流側の温度Ta(℃)、ろ過体部の温度Tb(℃)を示し、横軸が時間(分)を示している。
[Example]
FIG. 2 is a graph showing changes in the filter base differential pressure of the dust removing device 2 and the temperature changes of the upstream side of the filter body and the filter body portion when the operation method of the waste treatment apparatus according to the present embodiment is performed. The vertical axis indicates the filter base differential pressure (Kpa), the temperature Ta (° C.) upstream of the filter body, the temperature Tb (° C.) of the filter body, and the horizontal axis indicates time (minutes). .

図2に示す例においては、部分酸化炉1に供給する酸化剤として空気を用い、除塵装置2に導く可燃性ガスの酸素濃度の制御は部分酸化炉1に供給する廃棄物供給量の増減にて行った。以下、図2に基づいて運転方法とその結果を具体的に説明する。   In the example shown in FIG. 2, air is used as the oxidant supplied to the partial oxidation furnace 1, and the control of the oxygen concentration of the combustible gas led to the dust removing device 2 is performed by increasing or decreasing the amount of waste supplied to the partial oxidation furnace 1. I went. Hereinafter, the operation method and the result thereof will be specifically described with reference to FIG.

(1)ろ過体ベース差圧が所定値を超えたため、時刻Aから部分酸化炉1に供給する廃棄物供給量を徐々に低減し、除塵装置2に導くガスの酸素濃度を増加して、ろ過体の再生運転を開始し、さらに時刻Bに廃棄物の供給を停止した。除塵装置2に導くガスの酸素濃度が増加して、ろ過体に付着したタール等の燃焼、ガス化が始まり、ベース差圧が低下し、ろ過体部温度Tbが上昇した。
また、ろ過体上流側とろ過体部の温度差ΔT=Tb―Taも増加していることから、部分酸化炉出口温度Taが上がったことによるろ過体温度Tbの上昇ではなく、ろ過体に付着したタール等が燃焼していることによるろ過体温度Tbの温度上昇と判定できる。
(1) Since the filter base differential pressure exceeds a predetermined value, the amount of waste supplied to the partial oxidation furnace 1 from time A is gradually reduced, and the oxygen concentration of the gas led to the dust removing device 2 is increased and filtered. Regeneration of the body was started, and the supply of waste was stopped at time B. The oxygen concentration of the gas led to the dust removing device 2 increased, combustion of the tar and the like adhering to the filter body and gasification started, the base differential pressure decreased, and the filter body temperature Tb increased.
In addition, since the temperature difference ΔT = Tb-Ta between the upstream side of the filter body and the filter body part also increases, it does not increase the filter body temperature Tb due to the rise of the partial oxidation furnace outlet temperature Ta, but adheres to the filter body. It can be determined that the temperature of the filter body temperature Tb is increased due to burning of the tar and the like.

(2)時刻Cにろ過体部温度Tbが所定値の500℃を超えたため、ろ過体再生運転を一時中断し、ろ過体熱損傷防止運転に切換えた。すなわち、部分酸化炉1への廃棄物の供給を再開し、部分酸化炉1における空気比を定常の部分酸化運転時と同程度の0.5として、除塵装置2に導くガスの酸素濃度を低減して、ろ過体再生運転を一時中断しろ過体熱損傷防止運転を開始した。ろ過体熱損傷防止運転を開始した、すなわち部分酸化運転を再開したため、可燃ガス中にダストとタールが発生しろ過体に付着して、ろ過体ベース差圧が上昇したものの、ろ過体部温度Tbおよび温度差ΔTの上昇は抑えられ、これらが低減に転じ、ろ過体の温度が過剰に高温度となり熱損傷劣化が生じることを防ぐことができた。 (2) Since the filter body temperature Tb exceeded the predetermined value of 500 ° C. at time C, the filter regeneration operation was temporarily suspended and switched to the filter heat damage prevention operation. That is, the supply of waste to the partial oxidation furnace 1 is restarted, the air ratio in the partial oxidation furnace 1 is set to 0.5, which is the same level as in the normal partial oxidation operation, and the oxygen concentration of the gas led to the dust removing device 2 is reduced. Then, the filter regeneration operation was temporarily suspended and the filter heat damage prevention operation was started. Although the filter body heat damage prevention operation was started, that is, the partial oxidation operation was restarted, dust and tar were generated in the combustible gas and adhered to the filter body, and the filter base pressure difference increased, but the filter body temperature Tb In addition, the increase in the temperature difference ΔT was suppressed, and these decreased, and it was possible to prevent the temperature of the filter body from becoming excessively high and causing thermal damage deterioration.

(3)時刻DにTb、ΔTともに所定値より低下したので、ろ過体再生運転を再開するため、部分酸化炉1における空気比を0.9とするように部分酸化炉1への廃棄物の供給量を低減し、除塵装置2に導くガスの酸素濃度を増加した。ろ過体ベース差圧はほぼ変化がなく、ろ過体部温度Tbはゆるやかに低下し、温度差ΔTはほとんど変化せず推移した。これは空気比が1に近いことにより、部分酸化炉1からのタールやサブミクロンダストの発生がほぼ無くなり、ろ過体に新たに付着するものがなくベース差圧の上昇する原因がなくなったと考えられる。 (3) Since both Tb and ΔT have fallen below the predetermined value at time D, the waste in the partial oxidation furnace 1 is set so that the air ratio in the partial oxidation furnace 1 is 0.9 in order to resume the filter regeneration operation. The supply amount was reduced, and the oxygen concentration of the gas led to the dust removing device 2 was increased. The filter base differential pressure hardly changed, the filter body temperature Tb gradually decreased, and the temperature difference ΔT remained almost unchanged. This is probably because tar and submicron dust from the partial oxidation furnace 1 is almost eliminated because the air ratio is close to 1, and there is no new adhering to the filter body, thus eliminating the cause of the increase in base differential pressure. .

(4)ろ過体表面の付着タールやろ過体中の炭素質の残留の有無を確認するため、時刻Eに部分酸化炉1における空気比を2.0とするように部分酸化炉1への廃棄物の供給量を低減し除塵装置2に導くガスの酸素濃度をさらに増加したところ、ろ過体部温度Tbおよび温度差ΔTが上昇した。まだろ過体表面の付着タールやろ過体中の炭素質が残留しており、これらが燃焼、ガス化してろ過体部温度Tbおよび温度差ΔTが上昇したことが分かった。 (4) Disposal to the partial oxidation furnace 1 so that the air ratio in the partial oxidation furnace 1 is set to 2.0 at time E in order to confirm the presence of adhered tar on the filter body surface and carbonaceous residue in the filter body. When the supply amount of the material was reduced and the oxygen concentration of the gas led to the dust removing device 2 was further increased, the filter body temperature Tb and the temperature difference ΔT increased. It was found that the adhered tar on the surface of the filter body and the carbonaceous matter in the filter body remained, and these burned and gasified to increase the temperature Tb of the filter body and the temperature difference ΔT.

(5)時刻Fにろ過体部温度Tbが所定値の500℃を超えたため、ろ過体再生運転を一時中断し、ろ過体熱損傷防止運転に切換えた。すなわち、部分酸化炉1への廃棄物の供給量を増加し、部分酸化炉1における空気比を0.7として、除塵装置2に導くガスの酸素濃度を低減してろ過体再生運転を一時中断し、ろ過体熱損傷防止運転を開始した。ろ過体部温度Tbおよび温度差ΔTの上昇を抑制してろ過体が過剰に高温度となり熱損傷劣化が生じることができた。 (5) At time F, the filter body temperature Tb exceeded a predetermined value of 500 ° C., so the filter body regeneration operation was temporarily suspended and switched to the filter body heat damage prevention operation. That is, the amount of waste supplied to the partial oxidation furnace 1 is increased, the air ratio in the partial oxidation furnace 1 is set to 0.7, the oxygen concentration of the gas led to the dust removing device 2 is reduced, and the filter regeneration operation is temporarily suspended. The filter body heat damage prevention operation was started. The rise of the filter body temperature Tb and the temperature difference ΔT was suppressed, and the filter body was excessively heated to cause thermal damage deterioration.

(6)時刻GにTb、ΔTともに所定値より低下したので、ろ過体再生運転を再開するため、部分酸化炉1への廃棄物の供給量を低減し、部分酸化炉1における空気比を1.4として、除塵装置2に導くガスの酸素濃度を増加した。これによって、ろ過体に付着したタール等が燃焼、ガス化され、ろ過体ベース差圧は低下し、ろ過体部温度Tbと温度差ΔTはゆるやかに上昇した。 (6) Since both Tb and ΔT have fallen below the predetermined value at time G, the amount of waste supplied to the partial oxidation furnace 1 is reduced and the air ratio in the partial oxidation furnace 1 is reduced to 1 in order to restart the filter regeneration operation. .4, the oxygen concentration of the gas led to the dust removing device 2 was increased. As a result, tar and the like adhering to the filter body were combusted and gasified, the filter base differential pressure decreased, and the filter body temperature Tb and the temperature difference ΔT gradually increased.

(7)時刻H以降はろ過体部温度Tbは低下し始め、ろ過体ベース差圧は好ましいベース差圧値まで減少した。これによって、ろ過体表面の付着タールやろ過体中の炭素質の残留がなくなったことが確認できた。 (7) After time H, the filter body temperature Tb began to decrease, and the filter base differential pressure decreased to a preferred base differential pressure value. Thereby, it was confirmed that the adhered tar on the surface of the filter body and the carbonaceous residue in the filter body disappeared.

(8)そこで、時刻Iにろ過体再生運転を終了し、部分酸化炉1への廃棄物の供給量を定常の部分酸化運転の供給量とし、定常の部分酸化運転を再開した。 (8) Therefore, the filter regeneration operation was terminated at time I, the amount of waste supplied to the partial oxidation furnace 1 was set as the supply amount of the steady partial oxidation operation, and the steady partial oxidation operation was resumed.

以上のように、本実施の形態においては、ろ過体再生運転中において、ろ過体の温度、ろ過体の下流側の温度、ろ過体の上流側とろ過体の温度差及びろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、除塵装置2に導く可燃性ガスの酸素濃度を低減してろ過体の熱損傷を防止するようにしたので、ろ過体の熱損傷による劣化を防止して、通常の払い落し操作では払い落とせないタールやサブミクロンダスト等のろ過体の付着物をガス化・燃焼等により除去することができるろ過体の再生運転を行うことができ、ろ過体のベース差圧の上昇が抑制され、廃棄物処理装置の運転継続を可能にすることができる。   As described above, in the present embodiment, during the filter regeneration operation, the temperature of the filter, the temperature downstream of the filter, the temperature difference between the upstream of the filter and the filter, and the upstream of the filter When any one of the downstream temperature differences is detected and the detected value exceeds a predetermined value, or when the amount of time change of the detected value exceeds a predetermined value, the oxygen of the combustible gas that is guided to the dust removing device 2 Since the concentration of the filter has been reduced to prevent thermal damage to the filter, deterioration due to heat damage to the filter is prevented, and filter media such as tar and sub-micron dust that cannot be removed by normal removal operations are attached. The filter can be regenerated by removing the kimono by gasification, combustion, etc., and the increase in the base differential pressure of the filter can be suppressed, and the operation of the waste treatment apparatus can be continued. .

本発明の一実施の形態の運転方法に用いる廃棄物処理装置を説明する説明図である。It is explanatory drawing explaining the waste processing apparatus used for the operating method of one embodiment of this invention. 本発明の一実施の形態に係る廃棄物処理装置の運転方法を説明する説明図である。It is explanatory drawing explaining the operating method of the waste disposal apparatus which concerns on one embodiment of this invention. 従来の廃棄物処理装置の構成の説明図である。It is explanatory drawing of a structure of the conventional waste processing apparatus. 従来の除塵装置の説明図である。It is explanatory drawing of the conventional dust removal apparatus. 本発明の解決しようとする課題の説明図である(その1)。It is explanatory drawing of the subject which this invention tends to solve (the 1). 本発明の解決しようとする課題の説明図である(その2)。It is explanatory drawing of the subject which this invention tends to solve (the 2). 本発明の解決しようとする課題の説明図である(その3)。It is explanatory drawing of the subject which this invention tends to solve (the 3).

符号の説明Explanation of symbols

1 部分酸化炉
2 除塵装置
3 ボイラ付燃焼炉
5 差圧検出手段
7 上流側温度検知手段
9 ろ過体温度検知手段
11 制御手段
DESCRIPTION OF SYMBOLS 1 Partial oxidation furnace 2 Dust removal apparatus 3 Combustion furnace with a boiler 5 Differential pressure detection means 7 Upstream temperature detection means 9 Filter body temperature detection means 11 Control means

Claims (2)

部分酸化炉にて廃棄物から可燃性ガスを発生させ、該発生した可燃性ガスをろ過体を備えてなる除塵装置に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置の運転方法において、
前記除塵装置のベース差圧が所定値を超えたとき又はベース差圧の増加率が所定値を超えたときに、前記除塵装置内を酸化雰囲気にすることにより、前記ろ過体に付着した付着物をガス化、燃焼もしくは剥離させることにより前記ろ過体の再生を行なうろ過体再生工程を有し、
該ろ過体再生工程において、前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差、前記ろ過体の上流側と下流側の温度差のうちいずれかを検知し、該検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、下記(A)〜(F)の操作のうちの少なくとも一つを行うことにより前記除塵装置に導く可燃性ガスの酸素濃度を低減することを特徴とする廃棄物処理装置の運転方法。
(A)前記部分酸化炉への廃棄物供給を停止していた場合においてこれを再開する
(B)前記部分酸化炉への廃棄物供給量を増加する
(C)前記部分酸化炉への酸化剤供給量を低減する
(D)前記部分酸化炉における空気比を低減する
(E)前記除塵装置への酸化剤供給量を低減する
(F)前記除塵装置への酸化剤供給を停止する
Waste that generates flammable gas from waste in a partial oxidation furnace, introduces the generated flammable gas into a dust removing device equipped with a filter, removes dust in the flammable gas, and burns further In the operation method of the material processing apparatus,
When the base differential pressure of the dust remover exceeds a predetermined value or when the rate of increase of the base differential pressure exceeds a predetermined value, the deposits adhered to the filter body by making the inside of the dust remover an oxidizing atmosphere A filter body regeneration step of regenerating the filter body by gasifying, burning or exfoliating,
In the filter regeneration step, any one of the temperature of the filter, the temperature downstream of the filter, the temperature difference between the upstream of the filter and the filter, and the temperature difference between the upstream and downstream of the filter When the detected value exceeds a predetermined value, or when the amount of time change of the detected value exceeds a predetermined value, at least one of the following operations (A) to (F) is performed. A method for operating a waste treatment apparatus, characterized in that the oxygen concentration of the combustible gas led to the dust removal apparatus is reduced.
(A) When the supply of waste to the partial oxidation furnace has been stopped, this is resumed. (B) The amount of waste supply to the partial oxidation furnace is increased. (C) The oxidant to the partial oxidation furnace Reduce the supply amount (D) Reduce the air ratio in the partial oxidation furnace (E) Reduce the oxidant supply amount to the dust removal device (F) Stop the oxidant supply to the dust removal device
部分酸化炉にて廃棄物から可燃性ガスを発生させ、該発生した可燃性ガスをろ過体を備えてなる除塵装置に導入して該可燃性ガス中のダスト類を除去し、さらに燃焼する廃棄物処理装置であって、前記除塵装置の入口と出口の差圧を検知する差圧検知手段と、ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかを検知する温度検知手段と、前記差圧検知手段で検知されたベース差圧と、前記温度検知手段で検知された前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかとに基づいて除塵装置に導入されるガスの酸素濃度を制御する制御手段と、を備え、
該制御手段は、前記除塵装置のベース差圧が所定値を超えたとき又はベース差圧の増加率が所定値を超えたときに、前記除塵装置内を酸化雰囲気にするために下記の(a)〜(f)の操作の少なくとも一つの操作を行なうろ過体再生運転制御を行い、該ろ過体再生運転中において、前記ろ過体の温度、前記ろ過体の下流側の温度、前記ろ過体の上流側とろ過体の温度差及び前記ろ過体の上流側と下流側の温度差のうちいずれかの検知値が所定値を超えたとき、又は前記検知値の時間変化量が所定値を超えたとき、下記(A)〜(F)の操作のうちの少なくとも一つの操作を行うろ過体熱損傷防止運転制御を行なうことを特徴とする廃棄物処理装置。
(a)廃棄物供給装置による部分酸化炉への廃棄物供給を停止する。
(b)廃棄物供給装置による部分酸化炉への廃棄物供給量を低減する。
(c)部分酸化炉へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を増加する。
(d)部分酸化炉における空気比を調整する空気比調整装置による空気比を増加する。
(e)除塵装置に酸化剤を供給する酸化剤供給装置による除塵装置への酸化剤供給を開始する。
(f)除塵装置に酸化剤を供給する酸化剤供給装置による除塵装置への酸化剤供給量を増加する。
(A)部分酸化炉へ廃棄物を供給する廃棄物供給装置による廃棄物の供給を停止していた場合においては、廃棄物供給装置による部分酸化炉への廃棄物の供給を再開する。
(B)部分酸化炉へ廃棄物を供給する廃棄物供給装置による廃棄物の供給量を増加する。
(C)部分酸化炉へ酸化剤を供給する酸化剤供給装置による酸化剤供給量を低減する。
(D)部分酸化炉における空気比を調整する空気比調整装置による部分酸化炉に供給する空気比を低減する。
(E)除塵装置に酸化剤を供給する酸化剤供給装置による除塵装置への酸化剤供給量を低減する。
(F)除塵装置に酸化剤を供給する酸化剤供給装置による除塵装置への酸化剤供給を停止する。
Waste that generates flammable gas from waste in a partial oxidation furnace, introduces the generated flammable gas into a dust removing device equipped with a filter, removes dust in the flammable gas, and burns further A material treatment device, a differential pressure detecting means for detecting a differential pressure between an inlet and an outlet of the dust removing device, a temperature of the filter, a temperature downstream of the filter, an upstream side of the filter and the filter The temperature detection means for detecting either the temperature difference or the temperature difference between the upstream side and the downstream side of the filter body, the base differential pressure detected by the differential pressure detection means, and the temperature detection means detected by the temperature detection means Based on the temperature of the filter body, the temperature on the downstream side of the filter body, the temperature difference between the upstream side of the filter body and the filter body, and the temperature difference between the upstream side and the downstream side of the filter body and introduced into the dust removing device Control means for controlling the oxygen concentration of the gas to be produced,
When the base differential pressure of the dust remover exceeds a predetermined value or when the increase rate of the base differential pressure exceeds a predetermined value, the control means is configured to (a) ) To (f), the filter body regeneration operation control for performing at least one of the operations is performed. During the filter body regeneration operation, the temperature of the filter body, the temperature downstream of the filter body, the upstream of the filter body When the detected value of the temperature difference between the side and the filter body and the temperature difference between the upstream side and the downstream side of the filter body exceeds a predetermined value, or when the time change amount of the detected value exceeds a predetermined value A waste disposal apparatus that performs filter body heat damage prevention operation control for performing at least one of the following operations (A) to (F).
(A) Stop the waste supply to the partial oxidation furnace by the waste supply device.
(B) The amount of waste supplied to the partial oxidation furnace by the waste supply device is reduced.
(C) Increase the amount of oxidant supplied by the oxidant supply device that supplies the oxidant to the partial oxidation furnace.
(D) The air ratio is increased by an air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace.
(E) The supply of the oxidant to the dust remover is started by the oxidant supply device that supplies the oxidant to the dust remover.
(F) Increasing the amount of oxidant supplied to the dust removing device by the oxidant supplying device that supplies the oxidizing agent to the dust removing device.
(A) In the case where the supply of waste by the waste supply apparatus that supplies waste to the partial oxidation furnace has been stopped, the supply of waste to the partial oxidation furnace by the waste supply apparatus is resumed.
(B) Increase the amount of waste supplied by the waste supply device that supplies waste to the partial oxidation furnace.
(C) The amount of oxidant supplied by the oxidant supply device that supplies the oxidant to the partial oxidation furnace is reduced.
(D) The air ratio supplied to the partial oxidation furnace is reduced by an air ratio adjusting device that adjusts the air ratio in the partial oxidation furnace.
(E) The amount of oxidant supplied to the dust removing device by the oxidant supplying device that supplies the oxidizing agent to the dust removing device is reduced.
(F) The supply of the oxidant to the dust removal device by the oxidant supply device that supplies the oxidant to the dust removal device is stopped.
JP2008086484A 2008-03-28 2008-03-28 Waste treatment apparatus and operating method thereof Pending JP2009236466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086484A JP2009236466A (en) 2008-03-28 2008-03-28 Waste treatment apparatus and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086484A JP2009236466A (en) 2008-03-28 2008-03-28 Waste treatment apparatus and operating method thereof

Publications (1)

Publication Number Publication Date
JP2009236466A true JP2009236466A (en) 2009-10-15

Family

ID=41250629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086484A Pending JP2009236466A (en) 2008-03-28 2008-03-28 Waste treatment apparatus and operating method thereof

Country Status (1)

Country Link
JP (1) JP2009236466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143615A (en) * 2015-03-30 2015-08-06 株式会社キンセイ産業 Dry distillation gasification combustion processing system
CN111595653A (en) * 2020-04-26 2020-08-28 湖南华科环境检测技术服务有限公司 Industrial waste gas online detection device and application method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143615A (en) * 2015-03-30 2015-08-06 株式会社キンセイ産業 Dry distillation gasification combustion processing system
CN111595653A (en) * 2020-04-26 2020-08-28 湖南华科环境检测技术服务有限公司 Industrial waste gas online detection device and application method thereof

Similar Documents

Publication Publication Date Title
EP2850159B1 (en) Batch processing system and method for pyrolysis of organic material
WO2006057075A1 (en) Treatment method and treatment apparatus for combustible gas in waste melting furnace
JP5761932B2 (en) Filter device regeneration method and filter device regeneration system
JP5713592B2 (en) Pyrolysis deposit removal method and pyrolysis gasification system
WO2015004773A1 (en) Method for inhibiting occurrence of pyrolysis deposit in pyrolysis gasification system, and pyrolysis gasification system
JP2009236466A (en) Waste treatment apparatus and operating method thereof
JP2009112968A (en) Apparatus for treating waste and its operating method
JP4328844B2 (en) Operation method of waste treatment equipment
JP2009233636A (en) Waste treatment apparatus and its operation stop method
JP6016367B2 (en) Method for suppressing generation of pyrolysis deposits in pyrolysis gasification system and pyrolysis gasification system
JP5787742B2 (en) Filter element playback method
CN213951101U (en) Offline oxidation regeneration device for high-temperature oil-containing dust-containing combustible gas dust remover
EP1284389A1 (en) Wastes treating method and device
JP4245527B2 (en) Operation method of waste treatment equipment
JP2017109190A (en) Filter back washing device, char recovery device, gasification composite power generation facility and filter back washing method
JP4529575B2 (en) Dust removal method for dust remover
JP2007198635A (en) Shaft type waste melting furnace and its operation method
CN111207401B (en) Heat accumulating type oxidation furnace and dirt removing and anti-blocking process
JP5974126B1 (en) Energy recovery equipment and waste incineration equipment
JP2020118319A (en) Method for gasifying plastic-containing waste
JP2000161623A (en) Method and apparatus for treating waste
JP2006043518A (en) Method of operating dust collector
JP3799846B2 (en) Method and apparatus for recovering heat from waste
JP2001334243A (en) Method and apparatus for treating waste
JP2006241229A (en) Gasification system