JP2009236418A - Waste incineration method and incineration device - Google Patents

Waste incineration method and incineration device Download PDF

Info

Publication number
JP2009236418A
JP2009236418A JP2008083982A JP2008083982A JP2009236418A JP 2009236418 A JP2009236418 A JP 2009236418A JP 2008083982 A JP2008083982 A JP 2008083982A JP 2008083982 A JP2008083982 A JP 2008083982A JP 2009236418 A JP2009236418 A JP 2009236418A
Authority
JP
Japan
Prior art keywords
gas
waste
heat
fluidized bed
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008083982A
Other languages
Japanese (ja)
Inventor
Toyokazu Tanaka
豊和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2008083982A priority Critical patent/JP2009236418A/en
Publication of JP2009236418A publication Critical patent/JP2009236418A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress corrosion of a heat exchanger due to adhesion and fixing of chloride melted in a heat recovery process and chlorine based gas in a waste incineration device having a fluidized bed gasifying furnace separating waste into pyrolysis gas and solid contents by contact with a bed material, and a combustion furnace burning the pyrolysis gas. <P>SOLUTION: The pyrolysis gas J is burned by the combustion furnace 31, and the solid contents F are discharged from the fluidized bed gasifying furnace 21 along with the bed material C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、可燃性廃棄物の焼却装置において、塩化物から生じる塩素系ガスによる装置の腐食を抑制する方法とそれを行う装置に関する。   The present invention relates to a method for suppressing corrosion of a device due to a chlorine-based gas generated from chloride in a combustible waste incinerator and a device for performing the method.

都市ゴミや産業廃棄物等の廃棄物には塩化物が含まれている。この塩化物は、従来廃棄物の焼却装置に用いられてきた溶融炉における高温環境で熱溶融すると、高粘度の液体となって焼却装置やその後の熱回収装置内に付着、固着などを引き起こして、熱効率を低下させたり、煙道を閉塞させたり、場合によっては装置全体を停止させることがあった。このため、清掃、保守点検等の運用上の負担が大きかった。   Waste such as municipal waste and industrial waste contains chloride. When this chloride is heat-melted in a high-temperature environment in a melting furnace that has been used in conventional incinerators, it becomes a high-viscosity liquid, causing adhesion, sticking, etc. in the incinerator and the subsequent heat recovery device. In some cases, the thermal efficiency is lowered, the flue is blocked, or the entire apparatus is stopped. For this reason, operational burdens such as cleaning and maintenance inspections were large.

これに対して、流動砂に廃棄物を接触させて焼却する流動床式焼却炉を用いて焼却すると、塩化物の溶融、飛散を、流動砂が抑えるために、塩化物の付着、固着を抑制することができた。ただし、流動床式は激しく流動する流動砂のために、燃焼条件が変動し易いため、特許文献1に記載のように、廃棄物のガス化を行うガス化炉と、そこで生じた熱分解ガスの燃焼を行う燃焼室とを分離することで、燃焼条件を安定させることが行われている。このようにすることで、燃焼自体は高温で行うことができ、その高熱による熱エネルギーを有する排ガスから、効率的に熱回収が出来るようになった。   In contrast, incineration using a fluidized bed incinerator that incinerates waste by bringing it into contact with fluidized sand suppresses the adhesion and sticking of chlorides because the fluidized sand suppresses melting and scattering of chlorides. We were able to. However, since the fluidized bed type is fluid sand that flows violently, the combustion conditions are likely to fluctuate. Therefore, as described in Patent Document 1, a gasification furnace that gasifies waste and pyrolysis gas generated there Combustion conditions are stabilized by separating the combustion chamber from which combustion is performed. In this way, the combustion itself can be performed at a high temperature, and heat can be efficiently recovered from the exhaust gas having thermal energy due to the high heat.

特開平11−200818号公報JP-A-11-200188

しかしながら、流動床式焼却炉を用いたとしても、塩化物の溶融と、それに伴う、排ガスへの塩化物の同伴は完全に止めることは出来ず、塩化物に由来する塩化水素などの塩素系化合物のガスが、熱回収のための配管を腐食させたりすることがあった。   However, even if a fluidized bed incinerator is used, the melting of chloride and the accompanying entrainment of chloride in the exhaust gas cannot be completely stopped. Chlorinated compounds such as hydrogen chloride derived from chloride Gas sometimes corroded piping for heat recovery.

そこでこの発明は、流動床式焼却炉を用いた廃棄物の焼却にあたって、塩化物の溶融を抑制し、燃焼室への塩化物の進入と、それにより生じる熱回収工程での塩化物の付着や塩化物による腐食が起こる可能性をより低減させた焼却装置を提供することを目的とする。   Therefore, the present invention suppresses the melting of chloride in incineration of waste using a fluidized bed incinerator, and the chloride enters the combustion chamber and the resulting adhesion of chloride in the heat recovery process. An object of the present invention is to provide an incinerator that further reduces the possibility of corrosion by chlorides.

この発明は、流動床式の炉をガス化炉として用い、流動媒体との接触により可燃性廃棄物をガス化させつつも、そこでは焼却を行わず、前記流動床式ガス化炉で発生した熱分解ガスを別途設けた燃焼炉で燃焼させることで、上記の課題を解決したのである。   This invention uses a fluidized bed type furnace as a gasification furnace and gasifies combustible waste by contact with a fluidized medium, but does not incinerate it, and is generated in the fluidized bed type gasification furnace. The above problem was solved by burning the pyrolysis gas in a combustion furnace provided separately.

すなわち、流動床式焼却炉で可燃性廃棄物を一挙に焼却までしてしまうと、廃棄物が含有する塩化物まで焼却溶融されてしまうが、流動床式のガス化炉で廃棄物を焼却まではさせずに、燃焼させて熱分解ガスと固形分とに分けることまで行い、熱分解ガスのみを別途燃焼炉に送って高温で燃焼することで、塩化物を含む固形分が燃焼炉で溶融されることを防ぐことができる。これにより、排ガスに塩化物が含まれることを抑制することができる。また、熱分解ガスと分離した固形分は、上記流動媒体とともに炉外に排出することで、容易に燃焼炉から除外することができる。   That is, if combustible waste is incinerated at once in a fluidized bed incinerator, the chloride contained in the waste will be incinerated and melted, but until the waste is incinerated in a fluidized bed gasifier. Without burning, it is burned and divided into pyrolysis gas and solid content, and only pyrolysis gas is sent separately to the combustion furnace and burned at high temperature, so that the solid content containing chloride melts in the combustion furnace Can be prevented. Thereby, it can suppress that chloride is contained in exhaust gas. Moreover, the solid content separated from the pyrolysis gas can be easily excluded from the combustion furnace by discharging it to the outside of the furnace together with the fluid medium.

また、炉外に排出された固形分は、熱分解ガスや排ガスへの影響を気にすることなく、燃焼させずに電気加熱などにより別途溶融処理を行うことができるので、固形分の処理が不十分となることはない。この電気加熱にあたっては、燃焼炉で得られる熱を用いて発電した電力を利用することが出来る。   In addition, the solid content discharged outside the furnace can be separately melted by electric heating or the like without being burned, without worrying about the effect on pyrolysis gas and exhaust gas. It will not be inadequate. In this electric heating, the electric power generated using the heat obtained in the combustion furnace can be used.

燃焼炉で得られる熱の回収には、燃焼炉から排出された排ガスが有する顕熱を一旦粒状媒体に移した後に、その粒状媒体からより低温である別のガスに移す、粒状媒体式熱交換器を用いることができる。また、そのガスから顕熱を回収する熱交換器と、熱交換器に顕熱を移したガスを上記粒状媒体式熱交換器に循環させる循環配管を設けることで、ガスを循環させて利用し続けながら顕熱の回収を続けることができる。こうして回収した顕熱により発電する発電機と、その電力により駆動する電気式溶融炉を備えると、その電気式溶融炉を用いて、上記固形分を燃焼炉で燃焼させなくても、電気溶融させて溶融スラグとして回収することができる。   To recover the heat obtained in the combustion furnace, the sensible heat of the exhaust gas discharged from the combustion furnace is once transferred to the granular medium, and then transferred from the granular medium to another gas having a lower temperature. Can be used. In addition, by providing a heat exchanger that recovers sensible heat from the gas and a circulation pipe that circulates the gas that has transferred sensible heat to the heat exchanger, the gas is circulated and used. You can continue to collect sensible heat. By providing a generator that generates electric power using the recovered sensible heat and an electric melting furnace that is driven by the electric power, the electric melting furnace can be used for electric melting without burning the solids in the combustion furnace. And can be recovered as molten slag.

この発明によると、燃焼させる熱分解ガスを予め固形分と分離した上で無駄なく燃焼させることができるので、別途固形分の分離を行って熱量を無駄にすることなく、塩化物の影響を無視して十分に高温で燃焼させる燃焼炉において高い割合で熱量を回収することが出来る。なおかつ、燃焼炉で生じる排ガスに含まれる塩化物の量を抑えることができるので、保守点検等の運用上の負担を減らすことが出来る。   According to the present invention, the pyrolysis gas to be burned can be burned without waste after being separated from the solid content in advance, so the effect of chloride is ignored without waste of heat by separately separating the solid content. Thus, the amount of heat can be recovered at a high rate in a combustion furnace that burns at a sufficiently high temperature. In addition, since the amount of chloride contained in the exhaust gas generated in the combustion furnace can be suppressed, operational burdens such as maintenance and inspection can be reduced.

以下、この発明にかかる焼却装置の構成について図1に示す実施形態により説明する。
まず、流動床式ガス化炉21では、廃棄物投入口22から投入された可燃性の廃棄物Aを、下部で流動する砂層23において、熱分解させる。砂層23は、下部から供給される空気Bにより流動、燃焼するものであり、接触した廃棄物Aを燃焼させつつ熱分解させて、固形分Fと熱分解ガスJとに分離させる。砂層23は、流動媒体投入口26から投入された、珪砂などのセラミックス粒子からなる流動媒体Cと、廃棄物A中の気体化しない成分である固形分Fとからなり、それらの混合物Dは、順次、流動床式ガス化炉21の下部口から排出され、砂排出機24に送られることで、熱分解ガスJと分離される。砂排出機24では、冷却水Eにより混合物Dを冷却した上で、砂分級機27に送る。砂分級機では、大きさにより流動媒体Cと固形分Fとを分離する。分離されたうち、流動媒体Cは、砂循環エレベータを用いて砂ロックホッパ25に送られ、順次、新たな流動媒体Cとして流動床式ガス化炉21内に再度供給される。
The configuration of the incinerator according to the present invention will be described below with reference to the embodiment shown in FIG.
First, in the fluidized bed gasification furnace 21, the combustible waste A input from the waste input port 22 is thermally decomposed in the sand layer 23 flowing in the lower part. The sand layer 23 flows and burns with the air B supplied from the lower part, and thermally decomposes the contacted waste A while burning it, and separates it into the solid content F and the pyrolysis gas J. The sand layer 23 is composed of a fluid medium C made of ceramic particles such as silica sand and a solid content F which is a non-gasifying component in the waste A, and the mixture D thereof is: Sequentially, it is discharged from the lower port of the fluidized bed gasification furnace 21 and sent to the sand discharger 24 to be separated from the pyrolysis gas J. In the sand discharger 24, the mixture D is cooled by the cooling water E and then sent to the sand classifier 27. In the sand classifier, the fluid medium C and the solid content F are separated according to the size. Of the separated fluid fluid C, it is sent to the sand lock hopper 25 using a sand circulation elevator, and sequentially supplied again into the fluidized bed gasifier 21 as new fluid fluid C.

一方、固形分Fは別途処理される。この固形分Fには、廃棄物Aに由来する塩化物が含まれており、この塩化物が熱分解ガスJの燃焼を行う後述の燃焼炉31等に入り込まないように、後述する別の処理ラインへ送って、燃焼させずに分離させた後、電気加熱により溶融させてスラグにする。   On the other hand, the solid content F is processed separately. This solid content F contains chloride derived from the waste A, and another treatment described later is performed so that the chloride does not enter a combustion furnace 31 described later that burns the pyrolysis gas J. After being sent to the line and separated without burning, it is melted by electric heating into slag.

上記のような固形分Fと熱分解ガスJとの分離を好適に行うため、流動床式ガス化炉21の温度は、1100℃程度であることが必要である。高温すぎると、固形分Fに含めて排出させるはずの塩化物が流動床式ガス化炉21内で溶融して飛散してしまうことで、熱分解ガスJに同伴して、その後の燃焼工程に混入してしまう。一方で、これより低すぎると、十分な熱分解がされず、廃棄物の処理が滞ってしまう。なお、砂層23での熱分解にあたっては、助燃バーナ29が燃焼を補助することで、熱分解に最適な温度に調整する。   In order to suitably separate the solid content F and the pyrolysis gas J as described above, the temperature of the fluidized bed gasification furnace 21 needs to be about 1100 ° C. If the temperature is too high, the chloride that should be discharged in the solid content F melts and scatters in the fluidized bed gasification furnace 21, and is accompanied by the pyrolysis gas J. It will be mixed. On the other hand, if it is lower than this, sufficient thermal decomposition will not be performed, and waste disposal will be delayed. In addition, in the thermal decomposition in the sand layer 23, the auxiliary combustion burner 29 assists combustion to adjust the temperature to an optimum temperature for thermal decomposition.

上記の流動床式ガス化炉21内の空気比は、0.1以上0.3以下であると好ましい。空気比が0.1未満であると、熱分解のための燃焼までもが不十分になってしまうおそれがあるためである。一方で、0.3を超える空気が供給されていると、熱分解だけでなく、生成した熱分解ガスJまでも燃焼しすぎてしまい、流動床式ガス化炉21内部の温度が上記の温度範囲を上回り、塩化物の溶融が起こってしまうおそれがある。また、この程度の空気比とすることで、流動床となる砂層23の体積をコンパクトにまとめることができる。なお、空気比とは、投入された廃棄物の熱分解ガスJと助燃剤とを完全燃焼させるのに必要な理論空気量に対する、実際に供給された空気Bの比である。   The air ratio in the fluidized bed gasifier 21 is preferably 0.1 or more and 0.3 or less. This is because if the air ratio is less than 0.1, even the combustion for thermal decomposition may become insufficient. On the other hand, when air exceeding 0.3 is supplied, not only pyrolysis but also the generated pyrolysis gas J burns too much, and the temperature inside the fluidized bed gasifier 21 is the above temperature. Above this range, there is a risk of chloride melting. Moreover, by setting it as this air ratio, the volume of the sand layer 23 used as a fluidized bed can be put together compactly. Note that the air ratio is the ratio of the actually supplied air B to the theoretical amount of air necessary to completely burn the pyrolyzed gas J and the auxiliary combustor of the input waste.

熱分解ガスJは、流動床式ガス化炉21の頂上部から、燃焼炉31へ送られる。これは、固形分Fの細かい粒子が熱分解ガスJに同伴するのを、炉の出口の高さにより抑制し、固形分Fに含まれる塩化物が燃焼炉31に進入するのを防ぐためである。燃焼炉31では、燃焼用空気Kを導入し、再燃バーナ32により点火して、熱分解ガスJを十分に燃焼させる。   The pyrolysis gas J is sent from the top of the fluidized bed gasification furnace 21 to the combustion furnace 31. This is because fine particles of solid content F are prevented from entraining in pyrolysis gas J by the height of the outlet of the furnace, and chloride contained in solid content F is prevented from entering combustion furnace 31. is there. In the combustion furnace 31, the combustion air K is introduced and ignited by the reburn burner 32 to sufficiently burn the pyrolysis gas J.

また、燃焼炉31内の温度は、出口温度が1100℃程度であると好ましい。この発明では、固形分Fに含まれる塩化物が燃焼炉31内に進入することを十分に抑制しているため、このような高温にしても、塩化物の溶融とそれに伴う高粘度物質の付着や固着等を考慮する必要がない。このため、十分に燃焼できる温度にすることができる。ただし、この温度をさらに上回ると、熱負荷が高くなりすぎてしまう。   Further, the temperature in the combustion furnace 31 is preferably about 1100 ° C. at the outlet temperature. In the present invention, the chloride contained in the solid content F is sufficiently suppressed from entering the combustion furnace 31, so even at such a high temperature, the chloride melts and adheres to the high viscosity substance. There is no need to consider or sticking. For this reason, it can be set as the temperature which can fully combust. However, if the temperature is further exceeded, the heat load becomes too high.

上記の流動床式ガス化炉21及び燃焼炉31で使用する空気B及び燃焼用空気Kを合わせた空気比は、1.0以上1.4以下程度であると好ましい。空気比1.0以下では熱分解ガスJを完全に燃焼させることが出来ないからである。より好ましくは1.2以上である。一方で、1.4を超えると、特に燃焼炉31での燃焼用空気Kが無駄に多い分、熱損失が生じてしまい、燃焼効率が悪くなってしまう。   The total air ratio of the air B and the combustion air K used in the fluidized bed gasification furnace 21 and the combustion furnace 31 is preferably about 1.0 or more and 1.4 or less. This is because when the air ratio is 1.0 or less, the pyrolysis gas J cannot be burned completely. More preferably, it is 1.2 or more. On the other hand, if it exceeds 1.4, especially the amount of combustion air K in the combustion furnace 31 is unnecessarily large, heat loss will occur, and the combustion efficiency will deteriorate.

燃焼炉31で熱分解ガスJを燃焼させたことで生じる燃焼灰Lは、燃焼炉31の下部に設けた燃焼灰排出口33から排出する。また、燃焼後の二酸化炭素や水などからなる高温排ガスMは、熱回収のため、排ガス煙道34を通して粒状媒体式熱交換器35に送られる。   The combustion ash L generated by burning the pyrolysis gas J in the combustion furnace 31 is discharged from a combustion ash discharge port 33 provided at the lower part of the combustion furnace 31. Further, the high-temperature exhaust gas M composed of carbon dioxide or water after combustion is sent to the particulate medium heat exchanger 35 through the exhaust gas flue 34 for heat recovery.

上記の高温排ガスMが有する熱を熱交換器で回収すると、焼却装置全体の熱効率上好ましい。しかし、燃焼炉31の燃焼温度に応じた1100℃程度の温度となっており、そのままでは通常の気体による熱交換器で熱回収することが難しい。また、固形分Fの混入を十分に抑制し、溶融した塩化物の付着や固着については考慮する必要が無くなっているものの、塩化物に由来する塩化水素などの塩素系ガスについては、完全に同伴を防ぐことは難しく、高温排ガスMにもわずかながら塩素系ガスが含まれている。このため、高温排ガスMを直接に熱交換器の伝熱管に通して熱交換を行おうとすると、高温の塩素系ガスによる伝熱管の腐食が避けられない。そこで、熱回収にあたっては、高温排ガスMから一旦固体の粒状媒体Nに顕熱を移動させ、その顕熱を排ガス以外のガスに移動させ、そのガスを通常の気体による熱交換器に導入するようにして、高温排ガスMの熱を間接的に利用することによって熱交換器の腐食を防ぐ。ここで、排ガス以外のガスとは、前記塩素系ガスを同伴しないものであればよく、空気を用いるとよい。この顕熱を受け取ったガスは、600℃程度の熱風として得ることができ、高温排ガスMと比べて熱交換で利用しやすい温度となる。   It is preferable in terms of thermal efficiency of the entire incinerator to recover the heat of the high-temperature exhaust gas M with a heat exchanger. However, the temperature is about 1100 ° C. corresponding to the combustion temperature of the combustion furnace 31, and it is difficult to recover heat with a normal gas heat exchanger as it is. In addition, although mixing of solid content F is sufficiently suppressed, it is no longer necessary to consider the adhesion and sticking of molten chloride, but chlorinated gases such as hydrogen chloride derived from chloride are completely entrained. It is difficult to prevent this, and the high-temperature exhaust gas M contains a small amount of chlorine-based gas. For this reason, if the high temperature exhaust gas M is directly passed through the heat exchanger tube of the heat exchanger to perform heat exchange, corrosion of the heat exchanger tube due to the high temperature chlorine-based gas is inevitable. Therefore, in heat recovery, the sensible heat is once transferred from the high temperature exhaust gas M to the solid granular medium N, the sensible heat is transferred to a gas other than the exhaust gas, and the gas is introduced into a heat exchanger using a normal gas. Thus, corrosion of the heat exchanger is prevented by indirectly using the heat of the high temperature exhaust gas M. Here, the gas other than the exhaust gas may be any gas that does not accompany the chlorine-based gas, and air may be used. The gas that has received this sensible heat can be obtained as hot air of about 600 ° C., and has a temperature that is easier to use in heat exchange than the high-temperature exhaust gas M.

上記の粒状媒体Nを介した、間接的な冷却空気Sへの顕熱の移動を、粒状媒体式熱交換器35で行う。この粒状媒体Nは、高温排ガスMの熱に直接曝されてもよいだけの耐熱性を有する必要があり、酸化珪素やアルミナなどのセラミックスの粒子を用いると好ましい。粒状媒体式熱交換器35の上部に設けられたホッパ40から導入された粒状媒体Nは、粒状媒体式熱交換器35の内部に複数段設けられたトレイ36に順次落下し、その間に、排ガス煙道34から導入された高温排ガスMの有する顕熱を回収する。顕熱を回収して高温になった粒状媒体Nは、粒状媒体式熱交換器35の下部に設けられた下部熱交換室37で、上記の排ガス以外のガスである冷却空気Sに、回収した顕熱を放出して熱交換する。顕熱を放出した粒状媒体Nは、粒状媒体式熱交換器35の下部から排出され、エアリフタ39に送られる。エアリフタ39では、供給される粒状媒体循環用空気Qにより、粒状媒体Nをホッパ40まで上昇させる。これにより、一旦顕熱を放出して冷却された粒状媒体Nを再び高温排ガスMからの顕熱回収に利用して、循環させる。   The sensible heat is indirectly transferred to the cooling air S through the granular medium N by the granular medium heat exchanger 35. The granular medium N needs to have heat resistance sufficient to be directly exposed to the heat of the high-temperature exhaust gas M, and it is preferable to use ceramic particles such as silicon oxide and alumina. The granular medium N introduced from the hopper 40 provided in the upper part of the granular medium type heat exchanger 35 is sequentially dropped onto the trays 36 provided in a plurality of stages inside the granular medium type heat exchanger 35, and in the meantime, the exhaust gas is discharged. The sensible heat of the high-temperature exhaust gas M introduced from the flue 34 is recovered. The granular medium N that has recovered its sensible heat to a high temperature was recovered in the cooling air S, which is a gas other than the exhaust gas, in the lower heat exchange chamber 37 provided in the lower part of the granular medium heat exchanger 35. Release sensible heat to exchange heat. The granular medium N that has released sensible heat is discharged from the lower part of the granular medium heat exchanger 35 and sent to the air lifter 39. In the air lifter 39, the granular medium N is raised to the hopper 40 by the supplied granular medium circulation air Q. As a result, the granular medium N once cooled by releasing sensible heat is again used for sensible heat recovery from the high temperature exhaust gas M and circulated.

一方で、粒状媒体Nから顕熱を受け取った冷却空気Sは、ダスト除去装置38でダスト分Oを回収した上で、受け取った顕熱を通常の気体による熱交換器に導入して、熱利用を行う。高温排ガスMが有していた塩素系ガスを含んでいないため、一般的な熱交換器での熱回収が可能だからである。例えば、図1の実施形態のように、蒸気加熱器42に導入して加熱空気Tと熱交換して、この冷却空気Sが有していた顕熱により、タービン発電機43を駆動させる装置が挙げられる。このタービン発電機43により得られる電力Xは、焼却装置内の運用に用いてもよいし、特に用途が限られるものではない。この電力Xを利用することにより、焼却装置全体での熱効率が向上する。   On the other hand, the cooling air S that has received the sensible heat from the granular medium N collects the dust O by the dust removing device 38 and then introduces the received sensible heat into a heat exchanger using a normal gas for heat utilization. I do. This is because the high temperature exhaust gas M does not contain the chlorine-based gas, and thus heat recovery with a general heat exchanger is possible. For example, as in the embodiment of FIG. 1, there is provided an apparatus for introducing the steam heater 42 to exchange heat with the heated air T and driving the turbine generator 43 with the sensible heat of the cooling air S. Can be mentioned. The electric power X obtained by the turbine generator 43 may be used for operation in the incinerator, and its use is not particularly limited. By using this electric power X, the thermal efficiency of the entire incinerator is improved.

なお、蒸気加熱器42で顕熱を放出して冷却された冷却空気Sは、蒸気加熱器42と粒状媒体式熱交換器35の下部熱交換室37との間を循環する循環配管44を通じて、再び下部熱交換室37に導入され、粒状媒体Nから顕熱を受け取り、蒸気加熱器42との間を循環する。   The cooling air S cooled by releasing sensible heat with the steam heater 42 passes through a circulation pipe 44 that circulates between the steam heater 42 and the lower heat exchange chamber 37 of the granular medium heat exchanger 35. It is again introduced into the lower heat exchange chamber 37, receives sensible heat from the granular medium N, and circulates between the steam heater 42.

上記の粒状媒体Nに顕熱を放出した排ガスは、粒状媒体循環用空気Qと合わさり、600℃前後にまで冷却された冷却排ガスRとなる。それでもまだ回収すべき顕熱を十分に有しているので、廃熱ボイラ41に導入し、水の蒸発に用いる。この冷却により、排ガスに含まれていた、高温のために気体だった成分が凝縮、凝固して、新たな灰分であるボイラ溶融飛灰U,Vが生じる。これらは廃熱ボイラ41の下部から別途排出し、冷却された排ガスWと分離する。この排ガスWは、その後、さらに減温し、有害成分やダストを除去した後に系外へ放出する。   The exhaust gas that has released sensible heat to the granular medium N is combined with the air Q for circulating the granular medium, and becomes a cooled exhaust gas R cooled to around 600 ° C. Still, it still has enough sensible heat to be recovered, so it is introduced into the waste heat boiler 41 and used for water evaporation. This cooling condenses and solidifies components that were contained in the exhaust gas due to the high temperature, resulting in boiler melted fly ash U and V that are new ash. These are separately discharged from the lower part of the waste heat boiler 41 and separated from the cooled exhaust gas W. Thereafter, the exhaust gas W is further reduced in temperature and removed from the system after removing harmful components and dust.

また、廃熱ボイラ41で生じる加熱空気Tは、上記の蒸気加熱器42に導入して熱交換したり、流動床式ガス化炉21で用いる空気Bとして利用する。   Further, the heated air T generated in the waste heat boiler 41 is introduced into the steam heater 42 to exchange heat, or used as the air B used in the fluidized bed gasifier 21.

一方、流動床式ガス化炉21で、下部から排出された固形分Fは、熱分解残渣aとして、細かく分類して処理することが好ましい。まず、磁選機51で鉄物bと非鉄残渣cとを分離する。鉄物bは鉄物バンカ53に送り、鉄を再利用する。一方、非鉄残渣cはアルミ選別機52で残渣dとアルミ分eとに分離し、残渣dは残渣バンカ54に、アルミ分eはアルミバンカ55に送る。このうち、残渣dにはなお塩化物が含まれており、そのままでは扱いにくく、体積もかさばる。このため、減容も兼ねて溶融処理を行うと好ましい。ここで溶融すると、燃焼炉31やその後の熱回収工程とは無関係に高熱処理ができるので、塩化物が含まれていても問題なく溶融処理を行って溶融スラグ(溶融塩f)を得ることができる。この溶融は燃焼炉を用いてもよいが、上記のタービン発電機43で発電した電力Xを用いて電気溶融させる電気式溶融炉61で溶融させると、燃焼装置全体での熱利用を効率的に行うことができるので好ましい。   On the other hand, the solid content F discharged from the lower part in the fluidized bed gasification furnace 21 is preferably classified and processed as the pyrolysis residue a. First, the iron material b and the nonferrous residue c are separated by the magnetic separator 51. The iron b is sent to the iron bunker 53, and the iron is reused. On the other hand, the non-ferrous residue c is separated into a residue d and an aluminum component e by an aluminum sorter 52, and the residue d is sent to the residue bunker 54 and the aluminum component e is sent to the aluminum bunker 55. Of these, the residue d still contains chloride, which is difficult to handle as it is and its volume is bulky. For this reason, it is preferable to perform the melting treatment also for volume reduction. When melted here, a high heat treatment can be performed irrespective of the combustion furnace 31 and the subsequent heat recovery process, so that even if chloride is contained, the melting process can be performed without any problem to obtain molten slag (molten salt f). it can. A melting furnace may be used for this melting. However, if the melting is performed in the electric melting furnace 61 in which the electric power X generated by the turbine generator 43 is used for electric melting, the heat utilization in the entire combustion apparatus is efficiently performed. Since it can be performed, it is preferable.

この発明にかかる焼却装置を用いて、上記のように固形分Fと分離させた熱分解ガスJのみを燃焼炉31に送り燃焼させ、固形分Fは流動媒体Cとともに流動床式ガス化炉21から排出するようにして、固形分Fと熱分解ガスJとを分離することで、塩化物が燃焼工程及び熱回収工程に混入して、燃焼炉で溶融することを防ぎ、燃焼炉を十分に高熱の状態で運用することができる。   Using the incinerator according to the present invention, only the pyrolysis gas J separated from the solid content F as described above is sent to the combustion furnace 31 for combustion, and the solid content F together with the fluidized medium C is fluidized bed gasification furnace 21. The solid content F and the pyrolysis gas J are separated so as to prevent the chloride from entering the combustion process and the heat recovery process and melting in the combustion furnace. It can be operated under high heat conditions.

このような方法で得られた排ガスには塩化物がほとんど含まれていないため、粒状媒体を介して排ガス以外のガスに顕熱を移す熱交換器での、溶融塩化物の付着や固着による閉塞や停止を防ぎ、熱回収工程を円滑に運用することができ、焼却装置全体の運用効率を向上させることができる。また、顕熱を受け取ったガスを発電に用い、燃焼炉とは別のラインで固形分Fの電気溶融を行うことで、熱回収工程とは関係なく、溶融スラグを得ることができる。   Since the exhaust gas obtained by such a method contains almost no chloride, the heat exchanger that transfers sensible heat to a gas other than the exhaust gas through the granular medium clogs due to adhesion or adhesion of molten chloride. The heat recovery process can be smoothly operated and the operation efficiency of the entire incinerator can be improved. Further, by using the gas that has received sensible heat for power generation and performing electric melting of the solid content F in a line different from the combustion furnace, molten slag can be obtained regardless of the heat recovery process.

この発明を実施する焼却装置の実施形態を示す図The figure which shows embodiment of the incinerator which implements this invention

符号の説明Explanation of symbols

A 廃棄物
B 空気
C 流動媒体
D 混合物
E 冷却水
F 固形分
J 熱分解ガス
K 燃焼用空気
L 燃焼灰
M 高温排ガス
N 粒状媒体
O ダスト分
Q 粒状媒体循環用空気
R 冷却排ガス
S 冷却空気
T 加熱空気
U,V ボイラ溶融飛灰
W 排ガス
X 電力
a 熱分解残渣
b 鉄物
c 非鉄残渣
d 残渣
e アルミ分
f 溶融塩
21 流動床式ガス化炉
22 廃棄物投入口
23 砂層
24 砂排出機
25 砂ロックホッパ
26 流動媒体投入口
27 砂分級機
28 砂貯蔵機
29 助燃バーナ
31 燃焼炉
32 再燃バーナ
33 燃焼灰排出口
34 排ガス煙道
35 粒状媒体式熱交換器
36 トレイ
37 下部熱交換室
38 ダスト除去装置
39 エアリフタ
40 ホッパ
41 廃熱ボイラ
42 蒸気加熱器
43 タービン発電機
44 循環配管
51 磁選機
52 アルミ選別機
53 鉄物バンカ
54 残渣バンカ
55 アルミバンカ
61 電気式溶融炉
A Waste B Air C Fluid medium D Mixture E Cooling water F Solid content J Pyrolysis gas K Combustion air L Combustion ash M High temperature exhaust gas N Granular medium O Dust content Q Granular medium circulation air R Cooling exhaust gas S Cooling air T Heating Air U, V Boiler molten fly ash W Exhaust gas X Electric power a Thermal decomposition residue b Iron c Non-ferrous residue d Residue e Aluminum content f Molten salt 21 Fluidized bed gasifier 22 Waste input port 23 Sand layer 24 Sand discharger 25 Sand Lock hopper 26 Fluid medium inlet 27 Sand classifier 28 Sand storage 29 Auxiliary burner 31 Combustion furnace 32 Reburn burner 33 Combustion ash outlet 34 Exhaust flue 35 Granular medium heat exchanger 36 Tray 37 Lower heat exchange chamber 38 Dust removal Equipment 39 Air lifter 40 Hopper 41 Waste heat boiler 42 Steam heater 43 Turbine generator 44 Circulating piping 51 Magnetic separator 52 Aluminum separator 53 Iron bunker 54 Residual waste Nka55 aluminum bunker 61 electric melting furnace

Claims (8)

流動床式焼却炉を用いて可燃性廃棄物を焼却する廃棄物焼却装置において、
流動媒体との接触により前記可燃性廃棄物を熱分解ガスと固形分とに分離する流動床式ガス化炉と、前記熱分解ガスを燃焼させる燃焼炉とからなる、廃棄物焼却装置。
In a waste incinerator that incinerates combustible waste using a fluidized bed incinerator,
A waste incinerator comprising a fluidized bed gasification furnace that separates the combustible waste into pyrolysis gas and solids by contact with a fluid medium, and a combustion furnace that burns the pyrolysis gas.
前記固形分を、前記流動媒体とともに前記流動床式ガス化炉から排出することを特徴とする請求項1に記載の廃棄物焼却装置。   The waste incinerator according to claim 1, wherein the solid content is discharged together with the fluid medium from the fluidized bed gasification furnace. 上記燃焼炉から排出された排ガスが有する顕熱を粒状媒体に移し、その粒状媒体の顕熱をより低温である上記排ガス以外のガスに移す粒状媒体式熱交換器を有する、請求項1又は2に記載の廃棄物焼却装置。   3. A granular medium type heat exchanger for transferring sensible heat of exhaust gas discharged from the combustion furnace to a granular medium and transferring sensible heat of the granular medium to a gas other than the exhaust gas having a lower temperature. Waste incinerator described in 1. 上記顕熱を回収した上記ガスからその顕熱を回収する熱交換器と、前記熱交換器に顕熱を移した上記ガスを上記粒状媒体式熱交換器に送る循環配管とを有し、
上記ガスを前記熱交換器と上記粒状媒体式熱交換器との間で循環させることを特徴とする、請求項3に記載の廃棄物焼却装置。
A heat exchanger that recovers the sensible heat from the gas that has recovered the sensible heat, and a circulation pipe that sends the gas that has transferred sensible heat to the heat exchanger to the granular medium heat exchanger,
The waste incinerator according to claim 3, wherein the gas is circulated between the heat exchanger and the granular medium heat exchanger.
上記粒状媒体式熱交換器で上記ガスに回収された顕熱により発電する発電機と、上記流動床式ガス化炉から排出した上記固形分を前記発電機で発電した電力により電気溶融させる電気式溶融炉とを有し、
上記固形分を溶融スラグとして回収可能であることを特徴とする、請求項3又は4に記載の廃棄物焼却装置。
An electric generator that generates electric power by sensible heat recovered in the gas by the granular medium heat exchanger, and an electric type that electrically melts the solid content discharged from the fluidized bed gasification furnace with electric power generated by the generator A melting furnace,
The waste incinerator according to claim 3 or 4, wherein the solid content can be recovered as molten slag.
流動媒体を用いた流動床式ガス化炉により、廃棄物から熱分解ガスと固形分とを生じさせ、前記固形分と分離させた前記熱分解ガスのみを燃焼炉に送り燃焼させることを特徴とする、廃棄物焼却方法。   A fluidized bed gasification furnace using a fluidized medium generates pyrolysis gas and solids from waste, and sends only the pyrolysis gas separated from the solids to a combustion furnace for combustion. Waste incineration method. 上記固形分を上記流動媒体とともに上記流動床式ガス化炉から排出して、上記固形分が上記燃焼炉で溶融することを防ぐ、請求項6に記載の廃棄物焼却方法。   The waste incineration method according to claim 6, wherein the solid content is discharged from the fluidized bed gasification furnace together with the fluidized medium to prevent the solid content from being melted in the combustion furnace. 上記燃焼炉で生じる排ガスが有する顕熱を、流動媒体を介してガスに移し、そのガスが有する顕熱により発電した電力により、上記固形分を電気溶融させることを特徴とする、請求項6又は7に記載の廃棄物焼却方法。   The sensible heat of the exhaust gas generated in the combustion furnace is transferred to a gas through a fluid medium, and the solid content is electrically melted by electric power generated by the sensible heat of the gas. The waste incineration method according to 7.
JP2008083982A 2008-03-27 2008-03-27 Waste incineration method and incineration device Pending JP2009236418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083982A JP2009236418A (en) 2008-03-27 2008-03-27 Waste incineration method and incineration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083982A JP2009236418A (en) 2008-03-27 2008-03-27 Waste incineration method and incineration device

Publications (1)

Publication Number Publication Date
JP2009236418A true JP2009236418A (en) 2009-10-15

Family

ID=41250587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083982A Pending JP2009236418A (en) 2008-03-27 2008-03-27 Waste incineration method and incineration device

Country Status (1)

Country Link
JP (1) JP2009236418A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317918A (en) * 1997-05-20 1998-12-02 Ebara Corp Energy recovery method from combustible
JP2002054810A (en) * 2000-05-29 2002-02-20 Nippon Steel Corp Method for melting waste
JP2004176959A (en) * 2002-11-26 2004-06-24 Kurimoto Ltd Waste incinerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317918A (en) * 1997-05-20 1998-12-02 Ebara Corp Energy recovery method from combustible
JP2002054810A (en) * 2000-05-29 2002-02-20 Nippon Steel Corp Method for melting waste
JP2004176959A (en) * 2002-11-26 2004-06-24 Kurimoto Ltd Waste incinerator

Similar Documents

Publication Publication Date Title
JP4527243B2 (en) How to use the lime kiln
US5505145A (en) Process and apparatus for waste incineration
JPH11173520A (en) Method and device for fluidized bed type thermal decomposition
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP2007040696A (en) Method of storing heat into heat storage device
JP6541039B2 (en) Incineration ash processing apparatus and incineration ash processing method
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JPH0849822A (en) Device and method for treating waste
JP2009236418A (en) Waste incineration method and incineration device
JP4614442B2 (en) Waste gasification treatment system and treatment method
JP2004347274A (en) Waste treatment device
JP4194983B2 (en) Waste disposal method
JP2007010309A (en) Recovery method of inflammable gas from sludge
JP4035057B2 (en) Gas introduction method for biomass processing in CDQ
JP3821432B2 (en) Sewage sludge incineration equipment
JP2991638B2 (en) Waste incineration equipment
JPH10141620A (en) Method for discharging pyrolysis residue, and waste treatment equipment
JP4265975B2 (en) Heat recovery method, combustible material processing method, heat recovery system, and combustible material processing apparatus
JP3869043B2 (en) Exhaust gas treatment equipment in waste treatment equipment
JP3374020B2 (en) Waste pyrolysis melting system
EP1712839A1 (en) Method of heat recovery, method of processing combustible material, heat recovery apparatus and apparatus for combustible material processing
JP2001280615A (en) Melting furnace
JP3762726B2 (en) Incineration ash molten exhaust gas treatment method
JP2006097915A (en) Incineration facility
JPH1130411A (en) Waste incinerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20090722

Free format text: JAPANESE INTERMEDIATE CODE: A711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101105

A977 Report on retrieval

Effective date: 20120816

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120904

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A02