JP2009235175A - Base material for preform, method for manufacturing the material, and thermosetting binder resin powder - Google Patents

Base material for preform, method for manufacturing the material, and thermosetting binder resin powder Download PDF

Info

Publication number
JP2009235175A
JP2009235175A JP2008080600A JP2008080600A JP2009235175A JP 2009235175 A JP2009235175 A JP 2009235175A JP 2008080600 A JP2008080600 A JP 2008080600A JP 2008080600 A JP2008080600 A JP 2008080600A JP 2009235175 A JP2009235175 A JP 2009235175A
Authority
JP
Japan
Prior art keywords
preform
resin
base material
substrate
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080600A
Other languages
Japanese (ja)
Inventor
Kaori Ishihara
香織 石原
Toru Kaneko
徹 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2008080600A priority Critical patent/JP2009235175A/en
Publication of JP2009235175A publication Critical patent/JP2009235175A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing fiber base material for a preform having excellent shaping property and shape stability and being re-adhesive. <P>SOLUTION: The base material for a preform comprises a sheet type reinforcing fiber base material and a powder of a thermosetting binder resin having at least two unsaturated groups in the molecule, a melting point (Tm) of 40 to 150°C and an average particle diameter of 20 to 500 μm deposited on one or both surfaces of the base material in an amount of 0.1 to 20 wt.% with respect to the reinforcing fiber base material. Preferably, the powder of the binder resin essentially comprises a vinyl ester resin or an acrylic resin having a glass transition temperature (Tg) of 35 to 120°C and viscosity of 200 to 1,000 Pa s at a temperature of the melting point (Tm)+10°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、強化繊維からなる形状賦形性と形態安定性に優れ、且つ、再接着可能なプリフォーム用基材とそれに用いる熱硬化性バインダー樹脂、及びプリフォーム用基材の製造方法、並びにプリフォーム用積層基材とその製造方法に関する。 The present invention is a preform base material, a thermosetting binder resin used therefor, a method for producing a preform base material, and a preform base material that is excellent in shape-forming property and shape stability made of reinforcing fibers and can be reattached, and The present invention relates to a preform laminated base material and a method for producing the same.

繊維強化プラスチック(FRP)は、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂や、ポリエチレン、ポリプロピレン、ポリアミド、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)等の熱可塑性樹脂のマトリックス樹脂と、炭素繊維、ガラス繊維、アラミド繊維等の繊維強化材(強化繊維基材)とからなるものであり、軽量で且つ強度特性に優れるため、近年、航空宇宙産業から一般産業分野に至るまで、幅広い分野において利用されている。 Fiber reinforced plastics (FRP) are thermosetting resins such as unsaturated polyester resins, epoxy resins, and polyimide resins, and thermoplastic resins such as polyethylene, polypropylene, polyamide, polyphenylene sulfide (PPS), and polyetheretherketone (PEEK). In recent years, from the aerospace industry to the general industrial field, it is made of a matrix resin and a fiber reinforcing material (reinforced fiber base material) such as carbon fiber, glass fiber, and aramid fiber. It has been used in a wide range of fields.

FRPの成形方法としては色々な方法が知られているが、典型的には、例えば、強化繊維基材に予めマトリックス樹脂を含浸させた成形中間基材であるプリプレグを用いて、オートクレーブ等で成形する方法、シート状の強化繊維基材を予め成形品形状に賦形したプリフォームを成形型に配置し型締めし、型内にマトリックス樹脂を注入・含浸せしめて成形する方法がある。シート状の強化繊維基材を使用したFRP成形品は、樹脂トランスファー成形法(RTM成形法)によって成形される場合が多い。RTM成形法は、熱硬化性樹脂を用いた成形法の一種であり、シート状の強化繊維基材を型に敷設した後、型のキャビティーに樹脂を注入して基材に樹脂を含浸させ、硬化させることによりFRP成形品を得る。 Various methods are known as FRP molding methods. Typically, for example, molding is performed in an autoclave or the like using a prepreg which is a molding intermediate base material in which a reinforcing fiber base material is impregnated with a matrix resin in advance. And a method in which a preform in which a sheet-like reinforcing fiber base material is preliminarily shaped into a molded product shape is placed in a mold and clamped, and a matrix resin is injected into and impregnated into the mold and molded. An FRP molded product using a sheet-like reinforcing fiber base is often molded by a resin transfer molding method (RTM molding method). The RTM molding method is a kind of molding method using a thermosetting resin. After laying a sheet-like reinforcing fiber base material on a mold, the resin is injected into the mold cavity to impregnate the base material with the resin. By curing, an FRP molded product is obtained.

織物、多軸織物等のシート状の強化繊維基材は、そのままFRP成形品の強化繊維基材として用いるには厚さが不十分の場合は、複数枚を重ねて型に敷設し使用される。通常は、作業性の観点から、シート状の強化繊維基材をある程度の厚さとなるまで複数枚積層して一体化した積層基材(積層体)が用いられる。積層体の製造は、シート状の強化繊維基材同士をバインダーを用いて貼り合わせるか、あるいは、シート状の強化繊維基材間に、熱可塑性樹脂からなる熱溶着糸を用いて製造した不織布等を挟み込んで加熱することにより行われている。 Sheet-like reinforced fiber base materials such as woven fabrics and multiaxial woven fabrics are used by laying a plurality of sheets on a mold when the thickness is insufficient for use as a reinforced fiber base material for FRP molded products. . Usually, from the viewpoint of workability, a laminated base material (laminated body) in which a plurality of sheet-like reinforcing fiber base materials are laminated and integrated to a certain thickness is used. The laminated body is manufactured by laminating sheet-like reinforcing fiber bases using a binder, or a nonwoven fabric produced using a heat-welded yarn made of a thermoplastic resin between sheet-like reinforcing fiber bases, etc. Is performed by sandwiching and heating.

FRP成形品を高サイクルで成形する場合、あらかじめ賦形型で賦形した積層体(プリフォーム)を成形型に移動し、RTM成形法等で成形される。従って、このような場合には、強化繊維基材の形状賦形性や樹脂の含浸性が良好なだけでなく、積層体が移動に耐えられるだけの形態安定性が必要である。形態の安定性を向上させるため、一般的には、強化繊維基材同士をバインダーで強固に接着固定する方法が取られている。バインダーとしては、熱硬化性樹脂と熱可塑性樹脂を使用する方法がある。熱硬化性樹脂を使用する場合、繊維強化材の層間にバインダーを塗布し、その一部を繊維強化材に含浸させ、加熱により樹脂を硬化させる方法が知られている。また、熱可塑性樹脂を使用する場合、熱溶着糸からなる不織布等を使用し、加熱により熱溶着糸を溶融させ繊維強化材層間を接着させる方法、熱可塑性ポリマー糸を使用し、織物製織時に繊維強化材と熱可塑性ポリマー糸を引き揃えて製織し、この織物を積層したプリフォームを使用する方法等が提案されている(例えば、以下の特許文献参照)。
特開2002−227067号公報 特開2003−80607号公報 特許第1736023号公報 特開2001−64406号公報 特開2005−219228号公報 特開2006−326892号公報
When an FRP molded product is molded at a high cycle, a laminate (preform) shaped in advance by a shaping mold is moved to a molding die and molded by an RTM molding method or the like. Therefore, in such a case, not only the shape shaping property of the reinforcing fiber base material and the resin impregnation property are good, but also the shape stability that allows the laminate to withstand movement is required. In order to improve the stability of the form, generally, a method of firmly bonding and fixing reinforcing fiber bases with a binder is taken. As the binder, there is a method using a thermosetting resin and a thermoplastic resin. In the case of using a thermosetting resin, a method is known in which a binder is applied between layers of a fiber reinforcing material, a part thereof is impregnated into the fiber reinforcing material, and the resin is cured by heating. Also, when using a thermoplastic resin, a non-woven fabric made of heat-welded yarn is used, the heat-welded yarn is melted by heating to bond the fiber reinforcing material layers, thermoplastic polymer yarn is used, and fibers are used when weaving the fabric. There has been proposed a method of using a preform in which a reinforcing material and a thermoplastic polymer yarn are aligned and woven, and the woven fabric is laminated (for example, refer to the following patent document).
JP 2002-227067 A JP 2003-80607 A Japanese Patent No. 1736023 JP 2001-64406 A JP 2005-219228 A JP 2006-326892 A

しかしながら、バインダーを塗布し硬化させる方法は、シート状の強化繊維基材の層間に存在する樹脂が硬化しているため、RTM成形法に使用する樹脂の種類によっては、強化繊維基材への樹脂含浸が不十分になったり、樹脂の硬化阻害作用があったりして、得られたFRP成形品の層間物性が低下するという問題がある。また、熱溶着糸からなる不織布等を挟んで加熱する方法では、接着面積が大きいため、室温のコンポジット物性は問題ないが、熱間特性が低下するという問題点があった。また、熱可塑性ポリマー糸を使用した織物では、接着面積の低減が可能であり、得られたFRP成形品のコンポジット物性は問題ないが、形状の安定性が悪く、賦形した積層基材(プリフォーム)を移動できないという問題があった。 However, the method of applying and curing the binder is that the resin present between the layers of the sheet-like reinforcing fiber base is cured, so depending on the type of resin used in the RTM molding method, the resin to the reinforcing fiber base There is a problem that the impregnation becomes insufficient or the resin has an effect of inhibiting the curing of the resin, resulting in a decrease in interlayer physical properties of the obtained FRP molded product. Further, in the method of heating by sandwiching a non-woven fabric made of heat-welded yarn, since the bonding area is large, there is no problem in the physical properties of the composite at room temperature, but there is a problem that the hot characteristics are deteriorated. In addition, in a woven fabric using thermoplastic polymer yarns, the adhesion area can be reduced, and the composite physical properties of the obtained FRP molded product are not a problem, but the shape stability is poor, and the shaped laminated substrate (plastic There was a problem that it could not be moved.

本発明の目的は、シート状の強化繊維基材を積層して、RTM成形法等によりFRP成形品の製造を行う場合に、プリフォームに容易に賦形できるプリフォーム用基材、そしてまた、FRP成形品の層間物性が低下せず、予備成形時の形状を安定的に保持できる、形態安定性に優れたプリフォーム用積層基材を提供することにある。また、本発明の他の目的は、前記プリフォーム用基材又はプリフォーム用積層基材を用いたFRP成形品を提供することにある。 The object of the present invention is to laminate a sheet-like reinforcing fiber base material, and when performing manufacture of an FRP molded product by an RTM molding method or the like, a preform base material that can be easily shaped into a preform, and also An object of the present invention is to provide a preform base material for preforms which is excellent in form stability and which can stably maintain the shape at the time of preforming without deteriorating interlayer physical properties of the FRP molded product. Another object of the present invention is to provide an FRP molded article using the preform substrate or the laminate substrate for preform.

本発明の請求項1に記載された発明は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃、平均粒子径が20〜500μmの範囲にあるの熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材である。 Invention of Claim 1 of this invention has at least 2 unsaturated group in a molecule | numerator in the single side | surface or both surfaces of a sheet-like reinforcing fiber base material, and melting | fusing point (Tm) is 40-150 degreeC, A preform base material in which a powder of a thermosetting binder resin having an average particle diameter in the range of 20 to 500 μm is adhered to the reinforcing fiber base in a range of 0.1 to 20% by weight.

請求項2に記載された発明は、熱硬化性バインダー樹脂が、融点(Tm)+10℃における粘度が200〜1000Pa・sであり、ガラス転移点温度(Tg)が35〜120℃であることを特徴とする請求項1記載のプリフォーム用基材である。 The invention described in claim 2 is that the thermosetting binder resin has a melting point (Tm) + 10 ° C. of 200 to 1000 Pa · s and a glass transition temperature (Tg) of 35 to 120 ° C. 2. The preform substrate according to claim 1, wherein the preform substrate is a preform substrate.

請求項3に記載された発明は、熱硬化性バインダー樹脂が、ビニルエステル樹脂又はアクリル樹脂であることを特徴とする請求項1〜2のいずれか1項記載のプリフォーム用基材である。 The invention described in claim 3 is the preform substrate according to any one of claims 1 to 2, wherein the thermosetting binder resin is a vinyl ester resin or an acrylic resin.

請求項4に記載された発明は、シート状の強化繊維基材が、実質的に一方向に配向した強化繊維からなるものであることを特徴とする請求項1〜3のいずれか1項記載のプリフォーム用基材である。 The invention described in claim 4 is characterized in that the sheet-like reinforcing fiber substrate is composed of reinforcing fibers substantially oriented in one direction. This is a preform substrate.

請求項5に記載された発明は、シート状の強化繊維基材が、多軸織物又はノンクリンプ織物であることを特徴とする請求項1〜3のいずれか1項記載のプリフォーム用基材である。 The invention described in claim 5 is the preform substrate according to any one of claims 1 to 3, wherein the sheet-like reinforcing fiber substrate is a multiaxial fabric or a non-crimp fabric. is there.

請求項6に記載された発明は、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃で、ガラス転移点温度(Tg)が35〜120℃で、融点(Tm)+10℃における粘度が200〜1000Pa・sで、粉末の平均粒子径が20〜500μmの範囲にあるビニルエステル樹脂又はアクリル樹脂を主体とした熱硬化性バインダー樹脂粉末である。 The invention described in claim 6 has at least two unsaturated groups in the molecule, has a melting point (Tm) of 40 to 150 ° C., a glass transition temperature (Tg) of 35 to 120 ° C., a melting point (Tm) A thermosetting binder resin powder mainly composed of a vinyl ester resin or an acrylic resin having a viscosity of 200 to 1000 Pa · s at 10 ° C. and an average particle diameter of the powder in the range of 20 to 500 μm.

請求項7に記載された発明は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末を、前記強化繊維基材に対し0.1〜20重量%の範囲で付与し、次いで、該樹脂の融点(Tm)以上で融点+50℃以下の温度範囲で2〜30分間加熱して、前記樹脂の粉末を前記強化繊維基材の片面又は両面に付着せしめることを特徴とするプリフォーム用基材の製造方法である。 The invention described in claim 7 is a thermosetting material having at least two unsaturated groups in the molecule on one side or both sides of the sheet-like reinforcing fiber base and having a melting point (Tm) of 40 to 150 ° C. Binder resin powder is applied to the reinforcing fiber substrate in the range of 0.1 to 20% by weight, and then heated for 2 to 30 minutes in the temperature range from the melting point (Tm) of the resin to the melting point + 50 ° C. Then, the preform for a preform is produced by adhering the resin powder to one side or both sides of the reinforcing fiber base.

請求項8に記載された発明は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材を複数枚積層し、層間を接合した積層基材であって、層間の25℃での剥離強度が70〜500N/mの範囲であり、且つ、層間剥離後の再接着において、25℃での剥離強度が少なくとも10N/mを有していることを特徴とするプリフォーム用積層基材である。なお、本発明においてプリフォーム用積層基材というときには、特に区別して用いない限り、それを賦形したプリフォームも含むものである。 The invention described in claim 8 is a thermosetting material having at least two unsaturated groups in the molecule on one side or both sides of the sheet-like reinforcing fiber base and having a melting point (Tm) of 40 to 150 ° C. A laminate base material in which a plurality of preform base materials formed by adhering a binder resin powder in the range of 0.1 to 20% by weight to the reinforcing fiber base material and joining the layers is provided. The peel strength at 25 ° C. is in the range of 70 to 500 N / m 2 , and the re-adhesion after delamination has a peel strength at 25 ° C. of at least 10 N / m 2. It is a laminated base material for preforms. In the present invention, when it is referred to as a preform laminate base material, it includes a preform formed by using it unless otherwise distinguished.

請求項9に記載された発明は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材を複数枚積層し、次いで、前記樹脂の融点(Tm)以上で融点+50℃以下の温度で2〜30分間加熱して、積層された強化繊維基材間を接合することを特徴とするプリフォーム用積層基材(又はプリフォーム)の製造方法である。 The invention described in claim 9 is a thermosetting material having at least two unsaturated groups in the molecule on one side or both sides of the sheet-like reinforcing fiber base and having a melting point (Tm) of 40 to 150 ° C. A plurality of preform base materials formed by adhering a binder resin powder in the range of 0.1 to 20% by weight to the reinforcing fiber base material, and then having a melting point above the melting point (Tm) of the resin. It is a method for producing a laminated base material (or preform) for preforms, wherein the laminated reinforcing fiber base materials are joined at a temperature of + 50 ° C. or lower for 2 to 30 minutes.

請求項10に記載された発明は、請求項8記載のプリフォーム用積層基材を、成形型内に配置し、マトリックス樹脂を含浸させた後、加熱硬化させることを特徴とする繊維強化複合材料の製造方法である。 The invention described in claim 10 is a fiber-reinforced composite material characterized in that the preform base material according to claim 8 is placed in a mold, impregnated with a matrix resin, and then cured by heating. It is a manufacturing method.

請求項11に記載された発明は、マトリックス樹脂が、ビニルエステル樹脂を主成分とするものであることを特徴とする請求項10記載の繊維強化複合材料の製造方法である。 The invention described in claim 11 is the method for producing a fiber-reinforced composite material according to claim 10, wherein the matrix resin is mainly composed of a vinyl ester resin.

請求項12に記載された発明は、請求項8記載のプリフォーム用積層基材を、成形型内に配置し、マトリックス樹脂を含浸させた後、加熱硬化させることによって得られた繊維強化複合材料である。 The invention described in claim 12 is a fiber-reinforced composite material obtained by placing the preform laminated substrate according to claim 8 in a mold, impregnating with a matrix resin, and then heat curing. It is.

そして、請求項13に記載された発明は、マトリックス樹脂が、ビニルエステル樹脂を主成分とするものである請求項12記載の繊維強化複合材料である。 The invention described in claim 13 is the fiber-reinforced composite material according to claim 12, wherein the matrix resin is mainly composed of a vinyl ester resin.

本発明のプリフォーム用基材とその積層基材は、形状賦形性と形態安定性に優れている。
また、この積層基材は、剥離後の再接着が可能であるため、プリフォーム作製の際、張り直し等の修正作業が容易である。そして、本発明のプリフォーム用基材又はその積層基材を用いて、RTM成形法等によって得られたFRP成形品は、マトリックス樹脂との相溶性に優れているので、優れた耐衝撃特性、靭性等の機械的特性を有するものとなる。
The preform base material and the laminated base material of the present invention are excellent in shape shaping and shape stability.
In addition, since this laminated base material can be re-adhered after peeling, correction work such as re-stretching is easy when producing a preform. And since the FRP molded product obtained by the RTM molding method or the like using the preform base material or the laminated base material of the present invention is excellent in compatibility with the matrix resin, excellent impact resistance characteristics, It has mechanical properties such as toughness.

本発明のプリフォーム用基材は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%、好ましくは1〜10重量%の範囲で付着されているものである。熱硬化性バインダー樹脂としては、融点(Tm)+10℃における粘度が200〜1000Pa・sであり、ガラス転移点温度(Tg)が35〜120℃であるものが好ましい。また、熱硬化性バインダー樹脂の粉末の平均粒子径が、20〜500μmの範囲にあるものが好ましい。熱硬化性バインダー樹脂量が0.1重量%未満の場合は安定なプリフォームが得られないし、20重量%を超えるとマトリックス樹脂の含浸性に悪影響を与えるので不適当である。なお、本発明において粉末の平均粒子径とは、粉末粒子の最長径と最短径の平均値として表される。 The preform substrate of the present invention has at least two unsaturated groups in the molecule on one or both sides of a sheet-like reinforcing fiber substrate, and has a melting point (Tm) of 40 to 150 ° C. The binder resin powder is adhered to the reinforcing fiber base in an amount of 0.1 to 20% by weight, preferably 1 to 10% by weight. The thermosetting binder resin preferably has a melting point (Tm) + 10 ° C. of 200 to 1000 Pa · s and a glass transition temperature (Tg) of 35 to 120 ° C. Moreover, what has the average particle diameter of the powder of a thermosetting binder resin in the range of 20-500 micrometers is preferable. When the amount of the thermosetting binder resin is less than 0.1% by weight, a stable preform cannot be obtained, and when it exceeds 20% by weight, the impregnation property of the matrix resin is adversely affected. In the present invention, the average particle diameter of the powder is expressed as an average value of the longest diameter and the shortest diameter of the powder particles.

熱硬化性バインダー樹脂としては、ビニルエステル樹脂又はアクリル樹脂を主体とするものが好ましい。ビニルエステル樹脂又はアクリル樹脂が約90重量%以上含まれていれば、約10重量%以下のその他の樹脂成分あるいは着色剤、粘度調節剤等を含んでいても良い。
ビニルエステル樹脂又はアクリル樹脂としては、両末端に二重結合を有しているものが好ましい。本発明において特に好ましく用いられる熱硬化性バインダー樹脂は、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃で、ガラス転移点温度(Tg)が35〜120℃で、融点(Tm)+10℃における粘度が200〜1000Pa・sで、粉末の平均粒子径が20〜500μmの範囲にあるビニルエステル樹脂又はアクリル樹脂を主体とした熱硬化性バインダー樹脂粉末である。
As the thermosetting binder resin, those mainly composed of vinyl ester resin or acrylic resin are preferable. If the vinyl ester resin or acrylic resin is contained in an amount of about 90% by weight or more, it may contain about 10% by weight or less of other resin components, colorants, viscosity modifiers, and the like.
As the vinyl ester resin or acrylic resin, those having double bonds at both ends are preferred. The thermosetting binder resin particularly preferably used in the present invention has at least two unsaturated groups in the molecule, has a melting point (Tm) of 40 to 150 ° C., and a glass transition temperature (Tg) of 35 to 120. It is a thermosetting binder resin powder mainly composed of vinyl ester resin or acrylic resin having a melting point (Tm) + viscosity at 10 ° C. of 200 to 1000 Pa · s and an average particle diameter of the powder in the range of 20 to 500 μm. .

本発明においてシート状の強化繊維基材とは、強化繊維を経糸及び/又は緯糸として使用した平織物、綾織物、朱子織物や、平行に引き揃えた強化繊維束の集合からなる一軸織物や多軸織物、ノンクリンプ織物等の基材である。強化繊維としては、特に制限はなく、一般にFRPにおける強化繊維として使用されるものであって良い。具体的には、無機繊維、有機繊維、金属繊維、金属被覆繊維またはそれらの混合から成り、無機繊維としては炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイト繊維、ボロン繊維、ガラス繊維等が用いられてよい。有機繊維の場合にはアラミド繊維、高密度ポリエチレン繊維、ナイロン繊維、ポリエステル繊維等の有機繊維が挙げられる。本発明においては、比強度および比弾性率が高い炭素繊維あるいは黒鉛繊維が好ましい。 In the present invention, the sheet-like reinforcing fiber substrate is a plain woven fabric, twill woven fabric, satin woven fabric using reinforcing fibers as warp yarns and / or weft yarns, uniaxial woven fabric composed of a bundle of reinforcing fiber bundles arranged in parallel, It is a base material such as a shaft fabric or a non-crimp fabric. There is no restriction | limiting in particular as a reinforced fiber, Generally, it may be used as a reinforced fiber in FRP. Specifically, it consists of inorganic fibers, organic fibers, metal fibers, metal-coated fibers, or a mixture thereof, and as inorganic fibers, carbon fibers, graphite fibers, silicon carbide fibers, alumina fibers, tungsten carbide fibers, boron fibers, glass Fiber or the like may be used. In the case of organic fibers, examples include organic fibers such as aramid fibers, high density polyethylene fibers, nylon fibers, and polyester fibers. In the present invention, carbon fibers or graphite fibers having high specific strength and specific elastic modulus are preferred.

本発明の前記プリフォーム用基材は、シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末を、前記強化繊維基材に対し0.1〜20重量%の範囲で付与し、次いで、該樹脂の融点(Tm)以上で融点+50℃以下の温度範囲で2〜30分間加熱して、前記樹脂の粉末を前記強化繊維基材の片面又は両面に付着せしめる方法で製造することができる。熱硬化性バインダー樹脂としては、融点(Tm)+10℃における粘度が200〜1000Pa・sであり、ガラス転移点温度(Tg)が35〜120℃であり、粉末の平均粒子径が20〜500μmのものが好ましい。かかる樹脂粉末は、公知の適当な方法・手段で、強化繊維基材の片面又は両面に付与され、その後、必要なら加圧しながら所定時間、所定温度に加熱して、樹脂粉末を部分的に溶融させることによって、強化繊維基材の主として表面に付着(接着)させる。 The preform substrate of the present invention has at least two unsaturated groups in the molecule on one or both sides of a sheet-like reinforcing fiber substrate, and is thermoset having a melting point (Tm) of 40 to 150 ° C. The binder resin powder is applied to the reinforcing fiber base in the range of 0.1 to 20% by weight, and then in the temperature range from the melting point (Tm) to the melting point + 50 ° C. or lower for 2 to 30 minutes. The resin powder can be produced by heating to adhere to one or both sides of the reinforcing fiber substrate. The thermosetting binder resin has a melting point (Tm) + viscosity of 200 to 1000 Pa · s, a glass transition temperature (Tg) of 35 to 120 ° C., and an average particle diameter of the powder of 20 to 500 μm. Those are preferred. Such resin powder is applied to one or both sides of the reinforcing fiber base by a known appropriate method / means, and then heated to a predetermined temperature for a predetermined time while applying pressure if necessary to partially melt the resin powder. By adhering, it adheres (adheres) mainly to the surface of the reinforcing fiber substrate.

本発明のプリフォーム用積層基材(又はプリフォーム)は、上記方法で得られたプリフォーム用基材を複数枚積層し、次いで、前記樹脂の融点(Tm)以上で融点+50℃以下の温度で2〜30分間加熱して、積層された強化繊維基材間を接合することによって得られる。加熱は必要なら適当に加圧しながら行っても良い。かくして得られたプリフォーム用積層基材は、層間が接合されたものであって、層間の25℃での剥離強度が70〜500N/mの範囲であり、且つ、層間剥離後の再接着において、25℃での剥離強度が少なくとも10N/mを有するものである。層間剥離後の再接着とは、例えば、プリフォームの積層工程で修正の必要が生じて、層間を一度剥離し再度接着させるような場合を意味し、この値が10N/m以上あれば、修正に特に問題が生じない。剥離強度が10N/m未満であるとシートが剥離し易く作業性が悪いこと、運搬中に繊維配向のずれが生じることから不適当である。また、シート間の剥離強度が500N/mを超えると、プリフォーム用積層基材を賦形したときに、各強化繊維が配列したシートが内外層の周長差を緩和するように滑らないため、内層の曲面部に皺が発生することになり、所望の力学的特性を有する成形品を得ることが出来ないため不適当である。 The preform laminate substrate (or preform) of the present invention is obtained by laminating a plurality of preform substrates obtained by the above method, and then having a temperature not lower than the melting point (Tm) of the resin and not lower than the melting point + 50 ° C. It is obtained by heating between 2 to 30 minutes and joining the laminated reinforcing fiber bases. If necessary, the heating may be performed while applying appropriate pressure. The preform laminated substrate thus obtained has the layers bonded to each other, has a peel strength at 25 ° C. between the layers of 70 to 500 N / m 2 , and re-adhesion after delamination. The peel strength at 25 ° C. is at least 10 N / m 2 . The re-adhesion after delamination means, for example, a case where correction is required in the preform laminating process and the layers are once delaminated and bonded again. If this value is 10 N / m 2 or more, There is no particular problem with the correction. When the peel strength is less than 10 N / m 2 , the sheet is easily peeled off, the workability is poor, and the fiber orientation is shifted during transportation, which is inappropriate. If the peel strength between the sheets exceeds 500 N / m 2 , the sheet in which the reinforcing fibers are arranged does not slip so as to alleviate the circumferential length difference between the inner and outer layers when the preform laminated substrate is shaped. For this reason, wrinkles are generated in the curved surface portion of the inner layer, and a molded product having desired mechanical properties cannot be obtained.

なお、本発明でいう剥離強度とは、強化繊維基材層間を剥がすのに要する強さを言い、具体的には、次の手順で測定する。プリフォーム用基材から150×55mmの試験片を切り出し、長手方向の試験治具つかみ部(50mm)を残して該プリフォーム基材同士を2枚接着する。接着した試験片の片面を、十分に剛性を有する鉄鋼板などに固定し、もう一方のプリフォーム用基材の試験治具つかみ部を引張試験機に取り付け、該プリフォーム基材間を剥がす力を測定する。但し、このとき引張治具と剥離位置が垂直になるよう重心位置を配置させ、該試験片にねじりモーメントが加わらないよう配慮して、測定を実施する。これを計5回計測繰り返し、その平均値から剥離強度を算出する。 In addition, the peeling strength as used in the field of this invention means the strength required for peeling a reinforcement fiber base material layer, and specifically, it measures by the following procedure. A 150 × 55 mm test piece is cut out from the preform substrate, and two preform substrates are bonded to each other while leaving a test jig grip portion (50 mm) in the longitudinal direction. The force to fix one side of the bonded test piece to a sufficiently rigid steel plate, etc., attach the test jig holding part of the other preform base material to the tensile tester, and peel off the preform base material Measure. However, at this time, the position of the center of gravity is arranged so that the peeling position is perpendicular to the tension jig, and the measurement is performed in consideration of not applying a torsional moment to the test piece. This is repeated a total of 5 times, and the peel strength is calculated from the average value.

本発明のプリフォーム基材又は積層基材は、FRP成形品の繊維強化材として使用する場合には、そのまま用いることもできるが、取扱い性や作業性の観点から、プリフォーム基材又は積層基材を、賦形型を使用して、予備成形したプリフォームを用いるのが好ましい。
具体的には、プリフォーム用基材又は積層基材を賦形型で所望の形態に賦形してプリフォームを作製し、かかるプリフォームを成形型内に配置し、RTM成形法等で硬化剤等を含むマトリックス樹脂(組成物)を含浸させた後、加熱硬化させてFRP成形品等の繊維強化複合材料を製造する。
The preform base material or laminated base material of the present invention can be used as it is when used as a fiber reinforcing material for FRP molded products, but from the viewpoint of handleability and workability, the preform base material or laminated base material is used. It is preferable to use a preform in which the material is preformed using a shaping mold.
Specifically, a preform base material or a laminated base material is formed into a desired shape with a shaping mold, a preform is prepared, and the preform is placed in a molding die and cured by an RTM molding method or the like. After impregnating a matrix resin (composition) containing an agent and the like, it is cured by heating to produce a fiber-reinforced composite material such as an FRP molded product.

マトリックス樹脂として、熱硬化性樹脂を用いることができる。熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、アクリル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂から選ばれる樹脂がある。これらは1種又は2種以上の混合物として用いることもできる。 A thermosetting resin can be used as the matrix resin. Examples of the thermosetting resin include epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, acrylic resin, cyanate ester resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin and cyanic acid. There are resins selected from prepolymerized resins of ester resins. These can also be used as one type or a mixture of two or more types.

熱硬化性バインダー樹脂として、ビニルエステル樹脂又はアクリル樹脂を用いた場合には、マトリックス樹脂として、ビニルエステル樹脂を主成分とする樹脂組成物を用いると、バインダー樹脂とマトリックス樹脂の相溶性が良く、特にFRP物性に優れた成形品が得られる。 When a vinyl ester resin or an acrylic resin is used as the thermosetting binder resin, a compatibility of the binder resin and the matrix resin is good when a resin composition mainly composed of the vinyl ester resin is used as the matrix resin. In particular, a molded product having excellent FRP physical properties can be obtained.

本発明においてプリフォームは、プリフォーム基材又は積層基材を60〜150℃の賦形温度で、加熱賦形し、次いで冷却することによって得られる。賦形型に敷設したプリフォーム基材又は積層基材は、プレス等による加圧後又は加圧下に冷却しても良い。かくして得られた本発明のプリフォームを用いて、RTM成形法等で優れた物性を有するFRP成形品(繊維強化複合材料)が得られる。 In the present invention, the preform is obtained by heating and shaping a preform substrate or a laminated substrate at a shaping temperature of 60 to 150 ° C. and then cooling. The preform base material or laminated base material laid in the shaping mold may be cooled after being pressed by a press or the like or under pressure. By using the preform of the present invention thus obtained, an FRP molded product (fiber reinforced composite material) having excellent physical properties can be obtained by an RTM molding method or the like.

以下、実施例により、本発明を具体的に説明する。実施例と比較例で使用したシート状の強化繊維基材とマトリックス樹脂は下記のとおりである。 Hereinafter, the present invention will be described specifically by way of examples. The sheet-like reinforcing fiber base and matrix resin used in Examples and Comparative Examples are as follows.

(シート状の強化繊維基材)
サイズ剤が付着した炭素繊維束HTA−3K・E30(東邦テナックス社製、3,000フィラメント、1,800デニール、引張強度3,920MPa、引張弾性率235GPa)を経糸と緯糸に用いて得られた織物(平織物、炭素繊維目付200g/m)を用いた。
(Sheet-like reinforcing fiber base)
A carbon fiber bundle HTA-3K · E30 (manufactured by Toho Tenax Co., Ltd., 3,000 filament, 1,800 denier, tensile strength 3,920 MPa, tensile elastic modulus 235 GPa) obtained by using sizing agent for warp and weft was obtained. A woven fabric (plain woven fabric, carbon fiber basis weight 200 g / m 2 ) was used.

(マトリックス樹脂(組成物))
以下の処方により主剤と硬化剤を調製し、使用直前にこれらを混合した液状熱硬化性樹脂組成物を用いた。
(Matrix resin (composition))
A main component and a curing agent were prepared according to the following formulation, and a liquid thermosetting resin composition obtained by mixing them immediately before use was used.

主剤:温度計、攪拌機、及び還流冷却器を備えたフラスコに、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製エピコート828、エポキシ当量186)186g(1.0当量)、メタクリル酸43.0g(0.5当量)、ヒドロキノン0.11g(1.0×10−3当量)、エポキシ樹脂とメタクリル酸の合計100質量部に対して0.2質量部に相当するナフテン酸クロム(クロム含有量3%)0.48gを仕込んだ。空気を吹き込みながら、100℃に加熱し、約10時間反応させ、酸価0、ポリスチレン換算重量平均分子量630の反応物(エポキシ基含有ビニルエステル樹脂)を得た。反応物にスチレンモノマーを全体の20質量%となるように添加し、粘度4.6dPa・s(25℃)の樹脂(主剤)を得た。 Main agent: In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 186 g (1.0 equivalent) of bisphenol A type epoxy resin (Epicoat 828, Epoxy equivalent 186 manufactured by Japan Epoxy Resin Co.), 43.0 g (0 equivalent) of methacrylic acid .5 equivalents), hydroquinone 0.11 g (1.0 × 10 −3 equivalents), chromium naphthenate corresponding to 0.2 parts by mass with respect to 100 parts by mass in total of epoxy resin and methacrylic acid (chromium content 3% ) 0.48 g was charged. While blowing air, the mixture was heated to 100 ° C. and reacted for about 10 hours to obtain a reaction product (epoxy group-containing vinyl ester resin) having an acid value of 0 and a polystyrene-equivalent weight average molecular weight of 630. A styrene monomer was added to the reaction product so as to be 20% by mass of the whole, and a resin (main agent) having a viscosity of 4.6 dPa · s (25 ° C.) was obtained.

硬化剤:有機化酸化物硬化剤としてペルオキシケタール系過酸化物(日本油脂社製パーヘキサ3M)1.5重量部と、エポキシ樹脂硬化剤としてイミダゾール系エポキシ樹脂硬化剤(四国化成工業社製キュアゾール2E4MZ)1.0重量部を併用した。 Curing agent: 1.5 parts by weight of peroxyketal peroxide (Perhexa 3M manufactured by NOF Corporation) as an organic oxide curing agent, and imidazole epoxy resin curing agent (Curesol 2E4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy resin curing agent ) 1.0 part by weight was used in combination.

なお、実施例と比較例における各種物性値は、以下の方法で測定した。 In addition, the various physical-property values in an Example and a comparative example were measured with the following method.

<プリフォーム用基材の剥離強度>
プリフォーム用基材の剥離強度は、JIS・K・6854−1の90°はく離接着強さ試験の方法を模擬して測定した。具体的には、次の手順で測定する。プリフォーム用基材から150×55mmの試験片を切り出し、長手方向の試験治具つかみ部(50mm)を残して該プリフォーム基材同士を2枚接着する。接着した試験片の片面を、十分に剛性を有する鉄鋼板などに固定し、もう一方のプリフォーム用基材の試験治具つかみ部を引張試験機に取り付け、該プリフォーム基材間を剥がす力を測定する。但し、このとき引張治具と剥離位置が垂直になるよう重心位置を配置させ、該試験片にねじりモーメントが加わらないよう配慮して、測定を実施する。これを計5回計測繰り返し、その平均値から剥離強度を算出する。
<Peel strength of preform substrate>
The peel strength of the preform substrate was measured by simulating the method of 90 ° peel adhesion strength test of JIS K 6854-1. Specifically, the measurement is performed according to the following procedure. A 150 × 55 mm test piece is cut out from the preform substrate, and two preform substrates are bonded to each other while leaving a test jig grip portion (50 mm) in the longitudinal direction. The force to fix one side of the bonded test piece to a sufficiently rigid steel plate, etc., attach the test jig holding part of the other preform base material to the tensile tester, and peel off the preform base material Measure. However, at this time, the position of the center of gravity is arranged so that the peeling position is perpendicular to the tension jig, and the measurement is performed in consideration of not applying a torsional moment to the test piece. This is repeated a total of 5 times, and the peel strength is calculated from the average value.

<プリフォーム用基材の形態安定性>
プリフォーム用基材の形態安定性は、次のような方法にて評価を行った。500mm×500mmにカットしたプリフォーム用基材を、長手方向に垂直断面の形状がハット形状をした金型(図1と図2参照)の表面に基材を敷設して賦形し、その上をStretchlon・200(AIRTECH社製)で覆い、シーラントテープを用いて、プリフォーム基材を金型との間に密閉し、内部を真空にした。これを融点+50℃以下の範囲に温めた乾燥機の中で2〜30分程度加熱し、プリフォームを製造する。使用した金型の斜視図を図1に、正面断面図を図2に示した。図2は、金型にプリフォーム基材を敷設した状態を示している。なお、図2における金型の凸部の高さは100mmで、凸部上平面の幅は100mmで、凸部底辺の幅は150mmである。また、金型は、長手方向が700mmである。織物を25℃まで冷却した後、金型から取り出したプリフォームを、上に凸の状態にして平らなテーブルの上に置き、5分後にプリフォームの山部の高さを測定することによって、形状安定性の指標とした。
<Form stability of preform substrate>
The form stability of the preform substrate was evaluated by the following method. A preform base material cut to 500 mm x 500 mm is shaped by laying the base material on the surface of a mold (see FIGS. 1 and 2) having a hat-shaped cross section perpendicular to the longitudinal direction. Was covered with Stretchlon · 200 (manufactured by AIRTECH), the preform substrate was sealed between the mold using a sealant tape, and the inside was evacuated. This is heated for about 2 to 30 minutes in a drier heated to a melting point + 50 ° C. or lower to produce a preform. The perspective view of the used metal mold | die was shown in FIG. 1, and front sectional drawing was shown in FIG. FIG. 2 shows a state in which a preform base material is laid on a mold. In addition, the height of the convex part of the mold in FIG. 2 is 100 mm, the width of the upper surface of the convex part is 100 mm, and the width of the bottom of the convex part is 150 mm. The mold has a longitudinal direction of 700 mm. After cooling the fabric to 25 ° C., the preform removed from the mold is placed on a flat table in a convex state, and after 5 minutes, the height of the peak of the preform is measured, It was used as an index of shape stability.

<繊維強化複合材料の曲げ強度>
繊維強化複合材料の曲げ強度は、JIS・K・7074の3点曲げ試験に準拠して、室温及び80℃雰囲気下で曲げ強度を測定した。板厚約2.0mmの複合材料(成形品)を長さ100×幅15mmに切り出し、支点間距離LをL=32h(mm)(h:試験片の厚さの平均値)とし、室温にて試験片の曲げ強度及び弾性率を測定した。
<Bending strength of fiber reinforced composite material>
The bending strength of the fiber reinforced composite material was measured at room temperature and in an 80 ° C. atmosphere in accordance with a three-point bending test of JIS / K / 7074. A composite material (molded product) having a plate thickness of about 2.0 mm is cut into a length of 100 × a width of 15 mm, and the distance L between fulcrums is set to L = 32 h (mm) (h: average thickness of the test piece) at room temperature. The bending strength and elastic modulus of the test piece were measured.

[実施例1]
(熱硬化性バインダー樹脂)
分子中に少なくとも2個の不飽和基を有するビニルエステル樹脂VR−60(昭和高分子社製)を粉砕し、篩いにて分級し、粉末状プリフォーム用バインダー樹脂を得た。得られた粉末粒子は、融点(Tm)が約80℃で、平均粒子径は50μmであった。
[Example 1]
(Thermosetting binder resin)
Vinyl ester resin VR-60 (manufactured by Showa Polymer Co., Ltd.) having at least two unsaturated groups in the molecule was pulverized and classified with a sieve to obtain a binder resin for powdery preform. The obtained powder particles had a melting point (Tm) of about 80 ° C. and an average particle size of 50 μm.

(プリフォーム用基材)
得られた粉末状バインダー樹脂を、前記シート状の強化繊維基材(炭素繊維織物)の片面に2重量%の塗布量で塗布した後、表面温度が110℃になるように遠赤ヒーターを用いて約10分程度加熱し、バインダー樹脂粉末が付着した本発明のプリフォーム用基材を得た。この基材の樹脂粉末の付着面を指で擦っても、粉末粒子の脱落は起こらなかった。
(Preform substrate)
After applying the obtained powdered binder resin to one side of the sheet-like reinforcing fiber substrate (carbon fiber fabric) at a coating amount of 2% by weight, a far-red heater is used so that the surface temperature becomes 110 ° C. And heated for about 10 minutes to obtain a preform substrate of the present invention to which the binder resin powder adhered. Even when the resin powder adhering surface of the substrate was rubbed with a finger, the powder particles did not fall off.

(プリフォーム用積層基材)
上記で得られたプリフォーム用基材を10枚積層し、これをバギングして、100℃に加熱したプレスにて0.1MPaで5分かけて基材同士を固着させ、プリフォーム用積層基材を得た。
(Laminated substrate for preform)
Ten preform substrates obtained as described above were laminated, bagged, and fixed to each other with a press heated to 100 ° C. at 0.1 MPa for 5 minutes. The material was obtained.

(プリフォーム物性の評価)
前記方法にて、プリフォーム積層基材(プリフォーム)の剥離強度及び形態安定性の評価を行ったところ、剥離強度は100N/m、再接着後の剥離強度は50N/mであり、取扱性の良い範囲内であることが確認できた。また、形態安定性においても、山部の高さはほぼ同じで、形状安定性に優れていることが確認できた。
(Evaluation of preform physical properties)
When the peel strength and form stability of the preform laminate substrate (preform) were evaluated by the above method, the peel strength was 100 N / m 2 and the peel strength after re-adhesion was 50 N / m 2 . It was confirmed that it was within a good handleability range. Moreover, also in form stability, the height of the peak part was substantially the same, and it has confirmed that it was excellent in shape stability.

(繊維強化プラスチック成形品の製造)
上記の方法で得られたプリフォームの上に、ピールクロスのRelease・Ply・C(AIRTECH社製)と樹脂拡散基材のResin・Flow・60(AIRTECH社製)を積層した。その後、樹脂注入口と樹脂排出口形成のためのホースを配置し、全体をナイロンバッグフィルムで覆い、シーラントテープを用いて、プリフォーム、ピールクロス、樹脂拡散基材を、ナイロンバッグフィルムと金型との間に密閉し、内部を真空にした。
(Manufacture of fiber-reinforced plastic molded products)
On the preform obtained by the above method, peel cloth Release Ply C (manufactured by AIRTECH) and resin diffusion base material Resin Flow 60 (manufactured by AIRTECH) were laminated. After that, the hose for forming the resin inlet and the resin outlet is placed, the whole is covered with nylon bag film, and the preform, peel cloth, resin diffusion base material, nylon bag film and mold are covered with sealant tape. And the inside was evacuated.

続いて金型を100℃に加温し、キャビティ内を5mmbar以下に減圧した後、樹脂注入口を通して、真空系内へ40℃に加温した前記マトリックス樹脂を注入した。そして、注入した樹脂が金型のキャビティ内に充満し、プリフォームに含浸した状態で100℃にて30分間保持し、成形品を得た。 Subsequently, the mold was heated to 100 ° C., the pressure in the cavity was reduced to 5 mmbar or less, and the matrix resin heated to 40 ° C. was injected into the vacuum system through the resin injection port. Then, the injected resin was filled in the cavity of the mold, and the preform was impregnated and held at 100 ° C. for 30 minutes to obtain a molded product.

(コンポジット物性評価)
上記のようにして得た成形品から試験片を切出し、曲げ強度と曲げ弾性率を測定した。結果は表1に示した。
(Composite property evaluation)
A test piece was cut out from the molded product obtained as described above, and bending strength and bending elastic modulus were measured. The results are shown in Table 1.

[実施例2]
篩いにて分級した粒子の平均粒子径が50μmのビニルエステル樹脂VR−60(昭和高分子社製)を粉末状バインダー樹脂として用い、前記炭素繊維織物の片面に18重量%の塗布量で塗布し、その他は実施例1と同様の方法にてプリフォーム用基材を得た。このプリフォーム用基材の樹脂粉末の付着面を指で擦っても、粉末粒子の脱落は起こらなかった。プリフォーム用基材の剥離強度は、350N/m、再接着後の剥離強度は180N/mであり、取扱性の良い範囲内であることが確認できた。また、形態安定性においても、山部の高さはほぼ同じで、形状安定性に優れていることが確認できた。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行った。結果は表1に示した。
[Example 2]
Using a vinyl ester resin VR-60 (manufactured by Showa Kogyo Co., Ltd.) having an average particle diameter of 50 μm classified by sieving as a powdered binder resin, it is applied to one side of the carbon fiber fabric at an application amount of 18% by weight. Other than that, a preform substrate was obtained in the same manner as in Example 1. Even when the resin powder adhering surface of the preform substrate was rubbed with a finger, the powder particles did not fall off. Peel strength of the preform substrate for, 350N / m 2, the peel strength after re-adhesion is 180N / m 2, it was confirmed that in the good range of handleability. Moreover, also in form stability, the height of the peak part was substantially the same, and it has confirmed that it was excellent in shape stability. A fiber reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[実施例3]
篩いにて分級した粒子の平均粒子径が50μmのビニルエステル樹脂VR−60(昭和高分子社製)を粉末状バインダー樹脂として用い、前記炭素繊維織物の片面に1.0重量%の塗布量で塗布し、その他は実施例1と同様の方法にてプリフォーム用基材を得た。このプリフォーム用基材の樹脂粉末の付着面を指で擦っても、粉末粒子の脱落は起こらなかった。プリフォーム用基材の剥離強度は、80N/m、再接着後の剥離強度は30N/mであり、取扱性の良い範囲内であることが確認できた。また、形態安定性においても、山部の高さはほぼ同じで、形状安定性に優れていることが確認できた。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行った。結果は表1に示した。
[Example 3]
Using vinyl ester resin VR-60 (manufactured by Showa Kogyo Co., Ltd.) having an average particle size of 50 μm classified by sieving as a powdery binder resin, a coating amount of 1.0% by weight on one side of the carbon fiber fabric. A preform substrate was obtained in the same manner as in Example 1 except that the coating was applied. Even when the resin powder adhering surface of the preform substrate was rubbed with a finger, the powder particles did not fall off. Peel strength of the preform substrate for, 80N / m 2, the peel strength after re-adhesion is 30 N / m 2, it was confirmed that in the good range of handleability. Moreover, also in form stability, the height of the peak part was substantially the same, and it has confirmed that it was excellent in shape stability. A fiber reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[実施例4]
篩いにて分級した粒子の平均粒子径が400μmのビニルエステル樹脂VR−60(昭和高分子社製)を、粉末状バインダー樹脂として用いた以外は、実施例1と同様の方法にてプリフォーム用基材を作製した。このプリフォーム用基材の樹脂粉末の付着面を指で擦っても、粉末粒子の脱落は起こらなかった。プリフォーム用基材の剥離強度は150N/m、再接着後の剥離強度は70N/mであり、取扱性の良い範囲内であることが確認できた。また、形態安定性においても、山部の高さはほぼ同じで、形状安定性に優れていることが確認できた。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行った。結果は表1に示した。
[Example 4]
For preforms in the same manner as in Example 1 except that vinyl ester resin VR-60 (manufactured by Showa Polymer Co., Ltd.) having an average particle size of 400 μm classified by sieving was used as a powdered binder resin. A substrate was prepared. Even when the resin powder adhering surface of the preform substrate was rubbed with a finger, the powder particles did not fall off. Peel strength of the preform substrate for 150 N / m 2, the peel strength after re-adhesion is 70N / m 2, it was confirmed that in the good range of handleability. Moreover, also in form stability, the height of the peak part was substantially the same, and it has confirmed that it was excellent in shape stability. A fiber reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[実施例5]
(熱硬化性バインダー樹脂)
分子中に少なくとも2個の不飽和基を有する粉体アクリル樹脂PD3402(三井化学社製)を粉砕し、篩いにて分級し、粉末状のバインダー樹脂を得た。得られた樹脂の粉末粒子は、融点(Tm)が約130℃で、平均粒子径は80μmであった。このバインダー樹脂を用いて、表面温度が150℃になるように遠赤ヒーターを用いてプリフォーム用基材を作製した以外は、実施例1と同様の方法にてプリフォーム用基材を作製した。このプリフォーム用基材の樹脂粉末の付着面を指で擦っても、粉末粒子の脱落は起こらなかった。プリフォーム用基材の剥離強度は150N/m、再接着後の剥離強度は80N/mであり、取扱性の良い範囲内であることが確認できた。また、形態安定性においても、山部の高さはほぼ同じで、形状安定性に優れていることが確認できた。実施例1と同様の方法にて繊維強化プラスチック成形品を作成、物性の評価を行った。結果は表1に示した。
[Example 5]
(Thermosetting binder resin)
A powder acrylic resin PD3402 (manufactured by Mitsui Chemicals, Inc.) having at least two unsaturated groups in the molecule was pulverized and classified with a sieve to obtain a powdery binder resin. The obtained resin powder particles had a melting point (Tm) of about 130 ° C. and an average particle size of 80 μm. Using this binder resin, a preform substrate was prepared in the same manner as in Example 1 except that a preform substrate was prepared using a far-red heater so that the surface temperature was 150 ° C. . Even when the resin powder adhering surface of the preform substrate was rubbed with a finger, the powder particles did not fall off. The peel strength of the preform substrate was 150 N / m 2 , and the peel strength after re-adhesion was 80 N / m 2 , confirming that it was within a good handleability range. Moreover, also in form stability, the height of the peak part was substantially the same, and it has confirmed that it was excellent in shape stability. A fiber-reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[比較例1]
バインダーを用いないで、前記炭素繊維織物から実施例1と同様のやり方でプリフォームを作製し、次いで、同様のやり方で繊維強化プラスチック成形品を成形し物性の評価を行った。結果は表1に示した。
[Comparative Example 1]
A preform was prepared from the carbon fiber woven fabric in the same manner as in Example 1 without using a binder, and then a fiber reinforced plastic molded product was molded in the same manner to evaluate physical properties. The results are shown in Table 1.

[比較例2]
篩いにて分級した粒子の平均粒子径が10μmのビニルエステル樹脂VR−60(昭和高分子社製)を、粉末状バインダー樹脂として用いた以外は、実施例1と同様の方法にてプリフォーム用基材を作製した。このプリフォーム用基材は、粒径が小さい為、剥離強度が40N/mと低い値であり、形態安定性も悪かった。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行った。結果は表1に示した。
[Comparative Example 2]
For preforms in the same manner as in Example 1 except that vinyl ester resin VR-60 (manufactured by Showa Polymer Co., Ltd.) having an average particle size of 10 μm classified by sieving was used as a powdered binder resin. A substrate was prepared. Since this preform substrate had a small particle size, the peel strength was a low value of 40 N / m 2 and the form stability was also poor. A fiber reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[比較例3]
篩いにて分級した粒子の平均粒子径が50μmのビニルエステル樹脂VR−60(昭和高分子社製)を、粉末状バインダー樹脂として用い、前記炭素繊維織物の片面に0.05重量%の塗布量で塗布し、その他は実施例1と同様の方法にてプリフォーム用基材を得た。このプリフォーム用基材は、バインダー付着量が少ない為、剥離強度が10N/mと低い値であり、形態安定性も悪かった。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行った。結果は表1に示した。
[Comparative Example 3]
Using a vinyl ester resin VR-60 (manufactured by Showa Kogyo Co., Ltd.) having an average particle diameter of 50 μm classified by sieving as a powdered binder resin, a coating amount of 0.05% by weight on one side of the carbon fiber fabric. A preform substrate was obtained in the same manner as in Example 1 except for the above. Since this preform substrate had a small amount of binder, the peel strength was a low value of 10 N / m 2 and the shape stability was also poor. A fiber reinforced plastic molded product was prepared by the same method as in Example 1, and the physical properties were evaluated. The results are shown in Table 1.

[比較例4]
篩いにて分級した粒子の平均粒子径が800μmのビニルエステル樹脂VR−60(昭和高分子社製)を、粉末状バインダー樹脂として用いた以外は、実施例1と同様の方法にてプリフォーム用基材を作製した。このプリフォーム用基材は、バインダー樹脂の粒径が大きい為、剥離強度が600N/mと高い値であった。実施例1と同様の方法にて繊維強化プラスチック成形品を作成し、物性の評価を行ったが、バインダー樹脂の粒径が大きい為、CV値が大きく物性が不十分であった。結果は表1に示した。
[Comparative Example 4]
For preforms in the same manner as in Example 1 except that vinyl ester resin VR-60 (manufactured by Showa Kogyo Co., Ltd.) having an average particle size of 800 μm classified by sieving was used as a powdered binder resin. A substrate was prepared. This preform substrate had a high peel strength of 600 N / m 2 because the particle size of the binder resin was large. A fiber reinforced plastic molded article was prepared by the same method as in Example 1 and the physical properties were evaluated. However, since the particle size of the binder resin was large, the CV value was large and the physical properties were insufficient. The results are shown in Table 1.

[比較例5]
篩いにて分級した粒子の平均粒子径が400μmのビニルエステル樹脂VR−60(昭和高分子社製)を粉末状バインダー樹脂として用い、前記炭素繊維織物の片面に25重量%の塗布量で塗布し、その他は実施例1と同様の方法にてプリフォーム用基材を得た。このプリフォーム用基材は、バインダー樹脂の付着量が多い為、剥離強度が450N/mと高い値であった。実施例1と同様の方法にて繊維強化プラスチック成形品を作成したが、バインダー樹脂の付着量が多い為、マトリックス樹脂の含浸性が悪く、物性のばらつきも大きかった。結果は表1に示した。
[Comparative Example 5]
Using vinyl ester resin VR-60 (manufactured by Showa Kogyo Co., Ltd.) having an average particle size of 400 μm classified by sieving as a powdery binder resin, it is applied to one side of the carbon fiber fabric at an application amount of 25% by weight. Other than that, a preform substrate was obtained in the same manner as in Example 1. This preform substrate had a high peel strength of 450 N / m 2 due to the large amount of binder resin attached. A fiber reinforced plastic molded article was prepared by the same method as in Example 1. However, since the amount of binder resin attached was large, the impregnation property of the matrix resin was poor and the physical properties varied greatly. The results are shown in Table 1.

[比較例6]
平均粒子径15μmのポリアミド樹脂オルガソール1002(アルケマ社製)をバインダー樹脂(融点:215℃)として用い、表面温度が230℃になるように遠赤ヒーターを用いてプリフォーム用基材を作製した以外は、実施例1と同様の方法にてプリフォーム用基材を作製した。この基材の粉末粒子付着面を指で擦っても、粒子の脱落は起こらなかった。このプリフォーム用基材は、粒径が小さいため剥離強度が45N/mと低い値であり、形態安定性も悪かった。また、バインダー樹脂の付着温度も高く、ハンドリング性が悪かった。結果は表1に示した。
[Comparative Example 6]
A preform base material was prepared using a far-red heater so that the surface temperature was 230 ° C. using polyamide resin Orgasol 1002 (manufactured by Arkema) having an average particle size of 15 μm as a binder resin (melting point: 215 ° C.). Except for the above, a preform substrate was produced in the same manner as in Example 1. Even when the powder particle adhering surface of the substrate was rubbed with a finger, the particles did not fall off. Since this preform substrate had a small particle size, the peel strength was a low value of 45 N / m 2 and the shape stability was also poor. Further, the adhesion temperature of the binder resin was high, and the handling property was poor. The results are shown in Table 1.

以上の実施例及び比較例との対比結果より、取扱性と物性の面から、熱硬化性バインダー樹脂の粉末粒子の、最適な粒子径の範囲及び付着量の範囲があることが明白になった。 From the comparison results with the above Examples and Comparative Examples, it became clear that there is an optimum particle diameter range and an adhesion amount range of the thermosetting binder resin powder particles from the viewpoints of handleability and physical properties. .

Figure 2009235175
Figure 2009235175

プリフォーム用基材の形態安定性を試験するための金型の斜視図である。It is a perspective view of the metal mold | die for testing the form stability of the base material for preforms. プリフォーム用基材の形態安定性を試験するための金型の正面断面図である。It is front sectional drawing of the metal mold | die for testing the form stability of the base material for preforms.

Claims (13)

シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃、平均粒子径が20〜500μmの範囲にある熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材。 Thermosetting with at least two unsaturated groups in the molecule on one or both sides of the sheet-like reinforcing fiber base, melting point (Tm) of 40 to 150 ° C., and average particle size of 20 to 500 μm A preform substrate obtained by adhering a powder of an adhesive binder resin in an amount of 0.1 to 20% by weight to the reinforcing fiber substrate. 熱硬化性バインダー樹脂が、融点(Tm)+10℃における粘度が200〜1000Pa・sであり、ガラス転移点温度(Tg)が35〜120℃であることを特徴とする請求項1記載のプリフォーム用基材。 The preform according to claim 1, wherein the thermosetting binder resin has a melting point (Tm) + viscosity of 200 to 1000 Pa · s and a glass transition temperature (Tg) of 35 to 120 ° C. Substrate for use. 熱硬化性バインダー樹脂が、ビニルエステル樹脂又はアクリル樹脂を主体とするものであることを特徴とする請求項1〜2のいずれか1項記載のプリフォーム用基材。 The base material for preform according to any one of claims 1 to 2, wherein the thermosetting binder resin is mainly composed of a vinyl ester resin or an acrylic resin. シート状の強化繊維基材が、実質的に一方向に配向した強化繊維からなるものであることを特徴とする請求項1〜3のいずれか1項記載のプリフォーム用基材。 The preform base material according to any one of claims 1 to 3, wherein the sheet-like reinforcing fiber base material is composed of reinforcing fibers substantially oriented in one direction. シート状の強化繊維基材が、多軸織物又はノンクリンプ織物であることを特徴とする請求項1〜3のいずれか1項記載のプリフォーム用基材。 The preform substrate according to any one of claims 1 to 3, wherein the sheet-like reinforcing fiber substrate is a multiaxial fabric or a non-crimp fabric. 分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃で、ガラス転移点温度(Tg)が35〜120℃で、融点(Tm)+10℃における粘度が200〜1000Pa・sで、粉末の平均粒子径が20〜500μmの範囲にあるビニルエステル樹脂又はアクリル樹脂を主体とした熱硬化性バインダー樹脂粉末。 It has at least two unsaturated groups in the molecule, has a melting point (Tm) of 40 to 150 ° C., a glass transition temperature (Tg) of 35 to 120 ° C., and a viscosity at melting point (Tm) + 10 ° C. of 200 to 200 ° C. Thermosetting binder resin powder mainly composed of vinyl ester resin or acrylic resin at 1000 Pa · s and having an average particle diameter of 20 to 500 μm. シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末を、前記強化繊維基材に対し0.1〜20重量%の範囲で付与し、次いで、該樹脂の融点(Tm)以上で融点+50℃以下の温度範囲で2〜30分間加熱して、前記樹脂の粉末を前記強化繊維基材の片面又は両面に付着せしめることを特徴とするプリフォーム用基材の製造方法。 On one or both sides of the sheet-like reinforcing fiber substrate, a thermosetting binder resin powder having at least two unsaturated groups in the molecule and a melting point (Tm) of 40 to 150 ° C. is used as the reinforcing fiber group. It is applied in the range of 0.1 to 20% by weight to the material, and then heated for 2 to 30 minutes in the temperature range of the melting point (Tm) or higher and the melting point + 50 ° C. or lower to strengthen the resin powder. A method for producing a preform substrate, which is adhered to one or both sides of a fiber substrate. シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材を複数枚積層し、層間を接合した積層基材であって、層間の25℃での剥離強度が70〜500N/mの範囲であり、且つ、層間剥離後の再接着において、25℃での剥離強度が少なくとも10N/mを有していることを特徴とするプリフォーム用積層基材。 On one or both sides of the sheet-like reinforcing fiber substrate, a thermosetting binder resin powder having at least two unsaturated groups in the molecule and a melting point (Tm) of 40 to 150 ° C. is the reinforcing fiber group. A laminated base material in which a plurality of preform base materials adhered in the range of 0.1 to 20% by weight with respect to the material are laminated and the layers are joined, and the peel strength at 25 ° C. between the layers is 70 to 500 N / m is in the range of 2, and, in the re-adhesion after delamination, the preform laminate substrate, wherein a peel strength at 25 ° C. and at least 10 N / m 2. シート状の強化繊維基材の片面又は両面に、分子中に少なくとも2個の不飽和基を有し、融点(Tm)が40〜150℃の熱硬化性バインダー樹脂の粉末が、前記強化繊維基材に対し0.1〜20重量%の範囲で付着してなるプリフォーム用基材を複数枚積層し、次いで、前記樹脂の融点(Tm)以上で融点+50℃以下の温度で2〜30分間加熱して、積層された強化繊維基材間を接合することを特徴とするプリフォーム用積層基材の製造方法。 On one or both sides of the sheet-like reinforcing fiber substrate, a thermosetting binder resin powder having at least two unsaturated groups in the molecule and a melting point (Tm) of 40 to 150 ° C. is the reinforcing fiber group. A plurality of preform base materials adhered in the range of 0.1 to 20% by weight with respect to the material are laminated, and then the melting point (Tm) of the resin is higher than the melting point + 50 ° C. and the temperature is 2 to 30 minutes. A method for producing a laminated base material for preform, which comprises heating and joining laminated reinforcing fiber base materials. 請求項8記載のプリフォーム用積層基材を、成形型内に配置し、マトリックス樹脂を含浸させた後、加熱硬化させることを特徴とする繊維強化複合材料の製造方法。 A method for producing a fiber-reinforced composite material, wherein the preform laminated base material according to claim 8 is placed in a mold, impregnated with a matrix resin, and then cured by heating. マトリックス樹脂が、ビニルエステル樹脂を主成分とするものであることを特徴とする請求項10記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 10, wherein the matrix resin contains a vinyl ester resin as a main component. 請求項8記載のプリフォーム用積層基材を、成形型内に配置し、マトリックス樹脂を含浸させた後、加熱硬化させることによって得られた繊維強化複合材料。 A fiber-reinforced composite material obtained by placing the preform laminated base material according to claim 8 in a mold, impregnating with a matrix resin, and then heat-curing. マトリックス樹脂が、ビニルエステル樹脂を主成分とするものである請求項12記載の繊維強化複合材料。


The fiber-reinforced composite material according to claim 12, wherein the matrix resin is mainly composed of a vinyl ester resin.


JP2008080600A 2008-03-26 2008-03-26 Base material for preform, method for manufacturing the material, and thermosetting binder resin powder Pending JP2009235175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080600A JP2009235175A (en) 2008-03-26 2008-03-26 Base material for preform, method for manufacturing the material, and thermosetting binder resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080600A JP2009235175A (en) 2008-03-26 2008-03-26 Base material for preform, method for manufacturing the material, and thermosetting binder resin powder

Publications (1)

Publication Number Publication Date
JP2009235175A true JP2009235175A (en) 2009-10-15

Family

ID=41249542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080600A Pending JP2009235175A (en) 2008-03-26 2008-03-26 Base material for preform, method for manufacturing the material, and thermosetting binder resin powder

Country Status (1)

Country Link
JP (1) JP2009235175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164014A1 (en) 2011-06-01 2012-12-06 Hexcel Reinforcements Veiled tape with improved resistance to delamination
WO2015079917A1 (en) * 2013-11-29 2015-06-04 東レ株式会社 Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
EP3026076A1 (en) * 2014-11-27 2016-06-01 CCP Composites Vinyl ester powder pre-preg

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164014A1 (en) 2011-06-01 2012-12-06 Hexcel Reinforcements Veiled tape with improved resistance to delamination
JP2014518288A (en) * 2011-06-01 2014-07-28 ヘクセル ランフォルセマン Bale tape with improved peel resistance
US10525660B2 (en) 2011-06-01 2020-01-07 Hexcel Reinforcements Veiled tape with improved resistance to delamination
US9205603B2 (en) 2011-06-01 2015-12-08 Hexcel Reinforcements Veiled tape with improved resistance to delamination
US10400077B2 (en) 2013-11-29 2019-09-03 Toray Industries, Inc. Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
WO2015079917A1 (en) * 2013-11-29 2015-06-04 東レ株式会社 Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
CN105745258A (en) * 2013-11-29 2016-07-06 东丽株式会社 Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
US20160289406A1 (en) * 2013-11-29 2016-10-06 Toray Industries, Inc. Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
EP3075761A4 (en) * 2013-11-29 2017-07-05 Toray Industries, Inc. Reinforcing fiber fabric substrate, preform, and fiber-reinforced composite material
KR20180080125A (en) * 2014-11-27 2018-07-11 폴린트 꽁뽀지뜨 프랑스 Vinyl ester powder pre-preg
CN107406598A (en) * 2014-11-27 2017-11-28 波林复合材料法国公司 powdered vinyl ester prepreg
WO2016083896A1 (en) * 2014-11-27 2016-06-02 Ccp Composites Vinyl ester powder pre-preg
EP3026076A1 (en) * 2014-11-27 2016-06-01 CCP Composites Vinyl ester powder pre-preg
US20170327656A1 (en) * 2014-11-27 2017-11-16 Polynt Composites France Vinyl ester powder pre-preg
AU2015352117B2 (en) * 2014-11-27 2020-02-27 Polynt Composites France Vinyl ester powder pre-preg
US10752743B2 (en) 2014-11-27 2020-08-25 Polynt Composites France Vinyl ester powder pre-preg
CN107406598B (en) * 2014-11-27 2021-08-20 波林复合材料法国公司 Powdery vinyl ester prepreg
KR102401893B1 (en) * 2014-11-27 2022-05-24 폴린트 꽁뽀지뜨 프랑스 Vinyl ester powder pre-preg
US11434338B2 (en) 2014-11-27 2022-09-06 Polynt Composites France Vinyl ester powder pre-preg

Similar Documents

Publication Publication Date Title
EP2922685B1 (en) Bonding of composite materials
JP2009235182A (en) Base material for preform and method for manufacturing the same
CA2888124C (en) Fast cure epoxy resins systems
EP2976216A2 (en) Improvements in or relating to fibre reinforced composites
US10913223B2 (en) Fibre reinforced composites
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
JP2018516186A (en) FIBER-REINFORCED COMPOSITE MATERIAL AND METHOD FOR PRODUCING MOLDED ARTICLE FROM FIBER-REINFORCED CURABLE COMPOSITE
EP3197933B1 (en) Fast curing compositions
JP5173358B2 (en) Prepreg with protective film
JP2009235175A (en) Base material for preform, method for manufacturing the material, and thermosetting binder resin powder
WO2020235490A1 (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
WO2021131347A1 (en) Prepreg, molded article, and integrally molded article
JP7332323B2 (en) fiber reinforced adhesive sheet
JP2010005932A (en) Substrate for preform, its manufacturing method, and laminated substrate for preform
GB2509616A (en) A fast cure epoxy resin formulation
JP2018131575A (en) Binder resin composition for preform, particle, reinforced fiber base material, preform, and fiber-reinforced composite material
JP7021216B2 (en) Fiber reinforced plastic with serrated edges
JP2023065898A (en) Composite member
JP2020192807A (en) Method for producing fiber-reinforced resin base material, fiber-reinforced resin base material and integral molding of the same
JP2021098318A (en) Fiber reinforced resin material, integrally molded product, and method for manufacturing integrally molded product
CN116438229A (en) Fiber-reinforced resin base material, preform, integrated molded article, and method for producing fiber-reinforced resin base material