JP2009231000A - Discharge tube uniform flow lighting device - Google Patents

Discharge tube uniform flow lighting device Download PDF

Info

Publication number
JP2009231000A
JP2009231000A JP2008073888A JP2008073888A JP2009231000A JP 2009231000 A JP2009231000 A JP 2009231000A JP 2008073888 A JP2008073888 A JP 2008073888A JP 2008073888 A JP2008073888 A JP 2008073888A JP 2009231000 A JP2009231000 A JP 2009231000A
Authority
JP
Japan
Prior art keywords
phase
frequency
cold cathode
discharge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008073888A
Other languages
Japanese (ja)
Inventor
Guo-Hua Wang
国華 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2008073888A priority Critical patent/JP2009231000A/en
Publication of JP2009231000A publication Critical patent/JP2009231000A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge tube uniform flow lighting device for surely starting respective discharge tubes, and for making a stable and uniform current flow through the respective discharge tubes also after starting. <P>SOLUTION: This device includes a support member 14 connected to a plurality of cold-cathode tubes 15 in terms of high frequency through floating capacity, and an inverter circuit 20 in order to supply a high-frequency driving power supply of a prescribed frequency f1 to both the ends of the plurality of cold-cathode tubes 15, and a second inverter circuit 30 for supplying a low-frequency driving power supply of a prescribed frequency f2 (f2<f1). In lighting, a high frequency current is supplied from the inverter circuit 20 to both the ends of a plurality of the cold-cathode tubes 15, and then, the high frequency current is refluxed to the inverter circuit 20 through the floating capacity and the support member 14. Moreover, by the second inverter circuit 30, a low frequency current is obtained which flows from one end to the other end of respective cold-cathode tubes 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数の放電管を点灯させる放電管均流点灯装置に関するものである。ここで「放電管」とは、高圧を印加して、密封管内でイオン化した気体(プラズマ)に放電させることにより発光させる器具をいい、ネオン管、ナトリウムランプ、蛍光管、冷陰極管などがこれに該当する。「均流」とは複数の放電管に対して、互いにほぼ等しい大きさの高周波電流を供給することをいう。   The present invention relates to a discharge tube equalizing lighting device for lighting a plurality of discharge tubes. Here, the “discharge tube” refers to a device that emits light by applying a high pressure to discharge into an ionized gas (plasma) in a sealed tube, such as a neon tube, a sodium lamp, a fluorescent tube, or a cold cathode tube. It corresponds to. “Uniform flow” means that high frequency currents having substantially the same magnitude are supplied to a plurality of discharge tubes.

液晶表示装置など各種表示装置のバックライトには、放電管の一種である冷陰極管( Cold Cathode Fluorescent Tube)が用いられる。この冷陰極管の点灯駆動には、従来から、インバータ回路を用いた高周波点灯方式が採用されている。
図22は、このインバータ回路を含む放電管均流点灯装置の一例を示す回路図である。この放電管均流点灯装置は、高周波交流電源を供給するためのスイッチング回路101と、高周波交流電源を昇圧するための主変圧器102と、その主変圧器102の二次側の出力回線に対して並列に接続される複数の放電管103と、各放電管103の一端又は両端に挿入され、各放電管103に互いに等しい電流を流すため各放電管103と直列に接続されたバラスト・キャパシタ(ballast capacitor)からなる均流回路104とを備えている。なおインバータ回路とは、スイッチング回路101と主変圧器102とを含む回路とする。
For the backlights of various display devices such as liquid crystal display devices, cold cathode fluorescent tubes are used. Conventionally, a high-frequency lighting method using an inverter circuit has been adopted for driving the cold cathode tubes.
FIG. 22 is a circuit diagram showing an example of a discharge tube equalizing lighting device including this inverter circuit. This discharge tube equalizing lighting device includes a switching circuit 101 for supplying high-frequency AC power, a main transformer 102 for boosting the high-frequency AC power, and an output line on the secondary side of the main transformer 102. A plurality of discharge tubes 103 connected in parallel, and a ballast capacitor inserted in one end or both ends of each discharge tube 103 and connected in series with each discharge tube 103 in order to flow equal currents to each discharge tube 103 ( a current equalizing circuit 104 composed of a ballast capacitor). Note that the inverter circuit is a circuit including the switching circuit 101 and the main transformer 102.

このような放電管均流点灯装置においては、前記均流回路104を構成するキャパシタは、各放電管103の一端を支持する基板105上に、当該基板105と一体に形成されている。すなわち、図23に示すように、当該基板105の表面上に各放電管103に接続される各導体106を互いに分離して設け、当該基板105の裏面上に一枚の導体層107を設けて、それら表面及び裏面の導体層106,107の重なる領域に作られるキャパシタンスを利用して、均流回路104を構成している。   In such a discharge tube equalizing lighting device, the capacitor constituting the current equalization circuit 104 is formed integrally with the substrate 105 on the substrate 105 supporting one end of each discharge tube 103. That is, as shown in FIG. 23, each conductor 106 connected to each discharge tube 103 is provided separately on the surface of the substrate 105, and one conductor layer 107 is provided on the back surface of the substrate 105. The current-dividing circuit 104 is configured by utilizing the capacitance formed in the overlapping region of the conductor layers 106 and 107 on the front and back surfaces.

放電管103の駆動は、インバータ回路から放電管に定格電圧(放電管の長さ等に応じた、放電管のメーカーから指定される電圧。例えば1000V)、定格周波数(放電管のメーカーから指定される周波数。例えば60kHz)の高周波交流電源を供給することによって行っている。
特開2005-322479号公報
The discharge tube 103 is driven from the inverter circuit to the discharge tube at a rated voltage (a voltage specified by the discharge tube manufacturer according to the length of the discharge tube, for example, 1000 V), a rated frequency (specified by the discharge tube manufacturer). This is done by supplying a high-frequency AC power source having a frequency of 60 kHz, for example.
JP 2005-322479 A

ところが、前記放電管の点灯駆動時、特に低温起動時に、各放電管に均等な電流が流れないことがある。この電流の不均等は起動後も継続され、それがそのまま画面の明るさのムラにつながってしまう。
このような起動時の電流の不均等を防止するために、均流回路のキャパシタンスを小さくして、駆動電圧を高くすることが行われているが、駆動電圧を高くするとインバータ回路の主変圧器を大きくし、その耐圧も上げなければならない。このため、放電管点灯装置の全体が大きくなり、また発熱量も増大する。
However, when the discharge tubes are turned on, particularly when starting at a low temperature, an equal current may not flow through each discharge tube. This current non-uniformity continues even after startup, which leads to uneven brightness of the screen.
In order to prevent such current non-uniformity at the time of start-up, it has been practiced to reduce the capacitance of the current-sharing circuit and increase the drive voltage, but when the drive voltage is increased, the main transformer of the inverter circuit Must be increased and its pressure resistance increased. For this reason, the whole discharge tube lighting device becomes large and the amount of heat generation also increases.

そこで本発明は、各放電管の起動を確実に行うことができ、起動後も、各放電管に安定した均一の電流を流すことのできる放電管均流点灯装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a discharge tube equalizing lighting device capable of reliably starting each discharge tube and allowing a stable and uniform current to flow through each discharge tube even after the start. .

本発明の放電管均流点灯装置は、互いに並列に接続された複数の放電管を点灯駆動するための放電管均流点灯装置であって、
前記複数の放電管を支持し、前記複数の放電管との間に浮遊容量が形成されている支持部材と、既定周波数f1の高周波駆動電源を供給するインバータ回路とを備え、
前記高周波駆動電源の一相の出力端から供給される高周波電流は、前記複数の放電管の両端から、前記浮遊容量を介して、前記支持部材に到達し、前記高周波駆動電源の他相の出力端に還流することを特徴とする。
The discharge tube current equalizing lighting device of the present invention is a discharge tube current equalizing lighting device for driving a plurality of discharge tubes connected in parallel to each other,
A support member that supports the plurality of discharge tubes and in which stray capacitance is formed between the plurality of discharge tubes; and an inverter circuit that supplies a high-frequency drive power source having a predetermined frequency f1;
The high-frequency current supplied from the one-phase output end of the high-frequency drive power source reaches the support member from both ends of the plurality of discharge tubes via the stray capacitance, and the output of the other phase of the high-frequency drive power source It is characterized by refluxing to the end.

この装置構成であれば、点灯時、前記インバータ回路の前記一相の出力端から、前記複数の放電管の両端に高周波電流が供給され、当該高周波電流は、前記浮遊容量、前記支持部材を通って、前記インバータ回路の前記他相に還流する。したがって、従来、支持部材に一部が逃げていた高周波電流を積極的に利用して放電管を点灯する。これにより、各放電管と直列に接続された均流素子(例えばバラスト・キャパシタ)がなくても、前記寄生容量が均流素子としての役割を果たすので、各放電管の均流点灯が容易にできる。   In this device configuration, during lighting, a high-frequency current is supplied from the one-phase output end of the inverter circuit to both ends of the plurality of discharge tubes, and the high-frequency current passes through the stray capacitance and the support member. To the other phase of the inverter circuit. Therefore, the discharge tube is lit by positively utilizing the high-frequency current that has been partly escaping from the support member. Thus, even if there is no current-equalizing element (for example, a ballast capacitor) connected in series with each discharge tube, the parasitic capacitance plays a role as a current-equalizing device, so that the current-equal lighting of each discharge tube is easy. it can.

具体的接続例を挙げると、前記複数の放電管の両端に対して前記高周波駆動電源の一相の出力端が接続され、前記支持部材に対して前記高周波駆動電源の他相の出力端が接続されている回路構成である。
前記各放電管と前記支持部材との間に形成される単位長さあたりの浮遊容量は、放電管の長手方向に沿って不均等に分布していることが好ましい。放電管の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持部材に逃げるが、放電管内の電流分布が均一にならず、輝度ムラが生じることがある。そこで各放電管と前記支持部材との間に形成される単位長さあたりの浮遊容量を放電管の長手方向に沿って不均等に分布させる。これにより、電流分布を均一にし、輝度ムラをなくすことができる。
As a specific connection example, one phase output terminal of the high frequency driving power source is connected to both ends of the plurality of discharge tubes, and the other phase output terminal of the high frequency driving power source is connected to the support member. This is the circuit configuration.
It is preferable that the stray capacitance per unit length formed between each discharge tube and the support member is unevenly distributed along the longitudinal direction of the discharge tube. When a high frequency current is supplied to both ends of the discharge tube, the current escapes to the support member through the stray capacitance, but the current distribution in the discharge tube is not uniform, and uneven brightness may occur. Therefore, the stray capacitance per unit length formed between each discharge tube and the support member is unevenly distributed along the longitudinal direction of the discharge tube. As a result, the current distribution can be made uniform, and luminance unevenness can be eliminated.

特に、放電管の中央部が暗くなりやすいので、中央部の浮遊容量が大きくなるように設定することが好ましい。
本発明の放電管均流点灯装置は、前記インバータ回路(以下「第一のインバータ回路」という)に加えて、前記複数の放電管の一端に対して前記既定周波数f1より低い既定周波数f2(f2<f1)の低周波駆動電源の一相を供給し、前記複数の放電管の他端に対して前記低周波駆動電源の他相を供給する第二のインバータ回路をさらに備えるものであってもよい。前記複数の放電管の両端に対して、既定の周波数f1の高周波駆動電源を供給すると、放電管の両端から供給された高周波電流は前記浮遊容量を通して前記支持部材に逃げるため、放電管の中央部分の電流が少なくなる。このため放電管の中央部分がやや暗くなることがある。そこで、第二のインバータ回路を用いて、前記複数の放電管の両端に対して、前記既定の周波数f1よりも低い周波数f2の低周波駆動電流を流す。この低周波駆動電流は、周波数が低いので、前記寄生容量を通して漏れにくい。これにより、放電管の中央部分を乗り越える電流が得られるので、1本の放電管の輝度を場所にかかわらず一様にできる。
In particular, since the central portion of the discharge tube tends to be dark, it is preferable to set the stray capacitance at the central portion to be large.
In addition to the inverter circuit (hereinafter referred to as “first inverter circuit”), the discharge tube current equalizing apparatus of the present invention has a predetermined frequency f2 (f2) lower than the predetermined frequency f1 with respect to one end of the plurality of discharge tubes. <F1) may further include a second inverter circuit that supplies one phase of the low-frequency driving power source and supplies the other phase of the low-frequency driving power source to the other ends of the plurality of discharge tubes. Good. When a high-frequency driving power source having a predetermined frequency f1 is supplied to both ends of the plurality of discharge tubes, the high-frequency current supplied from both ends of the discharge tube escapes to the support member through the stray capacitance. Less current. For this reason, the central portion of the discharge tube may become slightly dark. Therefore, a low-frequency driving current having a frequency f2 lower than the predetermined frequency f1 is supplied to both ends of the plurality of discharge tubes using a second inverter circuit. Since this low frequency drive current has a low frequency, it is difficult to leak through the parasitic capacitance. As a result, a current over the central portion of the discharge tube can be obtained, so that the luminance of one discharge tube can be made uniform regardless of the location.

また、前記第一のインバータ回路の前記一相の出力端と前記複数の放電管の一端との間に接続される第一のキャパシタと、前記第一のインバータ回路の前記一相の出力端と前記複数の放電管の他端との間に接続される第二のキャパシタとを含む構成であれば、これらの第一のキャパシタと第二のキャパシタによって、2つのインバータ回路の間で直流〜低周波の絶縁効果が得られる。   A first capacitor connected between the one-phase output terminal of the first inverter circuit and one end of the plurality of discharge tubes; and the one-phase output terminal of the first inverter circuit; If the configuration includes a second capacitor connected between the other ends of the plurality of discharge tubes, the first capacitor and the second capacitor allow direct current to low voltage between the two inverter circuits. A frequency insulation effect is obtained.

また、本発明の放電管均流点灯装置は、前記インバータ回路の前記一相の出力端と前記複数の放電管のいずれか一端との間に接続され、前記複数の放電管の前記一端に印加される電圧の移相をずらすための進相素子又は遅相素子を含むものであってもよい。この進相素子又は遅相素子のために、前記各放電管の一端と他端との間に、1サイクルのある時間、電位差が生ずることになり、放電管の端から端まで電流を流すことができる。したがって、放電管の中央部分を乗り越える電流が得られるので、1本ずつの放電管の輝度を一様にできる。前記進相素子の例としてキャパシタ、遅相素子の例としてインダクタを挙げることができる。   Further, the discharge tube equalizing lighting device of the present invention is connected between the one-phase output end of the inverter circuit and one end of the plurality of discharge tubes, and is applied to the one end of the plurality of discharge tubes. It may include a phase advance element or a phase delay element for shifting the phase shift of the applied voltage. Because of this phase advance element or slow phase element, there will be a potential difference for a certain period of time between one end and the other end of each discharge tube, and current will flow from end to end of the discharge tube. Can do. Accordingly, since a current over the central portion of the discharge tube is obtained, the brightness of each discharge tube can be made uniform. Examples of the phase advance element include a capacitor, and examples of the phase advance element include an inductor.

また、本発明の放電管均流点灯装置は、前記インバータ回路の前記一相の出力端と前記複数の放電管の一端との間に接続され、前記複数の放電管の前記一端に印加される電圧の移相をずらすための第一の進相素子又は遅相素子と、前記インバータ回路の前記一相の出力端と前記複数の放電管の他端との間に接続され、前記複数の放電管の前記他端に印加される電圧の移相をずらすための第二の進相素子又は遅相素子とを含むものであってもよい。   Moreover, the discharge tube current equalizing apparatus of the present invention is connected between the one-phase output end of the inverter circuit and one end of the plurality of discharge tubes, and is applied to the one end of the plurality of discharge tubes. A plurality of discharges connected between a first phase-advance element or a phase-lag element for shifting the phase of the voltage, and the one-phase output end of the inverter circuit and the other ends of the plurality of discharge tubes; A second phase advance element or a phase delay element for shifting the phase shift of the voltage applied to the other end of the tube may be included.

前記放電管は、蛍光灯又は冷陰極管であってもよい。   The discharge tube may be a fluorescent lamp or a cold cathode tube.

以上のように本発明によれば、特に均流素子を必要としなくても放電管の起動が容易にでき、起動後、放電管に流れる電流の不均等化を防止し、各放電管の明るさを均等にすることができる。   As described above, according to the present invention, the start-up of the discharge tube can be facilitated without requiring a current-equalizing element, and the current flowing in the discharge tube can be prevented from becoming uneven after the start-up. Can be made even.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1は、本発明が適用される液晶表示装置10を示す分解図である。この液晶表示装置10は、液晶表示部11と、液晶表示部11を支持する液晶パネル12と、均流点灯装置本体13とを備えている。
均流点灯装置本体13は、その一部又は全部が金属で構成された支持板14に複数の冷陰極管15が配置されたものであり、これらの冷陰極管15は、互いに並列に接続され、インバータ回路に接続される。複数の冷陰極管15と支持板14及びその周辺に配置されている導電性の部材(支持板14を固定する金具など)との間には、冷陰極管151〜15nとの間で浮遊容量又は寄生容量が形成される。これにより複数の冷陰極管15と支持板14は高周波的につながっている。なお複数の冷陰極管15のそれぞれを示すとき、冷陰極管151〜15nと表記することがある。nは冷陰極管の本数(n>=2)である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an exploded view showing a liquid crystal display device 10 to which the present invention is applied. The liquid crystal display device 10 includes a liquid crystal display unit 11, a liquid crystal panel 12 that supports the liquid crystal display unit 11, and a current equalizing lighting device body 13.
The current equalizing lighting device main body 13 has a plurality of cold cathode tubes 15 arranged on a support plate 14 that is partially or entirely made of metal, and these cold cathode tubes 15 are connected in parallel to each other. Connected to the inverter circuit. Between the plurality of cold cathode tubes 15 and the support plate 14 and conductive members (metal fittings for fixing the support plate 14 and the like) arranged in the vicinity thereof, a stray capacitance is provided between the cold cathode tubes 151 to 15n. Or a parasitic capacitance is formed. Thereby, the plurality of cold cathode fluorescent lamps 15 and the support plate 14 are connected in high frequency. In addition, when each of the several cold cathode tube 15 is shown, it may describe with the cold cathode tubes 151-15n. n is the number of cold cathode tubes (n> = 2).

液晶表示部11は、例えば4:3,16:9などの横長形状である。なお液晶表示部11の構造は公知のものであり、例えば、表面側の透明基板と光源側の透明基板とを向き合わせた構造になっている。液晶駆動方式はパッシブマトリクス型でもアクティブマトリクス型でもよい。アクティブマトリクス型を例に挙げると、表面側の透明基板の内面には複数のマトリクス状透明電極群を配列し、光源側の透明基板の内面にはマトリクス状透明電極群と対向するように1枚の半透明電極を設置している。さらに、それぞれの電極の上に、一定方向にラビングした樹脂からなる配向膜を形成している。そして両配向膜の間に液晶を封入している。なお、カラー液晶の場合は、表面側の透明基板にカラーフィルター層が設けられている。   The liquid crystal display unit 11 has a horizontally long shape such as 4: 3, 16: 9, for example. The structure of the liquid crystal display unit 11 is a known structure, for example, a structure in which a transparent substrate on the surface side and a transparent substrate on the light source side face each other. The liquid crystal driving method may be a passive matrix type or an active matrix type. Taking the active matrix type as an example, a plurality of matrix-like transparent electrode groups are arranged on the inner surface of the transparent substrate on the surface side, and one sheet is arranged on the inner surface of the transparent substrate on the light source side so as to face the matrix-like transparent electrode group. The semi-transparent electrode is installed. Further, an alignment film made of a resin rubbed in a certain direction is formed on each electrode. Liquid crystal is sealed between the alignment films. In the case of color liquid crystal, a color filter layer is provided on the transparent substrate on the front side.

均流点灯装置本体13は、n本の冷陰極管151〜15nを、液晶表示部11の長辺方向と平行に配列している。各冷陰極管151〜15nの一端部のリード線及び他端部のリード線は、給電基板16の電極にそれぞれ接続されている。これらの給電基板16の電極が後述するインバータ回路の高周波電源供給端に接続される。
図2は、インバータ回路20及びそれに接続された複数の冷陰極管151〜15nを含む均流点灯装置の全体回路図である。このインバータ回路20は、商用交流電源22aに接続されたスイッチSW及び整流回路22bと、整流回路22bの直流出力に基づいて高周波交流電源を得るためのスイッチング回路23と、高周波交流電源を昇圧するための主変圧器24と、その主変圧器24の出力回線に接続され、高周波駆動電源の一相を供給するための高周波電源供給端25と、を備えている。
The current equalizing lighting device main body 13 has n cold cathode tubes 151 to 15 n arranged in parallel with the long side direction of the liquid crystal display unit 11. The lead wires at one end and the lead wires at the other end of each of the cold cathode tubes 151 to 15 n are connected to electrodes of the power supply substrate 16, respectively. These electrodes of the power supply substrate 16 are connected to a high-frequency power supply end of an inverter circuit described later.
FIG. 2 is an overall circuit diagram of the current equalizing lighting device including the inverter circuit 20 and a plurality of cold cathode tubes 151 to 15n connected thereto. The inverter circuit 20 includes a switch SW and a rectifier circuit 22b connected to a commercial AC power supply 22a, a switching circuit 23 for obtaining a high-frequency AC power supply based on a DC output of the rectifier circuit 22b, and a booster for the high-frequency AC power supply. Main transformer 24 and a high frequency power supply end 25 connected to the output line of the main transformer 24 for supplying one phase of the high frequency drive power supply.

高周波電源供給端25に対して、複数の冷陰極管151〜15nの一端及び他端が接続されている。また、前記高周波駆動電源の他相を供給するための、高周波電源供給端25と反対の端は、支持板14と同じ電位になるように接地されている。
スイッチング回路23は、スイッチング動作をするトランジスタTr1,Tr2とキャパシタCs1,Cs2とからなるブリッジ回路を含んでいる。トランジスタTr1,Tr2の各ゲートには、2つの互いに逆位相の高周波パルス電圧を供給するためのクロックパルス回路23aが接続されている。このクロックパルス回路23aは、既定周波数f1のクロックパルスが入るごとに2つの高周波パルス電圧の位相を180°切り替える。既定周波数f1は、冷陰極管15を起動し起動後も点灯を続けるために必要な周波数であり、例えば数十kHz〜数百kHzの範囲の中から選ばれる。
One end and the other end of the plurality of cold cathode fluorescent lamps 151 to 15n are connected to the high frequency power supply end 25. Further, an end opposite to the high frequency power supply end 25 for supplying the other phase of the high frequency drive power supply is grounded so as to have the same potential as the support plate 14.
The switching circuit 23 includes a bridge circuit including transistors Tr1 and Tr2 that perform a switching operation and capacitors Cs1 and Cs2. Two gates of the transistors Tr1 and Tr2 are connected to a clock pulse circuit 23a for supplying two high-frequency pulse voltages with opposite phases. The clock pulse circuit 23a switches the phase of the two high-frequency pulse voltages by 180 ° every time a clock pulse having a predetermined frequency f1 is input. The predetermined frequency f1 is a frequency necessary for starting the cold cathode tube 15 and continuing lighting after the start-up, and is selected from a range of several tens kHz to several hundred kHz, for example.

主変圧器24は、所定の巻き数と巻き数比を持つことによって、交流電圧を所定の昇圧比で昇圧する。これによって、各冷陰極管151〜15nの点灯に必要な交流電圧Vd(冷陰極管の長さに応じて決まる、通常1000V〜2000V程度)を得ることができる。
このインバータ回路20の動作説明をすると、商用交流電源22aのスイッチオン後、整流回路22bによって得られた直流電源は、スイッチング回路23によって高周波電源に変換され、主変圧器24に供給される。
The main transformer 24 boosts the AC voltage at a predetermined boost ratio by having a predetermined number of turns and a turn ratio. As a result, it is possible to obtain an AC voltage Vd (normally about 1000 V to 2000 V, which is determined according to the length of the cold cathode tube) necessary for lighting the cold cathode tubes 151 to 15n.
The operation of the inverter circuit 20 will be described. After the commercial AC power supply 22a is switched on, the DC power obtained by the rectifier circuit 22b is converted into a high frequency power supply by the switching circuit 23 and supplied to the main transformer 24.

このスイッチング回路23の交流周波数の範囲は、主変圧器24として十分な変換効率が得られる周波数であることが必要であり、前述したように数十kHz〜数百kHzの範囲の中から選ばれる。前記範囲は、好ましくは、20kHz〜200kHzである。周波数がこの数十kHz〜数百kHzの範囲より低すぎると、特に低温時に冷陰極管15の起動が困難になることがある。周波数がこの範囲よりも高いと、主変圧器24内部で発生する浮遊容量の影響が大きくなり、共振が発生して変換効率が低下する。   The range of the AC frequency of the switching circuit 23 needs to be a frequency at which sufficient conversion efficiency can be obtained as the main transformer 24, and is selected from the range of several tens of kHz to several hundreds of kHz as described above. . The range is preferably 20 kHz to 200 kHz. If the frequency is lower than the range of several tens of kHz to several hundreds of kHz, it may be difficult to start the cold cathode tube 15 particularly at a low temperature. If the frequency is higher than this range, the effect of stray capacitance generated inside the main transformer 24 becomes large, resonance occurs, and conversion efficiency decreases.

主変圧器24によって昇圧された高周波電源は、高周波電源供給端25から2つに分岐され、各冷陰極管151〜15nの両端に供給される。この高周波電流は、各冷陰極管151〜15nの内部を通って、各冷陰極管151〜15nと支持板14との間に分布した状態で形成されている浮遊容量を通過することによって、接地側へ流れていく。この高周波電流を図2に“I1”で示す。高周波電流I1は、冷陰極管151〜15nの一端から接地側に流れるとともに、冷陰極管151〜15nの他端からも接地側に流れる。   The high frequency power source boosted by the main transformer 24 is branched into two from the high frequency power source supply end 25 and supplied to both ends of each cold cathode tube 151-15n. This high-frequency current passes through the inside of each cold cathode tube 151-15n and passes through the stray capacitance formed in a state distributed between each cold cathode tube 151-15n and the support plate 14, thereby grounding. It flows to the side. This high-frequency current is indicated by “I1” in FIG. The high-frequency current I1 flows from one end of the cold cathode tubes 151 to 15n to the ground side, and also flows from the other end of the cold cathode tubes 151 to 15n to the ground side.

これらの冷陰極管151〜15nの各端から接地側に流れる電流によって、それぞれ正抵抗特性に基づく一定の電圧降下を発生させる。この電圧降下を実現することによって、点灯時、各冷陰極管151〜15nの個体差を吸収して、各冷陰極管151〜15nに均等の電流を供給することができ、均等に点灯させることができる。
「正抵抗特性」とは、冷陰極管15に流れる電流が上がるほど冷陰極管15の電圧が上がっていく状態をいう。正抵抗特性になるのは、冷陰極管15の高圧側(本実施例では両端)に近い部分だけが点灯している状態だからである。なお「負性抵抗特性」とは、冷陰極管15の全体が点灯することにより、冷陰極管15の電流が大きくなるほど冷陰極管15の電圧が低くなっていく状態をいう。
A constant voltage drop based on the positive resistance characteristic is generated by the current flowing from each end of the cold cathode tubes 151 to 15n to the ground side. By realizing this voltage drop, individual differences among the cold cathode tubes 151 to 15n can be absorbed at the time of lighting, and an equal current can be supplied to each of the cold cathode tubes 151 to 15n. Can do.
The “positive resistance characteristic” refers to a state in which the voltage of the cold cathode tube 15 increases as the current flowing through the cold cathode tube 15 increases. The positive resistance characteristic is because only the portion close to the high voltage side (both ends in the present embodiment) of the cold cathode tube 15 is lit. The “negative resistance characteristic” refers to a state where the voltage of the cold cathode tube 15 decreases as the current of the cold cathode tube 15 increases as the entire cold cathode tube 15 is turned on.

なお、この高周波電流は、各冷陰極管151〜15nの両端から冷陰極管内部に注入されるものであり、各冷陰極管151〜15nの両端の電位は等しいため、各冷陰極管151〜15nの両端から中央部に近づくほど電流値が低下する。このため、中央部がやや暗くなる傾向がある。
そこで以下、中央部がやや暗くなる傾向を補うため、図3〜図12に、各冷陰極管15と支持板14との間に形成される浮遊容量を、冷陰極管15の長手方向に沿って不均等に分布するようにした例を示す。
The high-frequency current is injected into the cold cathode tube from both ends of each cold cathode tube 151-15n, and the potentials at both ends of each cold cathode tube 151-15n are equal. The current value decreases as the distance from both ends of 15n approaches the center. For this reason, there exists a tendency for a center part to become a little dark.
Therefore, hereinafter, in order to compensate for the tendency of the central portion to become slightly dark, the stray capacitance formed between each cold cathode tube 15 and the support plate 14 is shown in FIGS. 3 to 12 along the longitudinal direction of the cold cathode tube 15. An example of non-uniform distribution is shown below.

図3、図4は、冷陰極管15と前記支持板14との距離が中央部17c(冷陰極管15の中央部に対向する部分をいう)で狭く、両端部17b(冷陰極管15の両端部に対向する部分をいう)で広くなるようにした配置例を示す。支持板14の配置されている面をxy面とし、支持板14の面に垂直な方向をzとする。支持板14の上に複数の冷陰極管15が平行に配列されている。各冷陰極管15の長手方向をx、複数の冷陰極管15が並んでいる方向をyとする。支持板14は、冷陰極管15と前記支持板14との距離が中央部17cで狭く、両端部17bで広くなるように、z方向に凸に湾曲している。   3 and 4, the distance between the cold cathode tube 15 and the support plate 14 is narrow at the central portion 17c (referring to a portion facing the central portion of the cold cathode tube 15), and both end portions 17b (of the cold cathode tube 15). An example of an arrangement in which it is widened (refers to a portion facing both ends). A surface on which the support plate 14 is disposed is defined as an xy plane, and a direction perpendicular to the surface of the support plate 14 is defined as z. A plurality of cold cathode tubes 15 are arranged in parallel on the support plate 14. The longitudinal direction of each cold cathode tube 15 is x, and the direction in which the plurality of cold cathode tubes 15 are arranged is y. The support plate 14 is convexly curved in the z direction so that the distance between the cold cathode tube 15 and the support plate 14 is narrow at the central portion 17c and wide at both end portions 17b.

冷陰極管15と前記支持板14との間に形成される浮遊容量(x方向単位長さあたりの浮遊容量)は、中央部17cで大きくなり、冷陰極管15の両端部17bで小さくなる。このような構造により、冷陰極管15の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持板14に逃げるが、その逃げる電流値は冷陰極管15の両端部では比較的小さくなり、冷陰極管15の中央部に流れ込む電流が多くなる。これにより、「中央部17cがやや暗くなる傾向」を補うことができ、輝度ムラをなくすことができる。   The stray capacitance (stray capacitance per unit length in the x direction) formed between the cold cathode tube 15 and the support plate 14 increases at the central portion 17 c and decreases at both end portions 17 b of the cold cathode tube 15. With such a structure, when a high frequency current is supplied to both ends of the cold cathode tube 15, the current escapes to the support plate 14 through the stray capacitance, but the value of the escaped current is relatively low at both ends of the cold cathode tube 15. The current decreases and the current flowing into the center of the cold cathode tube 15 increases. Thereby, “the tendency for the central portion 17c to become slightly dark” can be compensated, and luminance unevenness can be eliminated.

図5は、冷陰極管15と前記支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す。この「中央部17cで狭く、両端部17bで広くなる」構造を実現するため、冷陰極管15を、−z方向に凸になるように湾曲させている。
図6は、冷陰極管15と前記支持板14との距離が中央部17cで狭く、両端部17bで広くなるように、支持板14をz方向に凸に湾曲させるとともに、冷陰極管15を、−z方向に凸になるように湾曲させた例を示している。
FIG. 5 shows an arrangement example in which the distance between the cold cathode tube 15 and the support plate 14 is narrow at the central portion 17c and wide at both end portions 17b. In order to realize this structure “narrow at the center portion 17c and wide at both end portions 17b”, the cold cathode tube 15 is curved so as to be convex in the −z direction.
In FIG. 6, the support plate 14 is curved convexly in the z-direction so that the distance between the cold cathode tube 15 and the support plate 14 is narrow at the center portion 17c and wide at both end portions 17b. , An example of being curved so as to be convex in the −z direction is shown.

図7、図8は、支持板14に孔14aを設けて、冷陰極管15と前記支持板14との間に形成される浮遊容量が、中央部17cで大きくなり、両端部17bで小さくなるようにした例を示す図である。孔14aの開口率(支持板14に形成された孔14aの面積を、支持板14の面積で割った比率)は、中央部17cで小さく、両端部17bで大きくしている。このような構造により、冷陰極管15の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持板14に逃げるが、その逃げる電流値は冷陰極管15の両端部では比較的小さくなり、冷陰極管15の中央部に流れ込む電流が多くなる。これにより、「中央部17cがやや暗くなる傾向」を補うことができ、輝度ムラをなくすことができる。   7 and 8, holes 14a are provided in the support plate 14, and the stray capacitance formed between the cold cathode fluorescent lamp 15 and the support plate 14 increases at the central portion 17c and decreases at both end portions 17b. It is a figure which shows the example made like this. The aperture ratio of the hole 14a (ratio obtained by dividing the area of the hole 14a formed in the support plate 14 by the area of the support plate 14) is small at the central portion 17c and large at both end portions 17b. With such a structure, when a high frequency current is supplied to both ends of the cold cathode tube 15, the current escapes to the support plate 14 through the stray capacitance, but the value of the escaped current is relatively low at both ends of the cold cathode tube 15. The current decreases and the current flowing into the center of the cold cathode tube 15 increases. Thereby, “the tendency for the central portion 17c to become slightly dark” can be compensated, and luminance unevenness can be eliminated.

図9、図10は、冷陰極管15と支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す。この例では、支持板14の厚みが、冷陰極管15の中央部17cで厚く、冷陰極管15の両端部17bで薄くなるようにしている。具体的には、中央部17cで支持板14の板材を複数枚積み重ねている。したがって、冷陰極管15と前記支持板14との間に形成される浮遊容量は、中央部17cで大きくなり、両端部17bで小さくなる。このような構造により、冷陰極管15の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持板14に逃げるが、その逃げる電流値は冷陰極管15の両端部では比較的小さくなり、冷陰極管15の中央部に流れ込む電流が多くなる。これにより、「中央部17cがやや暗くなる傾向」を補うことができ、輝度ムラをなくすことができる。   9 and 10 show an arrangement example in which the distance between the cold cathode tube 15 and the support plate 14 is narrow at the central portion 17c and wide at both end portions 17b. In this example, the thickness of the support plate 14 is thick at the central portion 17 c of the cold cathode tube 15 and thin at both end portions 17 b of the cold cathode tube 15. Specifically, a plurality of plate materials of the support plate 14 are stacked at the central portion 17c. Therefore, the stray capacitance formed between the cold cathode tube 15 and the support plate 14 is increased at the central portion 17c and is decreased at both end portions 17b. With such a structure, when a high frequency current is supplied to both ends of the cold cathode tube 15, the current escapes to the support plate 14 through the stray capacitance, but the value of the escaped current is relatively low at both ends of the cold cathode tube 15. The current decreases and the current flowing into the center of the cold cathode tube 15 increases. Thereby, “the tendency for the central portion 17c to become slightly dark” can be compensated, and luminance unevenness can be eliminated.

図11は、冷陰極管15の表面に導線14dをらせん状に巻いた例を示す。この導線14dは接地されており、導線14dと冷陰極管15との間で浮遊容量を形成する。もちろん、支持板14も存在し、支持板14と冷陰極管15との間で浮遊容量を形成している。この支持板14との間で形成される浮遊容量と、導線14dとの間で形成される浮遊容量との合計が、冷陰極管15の浮遊容量となる。本実施例では、導線14を中央部17cで密に巻き、両端部17bで疎に巻くことによって、導線14dとの間で形成される浮遊容量を、中央部17cで大きくなり、両端部17bで小さくなるようにしている。このような構造により、冷陰極管15の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持板14に逃げるが、その逃げる電流値は冷陰極管15の両端部では比較的小さくなり、冷陰極管15の中央部に流れ込む電流が多くなる。これにより、「中央部17cがやや暗くなる傾向」を補うことができ、輝度ムラをなくすことができる。   FIG. 11 shows an example in which a conductive wire 14 d is spirally wound around the surface of the cold cathode tube 15. The conducting wire 14d is grounded, and a stray capacitance is formed between the conducting wire 14d and the cold cathode tube 15. Of course, the support plate 14 also exists, and a stray capacitance is formed between the support plate 14 and the cold cathode tube 15. The total of the stray capacitance formed between the support plate 14 and the stray capacitance formed between the conductive wires 14 d is the stray capacitance of the cold cathode tube 15. In the present embodiment, the conductive wire 14 is densely wound at the central portion 17c and sparsely wound at both end portions 17b, thereby increasing the stray capacitance formed between the conductive wire 14d at the central portion 17c and at both end portions 17b. I try to make it smaller. With such a structure, when a high frequency current is supplied to both ends of the cold cathode tube 15, the current escapes to the support plate 14 through the stray capacitance, but the value of the escaped current is relatively low at both ends of the cold cathode tube 15. The current decreases and the current flowing into the center of the cold cathode tube 15 increases. Thereby, “the tendency for the central portion 17c to become slightly dark” can be compensated, and luminance unevenness can be eliminated.

図12は、冷陰極管15の浮遊容量が冷陰極管15の中央部で大きく、冷陰極管15の両端部で小さくなるように、冷陰極管15の直径を、中央部で短く、冷陰極管15の両端部で長くなるようにした例を示す。すなわち、冷陰極管15の断面積は中央部で小さく、両端部で大きくなる。このような構造により、冷陰極管15の両端に高周波電流が供給されると、電流は前記浮遊容量を通して前記支持板14に逃げるが、その逃げる電流値は冷陰極管15の両端部では比較的小さくなり、冷陰極管15の中央部に流れ込む電流が多くなる。これにより、「中央部17cがやや暗くなる傾向」を補うことができ、輝度ムラをなくすことができる。   FIG. 12 shows that the cold cathode tube 15 has a short diameter at the central portion so that the stray capacitance of the cold cathode tube 15 is large at the central portion of the cold cathode tube 15 and small at both ends of the cold cathode tube 15. An example in which both ends of the tube 15 are long is shown. That is, the cross-sectional area of the cold cathode tube 15 is small at the center and large at both ends. With such a structure, when a high frequency current is supplied to both ends of the cold cathode tube 15, the current escapes to the support plate 14 through the stray capacitance, but the value of the escaped current is relatively low at both ends of the cold cathode tube 15. The current decreases and the current flowing into the center of the cold cathode tube 15 increases. Thereby, “the tendency for the central portion 17c to become slightly dark” can be compensated, and luminance unevenness can be eliminated.

次に、各冷陰極管151〜15nに、前記高周波電流の周波数f1よりも低い周波数の電流を流すタイプの均流点灯装置の回路例を説明する。
図13は、前記インバータ回路20に加えて、前記周波数f1よりも低い周波数f2でスイッチングする第二のインバータ回路30を備える均流点灯装置を示す回路図である。以下図2と異なるところを説明する。
Next, a circuit example of a current-equalizing lighting device of a type in which a current having a frequency lower than the frequency f1 of the high-frequency current is supplied to each of the cold cathode tubes 151 to 15n will be described.
FIG. 13 is a circuit diagram showing a current equalizing lighting device including a second inverter circuit 30 that switches at a frequency f2 lower than the frequency f1 in addition to the inverter circuit 20. The differences from FIG. 2 will be described below.

この回路では、高周波電源供給端25に対して、キャパシタCd1を通して、複数の冷陰極管151〜15nの一端がそれぞれ接続され、キャパシタCd2を通して、複数の冷陰極管151〜15nの他端がそれぞれ接続されている。キャパシタCd1,Cd2の値は、100〜1000pFであることが好ましい。キャパシタCd1,Cd2の値はそれぞれ同じであっても良く、異なっていても良い。キャパシタCd1,Cd2は、それぞれセラミックコンデンサなどのチップ素子で構成してもよい。また、給電基板16の表面と裏面に導体層を形成して、それらの導体層の間に作ってもよい。   In this circuit, one end of each of the plurality of cold cathode tubes 151 to 15n is connected to the high frequency power supply end 25 through the capacitor Cd1, and the other end of each of the plurality of cold cathode tubes 151 to 15n is connected to each other through the capacitor Cd2. Has been. The values of the capacitors Cd1 and Cd2 are preferably 100 to 1000 pF. The values of the capacitors Cd1 and Cd2 may be the same or different. Capacitors Cd1 and Cd2 may each be constituted by a chip element such as a ceramic capacitor. Alternatively, a conductive layer may be formed on the front and back surfaces of the power supply substrate 16 and formed between the conductive layers.

第二のインバータ回路30は、前記複数の冷陰極管151〜15nの一端に対して低周波駆動電源の一相を供給し、前記複数の冷陰極管151〜15nの他端に対して前記低周波駆動電源の他相を供給するものである。
インバータ回路30は、整流回路22bの直流出力を、約10kHzを超え、f1未満の交流(この交流の周波数を「f2」で表す)でスイッチングするためのスイッチング回路33と、スイッチング回路33で得られた交流電源(「低周波交流電源」という)を昇圧するための主変圧器34と、その主変圧器34の二次側の出力回線に接続された低周波電源供給端35a,35bとを備えている。この低周波電源供給端35a,35bに対して、キャパシタを介さずに、複数の冷陰極管151〜15nの各端がそれぞれ接続されている。キャパシタを介さなくてもよいのは、すでにキャパシタCd1,Cd2によって、インバータ回路20との間の直流〜低周波の絶縁は達成されているからである。なお、低周波電源供給端35a,35bからキャパシタを介して、複数の冷陰極管151〜15nの各端に接続しても良い。
The second inverter circuit 30 supplies one phase of a low-frequency driving power source to one end of the plurality of cold cathode tubes 151 to 15n and the low frequency to the other end of the plurality of cold cathode tubes 151 to 15n. The other phase of the frequency drive power supply is supplied.
The inverter circuit 30 is obtained by the switching circuit 33 and the switching circuit 33 for switching the DC output of the rectifier circuit 22b with an alternating current exceeding about 10 kHz and less than f1 (the frequency of this alternating current is represented by “f2”). A main transformer 34 for boosting the AC power supply (referred to as “low frequency AC power supply”), and low frequency power supply terminals 35 a and 35 b connected to the output line on the secondary side of the main transformer 34. ing. The respective ends of the plurality of cold cathode fluorescent lamps 151 to 15n are connected to the low frequency power supply ends 35a and 35b without passing through capacitors. The reason why the capacitor does not need to be provided is that the direct current to low frequency insulation with the inverter circuit 20 is already achieved by the capacitors Cd1 and Cd2. Note that the low frequency power supply terminals 35a and 35b may be connected to the respective ends of the plurality of cold cathode tubes 151 to 15n via capacitors.

スイッチング回路33は、スイッチング動作をするトランジスタTr3,Tr4とキャパシタCs3,Cs4とからなるブリッジ回路を含んでいる。トランジスタTr3,Tr4の各ゲートには、2つの互いに逆位相の高周波パルス電圧を供給するためのクロックパルス回路33aが接続されている。このクロックパルス回路33aは、既定周波数f2のクロックパルスが入るごとに2つの高周波パルス電圧の位相を180°切り替える。既定周波数f2は、約10kHzを超えf1よりも小さい範囲に設定されている。当該範囲の下限を約10kHzとした理由は、周波数がこの10kHzより低すぎると、主変圧器24を大きくする必要があり、装置全体が大きく重くなるからである。   The switching circuit 33 includes a bridge circuit including transistors Tr3 and Tr4 that perform a switching operation and capacitors Cs3 and Cs4. Two gates of the transistors Tr3 and Tr4 are connected to a clock pulse circuit 33a for supplying two high-frequency pulse voltages having opposite phases. This clock pulse circuit 33a switches the phase of two high-frequency pulse voltages by 180 ° every time a clock pulse having a predetermined frequency f2 is input. The predetermined frequency f2 is set in a range exceeding about 10 kHz and smaller than f1. The reason why the lower limit of the range is about 10 kHz is that if the frequency is too lower than 10 kHz, the main transformer 24 needs to be enlarged, and the entire apparatus becomes large and heavy.

この均流点灯装置を用いて各冷陰極管151〜15nを点灯するときの動作説明をすると、商用交流電源22aのスイッチオン後、整流回路22bによって得られた直流電源は、スイッチング回路23によって周波数f1の高周波電源に変換され主変圧器24に供給されるとともに、スイッチング回路33によって周波数f2の低周波電源に変換され、主変圧器34に供給される。   The operation when the cold cathode fluorescent lamps 151 to 15n are lit using this uniform current lighting device will be described. The DC power source obtained by the rectifier circuit 22b after the commercial AC power source 22a is switched on is frequency-switched by the switching circuit 23. It is converted to a high frequency power source of f1 and supplied to the main transformer 24, and is converted to a low frequency power source of frequency f2 by the switching circuit 33 and supplied to the main transformer.

主変圧器34は、所定の巻き数と巻き数比を持つことによって、交流電圧を所定の昇圧比で昇圧する。この昇圧比は、前記主変圧器24によって得られる二次側電圧と同じような電圧値が得られるような比に設定するとよい。
主変圧器24及び主変圧器34によって昇圧された電源は、各冷陰極管151〜15nに供給される。
Main transformer 34 has a predetermined number of turns and a turn ratio, thereby boosting the AC voltage at a predetermined step-up ratio. This step-up ratio may be set to a ratio that provides a voltage value similar to the secondary side voltage obtained by the main transformer 24.
The power source boosted by the main transformer 24 and the main transformer 34 is supplied to the cold cathode tubes 151 to 15n.

起動時は、前述したスイッチング回路23からの高周波電源が役割を担う。すなわち、高周波電源が、キャパシタCd1,Cd2を通して各冷陰極管151〜15nに供給される。高周波電流は、各冷陰極管151〜15nと支持板14との間に分布した状態で形成されているキャパシタンスを通して接地側へ流れていく。このことによって、各冷陰極管151〜15nの個体差を吸収して、各冷陰極管151〜15nを均等に起動させることができる。   At startup, the high-frequency power source from the switching circuit 23 described above plays a role. That is, high-frequency power is supplied to each of the cold cathode tubes 151 to 15n through the capacitors Cd1 and Cd2. The high-frequency current flows to the ground side through the capacitance formed in a state distributed between the cold cathode tubes 151 to 15n and the support plate 14. As a result, individual differences among the cold cathode tubes 151 to 15n can be absorbed and the cold cathode tubes 151 to 15n can be started evenly.

しかし、高周波電源だけでは、各冷陰極管151〜15nの両端の電位は等しいため、各冷陰極管151〜15nの両端から中央部17cに近づくほど電流値が低下し、このため、中央部17cがやや暗くなる傾向がある。
そこで各冷陰極管151〜15nの両端に印加される低周波電源がこの欠点を除く。すなわち、低周波電源は、周波数が相対的に低いので、冷陰極管15と支持板14との間に作られるインピーダンスは、高周波電流に比べて大きくなる。このため、低周波電流は支持板14に漏れにくくなり、各冷陰極管151〜15nの一端から他端へそのまま流れる。この低周波電流により、各冷陰極管151〜15nの中央部17cの照度の低下を補うことができる。
However, since the potentials at both ends of each cold cathode tube 151-15n are equal only with the high-frequency power source, the current value decreases as the distance from both ends of each cold cathode tube 151-15n approaches the central portion 17c. Tends to be slightly dark.
Therefore, a low frequency power source applied to both ends of each cold cathode tube 151 to 15n eliminates this defect. That is, since the frequency of the low-frequency power source is relatively low, the impedance created between the cold cathode tube 15 and the support plate 14 is larger than the high-frequency current. For this reason, the low frequency current is less likely to leak to the support plate 14 and flows as it is from one end to the other end of each cold cathode tube 151-15n. This low frequency current can compensate for a decrease in illuminance at the central portion 17c of each cold cathode tube 151-15n.

この均流点灯装置では、冷陰極管15に対して、高周波電源及び低周波電源の両方を同時に供給するので、高周波電源だけを供給する場合と比べて、インバータ回路20,30の容量を減らすことができる。例えば、高周波電流だけを供給する場合10mA必要であるとすると、高周波電源及び低周波電源を供給する場合、5mAずつあればよい。したがって、スイッチング回路23,33の定格容量を減らすことができ、内部のトランジスタなどから発生する熱損を減らすことができる。   In this uniform current lighting device, both the high frequency power source and the low frequency power source are supplied to the cold cathode tube 15 at the same time, so that the capacity of the inverter circuits 20 and 30 is reduced as compared with the case where only the high frequency power source is supplied. Can do. For example, assuming that 10 mA is required when only a high-frequency current is supplied, 5 mA is sufficient for supplying a high-frequency power source and a low-frequency power source. Therefore, the rated capacity of the switching circuits 23 and 33 can be reduced, and the heat loss generated from the internal transistors can be reduced.

また、冷陰極管15の起動に寄与するのは、主として高周波電源であるため、まず始めに高周波電源を供給し、次に時間差をつけて低周波電源を供給してもよい。
図14は、図13の変形例を示す回路図である。図13の回路では低周波交流電源を得るためスイッチング回路33と主変圧器34とを用いていたので、既定周波数f2を約10kHzよりも小さな周波数に設定しようとすれば、主変圧器34が大きく重くなるという問題があった。そこで、この図14の回路では、DC電源をスイッチングするブリッジトランジスタTr5〜Tr8とクロックパルス回路43aとを用いて周波数f2を得ている。すなわちクロックパルス回路43aに0Hzを超える周波数f2の信号を入力し、クロックパルス回路43aから得られる、互いに位相の180°異なる切換えパルス信号Qa,−QaをトランジスタTr5,Tr6のゲートに供給し、さらにパルス信号Qa,−Qaから90°位相の異なるパルス信号Qb,−QbをトランジスタTr7,Tr8のゲートに供給している。トランジスタTr5〜Tr8のブリッジ出力は低周波電源供給端45a,45bに供給される。これにより、低周波電源供給端45a,45bから低周波電源を複数の冷陰極管151〜15nの各端にそれぞれ供給することができる。
Further, since it is mainly the high frequency power source that contributes to the activation of the cold cathode tube 15, the high frequency power source may be supplied first, and then the low frequency power source may be supplied with a time difference.
FIG. 14 is a circuit diagram showing a modification of FIG. In the circuit of FIG. 13, the switching circuit 33 and the main transformer 34 are used to obtain a low-frequency AC power supply. Therefore, if the predetermined frequency f2 is set to a frequency smaller than about 10 kHz, the main transformer 34 becomes large. There was a problem of becoming heavy. Therefore, in the circuit of FIG. 14, the frequency f2 is obtained by using the bridge transistors Tr5 to Tr8 for switching the DC power source and the clock pulse circuit 43a. That is, a signal having a frequency f2 exceeding 0 Hz is input to the clock pulse circuit 43a, and switching pulse signals Qa and -Qa obtained from the clock pulse circuit 43a having phases different from each other by 180 ° are supplied to the gates of the transistors Tr5 and Tr6. Pulse signals Qb and -Qb having a phase difference of 90 ° from the pulse signals Qa and -Qa are supplied to the gates of the transistors Tr7 and Tr8. The bridge outputs of the transistors Tr5 to Tr8 are supplied to the low frequency power supply terminals 45a and 45b. Thereby, the low frequency power can be supplied from the low frequency power supply ends 45a and 45b to the respective ends of the plurality of cold cathode tubes 151 to 15n.

この低周波電源の周波数f2は、0Hzを超え、周波数f1未満であれば、いかなる周波数でもよい。
次に図15は、図13の変形例を示す回路図である。この図15の回路では、均流回路を構成するキャパシタC1〜Cnを、各冷陰極管151〜15nに対して直列に接続している。このキャパシタC1〜Cnは、浮遊容量と同様、各冷陰極管151〜15nに均等の電流を供給するという機能を有している。
The frequency f2 of this low frequency power supply may be any frequency as long as it exceeds 0 Hz and is less than the frequency f1.
Next, FIG. 15 is a circuit diagram showing a modification of FIG. In the circuit of FIG. 15, capacitors C1 to Cn constituting a current sharing circuit are connected in series to the cold cathode tubes 151 to 15n. The capacitors C1 to Cn have a function of supplying an equal current to each of the cold cathode tubes 151 to 15n, like the stray capacitance.

キャパシタC1〜Cnがない場合、浮遊容量のみで各冷陰極管151〜15nに均等の電流を供給する必要があった。冷陰極管15の輝度を上げるため低周波電流を増やそうとすると、冷陰極管15の負性抵抗のため、各冷陰極管151〜15nの輝度にバラつきが発生することがある。そこで、キャパシタC1〜Cnをさらに追加することにより、輝度のばらつきをいっそう均一化することができる。   When the capacitors C1 to Cn are not provided, it is necessary to supply an equal current to each of the cold cathode tubes 151 to 15n only with the stray capacitance. If an attempt is made to increase the low-frequency current in order to increase the brightness of the cold-cathode tube 15, the cold-cathode tube 15 may have a variation in brightness due to the negative resistance of the cold-cathode tube 15. Therefore, by further adding capacitors C1 to Cn, it is possible to make the luminance variation even more uniform.

なお、均流回路として、キャパシタC1〜Cn以外に、キャパシタと抵抗の直列回路を各冷陰極管151〜15nに直列に接続しても良く、キャパシタと抵抗の並列回路を各冷陰極管151〜15nに直列に接続しても良い。またキャパシタに代えてインダクタを用いても良い。また、定電流を実現するための電子回路、例えばトランジスタのコレクタ電流が電圧によらずに一定になること利用した電子回路を採用しても良い。   In addition to the capacitors C1 to Cn, a series circuit of a capacitor and a resistor may be connected in series to each cold cathode tube 151 to 15n, and a parallel circuit of a capacitor and a resistor may be connected to each cold cathode tube 151 15n may be connected in series. An inductor may be used instead of the capacitor. Further, an electronic circuit for realizing a constant current, for example, an electronic circuit using that the collector current of the transistor becomes constant regardless of the voltage may be employed.

キャパシタC1〜Cnの構造は限定されないが、例えば、給電基板16の表面に、各冷陰極管151〜15nに接続される複数(n個)の第一導体を互いに分離して、印刷等により形成し、裏面には、第一導体に対向して第二導体を形成し、第一導体と第一導体との重なった部分の面積によって、各キャパシタC1〜Cnを実現しても良い。また、チップ素子を使って実現しても良い。   The structure of the capacitors C1 to Cn is not limited. For example, a plurality (n) of first conductors connected to the cold cathode tubes 151 to 15n are separated from each other on the surface of the power supply substrate 16 and formed by printing or the like. The second conductor may be formed on the back surface so as to face the first conductor, and the capacitors C1 to Cn may be realized by the area of the overlapping portion of the first conductor and the first conductor. Moreover, you may implement | achieve using a chip element.

図16は、図13の変形例を示す回路である。図13の回路では、高周波電源を供給する第二のインバータ回路30の主変圧器24の二次側巻き線と、既定の周波数f2(f2<f1)の低周波駆動電源を供給する第二のインバータ回路30の主変圧器34の二次側巻き線とを並列に接続し、それぞれから電源を供給していたが、図16の場合は、主変圧器24の二次側巻き線からの高周波電源を冷陰極管15の一端に供給し、主変圧器34の二次側巻き線からの高周波電源を冷陰極管15の他端に供給している。   FIG. 16 is a circuit showing a modification of FIG. In the circuit of FIG. 13, the secondary winding of the main transformer 24 of the second inverter circuit 30 that supplies high-frequency power and the second low-frequency drive power that supplies a predetermined frequency f2 (f2 <f1). The secondary winding of the main transformer 34 of the inverter circuit 30 is connected in parallel and power is supplied from each of them. In the case of FIG. 16, the high frequency from the secondary winding of the main transformer 24 is used. Power is supplied to one end of the cold cathode tube 15, and high frequency power from the secondary winding of the main transformer 34 is supplied to the other end of the cold cathode tube 15.

この回路構成により、図13の場合と同様、高周波駆動電源に低周波駆動電源を重畳することができ、複数の冷陰極管151〜15nに高周波電流と低周波電流とを同時に供給することができ、同じ効果を得ることができる。
次に、他の実施形態として、第二のインバータ回路30を省略し、低周波電源の供給の役割を他の素子で代用する実施形態を挙げる。
With this circuit configuration, the low frequency driving power source can be superimposed on the high frequency driving power source as in the case of FIG. 13, and a high frequency current and a low frequency current can be simultaneously supplied to the plurality of cold cathode tubes 151 to 15n. The same effect can be obtained.
Next, as another embodiment, an embodiment is described in which the second inverter circuit 30 is omitted and the role of supplying low-frequency power is replaced by another element.

図17は、高周波電源供給端25を、複数の冷陰極管151〜15nの一端に直接接続するとともに、チョークコイルL1を通して冷陰極管151〜15nの他端に接続するようにした回路図である。
この回路では、キャパシタCd1,Cd2を省略しているが、キャパシタCd1,Cd2を通して、高周波電源供給端25から高周波電源を供給しても良い。
FIG. 17 is a circuit diagram in which the high-frequency power supply end 25 is directly connected to one end of the plurality of cold cathode tubes 151 to 15n and is connected to the other end of the cold cathode tubes 151 to 15n through the choke coil L1. .
In this circuit, the capacitors Cd1 and Cd2 are omitted, but high-frequency power may be supplied from the high-frequency power supply terminal 25 through the capacitors Cd1 and Cd2.

チョークコイルL1の機能は、前記複数の冷陰極管の一端に印加される高周波電圧の位相を遅らせることである。図18に、高周波電源供給端25(図17のa点)の電圧波形と、チョークコイルL1の出力端(図17のb点)の電圧波形とを対比して掲げる。b点の電圧波形は、a点の電圧波形と比べて、位相が、この例では90°遅れている。このため、図2の回路と比較して次のような効果がある。   The function of the choke coil L1 is to delay the phase of the high-frequency voltage applied to one end of the plurality of cold cathode tubes. FIG. 18 shows a comparison between the voltage waveform at the high-frequency power supply end 25 (point a in FIG. 17) and the voltage waveform at the output end (point b in FIG. 17) of the choke coil L1. The voltage waveform at the point b is delayed by 90 ° in this example from the voltage waveform at the point a. Therefore, there are the following effects compared with the circuit of FIG.

複数の冷陰極管151〜15nの両端に同時に電圧が印加される場合、電流は、支持板14など、冷陰極管15の周囲に存在する電圧の低い部材に流れる。ところがb点の電圧波形とa点の電圧波形との位相がずれると、冷陰極管151〜15nの両端に電圧差が生じるので、電流の一部は冷陰極管151〜15nの一端から他端にまで流れる。したがって、図2の回路では各冷陰極管151〜15nの両端から中央部17cに近づくほど電流値が低下し、中央部17cがやや暗くなる傾向があったが、図17の回路ではこの傾向が緩和されるという利点がある。   When a voltage is simultaneously applied to both ends of the plurality of cold cathode fluorescent lamps 151 to 15n, the current flows through a low voltage member existing around the cold cathode fluorescent lamp 15 such as the support plate 14. However, if the phase of the voltage waveform at the point b and the voltage waveform at the point a shifts, a voltage difference occurs between both ends of the cold cathode tubes 151 to 15n. It flows to. Therefore, in the circuit of FIG. 2, the current value tends to decrease as the distance from both ends of each of the cold cathode fluorescent lamps 151 to 15n approaches the central portion 17c, and the central portion 17c tends to be slightly dark. There is an advantage of mitigation.

なお図19に示すように、インバータ回路20の高周波電源供給端25と前記複数の冷陰極管15の一端との間にチョークコイルL1を挿入し、高周波電源供給端25と前記複数の冷陰極管15の他端との間にチョークコイルL2を挿入してもよい。この場合、前記複数の冷陰極管の一端と他端に印加される高周波電圧の位相のずれを作るためには、チョークコイルL1,L2の誘導値は互いに異なっていることが好ましい。   As shown in FIG. 19, a choke coil L1 is inserted between the high frequency power supply end 25 of the inverter circuit 20 and one end of the plurality of cold cathode tubes 15, and the high frequency power supply end 25 and the plurality of cold cathode tubes are inserted. A choke coil L <b> 2 may be inserted between the other end of 15. In this case, the induction values of the choke coils L1 and L2 are preferably different from each other in order to create a phase shift of the high frequency voltage applied to one end and the other end of the plurality of cold cathode tubes.

また、図20に示すように、チョークコイルに代えて、位相を進める素子であるキャパシタCdを採用しても良い。
またこのキャパシタを、図21に示すように、インバータ回路20の高周波電源供給端25と前記複数の冷陰極管15の一端及び他端との間に挿入しても良い。この場合、前記複数の冷陰極管の一端と他端に印加される高周波電圧の位相のずれを作るためには、キャパシタCd1,Cd2の容量値は互いに異なっていることが好ましい。
As shown in FIG. 20, a capacitor Cd, which is an element that advances the phase, may be employed instead of the choke coil.
Further, as shown in FIG. 21, this capacitor may be inserted between the high-frequency power supply end 25 of the inverter circuit 20 and one end and the other end of the plurality of cold cathode tubes 15. In this case, the capacitance values of the capacitors Cd1 and Cd2 are preferably different from each other in order to create a phase shift of the high-frequency voltage applied to one end and the other end of the plurality of cold cathode tubes.

いままで本発明の実施の形態を説明したが、本発明は、実施の形態に限られるものでないことはもちろんである。例えば本発明は、実施の形態で用いた冷陰極管に限られず、放電管一般に適用できるものである。   Although the embodiments of the present invention have been described so far, the present invention is of course not limited to the embodiments. For example, the present invention is not limited to the cold cathode tubes used in the embodiments, and can be applied to general discharge tubes.

本発明の放電管均流点灯装置が適用される液晶表示装置10を示す分解斜視図である。It is a disassembled perspective view which shows the liquid crystal display device 10 with which the discharge tube equality lighting apparatus of this invention is applied. インバータ回路20及びそれに接続される複数の冷陰極管15を含む均流点灯装置の全体回路図である。1 is an overall circuit diagram of a current equalizing lighting device including an inverter circuit 20 and a plurality of cold cathode tubes 15 connected thereto. 冷陰極管15と支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す正面図である。It is a front view which shows the example of arrangement | positioning which the distance of the cold cathode tube 15 and the support plate 14 was narrow at the center part 17c, and became wide at the both ends 17b. 冷陰極管15と支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning which the distance of the cold cathode tube 15 and the support plate 14 was narrow at the center part 17c, and became wide at the both ends 17b. 冷陰極管15を湾曲させて、冷陰極管15と前記支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す正面図である。FIG. 5 is a front view showing an arrangement example in which the cold cathode tube 15 is curved so that the distance between the cold cathode tube 15 and the support plate 14 is narrow at the center portion 17c and wide at both end portions 17b. 冷陰極管15と支持板14とをそれぞれ湾曲させて、冷陰極管15と前記支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す正面図である。FIG. 5 is a front view showing an arrangement example in which the cold cathode tube 15 and the support plate 14 are respectively curved so that the distance between the cold cathode tube 15 and the support plate 14 is narrow at the center portion 17c and wide at both end portions 17b. is there. 支持板14に孔14aを設けて、孔14aの開口率を、中央部17cで小さく、両端部17bで大きくした例を示す正面図である。It is a front view which shows the example which provided the hole 14a in the support plate 14, and made the aperture ratio of the hole 14a small in the center part 17c, and large in the both ends 17b. 支持板14に孔14aを設けて、孔14aの開口率を、中央部17cで小さく、両端部17bで大きくした例を示す平面図である。It is a top view which shows the example which provided the hole 14a in the support plate 14, and made the aperture ratio of the hole 14a small in the center part 17c, and large in the both ends 17b. 支持板14に厚みの変化を設けて、冷陰極管15と支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す正面図である。It is a front view showing an example of arrangement in which a change in thickness is provided on the support plate 14 such that the distance between the cold cathode fluorescent lamp 15 and the support plate 14 is narrow at the center portion 17c and wide at both end portions 17b. 支持板14に厚みの変化を設けて、冷陰極管15と支持板14との距離が中央部17cで狭く、両端部17bで広くなるようにした配置例を示す斜視図である。FIG. 6 is a perspective view showing an arrangement example in which the thickness of the support plate 14 is changed so that the distance between the cold cathode tube 15 and the support plate 14 is narrow at the center portion 17c and wide at both end portions 17b. 冷陰極管15の表面に導線14dをらせん状に巻いた例を示す正面図である。3 is a front view showing an example in which a conductive wire 14d is spirally wound around the surface of a cold cathode tube 15. FIG. 冷陰極管15の浮遊容量が冷陰極管15の中央部で大きく、冷陰極管15の両端部で小さくなるように、冷陰極管15の直径を、中央部で短く、冷陰極管15の両端部で長くなるようにした例を示す正面図である。The cold cathode tube 15 has a short diameter at the central portion so that the stray capacitance of the cold cathode tube 15 is large at the central portion of the cold cathode tube 15 and small at both end portions of the cold cathode tube 15. It is a front view which shows the example made to become long in a part. 高低2つの周波数の各インバータ回路20,30を用いて複数の冷陰極管15を点灯する均流点灯装置を示す回路図である。It is a circuit diagram showing a current equalizing lighting device that lights a plurality of cold-cathode tubes 15 using inverter circuits 20 and 30 of two frequencies, high and low. 主変圧器を用いないで低い周波数を得るインバータ回路30を採用した、図13の変形例を示す回路図である。It is a circuit diagram which shows the modification of FIG. 13 which employ | adopted the inverter circuit 30 which obtains a low frequency without using a main transformer. 各冷陰極管151〜15nに対してバラスト・キャパシタC1〜Cnを直列に接続した、図13の変形例を示す回路図である。It is a circuit diagram which shows the modification of FIG. 13 which connected the ballast capacitor C1-Cn in series with respect to each cold cathode tube 151-15n. 両主変圧器24,34の二次側巻き線から複数の冷陰極管15の両端に電源を供給する、図13の変形例を示す回路図である。FIG. 14 is a circuit diagram illustrating a modification of FIG. 13 in which power is supplied to both ends of a plurality of cold cathode tubes 15 from secondary windings of both main transformers 24 and 34. 高周波電源供給端25を、複数の冷陰極管151〜15nの一端に直接接続するとともに、遅相素子であるチョークコイルL1を通して冷陰極管151〜15nの他端に接続した回路図である。FIG. 6 is a circuit diagram in which a high-frequency power supply end 25 is directly connected to one end of a plurality of cold cathode tubes 151 to 15n and connected to the other end of the cold cathode tubes 151 to 15n through a choke coil L1 that is a slow phase element. 高周波電源供給端25(図17のa点)の電圧波形と、チョークコイルL1の出力端(図17のb点)の電圧波形とを対比して示すグラフである。18 is a graph showing a comparison between a voltage waveform at the high-frequency power supply end 25 (point a in FIG. 17) and a voltage waveform at the output end (point b in FIG. 17) of the choke coil L1. 高周波電源供給端25と前記複数の冷陰極管15の一端との間にチョークコイルL1を挿入し、高周波電源供給端25と前記複数の冷陰極管15の他端との間にチョークコイルL2を挿入した回路図である。A choke coil L1 is inserted between the high frequency power supply end 25 and one end of the plurality of cold cathode tubes 15, and a choke coil L2 is inserted between the high frequency power supply end 25 and the other ends of the plurality of cold cathode tubes 15. It is the inserted circuit diagram. 高周波電源供給端25を、複数の冷陰極管151〜15nの一端に直接接続するとともに、進相素子であるキャパシタCdを通して冷陰極管151〜15nの他端に接続した回路図である。7 is a circuit diagram in which a high-frequency power supply end 25 is directly connected to one end of a plurality of cold cathode tubes 151 to 15n and is connected to the other end of the cold cathode tubes 151 to 15n through a capacitor Cd that is a phase advance element. 高周波電源供給端25と前記複数の冷陰極管15の一端との間にキャパシタCd1を挿入し、高周波電源供給端25と前記複数の冷陰極管15の他端との間にキャパシタCd2を挿入した回路図である。A capacitor Cd1 is inserted between the high frequency power supply end 25 and one end of the plurality of cold cathode tubes 15, and a capacitor Cd2 is inserted between the high frequency power supply end 25 and the other ends of the plurality of cold cathode tubes 15. It is a circuit diagram. バラスト・キャパシタを利用した従来の放電管均流点灯装置の一例を示す回路図である。It is a circuit diagram which shows an example of the conventional discharge tube current equalizing lighting apparatus using a ballast capacitor. 各放電管の一端又は両端を支持する基板上にキャパシタを、当該基板と一体に形成した例を示す斜視図である。It is a perspective view which shows the example which formed the capacitor integrally with the said board | substrate on the board | substrate which supports the one end or both ends of each discharge tube.

符号の説明Explanation of symbols

10 液晶表示装置
11 液晶表示部
12 液晶パネル
13 均流点灯装置本体
14 支持板
15,151〜15n 冷陰極管
16 給電基板
20,30 インバータ回路
23,33,43 スイッチング回路
23a,33a,43a クロックパルス回路
24,34 主変圧器
25 高周波電源供給端
35a,35b,45a,45b 低周波電源供給端
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 11 Liquid crystal display part 12 Liquid crystal panel 13 Current equalizing lighting device main body 14 Support plate 15,151-15n Cold cathode tube 16 Power supply board | substrate 20,30 Inverter circuit 23,33,43 Switching circuit 23a, 33a, 43a Clock pulse Circuits 24 and 34 Main transformer 25 High frequency power supply terminals 35a, 35b, 45a and 45b Low frequency power supply terminals

Claims (9)

互いに並列に接続された複数の放電管を点灯駆動するための放電管均流点灯装置であって、
前記複数の放電管を支持し、前記複数の放電管との間に浮遊容量が形成されている支持部材と、既定周波数f1の高周波駆動電源を供給するインバータ回路とを備え、
前記高周波駆動電源の一相の出力端から供給される高周波電流は、前記複数の放電管の両端から、前記浮遊容量を介して、前記支持部材に到達し、前記高周波駆動電源の他相の出力端に還流することを特徴とする放電管均流点灯装置。
A discharge tube equalizing lighting device for lighting and driving a plurality of discharge tubes connected in parallel with each other,
A support member that supports the plurality of discharge tubes and in which stray capacitance is formed between the plurality of discharge tubes; and an inverter circuit that supplies a high-frequency drive power source having a predetermined frequency f1;
The high-frequency current supplied from the one-phase output end of the high-frequency drive power source reaches the support member from both ends of the plurality of discharge tubes via the stray capacitance, and the output of the other phase of the high-frequency drive power source A discharge tube equalizing lighting device characterized by recirculating to the end.
前記複数の放電管の両端に対して前記高周波駆動電源の一相の出力端が接続され、前記支持部材に対して前記高周波駆動電源の他相の出力端が接続されている請求項1記載の放電管均流点灯装置。   2. The output terminal of one phase of the high-frequency driving power source is connected to both ends of the plurality of discharge tubes, and the output terminal of the other phase of the high-frequency driving power source is connected to the support member. Discharge tube uniform current lighting device. 前記各放電管と前記支持部材との間に形成される単位長さあたりの浮遊容量は、放電管の長手方向に沿って不均等に分布している請求項1又は請求項2記載の放電管均流点灯装置。   The discharge tube according to claim 1 or 2, wherein stray capacitance per unit length formed between each of the discharge tubes and the support member is unevenly distributed along a longitudinal direction of the discharge tube. Uniform lighting device. 単位長さあたりの前記浮遊容量は、放電管の中央部で大きくなるように形成される請求項1から請求項3のいずれか1項に記載の放電管均流点灯装置。   4. The discharge tube current-equalizing lighting device according to claim 1, wherein the stray capacitance per unit length is formed so as to increase at a central portion of the discharge tube. 5. 前記インバータ回路(以下「第一のインバータ回路」という)に加えて、前記複数の放電管の一端に対して前記既定周波数f1より低い既定周波数f2(f2<f1)の低周波駆動電源の一相を供給し、前記複数の放電管の他端に対して前記低周波駆動電源の他相を供給する第二のインバータ回路をさらに備える請求項1から請求項4のいずれか1項に記載の放電管均流点灯装置。   In addition to the inverter circuit (hereinafter referred to as “first inverter circuit”), one phase of a low-frequency driving power source having a predetermined frequency f2 (f2 <f1) lower than the predetermined frequency f1 with respect to one end of the plurality of discharge tubes 5. The discharge according to claim 1, further comprising a second inverter circuit that supplies the other phase of the low-frequency drive power source to the other ends of the plurality of discharge tubes. Tube equality lighting device. 前記第一のインバータ回路の前記一相の出力端と前記複数の放電管の一端との間に接続される第一のキャパシタと、
前記第一のインバータ回路の前記一相の出力端と前記複数の放電管の他端との間に接続される第二のキャパシタとを含む請求項5記載の放電管均流点灯装置。
A first capacitor connected between the one-phase output end of the first inverter circuit and one end of the plurality of discharge tubes;
6. The discharge tube current equalizing apparatus according to claim 5, further comprising a second capacitor connected between the one-phase output end of the first inverter circuit and the other ends of the plurality of discharge tubes.
前記インバータ回路の前記一相の出力端と前記複数の放電管のいずれか一端との間に接続され、前記複数の放電管の前記一端に印加される電圧の移相をずらすための進相素子又は遅相素子を含む請求項1から請求項4のいずれか1項に記載の放電管均流点灯装置。   A phase advance element connected between the one-phase output end of the inverter circuit and one end of the plurality of discharge tubes, and for shifting a phase shift of a voltage applied to the one end of the plurality of discharge tubes Alternatively, the discharge tube equalizing lighting device according to any one of claims 1 to 4, comprising a slow phase element. 前記インバータ回路の前記一相の出力端と前記複数の放電管の一端との間に接続され、前記複数の放電管の前記一端に印加される電圧の移相をずらすための第一の進相素子又は遅相素子と、
前記インバータ回路の前記一相の出力端と前記複数の放電管の他端との間に接続され、前記複数の放電管の前記他端に印加される電圧の移相をずらすための第二の進相素子又は遅相素子とを含む請求項1から請求項4のいずれか1項に記載の放電管均流点灯装置。
A first phase advance is connected between the one-phase output end of the inverter circuit and one end of the plurality of discharge tubes, and shifts the phase of voltage applied to the one end of the plurality of discharge tubes. An element or a slow phase element;
A second phase shifter is connected between the one-phase output end of the inverter circuit and the other ends of the plurality of discharge tubes, and shifts the phase of voltage applied to the other ends of the plurality of discharge tubes. 5. The discharge tube current-carrying lighting device according to any one of claims 1 to 4, comprising a phase advance element or a phase advance element.
前記放電管は、蛍光灯又は放電管である請求項1ないし請求項8のいずれか1項に記載の放電管均流点灯装置。   The discharge tube equalizing lighting device according to any one of claims 1 to 8, wherein the discharge tube is a fluorescent lamp or a discharge tube.
JP2008073888A 2008-03-21 2008-03-21 Discharge tube uniform flow lighting device Withdrawn JP2009231000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073888A JP2009231000A (en) 2008-03-21 2008-03-21 Discharge tube uniform flow lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073888A JP2009231000A (en) 2008-03-21 2008-03-21 Discharge tube uniform flow lighting device

Publications (1)

Publication Number Publication Date
JP2009231000A true JP2009231000A (en) 2009-10-08

Family

ID=41246174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073888A Withdrawn JP2009231000A (en) 2008-03-21 2008-03-21 Discharge tube uniform flow lighting device

Country Status (1)

Country Link
JP (1) JP2009231000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026993A (en) * 2016-08-03 2018-02-15 株式会社三社電機製作所 Electric power supply for trial

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026993A (en) * 2016-08-03 2018-02-15 株式会社三社電機製作所 Electric power supply for trial
JP2018198530A (en) * 2016-08-03 2018-12-13 株式会社三社電機製作所 Power supply device for testing
JP2019004700A (en) * 2016-08-03 2019-01-10 株式会社三社電機製作所 Method for generating electric power supply for trial

Similar Documents

Publication Publication Date Title
JP2000029550A (en) Cold cathode fluorescent lamp energizing circuit
US7397198B2 (en) Fluorescent lamp driver and liquid crystal display apparatus
KR20030089299A (en) Back light assembly for external electrode fluorescent lamp, method for driving thereof, and liquid crystal display having the same
JP2005063970A (en) Method and device for driving lamp, backlight assembly provided with device, and liquid crystal display device
US8077140B2 (en) Liquid crystal display device
KR100541299B1 (en) Lighting device
JP4458166B2 (en) Discharge tube lighting circuit and electronic device
KR20040073533A (en) Circuit arrangement for operation of one or more lamps
KR20050015804A (en) Backlight assembly, and liquid crystal display having the same
JP2009231000A (en) Discharge tube uniform flow lighting device
US20080303449A1 (en) Cold cathode fluorescent lighting discharge tube device
JPH0896976A (en) Rare gas discharge lamp lighting circuit and lighting system
JP2010055878A (en) Discharge tube uniform-current lighting device
KR100602536B1 (en) Discharge lamp lighting apparatus and back light apparatus using the same
JP2009231001A (en) Discharge tube uniform flow lighting device
JP2009245837A (en) Discharge tube uniform-flow lighting method, inverter circuit, and discharge tube uniform-flow lighting device
KR100354520B1 (en) Driving method for the backlight employing the external electrode fluorescent lamps
JPWO2007055289A1 (en) Fluorescent lamp lighting device
JP2009245838A (en) Discharge tube uniform-flow lighting and driving device
JP2009170667A (en) Capacitance-adjusting power-feed substrate, and discharge tube current equalization lighting device using the same, and liquid crystal display
JP4333787B2 (en) Cold cathode discharge lamp lighting device
KR20050000639A (en) Power Supply And Liquid Crystal Display Using The Same
KR101463566B1 (en) Ramp parallel driving apparatus
JP2009170269A (en) Discharge tube equal-current lighting device and liquid crystal display
JP2009177975A (en) Inverter circuit and discharge tube lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110414