JP2009229426A - Sugar chain analysis - Google Patents

Sugar chain analysis Download PDF

Info

Publication number
JP2009229426A
JP2009229426A JP2008078758A JP2008078758A JP2009229426A JP 2009229426 A JP2009229426 A JP 2009229426A JP 2008078758 A JP2008078758 A JP 2008078758A JP 2008078758 A JP2008078758 A JP 2008078758A JP 2009229426 A JP2009229426 A JP 2009229426A
Authority
JP
Japan
Prior art keywords
sugar chain
sample
standard
sugar
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008078758A
Other languages
Japanese (ja)
Inventor
Hideyuki Shimaoka
秀行 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2008078758A priority Critical patent/JP2009229426A/en
Publication of JP2009229426A publication Critical patent/JP2009229426A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide means for quantitatively analyzing a sugar chain contained in a biological sample by using a mass analytical method represented by MALDI-TOF MS. <P>SOLUTION: A sugar chain analysis for analyzing a sample sugar chain, the sugar chain contained in the biological sample, by the mass analytical method includes the steps of: mixing a standard sugar chain, which is a predetermined amount of a known sugar chain, with the sample sugar chain; implementing mass spectrometry measurement of the mixture to obtain a mass spectrum; and comparing a signal strength of the sample sugar chain and that of the standard sugar chain to evaluate an amount of the sample sugar chain. In the sugar chain analysis, preferably, after a predetermined amount of the standard sugar chain is added to an unpurified sample containing the sample sugar chain, this is purified by sugar chain purification means to prepare a mixture of the sample chain sugar and the standard sugar chain, and then mass spectrometry measurement of the mixture is performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生体試料中に含まれる糖鎖の分析法に関する。   The present invention relates to a method for analyzing a sugar chain contained in a biological sample.

糖鎖とは、グルコース、ガラクトース、マンノース、フコース、キシロース、N-アセチルグルコサミン、N-アセチルガラクトサミン、シアル酸などの単糖およびこれらの誘導体がグリコシド結合によって鎖状に結合した分子の総称である。
糖鎖は非常に多様性に富んでおり、天然に存在する生物が有する様々な機能に関与する物質である。糖鎖は生体内でタンパク質や脂質などに結合した複合糖質として存在することが多く、生体内の重要な構成成分の一つである。生体内の糖鎖は細胞間情報伝達、タンパク質の機能や相互作用の調整などに深く関わっていることが明らかになりつつある。
例えば、糖鎖を有する生体高分子としては、細胞の安定化に寄与する植物細胞の細胞壁のプロテオグリカン、細胞の分化、増殖、接着、移動等に影響を与える糖脂質、及び細胞間相互作用や細胞認識に関与している糖タンパク質等が挙げられるが、これらの高分子の糖鎖が、互いに機能を代行、補助、増幅、調節、あるいは阻害しあいながら高度で精密な生体反応を制御する機構が次第に明らかにされつつある。さらに、このような糖鎖と細胞の分化増殖、細胞接着、免疫、及び細胞の癌化との関係が明確にされれば、この糖鎖工学と、医学、細胞工学、あるいは臓器工学とを密接に関連させて新たな展開を図ることが期待できる(非特許文献1)。
The sugar chain is a general term for molecules in which monosaccharides such as glucose, galactose, mannose, fucose, xylose, N-acetylglucosamine, N-acetylgalactosamine, sialic acid, and derivatives thereof are linked in a chain form by glycosidic bonds.
Sugar chains are very diverse and are substances that are involved in various functions of naturally occurring organisms. Sugar chains often exist as complex carbohydrates bound to proteins, lipids, and the like in vivo, and are one of the important components in vivo. It is becoming clear that sugar chains in living organisms are deeply involved in cell-to-cell information transmission, protein function and coordination of interactions.
For example, biopolymers having sugar chains include plant cell wall proteoglycans that contribute to cell stabilization, glycolipids that affect cell differentiation, proliferation, adhesion, migration, etc., and cell-cell interactions and cells. Glycoproteins involved in recognition can be mentioned, but the mechanism by which these high-molecular sugar chains control advanced and precise biological reactions while acting, assisting, amplifying, regulating, or inhibiting each other's functions gradually. It is being revealed. Furthermore, if the relationship between such sugar chains and cell differentiation / proliferation, cell adhesion, immunity, and cell carcinogenesis is clarified, this sugar chain engineering and medicine, cell engineering, or organ engineering are closely related. It can be expected that a new development will be made in relation to (Non-patent Document 1).

病気を早期発見して生活の質(QOL)を高く保つためには、病気の発症の予防や推移を診断できるバイオマーカーが必要である。糖鎖生合成にかかわる糖転移酵素の遺伝子破壊マウスの解析から、糖鎖はさまざまな組織・器官の機能維持に必須であることが明らかにされている(非特許文献2,3)。また、糖鎖修飾に異常がみられるとさまざまな疾病が引き起こされることも知られている(非特許文献4)。糖鎖の構造は細胞の癌化やさまざまな疾病によって著しく変化するので、疾病の推移を調べるためのバイオマーカーとしての利用が期待されている。   In order to detect a disease early and to maintain a high quality of life (QOL), a biomarker that can prevent the development of the disease and diagnose the transition is necessary. Analysis of glycosyltransferase-disrupted mice involved in sugar chain biosynthesis reveals that sugar chains are essential for maintaining the functions of various tissues and organs (Non-patent Documents 2 and 3). It is also known that various diseases are caused when an abnormality is observed in sugar chain modification (Non-patent Document 4). Since the structure of the sugar chain changes markedly depending on the canceration of cells and various diseases, it is expected to be used as a biomarker for examining the transition of diseases.

MALDI-TOF MSは複雑なサンプル調製が不要で、簡便迅速に測定が行えることから、バイオマーカー探索の強力なツールの一つと考えられている。しかしながら、MALDI-TOF MSの特性として、HPLCなどと比較してピーク強度の定量性が乏しいため、定量的評価が必要な場合は内部標準法が用いられる。すなわち、検出対象物質に既知量の標準物質を添加し、この混合物の質量分析を行い、ピーク強度の相対値から検出対照物質の量を推測するという方法である。糖鎖に関しては、内部標準を添加して定量的解析を行う方法が確立されておらず、解決する手段が求められていた。
糖鎖生物学入門 化学同人 2005年11月1日発行 第1版 Ioffe E., Stanley P., Proc. Natl. Acad. Sci., 91, pp.728-732 (1994) Metzler M., Gertz A., Sarker M., Schachter H., Schrader J.W., Marth J.D., EMBO J., 13, pp.2056-2065 (1994) Powell L.D., Paneerselvam K., Vij R., Diaz S., Manzi A., Buist N., Freeze H., Varki A., J. Clin. Invest., 94, pp.1901-1909 (1994)
MALDI-TOF MS is considered to be one of the powerful tools for searching biomarkers because it does not require complicated sample preparation and can be measured easily and quickly. However, as a characteristic of MALDI-TOF MS, since the quantitative intensity of peak intensity is poor compared with HPLC or the like, the internal standard method is used when quantitative evaluation is necessary. That is, this is a method in which a known amount of a standard substance is added to the detection target substance, the mixture is subjected to mass spectrometry, and the amount of the detection control substance is estimated from the relative value of the peak intensity. Regarding sugar chains, a method for quantitative analysis by adding an internal standard has not been established, and a means to solve the problem has been demanded.
Introduction to Glycobiology Chemistry Doujin published 1 November 2005 1st edition Ioffe E., Stanley P., Proc. Natl. Acad. Sci., 91, pp. 728-732 (1994) Metzler M., Gertz A., Sarker M., Schachter H., Schrader JW, Marth JD, EMBO J., 13, pp. 2056-2065 (1994) Powell LD, Paneerselvam K., Vij R., Diaz S., Manzi A., Buist N., Freeze H., Varki A., J. Clin. Invest., 94, pp. 1901-1909 (1994)

本発明の目的は、生体試料中に含まれる糖鎖を、MALDI-TOF MSに代表される質量分析法を用いて定量的に分析する手段を提供することにある。   An object of the present invention is to provide a means for quantitatively analyzing a sugar chain contained in a biological sample using mass spectrometry represented by MALDI-TOF MS.

本発明は、
(1)生体試料に含まれる糖鎖である試料糖鎖を質量分析法により分析する方法であって、所定量の既知糖鎖である標準糖鎖を試料糖鎖と混合し、該混合物の質量分析測定を行ってマススペクトルを得たのち、前記試料糖鎖のシグナル強度と前記標準糖鎖のシグナル強度を比較することにより、前記試料糖鎖の量を評価することを特徴とする糖鎖分析法、
(2)前記試料糖鎖を含む未精製のサンプルに所定量の標準糖鎖を添加したのち、これを糖鎖精製手段で精製することにより前記試料糖鎖と前記標準糖鎖の混合物を調製し、該混合物の質量分析測定を行う(1)記載の糖鎖分析法、
(3)前記糖鎖精製手段が、糖鎖を選択的に捕捉する固相担体を用いた糖鎖抽出である(2)記載の糖鎖分析法、
(4)前記糖鎖精製手段が、糖鎖を選択的に捕捉する固相担体による糖鎖の担持と、それに引き続いて行う糖鎖のラベル化である(2)記載の糖鎖分析法、
(5)固相担体が(式1)で表される構造を有する(3)又は(4)記載の糖鎖分析法、

Figure 2009229426
(6)前記糖鎖のラベル化が、糖鎖を担持した固相担体に対してアミノオキシ基含有化合物を含む溶液を作用させることによって行われる(4)または(5)記載の糖鎖分析法、
(7)前記アミノオキシ基含有化合物が下記から選ばれた物質またはその塩である(6)記載の糖鎖分析法、
O-benzylhydroxylamine;O-phenylhydroxylamine; O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine; O-(4-nitrobenzyl)hydroxylamine; 2-aminooxypyridine; 2-aminooxymethylpyridine; 4-[(aminooxyacetyl)amino]benzoic acid methyl ester; 4-[(aminooxyacetyl)amino]benzoic acid ethyl ester; 4-[(aminooxyacetyl)amino]benzoic acid n-butyl ester.
(8)前記アミノオキシ基含有化合物がアルギニン残基、トリプトファン残基、フェニルアラニン残基、チロシン残基、システイン残基およびこれら誘導体の少なくとも一つからなる部分を含む(6)記載の糖鎖分析法、
(9)前記アミノオキシ基を有する化合物が(式2)で表される構造を有する(6)記載の糖鎖分析法、
Figure 2009229426
(10)前記標準糖鎖が、2種類以上の糖鎖の混合物である(1)〜(9)いずれか記載の糖鎖分析法、
(11)前記標準糖鎖が、同一の単糖ユニットの繰り返し構造をもち、重合度の異なるオリゴ糖の混合物である(10)記載の糖鎖分析法、
(12)前記標準糖鎖が、グルコースユニットの繰り返し構造をもち、重合度の異なるグルコースオリゴマーの混合物である(10)記載の糖鎖分析法、
である。 The present invention
(1) A method for analyzing a sample sugar chain, which is a sugar chain contained in a biological sample, by mass spectrometry, wherein a predetermined amount of a standard sugar chain, which is a known sugar chain, is mixed with a sample sugar chain, and the mass of the mixture Analyzing and obtaining a mass spectrum, and comparing the sample sugar chain signal intensity with the standard sugar chain signal intensity to evaluate the amount of the sample sugar chain Law,
(2) A mixture of the sample sugar chain and the standard sugar chain is prepared by adding a predetermined amount of a standard sugar chain to an unpurified sample containing the sample sugar chain and then purifying it with a sugar chain purification means. The sugar chain analysis method according to (1), wherein the mixture is subjected to mass spectrometry measurement,
(3) The sugar chain analysis method according to (2), wherein the sugar chain purification means is sugar chain extraction using a solid phase carrier that selectively captures sugar chains,
(4) The glycan analysis method according to (2), wherein the glycan purification means is glycan support by a solid phase carrier that selectively captures glycans and subsequent glycan labeling,
(5) The sugar chain analysis method according to (3) or (4), wherein the solid phase carrier has a structure represented by (formula 1),
Figure 2009229426
(6) The method for analyzing a sugar chain according to (4) or (5), wherein the labeling of the sugar chain is carried out by allowing a solution containing an aminooxy group-containing compound to act on a solid phase carrier carrying a sugar chain. ,
(7) The sugar chain analysis method according to (6), wherein the aminooxy group-containing compound is a substance selected from the following or a salt thereof:
O-benzylhydroxylamine; O-phenylhydroxylamine; O- (2,3,4,5,6-pentafluorobenzyl) hydroxylamine; O- (4-nitrobenzyl) hydroxylamine; 2-aminooxypyridine; 2-aminooxymethylpyridine; 4-[(aminooxyacetyl) amino] benzoic acid methyl ester; 4-[(aminooxyacetyl) amino] benzoic acid ethyl ester; 4-[(aminooxyacetyl) amino] benzoic acid n-butyl ester.
(8) The method for analyzing a sugar chain according to (6), wherein the aminooxy group-containing compound comprises a moiety comprising at least one of an arginine residue, a tryptophan residue, a phenylalanine residue, a tyrosine residue, a cysteine residue, and a derivative thereof. ,
(9) The sugar chain analysis method according to (6), wherein the compound having an aminooxy group has a structure represented by (Formula 2),
Figure 2009229426
(10) The sugar chain analysis method according to any one of (1) to (9), wherein the standard sugar chain is a mixture of two or more kinds of sugar chains,
(11) The sugar chain analysis method according to (10), wherein the standard sugar chain is a mixture of oligosaccharides having a repeating structure of the same monosaccharide unit and different degrees of polymerization,
(12) The sugar chain analysis method according to (10), wherein the standard sugar chain is a mixture of glucose oligomers having a glucose unit repeating structure and different degrees of polymerization.
It is.

本発明の方法を用いると、MALDI-TOF MSを用いて、生体試料中に含まれる糖鎖を定量的に解析することが可能となる。   When the method of the present invention is used, it is possible to quantitatively analyze sugar chains contained in a biological sample using MALDI-TOF MS.

本発明は試料中の糖タンパク質の糖鎖の分析方法であって、好ましくは、(a)生体物質からの糖鎖の切り出し工程、(b)標準糖鎖の添加工程、(c)固相担体を用いた糖鎖精製およびラベル化工程、(d)MALDI-TOF MSを用いた糖鎖分析工程、(e)データ解析工程、を含む糖タンパク質糖鎖の分析方法である。   The present invention is a method for analyzing a sugar chain of a glycoprotein in a sample, preferably (a) a step of cutting out a sugar chain from a biological material, (b) a step of adding a standard sugar chain, (c) a solid phase carrier This is a glycoprotein sugar chain analysis method comprising: a sugar chain purification and labeling step using (d), (d) a sugar chain analysis step using MALDI-TOF MS, and (e) a data analysis step.

(測定に供する試料)
本発明において使用する糖鎖を含む試料は、例えば全血、血清、血漿、尿、唾液、細胞、組織、ウイルス、植物組織などの生体試料を用いることができる。また、精製された、あるいは未精製の糖タンパク質を用いることができる。試料は脱脂、脱塩、タンパク質分画、熱変性などの方法により前処理されていてもよい。
(Sample for measurement)
As the sample containing a sugar chain used in the present invention, biological samples such as whole blood, serum, plasma, urine, saliva, cells, tissues, viruses, plant tissues, and the like can be used. In addition, purified or unpurified glycoprotein can be used. The sample may be pretreated by a method such as degreasing, desalting, protein fractionation, and heat denaturation.

本発明において、生体試料を糖鎖遊離手段で処理し、糖タンパク質から糖鎖を遊離させる工程について説明する。
(糖鎖を含む試料の調製)
糖鎖遊離手段を用いて上記生体試料に含まれる糖タンパク質から糖鎖を遊離させる。糖鎖を遊離させる手段としては、N-グリコシダーゼあるいはO-グリコシダーゼを用いたグリコシダーゼ処理、ヒドラジン分解、アルカリ処理によるβ脱離などの方法を用いることができる。N型糖鎖の分析を行う場合は、N-グリコシダーゼを用いる方法が好ましい。グリコシダーゼ処理に先立って、トリプシンやキモトリプシンなどを用いてプロテアーゼ処理を行ってもよい。
In the present invention, a process of treating a biological sample with a sugar chain releasing means to release a sugar chain from a glycoprotein will be described.
(Preparation of samples containing sugar chains)
The sugar chain is released from the glycoprotein contained in the biological sample using a sugar chain releasing means. As means for releasing the sugar chain, methods such as glycosidase treatment using N-glycosidase or O-glycosidase, hydrazine degradation, and β elimination by alkali treatment can be used. When N-type sugar chains are analyzed, a method using N-glycosidase is preferable. Prior to glycosidase treatment, protease treatment may be performed using trypsin, chymotrypsin, or the like.

(標準糖鎖の添加)
上記の方法で調製した糖鎖含有試料に、標準糖鎖を添加する。標準糖鎖は分子量によらずどのようなものでも用いることができるが、検出対象である試料糖鎖と分子量が近接している方が好ましい。例えば試料糖鎖がN型糖鎖の場合、通常その分子量は数100〜5000程度であることから、標準糖鎖も上記範囲の分子量をもつことが好ましい。マススペクトル上で標準糖鎖と試料糖鎖の区別を容易にするため、標準糖鎖と試料糖鎖の分子量は5以上異なることが好ましいが、特に限定されるものではない。標準糖鎖の添加量は、試料中の試料糖鎖の量に応じて調整されることが好ましく、マススペクトルにおいてピーク強度が試料糖鎖の10分の1から10倍の範囲内であることが好ましい。試料中の試料糖鎖の量が不明な場合は、標準糖鎖の量を段階的に変化させて予備実験を行い、標準糖鎖の添加量を決定することが好ましい。
(Addition of standard sugar chain)
A standard sugar chain is added to the sugar chain-containing sample prepared by the above method. Although any standard sugar chain can be used regardless of the molecular weight, it is preferable that the sample sugar chain to be detected is close in molecular weight. For example, when the sample sugar chain is an N-type sugar chain, the molecular weight is usually about several hundreds to 5,000, so the standard sugar chain preferably has a molecular weight in the above range. In order to easily distinguish the standard sugar chain from the sample sugar chain on the mass spectrum, the molecular weight of the standard sugar chain and the sample sugar chain is preferably different by 5 or more, but is not particularly limited. The addition amount of the standard sugar chain is preferably adjusted according to the amount of the sample sugar chain in the sample, and the peak intensity in the mass spectrum is in the range of 1/10 to 10 times that of the sample sugar chain. preferable. When the amount of the sample sugar chain in the sample is unknown, it is preferable to carry out a preliminary experiment by changing the amount of the standard sugar chain stepwise to determine the addition amount of the standard sugar chain.

標準糖鎖としては、還元末端のアルデヒド基がフリーであればよく、その他の構造は特に限定されない。
添加する標準糖鎖は、単一の糖鎖であってもよく、2種類以上の糖鎖の混合物であってもよい。2種類以上の標準糖鎖を添加した場合、データ解析のさいに試料糖鎖のピークと最も近い標準糖鎖ピークを選択して比較することにより、より正確な定量が可能となる。標準糖鎖として、同一の単糖ユニットの繰り返し構造をもち、重合度の異なるオリゴ糖の混合物を用いた場合、マススペクトル上で標準糖鎖のピークがラダー状に検出されるため、データ解析作業が容易になる。
The standard sugar chain is not particularly limited as long as the aldehyde group at the reducing end is free.
The standard sugar chain to be added may be a single sugar chain or a mixture of two or more kinds of sugar chains. When two or more types of standard sugar chains are added, more accurate quantification is possible by selecting and comparing the standard sugar chain peak closest to the sample sugar chain peak during data analysis. When using a mixture of oligosaccharides with the same monosaccharide unit repeat structure and different degrees of polymerization as standard sugar chains, the peak of the standard sugar chain is detected in a ladder shape on the mass spectrum, so data analysis work Becomes easier.

(固相担体を用いた糖鎖精製およびラベル化)
次いで、糖鎖を含む溶液を糖鎖と特異的に結合する捕捉担体に接触させて捕捉担体上に糖鎖を捕捉する。
糖鎖は生体内物質のなかで唯一、アルデヒド基をもつ物質である。すなわち、糖鎖は水溶液などの状態で環状のヘミアセタール型と、非環状型のアルデヒド型とが平衡で存在する。タンパク質や核酸,脂質など糖鎖以外の生体内物質にはアルデヒド基が含まれていない。このことから、アルデヒド基と特異的に反応して安定な結合を形成する官能基を有する捕捉担体を利用すれば、糖鎖のみを選択的に捕捉することが可能である。アルデヒド基と特異的に反応する官能基としては、たとえばオキシルアミノ基、ヒドラジド基、アミノ基、セミチオカルバジド基ならびにそれらの誘導体を好ましく、ヒドラジド基あるいはオキシルアミノ基がより好ましい。オキシルアミノ基とアルデヒド基との反応によって生じるオキシム結合およびヒドラジド基とアルデヒド基との反応によって生じるヒドラゾン結合は、酸処理などによって容易に切断されるため、糖鎖を捕捉したのち、糖鎖を担体から簡単に切り離すことができる。一般的に,生理活性物質の捕捉・担持にはアミノ基が多用されているが、アミノ基とアルデヒド基の反応によって生じる結合(シッフ塩基)は結合力が弱いため、還元剤などを用いた二次処理が必要であることから、アミノ基は糖鎖の捕捉には好ましくない。
(Glycan purification and labeling using solid support)
Next, the solution containing the sugar chain is brought into contact with a capture carrier that specifically binds to the sugar chain to capture the sugar chain on the capture carrier.
The sugar chain is the only substance in the living body that has an aldehyde group. That is, in the sugar chain, a cyclic hemiacetal type and an acyclic aldehyde type exist in an equilibrium state in an aqueous solution or the like. In vivo substances other than sugar chains such as proteins, nucleic acids, and lipids do not contain aldehyde groups. From this, it is possible to selectively capture only sugar chains by using a capture carrier having a functional group that reacts specifically with an aldehyde group to form a stable bond. As the functional group that specifically reacts with the aldehyde group, for example, an oxylamino group, a hydrazide group, an amino group, a semithiocarbazide group and derivatives thereof are preferable, and a hydrazide group or an oxylamino group is more preferable. Oxime bonds generated by the reaction of oxylamino groups and aldehyde groups and hydrazone bonds generated by the reaction of hydrazide groups and aldehyde groups are easily cleaved by acid treatment, etc. Can be easily separated from In general, amino groups are frequently used to capture and support physiologically active substances, but bonds (Schiff bases) produced by the reaction between amino groups and aldehyde groups are weak in binding force. An amino group is not preferable for capturing a sugar chain because a subsequent treatment is required.

糖鎖を捕捉するための担体としては、ポリマー粒子を用いることが好ましい。ポリマー粒子は、少なくとも表面の一部に糖鎖のアルデヒド基と特異的に反応する官能基を有した固体あるいはゲル粒子であることが好ましい。ポリマー粒子が固体粒子あるいはゲル粒子であれば、ポリマー粒子に糖鎖を捕捉させたのち、遠心分離やろ過などの手段によって容易に回収することができる。また,ポリマー粒子をカラムに充填して用いることも可能である。カラムに充填して用いる方法は、特に連続操作化の観点から重要となる。反応容器としてフィルタープレート(例えばMillipore社製 MultiScreen Solvinert Filter Plate)を用いることにより、複数のサンプルを同時に処理することが可能となり、例えばゲルろ過に代表されるカラム操作による従来の精製手段と比較して、糖鎖精製のスループットが大幅に向上される。   As a carrier for capturing sugar chains, it is preferable to use polymer particles. The polymer particles are preferably solid or gel particles having a functional group that specifically reacts with an aldehyde group of a sugar chain on at least a part of the surface. If the polymer particles are solid particles or gel particles, sugar chains can be captured by the polymer particles and then easily collected by means such as centrifugation or filtration. It is also possible to use polymer particles packed in a column. The method of filling the column and using it is particularly important from the viewpoint of continuous operation. By using a filter plate (for example, MultiScreen Solvinert Filter Plate manufactured by Millipore) as a reaction vessel, it becomes possible to process a plurality of samples at the same time, for example, compared with conventional purification means by column operation represented by gel filtration. The throughput of sugar chain purification is greatly improved.

ポリマー粒子の形状は特に限定しないが,球状またはそれに類する形状が好ましい。ポリマー粒子が球状の場合、平均粒径は好ましくは0.05〜1000μmであり、より好ましくは0.05〜200μmであり、さらに好ましくは0.1〜200μmであり、最も好ましくは0.1〜100μmである。平均粒径が下限値未満では,ポリマー粒子をカラムに充填して用いる際,通液性が悪くなるために大きな圧力を加える必要がある。また、ポリマー粒子を遠心分離やろ過で回収することも困難となる。平均粒径が上限値を超えると、ポリマー粒子と試料溶液の接触面積が少なくなり、糖鎖捕捉の効率が低下する。   The shape of the polymer particles is not particularly limited, but a spherical shape or a similar shape is preferable. When the polymer particles are spherical, the average particle size is preferably 0.05 to 1000 μm, more preferably 0.05 to 200 μm, still more preferably 0.1 to 200 μm, most preferably 0.1 to 0.1 μm. 100 μm. If the average particle size is less than the lower limit, when the polymer particles are packed in a column and used, liquid permeability becomes poor, and it is necessary to apply a large pressure. Moreover, it becomes difficult to collect the polymer particles by centrifugation or filtration. When the average particle size exceeds the upper limit, the contact area between the polymer particles and the sample solution decreases, and the sugar chain capture efficiency decreases.

糖鎖を特異的に捕捉するポリマー粒子によって糖鎖を捕捉する際の反応系のpHは、好ましくは2〜9、より好ましくは2〜7であり、さらに好ましくは2〜6である。pH調整のためには、各種緩衝液を用いることができる。糖鎖捕捉時の温度は,好ましくは4〜90℃,より好ましくは4〜70℃、さらに好ましくは30〜80℃であり,最も好ましくは40〜80℃である。反応時間は適宜設定することができる。ポリマー粒子をカラムに充填して試料溶液を通過させてもよい。   The pH of the reaction system when capturing sugar chains by polymer particles that specifically capture sugar chains is preferably 2-9, more preferably 2-7, and even more preferably 2-6. Various buffers can be used for pH adjustment. The temperature at the time of sugar chain capture is preferably 4 to 90 ° C, more preferably 4 to 70 ° C, still more preferably 30 to 80 ° C, and most preferably 40 to 80 ° C. The reaction time can be appropriately set. The sample solution may be passed through a column filled with polymer particles.

ポリマー粒子を用いた場合、担体表面には糖鎖以外の莢雑物が非特異的に吸着しているため、これらを洗浄除去する必要がある。洗浄液としては、水、緩衝液、界面活性剤を含む水または緩衝液、有機溶剤などを適宜組み合わせて用いることが好ましい。特に好ましい形態は、界面活性剤を含む水または緩衝液で十分に洗浄したのち、有機溶剤で洗浄し、最後に水で洗浄する方法である。これらの洗浄により、非特異的吸着物がポリマー粒子表面から除去される。   When polymer particles are used, contaminants other than sugar chains are adsorbed non-specifically on the surface of the carrier, so these need to be removed by washing. As the cleaning liquid, it is preferable to use a combination of water, a buffer solution, water containing a surfactant or a buffer solution, an organic solvent, or the like as appropriate. A particularly preferred form is a method of thoroughly washing with water or a buffer containing a surfactant, then washing with an organic solvent, and finally washing with water. These washings remove nonspecific adsorbates from the polymer particle surface.

次いで捕捉担体であるポリマー粒子に結合した糖鎖を再遊離し、精製された糖鎖試料を得る。
ポリマー粒子に結合した糖鎖を別の化合物(以下化合物Aと称す)に置換する工程に関して説明する。化合物Aはラベル化試薬であることが好ましい。糖鎖が結合しているポリマー粒子に対して化合物Aを過剰量加えることで置換が成される。すなわち、糖鎖はポリマー粒子から切り離され、それと同時に糖鎖に化合物Aが付加する(糖鎖はAで「ラベル化」される)。過剰に加える化合物Aの量は、好ましくはポリマー粒子が有する糖鎖と特異的に反応する官能基量の1.5倍量以上、より好ましくは3倍量以上、さらに好ましくは5倍量以上であり、最も好ましくは10倍量以上である。反応系のpHは、好ましくは2〜9、より好ましくは2〜7であり、さらに好ましくは2〜6である。pH調整のためには、各種緩衝液を用いることができる。反応系の温度は,好ましくは4〜90℃,より好ましくは4〜70℃、さらに好ましくは30〜80℃であり,最も好ましくは40〜80℃である。化合物Aとしては、アミノオキシ基またはヒドラジド基を有する化合物が好ましく、最も好ましい化合物はN-aminooxyacetyl-tryptophanyl(arginine methyl ester)、(式2)の化合物である。
Next, the sugar chain bound to the polymer particle as the capture carrier is re-released to obtain a purified sugar chain sample.
The step of substituting the sugar chain bonded to the polymer particle with another compound (hereinafter referred to as Compound A) will be described. Compound A is preferably a labeling reagent. Substitution is achieved by adding an excessive amount of Compound A to polymer particles to which sugar chains are bound. That is, the sugar chain is detached from the polymer particle, and at the same time, compound A is added to the sugar chain (the sugar chain is “labeled” with A). The amount of the compound A added in excess is preferably 1.5 times or more, more preferably 3 times or more, more preferably 5 times or more of the amount of the functional group specifically reacting with the sugar chain of the polymer particles. Yes, most preferably 10 times or more. The pH of the reaction system is preferably 2-9, more preferably 2-7, and even more preferably 2-6. Various buffers can be used for pH adjustment. The temperature of the reaction system is preferably 4 to 90 ° C, more preferably 4 to 70 ° C, still more preferably 30 to 80 ° C, and most preferably 40 to 80 ° C. The compound A is preferably a compound having an aminooxy group or a hydrazide group, and the most preferable compound is N-aminooxyacetyl-tryptophanyl (arginine methyl ester), a compound of (Formula 2).

(MALDI-TOF MSを用いた糖鎖分析)
得られたラベル化糖鎖は、MALDI-TOF MSに代表される質量分析法で分析することができる。特に糖鎖がN-aminooxyacetyl-tryptophanyl(arginine methyl ester)でラベル化されている場合、MALDI-TOF MSを用いて高感度分析を行うことができる。
(Sugar chain analysis using MALDI-TOF MS)
The obtained labeled sugar chain can be analyzed by mass spectrometry represented by MALDI-TOF MS. In particular, when the sugar chain is labeled with N-aminooxyacetyl-tryptophanyl (arginine methyl ester), high-sensitivity analysis can be performed using MALDI-TOF MS.

(データ解析)
MALDI-TOF MS測定により得られたマススペクトルを解析ソフト等を用いて解析する。m/z値を読み取ることにより試料糖鎖と標準糖鎖のピークを区別し、それぞれのピーク強度(ピーク高さ、ピーク面積など任意の指標)を求める。着目する試料糖鎖のピーク強度を、標準糖鎖のピーク強度で除することにより、試料糖鎖の相対ピーク強度を算出する。標準糖鎖が2種類以上の糖鎖の混合物である場合、試料糖鎖のm/z値に最も近い標準糖鎖のピークを用いて相対ピーク強度を算出することが好ましいが、この限りではない。
このようにして算出した相対ピーク強度は、別個に測定したデータ間でも直接比較することが可能であることから、複数の試料中に含まれる特定の糖鎖の量を比較することができる。例えば疾患患者から採取した試料と、健常人から採取した試料を上記方法で処理、解析することにより、疾患患者において特異的に発現している糖鎖を見出すことができる。
(Data analysis)
Analyze the mass spectrum obtained by MALDI-TOF MS measurement using analysis software. By reading the m / z value, the peaks of the sample sugar chain and the standard sugar chain are distinguished, and the respective peak intensities (arbitrary indices such as peak height and peak area) are obtained. The relative peak intensity of the sample sugar chain is calculated by dividing the peak intensity of the sample sugar chain of interest by the peak intensity of the standard sugar chain. When the standard sugar chain is a mixture of two or more kinds of sugar chains, it is preferable to calculate the relative peak intensity using the peak of the standard sugar chain closest to the m / z value of the sample sugar chain, but this is not restrictive. .
Since the relative peak intensities calculated in this way can be directly compared between data measured separately, the amounts of specific sugar chains contained in a plurality of samples can be compared. For example, by processing and analyzing a sample collected from a diseased patient and a sample collected from a healthy person by the above method, a sugar chain specifically expressed in the diseased patient can be found.

以下の実験例にて、本発明を具体的に説明するが、本発明はこれら実験例に限定されることはない。
市販のヒト血清(Gemini Bio-Products社製Human serum pool)を試料として用いた。血清100μLをチューブに取り、純水165μL、1M重炭酸アンモニウム水溶液25μL、120mMジチオスレイトール溶液25μLを順次加えたのち、60℃で30分インキュベートした。溶液を室温まで冷却したのち、123mMヨードアセトアミド溶液50μLを加え、遮光して室温で1時間静置した。トリプシン2000unitを加え、37℃で1時間静置した。80℃で15分間処理してトリプシンを失活させたのち、N-glycosidase F(Roche社製)10unitを添加し、37℃で16時間インキュベートすることで糖鎖を遊離させ、試料糖鎖溶液を得た。
The present invention will be specifically described in the following experimental examples, but the present invention is not limited to these experimental examples.
Commercially available human serum (Human serum pool manufactured by Gemini Bio-Products) was used as a sample. 100 μL of serum was placed in a tube, 165 μL of pure water, 25 μL of 1M ammonium bicarbonate aqueous solution, and 25 μL of 120 mM dithiothreitol solution were added in order, and then incubated at 60 ° C. for 30 minutes. After cooling the solution to room temperature, 50 μL of 123 mM iodoacetamide solution was added, and the mixture was allowed to stand at room temperature for 1 hour while being protected from light. Trypsin 2000 unit was added and allowed to stand at 37 ° C. for 1 hour. After inactivating trypsin by treating at 80 ° C. for 15 minutes, 10 units of N-glycosidase F (Roche) was added, and the sugar chain was released by incubating at 37 ° C. for 16 hours. Obtained.

(内部標準糖鎖の添加)
サンプル1: 市販のグルコースオリゴマー(重合度1−20)(生化学工業(株)製)を標準糖鎖として用いた。グルコースオリゴマーを10mg/mLの濃度で純水に溶解し、上記で調製した試料糖鎖溶液95μLに対し、5μLの割合で添加した。
サンプル2: 上記で調製した試料糖鎖溶液をそのまま用いた。
サンプル3: グルコースオリゴマー10mg/mL溶液をそのまま用いた。
(Addition of internal standard sugar chain)
Sample 1: A commercially available glucose oligomer (degree of polymerization 1-20) (manufactured by Seikagaku Corporation) was used as a standard sugar chain. Glucose oligomer was dissolved in pure water at a concentration of 10 mg / mL, and added at a rate of 5 μL to 95 μL of the sample sugar chain solution prepared above.
Sample 2: The sample sugar chain solution prepared above was used as it was.
Sample 3: A glucose oligomer 10 mg / mL solution was used as it was.

(ポリマー粒子への糖鎖担持)
上記、サンプル1〜3をそれぞれ20μL、(式1)の構造を有するヒドラジド基含有ポリマー粒子(住友ベークライト株式会社製、BS-X4104S)5mgに添加し、2%酢酸を含むアセトニトリル180μLを加えたのち、80℃で1時間加熱し、乾固させた。2Mグアニジン塩酸塩溶液、水、メタノール、1%トリエチルアミン溶液でポリマー粒子を洗浄後、10%無水酢酸/メタノール溶液を添加し、室温で30分間反応させヒドラジド基をキャッピングした。キャッピング反応後、メタノール、10mM塩酸水溶液、水、1,4−ジオキサンでポリマー粒子を洗浄した。100mM の1−メチル−3−p−トリルトリアゼン(MTT)(東京化成 No.M0641)を50μL加え、60℃で1時間反応させ、シアル酸残基のカルボン酸をメチルエステル化した。反応後、メタノール、水、1,4−ジオキサンでポリマー粒子を洗浄した。
(Suspension of sugar chains on polymer particles)
Samples 1 to 3 above were added to 20 μL each, 5 mg of hydrazide group-containing polymer particles (BS-X4104S, manufactured by Sumitomo Bakelite Co., Ltd.) having the structure of (Formula 1), and then 180 μL of acetonitrile containing 2% acetic acid was added. And heated at 80 ° C. for 1 hour to dryness. The polymer particles were washed with 2M guanidine hydrochloride solution, water, methanol, and 1% triethylamine solution, and then 10% acetic anhydride / methanol solution was added and reacted at room temperature for 30 minutes to cap the hydrazide group. After the capping reaction, the polymer particles were washed with methanol, 10 mM hydrochloric acid aqueous solution, water, and 1,4-dioxane. 50 μL of 100 mM 1-methyl-3-p-tolyltriazene (MTT) (Tokyo Kasei No. M0641) was added and reacted at 60 ° C. for 1 hour to methylate the carboxylic acid of the sialic acid residue. After the reaction, the polymer particles were washed with methanol, water and 1,4-dioxane.

(ポリマー粒子からの糖鎖再遊離/ラベル化)
(式2)の構造式で表されるN-aminooxyacetyl-tryptophanyl(arginine methyl ester) (aoWRと略す)を純水に溶解し、20mM溶液を調製した。上記で調製した糖鎖担持ポリマー粒子に、aoWR溶液20μLおよび2%酢酸を含むアセトニトリルを180μLを加えたのち、80℃で1時間加熱し、乾固させた。乾固したポリマー粒子に純水50μLを加えてリンスし、上清を回収した。
(Re-release / labeling of sugar chains from polymer particles)
N-aminooxyacetyl-tryptophanyl (arginine methyl ester) (abbreviated as aoWR) represented by the structural formula of (Formula 2) was dissolved in pure water to prepare a 20 mM solution. To the sugar chain-supported polymer particles prepared above, 20 μL of aoWR solution and 180 μL of acetonitrile containing 2% acetic acid were added, and then heated at 80 ° C. for 1 hour to dry. 50 μL of pure water was added to the dried polymer particles for rinsing, and the supernatant was collected.

(質量分析)
得られた溶液をマトリックス支援レーザーイオン化−飛行時間型質量分析器(MALDI-TOF-MS)(Bruker社製 'autoflex III')により分析した。溶液をマトリックス溶液(2,5-ジヒドロキシ安息香酸の10mg/mL水溶液)で10倍希釈したのち、1μLを試料台にスポット、乾燥・結晶化させたのち測定した。測定はポジティブイオン検出モード、リフレクトロンモードにて行い、シグナルはプロトン付加体([M+H]+)で検出された。
サンプル1については、上記の操作を10回繰り返して行い、実験操作と分析操作におけるばらつきを評価した。
(Mass spectrometry)
The resulting solution was analyzed with a matrix-assisted laser ionization-time-of-flight mass spectrometer (MALDI-TOF-MS) ('autoflex III' manufactured by Bruker). After the solution was diluted 10-fold with a matrix solution (10 mg / mL aqueous solution of 2,5-dihydroxybenzoic acid), 1 μL was spotted on a sample stage, dried and crystallized, and then measured. The measurement was performed in positive ion detection mode and reflectron mode, and the signal was detected with a proton adduct ([M + H] +).
For sample 1, the above operation was repeated 10 times, and the variation in the experimental operation and the analysis operation was evaluated.

(データ解析)
図1にはサンプル3(標準糖鎖:グルコースオリゴマーのみ)のMALDI-TOF MSチャートを示す。ラダー状のピークが検出され、それぞれのピークは表1のごとく帰属された。表1で(Glc)はグルコースユニットを示し、付した数値は重合度を示す。
(Data analysis)
FIG. 1 shows a MALDI-TOF MS chart of sample 3 (standard sugar chain: glucose oligomer only). Ladder-like peaks were detected, and each peak was assigned as shown in Table 1. In Table 1, (Glc) indicates a glucose unit, and the attached numerical value indicates the degree of polymerization.

Figure 2009229426
Figure 2009229426

図2にはサンプル2(試料糖鎖:ヒト血清由来糖鎖のみ)のMALDI-TOF MSチャートを示す。観測されたピークのうち代表的な10種類を選び、m/z値からラベル化(aoWRの付加)およびシアル酸メチルエステル化による質量数の増加分を減じたのち、糖鎖組成推定ツール「GlycoMod Tool」(http://www.expasy.ch/tools/glycomod/) を用いて帰属した。帰属結果を表2に示す。表中、略号はそれぞれ下記の糖ユニットを示し、付した数値はユニット数を示す。
Hex:ヘキソース、HexNAc:N-アセチルヘキソサミン、NeuAc:N-アセチルノイラミン酸、Man:マンノース、GlcNAc:N-アセチルグルコサミン
FIG. 2 shows a MALDI-TOF MS chart of Sample 2 (sample sugar chain: human serum-derived sugar chain only). After selecting 10 representative peaks from the observed peaks and subtracting the increase in mass number due to labeling (addition of aoWR) and sialic acid methyl esterification from the m / z value, the sugar chain composition estimation tool “GlycoMod” Tool "(http://www.expasy.ch/tools/glycomod/). The attribution results are shown in Table 2. In the table, the abbreviations indicate the following sugar units, and the attached numerical values indicate the number of units.
Hex: hexose, HexNAc: N-acetylhexosamine, NeuAc: N-acetylneuraminic acid, Man: mannose, GlcNAc: N-acetylglucosamine

Figure 2009229426
Figure 2009229426

図3にはサンプル1(標準糖鎖と試料糖鎖の混合物)のMALDI-TOF MSチャートを示す。標準糖鎖と試料糖鎖のピークが同時に検出された。図4にはサンプル1について10回繰り返し実験を行った結果を示す。
以上のように、試料糖鎖に標準糖鎖を加えることにより、両者のマススペクトルを同時に測定できることが確かめられた。
FIG. 3 shows a MALDI-TOF MS chart of sample 1 (mixture of standard sugar chain and sample sugar chain). The peaks of the standard sugar chain and the sample sugar chain were detected simultaneously. FIG. 4 shows the results of a 10-times repeated experiment on sample 1.
As described above, it was confirmed that by adding a standard sugar chain to a sample sugar chain, both mass spectra can be measured simultaneously.

次に、標準糖鎖のシグナル強度(ピーク面積)の再現性について検討した。
図5は、図4に示したMALDI-TOF MSチャート(10サンプル分)から標準糖鎖のシグナル(a)〜(l)だけを選び出してそれらのピーク面積を求め、それぞれのピーク面積をピーク面積の総和(a〜l)で除した数値(ピーク面積比、パーセントに換算)をグラフにしたものである。また表3はそれぞれの標準糖鎖シグナル(a)〜(l)について、上記のピーク面積比(N=10)のC.V.値(標準偏差を平均値で除し100を掛けた数値)を示す。ばらつきを示すC.V.値が数%〜10%程度と低い値であり、標準糖鎖のシグナル強度は高い再現性を有することが示された。
Next, the reproducibility of the signal intensity (peak area) of the standard sugar chain was examined.
FIG. 5 shows only the standard sugar chain signals (a) to (l) selected from the MALDI-TOF MS chart (for 10 samples) shown in FIG. Are graphs of numerical values (peak area ratio, converted to percent) divided by the sum of (a to l). Table 3 shows the CV value (the numerical value obtained by dividing the standard deviation by the average value and multiplying by 100) of the peak area ratio (N = 10) for each of the standard sugar chain signals (a) to (l). The CV value showing the variation was as low as several percent to 10%, and the signal intensity of the standard sugar chain was shown to have high reproducibility.

Figure 2009229426
Figure 2009229426

次に、試料糖鎖のピーク面積を標準糖鎖のピーク面積で規格化し、相対的比較を行う方法について検討した。
図6は、図4に示したMALDI-TOF MSチャート(10サンプル分)から試料糖鎖のシグナル(1)〜(10)を選び出してそれらのピーク面積(X)を求め、それぞれの試料糖鎖シグナルにm/z値が最も近い標準糖鎖シグナルを選び出してピーク面積(Y)を求め、XをYで除した数値(相対シグナル強度)をグラフにしたものである。また表4はそれぞれの相対シグナル強度(N=10)のC.V.値を示す。C.V.値はおおむね10%〜20%程度であり、本法により求めた相対シグナル強度は高い再現性を有することが示された。
Next, a method for normalizing the peak area of the sample sugar chain with the peak area of the standard sugar chain and performing a relative comparison was examined.
FIG. 6 shows sample glycan signals (1) to (10) selected from the MALDI-TOF MS chart (for 10 samples) shown in FIG. 4 to obtain their peak areas (X). A standard glycan signal having the m / z value closest to the signal is selected to determine the peak area (Y), and the value obtained by dividing X by Y (relative signal intensity) is shown in a graph. Table 4 shows the CV value of each relative signal intensity (N = 10). The CV value was about 10% to 20%, and the relative signal intensity determined by this method was shown to have high reproducibility.

Figure 2009229426
Figure 2009229426

以上のように、定量対象の糖鎖(試料糖鎖)および莢雑物を含むサンプルに対し、既知量の標準糖鎖を添加し、その混合溶液を固相担体を用いて精製/ラベル化し、MALDI-TOF MS測定を行うことにより、高い再現性で試料糖鎖の定量的分析が可能であることが示された。   As described above, a known amount of a standard sugar chain is added to a sample containing a sugar chain to be quantified (sample sugar chain) and impurities, and the mixed solution is purified / labeled using a solid phase carrier, By performing MALDI-TOF MS measurement, it was shown that quantitative analysis of sample sugar chains was possible with high reproducibility.

本発明の糖鎖分析法を用いると、生体試料、たとえば疾患患者の血清、組織などに含まれる糖タンパク質糖鎖の定量的分析(定量的プロファイリング)が可能となり、疾患マーカー糖鎖の探索や、薬剤投与時の糖鎖動態研究など、医療の分野での利用可能性がある。   By using the sugar chain analysis method of the present invention, quantitative analysis (quantitative profiling) of glycoprotein sugar chains contained in biological samples such as serum and tissues of disease patients can be performed. It can be used in the medical field, such as the study of sugar chain dynamics during drug administration.

標準糖鎖(グルコースオリゴマー、aoWRでラベル化)のMALDI-TOF MSチャートを示す。図中、代表的なピークを選び出して記号(a)〜(l)を付した。The MALDI-TOF MS chart of a standard sugar chain (labeled with glucose oligomer, aoWR) is shown. In the figure, representative peaks were selected and marked (a) to (l). 試料糖鎖(ヒト血清由来糖鎖、aoWRでラベル化)のMALDI-TOF MSチャートを示す。図中、代表的なピークを選び出して記号(1)〜(10)を付した。A MALDI-TOF MS chart of a sample sugar chain (sugar chain derived from human serum, labeled with aoWR) is shown. In the figure, representative peaks were selected and marked (1) to (10). 試料糖鎖と標準糖鎖の混合物のMALDI-TOF MSチャートを示す。図中の記号はそれぞれ図1、図2で記号を付したピークと同じm/z値を示したピークを表している。A MALDI-TOF MS chart of a mixture of a sample sugar chain and a standard sugar chain is shown. The symbols in the figure represent peaks that showed the same m / z value as the peaks marked in FIGS. 1 and 2, respectively. 試料糖鎖と標準糖鎖の混合物のMALDI-TOF MSチャートを示す。10回繰り返し実験を行った結果を並列したものである。図中記号については上記と同様。A MALDI-TOF MS chart of a mixture of a sample sugar chain and a standard sugar chain is shown. The results of repeated experiments 10 times are shown in parallel. The symbols in the figure are the same as above. 10回繰り返し実験を行った際の、標準糖鎖シグナルの面積比をグラフに示す。The graph shows the area ratio of the standard sugar chain signal when the experiment was repeated 10 times. 10回繰り返し実験を行った際の、試料糖鎖の相対シグナル強度をグラフに示す。The relative signal intensity of the sample sugar chain when the experiment was repeated 10 times is shown in the graph.

Claims (12)

生体試料に含まれる糖鎖である試料糖鎖を質量分析法により分析する方法であって、所定量の既知糖鎖である標準糖鎖を試料糖鎖と混合し、該混合物の質量分析測定を行ってマススペクトルを得たのち、前記試料糖鎖のシグナル強度と前記標準糖鎖のシグナル強度を比較することにより、前記試料糖鎖の量を評価することを特徴とする糖鎖分析法。 A method of analyzing a sample sugar chain, which is a sugar chain contained in a biological sample, by mass spectrometry, comprising mixing a predetermined amount of a standard sugar chain, which is a known sugar chain, with a sample sugar chain, and performing mass spectrometry measurement of the mixture A sugar chain analysis method characterized in that, after obtaining a mass spectrum, the amount of the sample sugar chain is evaluated by comparing the signal intensity of the sample sugar chain with the signal intensity of the standard sugar chain. 前記試料糖鎖を含む未精製のサンプルに所定量の標準糖鎖を添加したのち、これを糖鎖精製手段によって精製することにより前記試料糖鎖と前記標準糖鎖の混合物を調製し、該混合物の質量分析測定を行う請求項1記載の糖鎖分析法。 A mixture of the sample sugar chain and the standard sugar chain is prepared by adding a predetermined amount of a standard sugar chain to an unpurified sample containing the sample sugar chain, and then purifying it by sugar chain purification means, and the mixture The sugar chain analysis method according to claim 1, wherein mass spectrometry is performed. 前記糖鎖精製手段が、糖鎖を選択的に捕捉する固相担体を用いた糖鎖抽出である請求項2記載の糖鎖分析法。 The sugar chain analysis method according to claim 2, wherein the sugar chain purification means is sugar chain extraction using a solid phase carrier that selectively captures sugar chains. 前記糖鎖精製手段が、糖鎖を選択的に捕捉する固相担体による糖鎖の担持と、それに引き続いて行う糖鎖のラベル化である請求項2記載の糖鎖分析法。 3. The method for analyzing a sugar chain according to claim 2, wherein the sugar chain purification means is a sugar chain supported by a solid phase carrier that selectively captures the sugar chain, followed by labeling of the sugar chain. 前記固相担体が下記(式1)で表される構造を有する請求項3又は4記載の糖鎖分析法。
Figure 2009229426
The sugar chain analysis method according to claim 3 or 4, wherein the solid phase carrier has a structure represented by the following (formula 1).
Figure 2009229426
前記糖鎖のラベル化が、糖鎖を担持した固相担体に対してアミノオキシ基含有化合物を含む溶液を作用させることによって行われる請求項4又は5記載の糖鎖分析法。 The sugar chain analysis method according to claim 4 or 5, wherein the labeling of the sugar chain is carried out by allowing a solution containing an aminooxy group-containing compound to act on a solid phase carrier carrying a sugar chain. 前記アミノオキシ基含有化合物が下記から選ばれた物質又はその塩である請求項6記載の糖鎖分析法。
O-benzylhydroxylamine;O-phenylhydroxylamine; O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine; O-(4-nitrobenzyl)hydroxylamine; 2-aminooxypyridine; 2-aminooxymethylpyridine; 4-[(aminooxyacetyl)amino]benzoic acid methyl ester; 4-[(aminooxyacetyl)amino]benzoic acid ethyl ester; 4-[(aminooxyacetyl)amino]benzoic acid n-butyl ester.
The sugar chain analysis method according to claim 6, wherein the aminooxy group-containing compound is a substance selected from the following or a salt thereof.
O-benzylhydroxylamine; O-phenylhydroxylamine; O- (2,3,4,5,6-pentafluorobenzyl) hydroxylamine; O- (4-nitrobenzyl) hydroxylamine; 2-aminooxypyridine; 2-aminooxymethylpyridine; 4-[(aminooxyacetyl) amino] benzoic acid methyl ester; 4-[(aminooxyacetyl) amino] benzoic acid ethyl ester; 4-[(aminooxyacetyl) amino] benzoic acid n-butyl ester.
前記アミノオキシ基含有化合物がアルギニン残基、トリプトファン残基、フェニルアラニン残基、チロシン残基、システイン残基およびこれら誘導体の少なくとも一つからなる部分を含む請求項6記載の糖鎖分析法。 The method for analyzing a sugar chain according to claim 6, wherein the aminooxy group-containing compound comprises a moiety comprising at least one of an arginine residue, a tryptophan residue, a phenylalanine residue, a tyrosine residue, a cysteine residue, and a derivative thereof. 前記アミノオキシ基を有する化合物が下記(式2)で表される構造を有する請求項6記載の糖鎖分析法。
Figure 2009229426
The sugar chain analysis method according to claim 6, wherein the compound having an aminooxy group has a structure represented by the following (formula 2).
Figure 2009229426
前記標準糖鎖が、2種類以上の糖鎖の混合物である請求項1〜9いずれか記載の糖鎖分析法。 The sugar chain analysis method according to any one of claims 1 to 9, wherein the standard sugar chain is a mixture of two or more kinds of sugar chains. 前記標準糖鎖が、同一の単糖ユニットの繰り返し構造をもち、重合度の異なるオリゴ糖の混合物である請求項10記載の糖鎖分析法。 The method for analyzing a sugar chain according to claim 10, wherein the standard sugar chain is a mixture of oligosaccharides having a repeating structure of the same monosaccharide unit and different degrees of polymerization. 前記標準糖鎖が、グルコースユニットの繰り返し構造をもち、重合度の異なるグルコースオリゴマーの混合物である請求項10記載の糖鎖分析法。 The sugar chain analysis method according to claim 10, wherein the standard sugar chain is a mixture of glucose oligomers having a repeating structure of glucose units and different degrees of polymerization.
JP2008078758A 2008-03-25 2008-03-25 Sugar chain analysis Pending JP2009229426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078758A JP2009229426A (en) 2008-03-25 2008-03-25 Sugar chain analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078758A JP2009229426A (en) 2008-03-25 2008-03-25 Sugar chain analysis

Publications (1)

Publication Number Publication Date
JP2009229426A true JP2009229426A (en) 2009-10-08

Family

ID=41244977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078758A Pending JP2009229426A (en) 2008-03-25 2008-03-25 Sugar chain analysis

Country Status (1)

Country Link
JP (1) JP2009229426A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115212A1 (en) * 2010-03-18 2011-09-22 住友ベークライト株式会社 Method for analysis of sugar chain by mass spectrometry
JP2013070682A (en) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd Method of manufacturing sugar chain at cellular surface and sample of sugar chain at the cellular surface
JP2013076629A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd METHOD FOR DISCRIMINATING α2,6-SIALO-SUGAR CHAIN FROM α2,3-SIALO-SUGAR CHAIN
JP2013076649A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd Method for manufacturing monosaccharide analysis sample
JP2013142566A (en) * 2012-01-10 2013-07-22 Sumitomo Bakelite Co Ltd Preparation method of sugar chain sample
CN108445135A (en) * 2018-05-23 2018-08-24 南京财经大学 A kind of detection method for a variety of residue of veterinary drug rapid screenings
CN110715999A (en) * 2019-11-08 2020-01-21 中国检验检疫科学研究院 High-throughput screening method for 200 chemical risk substances in toy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
JP2005530157A (en) * 2002-06-14 2005-10-06 ウイミンズ、アンド、チルドランズ、ホスピトル Oligosaccharide biomarkers for mucopolysaccharidosis and other related disorders
JP2005292093A (en) * 2004-04-05 2005-10-20 Shimadzu Corp Mass calibration method for mass spectrograph
WO2006110848A2 (en) * 2005-04-11 2006-10-19 Cerno Bioscience Llc Chromatographic and mass spectral data analysis
WO2008018170A1 (en) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Sugar chain-capturing substance and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530157A (en) * 2002-06-14 2005-10-06 ウイミンズ、アンド、チルドランズ、ホスピトル Oligosaccharide biomarkers for mucopolysaccharidosis and other related disorders
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
JP2005292093A (en) * 2004-04-05 2005-10-20 Shimadzu Corp Mass calibration method for mass spectrograph
WO2006110848A2 (en) * 2005-04-11 2006-10-19 Cerno Bioscience Llc Chromatographic and mass spectral data analysis
WO2008018170A1 (en) * 2006-08-09 2008-02-14 Sumitomo Bakelite Co., Ltd. Sugar chain-capturing substance and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115212A1 (en) * 2010-03-18 2011-09-22 住友ベークライト株式会社 Method for analysis of sugar chain by mass spectrometry
JP2011196759A (en) * 2010-03-18 2011-10-06 Sumitomo Bakelite Co Ltd Method for analyzing sugar chain by mass spectrometry
JP2013070682A (en) * 2011-09-29 2013-04-22 Sumitomo Bakelite Co Ltd Method of manufacturing sugar chain at cellular surface and sample of sugar chain at the cellular surface
JP2013076629A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd METHOD FOR DISCRIMINATING α2,6-SIALO-SUGAR CHAIN FROM α2,3-SIALO-SUGAR CHAIN
JP2013076649A (en) * 2011-09-30 2013-04-25 Sumitomo Bakelite Co Ltd Method for manufacturing monosaccharide analysis sample
JP2013142566A (en) * 2012-01-10 2013-07-22 Sumitomo Bakelite Co Ltd Preparation method of sugar chain sample
CN108445135A (en) * 2018-05-23 2018-08-24 南京财经大学 A kind of detection method for a variety of residue of veterinary drug rapid screenings
CN110715999A (en) * 2019-11-08 2020-01-21 中国检验检疫科学研究院 High-throughput screening method for 200 chemical risk substances in toy

Similar Documents

Publication Publication Date Title
Nishikaze et al. Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling
JP2009229426A (en) Sugar chain analysis
JP5396277B2 (en) Automatic sugar chain pretreatment equipment
JPWO2009133696A1 (en) Glycan labeling method
Zou et al. Comprehensive analytical approach toward glycomic characterization and profiling in urinary exosomes
JP2005515452A (en) Determination of protein synthesis rates in human and experimental systems using isotope-labeled water.
JPWO2005097844A1 (en) Polymer particles
JP5076878B2 (en) Method for analyzing glycoprotein sugar chains
CN102706952A (en) Application of naphthylethylenediamine inorganic acid salt or Naphthylethylenediamine organic acid salt as matrix in MALDI MS (matrix-assisted laser desorption/ionization mass spectrometry)
WO2006106997A1 (en) Analysis method for biological sample and screening method for disease marker
JP5392500B2 (en) Method for analyzing sugar chains by mass spectrometry
JP7107477B2 (en) Methods for detecting mitochondrial tRNA modifications
JP5125637B2 (en) Glycan sample preparation method
JP5999568B2 (en) Reducing sugar chain release method with ammonium salt
Bohrer et al. Biologically-inspired peptide reagents for enhancing IMS-MS analysis of carbohydrates
RU2302632C2 (en) Method for determining histamine concentration in blood plasma
JP2019211217A (en) Nucleotide quantification method
KR101778634B1 (en) MALDI-MS-based qualitative and quantitative analysis method for biomolecules
JP2009216608A (en) Sample preparation method
WO1993010450A1 (en) Fluorophore-assisted therapeutic drug monitoring
Li et al. Stable isotope labeling differential glycans discovery in the serum of acute myocardial infarction by ultrahigh-performance liquid chromatography-quadrupole-Orbitrap high resolution mass spectrometry
KR101544591B1 (en) Development of high-throughput quantitative glycomics platform using mass spectrometry and chromatography system
WO2015146514A1 (en) Method for suppressing desialylation of sugar chain in preparation of labeled sugar chain sample
JP2012189439A (en) Method for manufacturing sugar chain sample
JP2013076649A (en) Method for manufacturing monosaccharide analysis sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Effective date: 20120207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612