JP2009229217A - Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film - Google Patents

Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film Download PDF

Info

Publication number
JP2009229217A
JP2009229217A JP2008074376A JP2008074376A JP2009229217A JP 2009229217 A JP2009229217 A JP 2009229217A JP 2008074376 A JP2008074376 A JP 2008074376A JP 2008074376 A JP2008074376 A JP 2008074376A JP 2009229217 A JP2009229217 A JP 2009229217A
Authority
JP
Japan
Prior art keywords
coating thickness
coating film
coating
thickness
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008074376A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
浩二 鈴木
Tomohiro Nihei
朋浩 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2008074376A priority Critical patent/JP2009229217A/en
Publication of JP2009229217A publication Critical patent/JP2009229217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable efficient estimation and preservation by calculating the regular correlation with the thickness reducing speed of a coating film using an environmental condition, under which equipment is placed, as a parameter to estimate the thickness of the coating film. <P>SOLUTION: The coating film is formed on the surface of the member to be protected of the equipment, and the thickness of the secularly changed coating film is measured from the environmental condition under which the equipment is placed, so that the environmental condition exerting an effect on the thickness reduction of the coating film among environmental conditions is extracted as an evaluation environmental condition on the basis of the measured thickness of the coating film. The correlation of the thickness reducing speed of the coating film accompanying the secular change under the extracted evaluation environmental condition is calculated, and the future thickness of the coating film is estimated on the basis of the calculated correlation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、設備の被保護部材に塗装した塗膜の経年変化に伴う塗膜厚を推定するとともに、推定した塗膜厚に基づき、塗膜の保全、塗膜寿命の予測及び塗膜厚の決定を行う塗膜厚推定方法、塗膜保全方法、塗膜寿命予測方法及び塗膜厚決定方法に関する。   The present invention estimates the coating thickness associated with the aging of the coating film applied to the protected member of the facility, and based on the estimated coating thickness, the coating film maintenance, the coating film life prediction and the coating thickness The present invention relates to a coating film thickness estimation method, a coating film maintenance method, a coating film life prediction method, and a coating film thickness determination method.

一般に、設備の部材には塗料が塗装され部材を保護している。例えば、高圧配電線供給開閉設備である6kVミニクラッド(MC)のケーブルヘッドは、風雨等から保護するため塗料により塗装している。これは、ケーブルヘッドの外層面を6kVミニクラッドが通電状態であるのか無通電状態であるのかを検出するための検電装置の電圧検出部として使用しているためである。   Generally, paints are applied to equipment members to protect the members. For example, a 6 kV mini-clad (MC) cable head, which is a high-voltage distribution line supply opening / closing facility, is coated with paint to protect it from wind and rain. This is because the outer surface of the cable head is used as a voltage detection unit of a voltage detection device for detecting whether the 6 kV mini-cladding is in an energized state or a non-energized state.

保護塗装については経年により劣化し、さらに悪天候等の条件が重なり電圧検出部の検電装置の異常が発生した場合は、その都度、事後保全のために補修塗装を実施していた。また目視で塗装の剥離状態を確認した場合には、点検に合わせて定期的(例えば12年1回程度)に補修塗装を実施していた。   The protective coating deteriorates with the passage of time, and when the conditions of the bad weather and other conditions overlap and an abnormality occurs in the voltage detection device, repair coating is carried out for subsequent maintenance. Moreover, when the peeling state of the coating was confirmed visually, repair coating was performed regularly (for example, about once every 12 years) in accordance with the inspection.

ケーブルヘッドの表面接地層と主回路導体の間の静電容量を利用した電圧検出センサをコンデンサを介して接地し、地絡事故時の零相電圧を取り出して、変圧器と遮断器との間の電路の部分で地絡事故が生じた場合であってもその地絡事故を検出できるようにしたものがある(例えば、特許文献1参照)。   A voltage detection sensor that uses the electrostatic capacitance between the surface ground layer of the cable head and the main circuit conductor is grounded via a capacitor, and the zero-phase voltage in the event of a ground fault is taken out, between the transformer and the circuit breaker. Even when a ground fault accident occurs in the part of the electric circuit, there is one that can detect the ground fault accident (for example, see Patent Document 1).

また、塗膜を形成する樹脂の親水化度及び脆化度のうちのいずれか一方または双方を塗膜の割れ及び剥離のうちのいずれか一方または双方についての代表特性とし、これらの代表特性に基づいて塗膜の促進劣化試験の試験条件を設定し、屋外暴露での塗膜の変色または退色のみならず、塗膜の割れ及び剥離を高い精度で再現可能とし、これによって短期間に正確に塗膜の耐候性を評価することができるようにしたものがある(例えば、特許文献2参照)。
特開昭64−47214号公報 特開2005−156309号公報
In addition, any one or both of the hydrophilicity degree and the embrittlement degree of the resin forming the coating film are set as representative characteristics for either or both of the cracking and peeling of the coating film, and these representative characteristics Based on this, the test conditions for the accelerated deterioration test of the paint film are set, and not only the discoloration or fading of the paint film when exposed outdoors, but also the cracking and peeling of the paint film can be reproduced with high accuracy. There exists what made it possible to evaluate the weather resistance of a coating film (for example, refer patent document 2).
JP-A 64-47214 JP 2005-156309 A

しかし、特許文献1のものではケーブルヘッドの表面接地層の塗装厚が減少して短絡した場合には短絡は検出できるが、その都度、事後保全のために補修塗装を実施しなければならない。また、特許文献2のものでは、塗膜の割れ及び剥離を高い精度で再現可能とし、これによって短期間に正確に塗膜の耐候性を評価することができるが、塗膜寿命の予測、塗膜の保全のための再塗装や設備の耐用年数に応じて塗膜厚の塗装を適切に行うことができない。   However, in Patent Document 1, a short circuit can be detected when the coating thickness of the surface ground layer of the cable head decreases and a short circuit occurs, but repair coating must be performed for subsequent maintenance each time. Moreover, in the thing of patent document 2, although the crack and peeling of a coating film are reproducible with high precision, and this can evaluate the weather resistance of a coating film correctly in a short time, prediction of a coating film lifetime, coating Re-coating for the maintenance of the film and coating of the coating thickness cannot be performed appropriately according to the service life of the equipment.

保護塗装の劣化(剥離)は、被保護部材の置かれた環境条件、例えば、酸性雨・塩害状況やその他の環境雰囲気等の自然条件に影響されると考えられ、塗料の再塗装前に塗膜の寿命を使い切った場合には警報対応を強いられる。また定期的に保全する場合においても目視で塗装劣化状況を把握することになるので、塗膜の寿命を多めに残したままでの保全となり効率的な保全となっていない。   Deterioration (peeling) of the protective coating is considered to be affected by the environmental conditions where the protected member is placed, such as acid rain, salt damage, and other environmental conditions. When the membrane life is exhausted, an alarm response is forced. In addition, when maintaining regularly, it is possible to grasp the state of deterioration of the coating by visual observation, so that the maintenance is performed with a long remaining life of the coating film, and the maintenance is not efficient.

本発明の目的は、設備の置かれた環境条件をパラメータとして塗膜厚の減少速度との規則的な相関関数を求め、塗膜厚を推定して効率的な予測保全を可能とすることができる塗膜厚推定方法、塗膜保全方法、塗膜寿命予測方法及び塗膜厚決定方法を得ることである。   The object of the present invention is to obtain a regular correlation function with the coating thickness reduction rate using the environmental conditions where the equipment is placed as a parameter, and to estimate the coating thickness to enable efficient predictive maintenance. It is to obtain a coating film thickness estimation method, a coating film maintenance method, a coating film life prediction method, and a coating film thickness determination method.

請求項1の発明に係わる塗膜厚推定方法は、設備の被保護部材の表面に塗膜を形成し設備の置かれた環境条件から経年変化した塗膜厚を計測し、計測した塗膜厚に基づいて環境条件のうち塗膜厚減少に影響を与える環境条件を評価環境条件として抽出し、抽出した評価環境条件下での経年変化に伴う塗膜厚減少速度の相関関数を求め、求めた相関関数に基づいて将来の塗膜厚を推定することを特徴とする。   The method for estimating the coating thickness according to the invention of claim 1 is a method of measuring a coating thickness that has changed over time from an environmental condition where the facility is placed by forming a coating on the surface of the protected member of the facility, and measuring the measured coating thickness. Based on the environmental conditions, the environmental conditions that affect the coating thickness reduction were extracted as the evaluation environmental conditions, and the correlation function of the coating thickness reduction rate with aging under the extracted evaluation environmental conditions was obtained and obtained It is characterized in that the future coating thickness is estimated based on the correlation function.

請求項2の塗膜保全方法は、請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、被保護部材に塗料を再塗装し被保護部材の保全を行うことを特徴とする。   The coating film maintenance method according to claim 2 is characterized in that, based on the future coating film thickness estimated by the coating film thickness estimation method according to claim 1, the coating material is repainted on the protected member and the protected member is maintained. And

請求項3の塗膜寿命予測方法は、請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、被保護部材の塗膜の寿命を予測することを特徴とする。   The coating film life prediction method according to claim 3 is characterized in that the coating film life of the protected member is predicted based on the future coating film thickness estimated by the coating film thickness estimation method according to claim 1.

請求項4の塗膜厚決定方法は、請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、設備の耐用年数に応じて新規に設置する同種の設備の被保護部材の塗膜厚を決定することを特徴とする。   The method for determining the coating thickness according to claim 4 is based on the future coating thickness estimated by the coating thickness estimation method according to claim 1, and the protected member of the same type of equipment newly installed according to the service life of the equipment The thickness of the coating film is determined.

本発明によれば、設備の被保護部材の表面を計測した塗膜厚に基づいて、設備の置かれた環境条件のうち塗膜厚減少に影響を与える環境条件を評価環境条件として抽出し、その評価環境条件下での経年変化に伴う塗膜厚減少速度の相関関数に基づいて将来の塗膜厚を推定するので、より適切に効率的に被保護部材の塗膜厚を推定できる。   According to the present invention, based on the coating thickness measured on the surface of the protected member of the equipment, the environmental conditions that affect the reduction in the coating thickness among the environmental conditions where the equipment is placed are extracted as the evaluation environmental conditions, Since the future coating thickness is estimated on the basis of the correlation function of the coating thickness reduction rate associated with aging under the evaluation environmental conditions, the coating thickness of the protected member can be estimated more appropriately and efficiently.

これにより、被保護部材の保全を適正に行え、被保護部材の塗膜の寿命を容易に推定でき、さらには、設備の耐用年数に応じた被保護部材の塗膜厚の決定を容易に行える。   As a result, the protection member can be properly maintained, the coating film life of the protection member can be easily estimated, and the coating thickness of the protection member can be easily determined according to the service life of the equipment. .

本発明の塗膜厚推定方法を完成するに至った経緯について説明する。設備の被保護部材の表面に形成した塗膜は経年劣化する。特に、設備が高圧配電線供給開閉設備である場合には、そのケーブルヘッドの塗膜が劣化すると、ケーブルヘッドの通電を検出する検電センサが誤動作し警報を発することになる。この検電センサの誤動作は電力供給に支障を生じるものではないが、警報が発生すると現地に保守作業員を派遣して警報の発生した原因を調査しなければならない。ケーブルヘッドの通電を検出する検電センサの誤動作は、ケーブルヘッドの表面に形成した塗膜厚が減少した場合にも発生する。   The background to the completion of the coating film thickness estimation method of the present invention will be described. The coating film formed on the surface of the protected member of the equipment deteriorates over time. In particular, when the facility is a high-voltage distribution line supply opening / closing facility, when the coating film of the cable head deteriorates, a voltage detection sensor that detects energization of the cable head malfunctions and issues an alarm. This malfunction of the voltage detection sensor does not interfere with the power supply, but if an alarm is generated, a maintenance worker must be dispatched to the site to investigate the cause of the alarm. The malfunction of the voltage detection sensor that detects energization of the cable head also occurs when the thickness of the coating film formed on the surface of the cable head is reduced.

そこで、ケーブルヘッドの塗膜厚が精度よく推定できれば、ケーブルヘッドの通電を検出する検電センサの誤動作を予知でき、また、事前に再塗装して保全したり、塗膜の寿命を精度よく推定したり、ケーブルヘッドの耐用年数に応じて施す塗膜厚を精度よく決定できる。これに着目し、設備の保護部材に施した塗膜の塗膜厚減少速度の相関関数を導き、その相関関数に基づいて塗膜厚を推定することとした。   Therefore, if the coating thickness of the cable head can be accurately estimated, it is possible to predict the malfunction of the voltage detection sensor that detects the energization of the cable head. In addition, the coating film can be repainted and maintained in advance, and the coating life can be accurately estimated. Or the coating thickness to be applied can be accurately determined according to the service life of the cable head. Focusing on this, a correlation function of the coating thickness reduction rate of the coating applied to the protective member of the equipment was derived, and the coating thickness was estimated based on the correlation function.

図1は、本発明の実施の形態に係わる塗膜厚推定方法の工程を示す流れ図である。まず、各種の環境条件に置かれた設備の被保護部材の表面に施された塗膜厚を計測し(S1)、各々の環境条件ごとに計測した塗膜厚を検討し、塗膜厚減少に影響を与える環境条件を評価環境条件として抽出する(S2)。そして、設備の設置された年数を考慮しつつ評価環境条件下での塗膜厚減少速度の相関関数を求め(S3)、相関関数に基づいて将来の塗膜厚を推定する(S4)。   FIG. 1 is a flowchart showing the steps of a coating thickness estimation method according to an embodiment of the present invention. First, the coating thickness applied to the surface of the protected member of the equipment placed in various environmental conditions is measured (S1), and the coating thickness measured for each environmental condition is examined to reduce the coating thickness. The environmental conditions that affect the evaluation are extracted as the evaluation environmental conditions (S2). Then, the correlation function of the coating thickness reduction rate under the evaluation environmental conditions is obtained in consideration of the years of installation (S3), and the future coating thickness is estimated based on the correlation function (S4).

図2は本発明の実施の形態で対象とした高圧配電線供給開閉設備の外観図である。本発明の実施の形態では、高圧配電線供給開閉設備{6kVミニクラッド(MC)}のケーブルヘッドに施された保護塗装膜を対象とした。高圧配電線供給開閉設備11のケーブルヘッド12は電力ケーブル13を介して図示省略の変圧器に接続されている。塗膜が施された被保護部材であるケーブルヘッド12は、円筒形状であるので表面が湾曲しており塗膜厚を精度よく測定できない可能性があるので、ケーブルヘッド12と同じ塗膜が施された母線カバー上部14の配電線末端部の塗膜厚を測定することとした。   FIG. 2 is an external view of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. The embodiment of the present invention is directed to the protective coating film applied to the cable head of the high-voltage distribution line supply switching facility {6 kV mini-clad (MC)}. The cable head 12 of the high-voltage distribution line supply switching facility 11 is connected to a transformer (not shown) via a power cable 13. Since the cable head 12, which is a protected member to which the coating film has been applied, has a cylindrical shape, the surface is curved and the coating thickness may not be measured accurately. It was decided to measure the coating thickness at the terminal end of the distribution line of the bus cover upper part 14.

塗膜厚は塗膜厚測定器で測定する。例えば、被保護部材が鉄系金属である場合には、電磁式・磁気吸着式の塗膜厚測定器を用いて、塗膜厚測定器のプローブと被保護部材の金属との間の磁束変化量を測定し塗膜厚に変換して、被保護部材の塗膜厚を測定する。一方、被保護部材が非鉄系金属である場合には、渦電流式の塗膜厚測定器を用いて、塗膜厚測定器のプローブから発生する磁束により金属に渦電流を発生させ、プローブ内のコイルに流れる電流を測定し、その電流変化量を塗膜厚に変換して、被保護部材の塗膜厚を測定する。   The coating thickness is measured with a coating thickness measuring device. For example, when the protected member is an iron-based metal, the magnetic flux change between the probe of the coating thickness measuring instrument and the metal of the protected member using an electromagnetic / magnetic adsorption coating thickness measuring instrument The amount is measured and converted into a coating thickness, and the coating thickness of the protected member is measured. On the other hand, when the member to be protected is a non-ferrous metal, an eddy current type coating thickness measuring instrument is used to generate eddy currents in the metal by the magnetic flux generated from the probe of the coating thickness measuring instrument. The current flowing through the coil is measured, the amount of change in the current is converted into the coating thickness, and the coating thickness of the member to be protected is measured.

図3は本発明の実施の形態で対象とした高圧配電線供給開閉設備のケーブルヘッドに設置された検電センサ15の説明図である。ケーブルヘッド12は、主回路導体16をモールド層17で被覆して絶縁し、モールド層17の外側にメタリコン層18を形成し、そのメタリコン層18の外側に保護塗装膜19を形成して構成されている。そして、主回路導体16とメタリコン層18との間の静電容量C1と、メタリコン層18と接地との間の静電容量C2との分圧電圧を検電センサ15で検出し、主回路導体16が通電状態であるか否かを検出するようにしている。   FIG. 3 is an explanatory diagram of the voltage detection sensor 15 installed in the cable head of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. The cable head 12 is configured by covering and insulating the main circuit conductor 16 with a mold layer 17, forming a metallicon layer 18 on the outside of the mold layer 17, and forming a protective coating film 19 on the outside of the metallicon layer 18. ing. Then, the divided voltage between the electrostatic capacitance C1 between the main circuit conductor 16 and the metallicon layer 18 and the electrostatic capacitance C2 between the metallicon layer 18 and the ground is detected by the voltage detection sensor 15, and the main circuit conductor is detected. Whether or not 16 is in an energized state is detected.

静電容量C2の分圧電圧は検電センサ15に入力される。検電センサ15は電圧判定部20が二重化されており、静電容量C2の分圧電圧は電圧判定部20a、20bの整流波形整形手段21a、21bで波形整形されて、判定手段22a、22bにおいて基準電圧と比較される。ケーブルヘッド12の主回路導体16の電圧の有無の判定は、二重化された電圧判定部20a、20bの出力リレー23a、23bの出力のアンド条件で判定される。また、異常検出は二重化された電圧判定部20a、20bの出力リレー23a、23bの出力の不一致により検出される。   The divided voltage of the capacitance C2 is input to the voltage detection sensor 15. In the voltage detection sensor 15, the voltage determination unit 20 is duplicated, and the divided voltage of the capacitance C2 is waveform-shaped by the rectified waveform shaping units 21a and 21b of the voltage determination units 20a and 20b, and the determination units 22a and 22b Compared to the reference voltage. The presence / absence of the voltage of the main circuit conductor 16 of the cable head 12 is determined by the AND condition of the outputs of the output relays 23a and 23b of the duplex voltage determination units 20a and 20b. Abnormality detection is detected by a mismatch between the outputs of the output relays 23a and 23b of the duplicated voltage determination units 20a and 20b.

このように、検電センサ15によるケーブルヘッド12の電圧有無の検出においては、ケーブルヘッド12のメタリコン層18が電圧検出部となっているので、保護塗装膜19の塗膜が減少してメタリコン層18が接地電位となった場合には、検電センサ15はケーブルヘッド12の電圧検出ができずに異常検出となってしまい警報を発することになる。   Thus, in the detection of the voltage presence / absence of the cable head 12 by the voltage detection sensor 15, the metallicon layer 18 of the cable head 12 serves as a voltage detection unit. When 18 becomes the ground potential, the voltage detection sensor 15 cannot detect the voltage of the cable head 12 and detects an abnormality and issues an alarm.

前述したように、ケーブルヘッド12の塗膜が劣化すると、ケーブルヘッド12の通電を検出する検電センサ15が誤動作し警報を発することになる。この検電センサ15の誤動作は電力供給に支障を生じるものではないが、警報が発生すると現地に保守作業員を派遣して警報の発生した原因を調査しなければならない。   As described above, when the coating film of the cable head 12 deteriorates, the voltage detection sensor 15 that detects energization of the cable head 12 malfunctions and issues an alarm. Although this malfunction of the voltage detection sensor 15 does not interfere with power supply, when an alarm occurs, a maintenance worker must be dispatched to the site to investigate the cause of the alarm.

そこで、ケーブルヘッド12の塗膜厚減少速度が環境条件により異なることを想定し、各種の環境条件に置かれた高圧配電線供給開閉設備11のケーブルヘッド12の表面に施された塗膜厚(母線カバー上部14の塗膜厚)を計測し、各々の環境条件ごとに計測した塗膜厚を検討して、塗膜厚減少に影響を与える環境条件を評価環境条件として抽出することとした。対象とした高圧配電線供給開閉設備は164列であり、母線カバー上部(アルミ板)14の保護塗装膜について、測定位置と塗膜厚測定器の測定バラツキとが無いことを事前確認した上で現状の塗膜厚を採取した。   Therefore, assuming that the coating thickness reduction rate of the cable head 12 varies depending on the environmental conditions, the coating thickness (on the surface of the cable head 12 of the high-voltage distribution line supply opening / closing facility 11 placed under various environmental conditions ( The coating thickness of the upper part of the bus cover 14) was measured, the coating thickness measured for each environmental condition was examined, and the environmental conditions that affected the reduction in coating thickness were extracted as the evaluation environmental conditions. The target high-voltage distribution line supply opening and closing equipment is 164 rows, and it is confirmed in advance that there is no measurement position and measurement variation of the coating thickness measuring device for the protective coating film on the bus cover upper part (aluminum plate) 14 The current coating thickness was collected.

次に、本発明の実施の形態で対象とした高圧配電線供給開閉設備の設置環境条件による塗膜厚の評価について説明する。なお、高圧配電線供給開閉設備の母線カバー上部14を再塗装した機器は除いた。環境条件として、屋内及び屋外、環境壁有無、ケーブルヘッド(CH)方位、塩害区分について評価した。   Next, the evaluation of the coating thickness according to the installation environment conditions of the high-voltage distribution line supply opening / closing equipment targeted in the embodiment of the present invention will be described. In addition, the equipment which repainted the bus-bar cover upper part 14 of a high voltage distribution line supply switching facility was excluded. As environmental conditions, indoor and outdoor, environmental wall presence, cable head (CH) orientation, and salt damage classification were evaluated.

図4は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として屋内と屋外の評価グラフである。図4では高圧配電線供給開閉設備11のケーブルヘッド12の表面に施された塗膜厚(母線カバー上部14の塗膜厚)の屋内と屋外の塗膜厚データを示している。塗膜厚データのバラツキ値では、屋内は環境の影響を受けにくく、当初の予想通り屋外と比較しバラツキ値は小さかった。また、少なくとも屋内の最小値(100μm程度)以上は初期塗膜厚として有ったと思われる。   FIG. 4 is an indoor and outdoor evaluation graph as an environmental condition of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. FIG. 4 shows indoor and outdoor coating thickness data of the coating thickness (the coating thickness of the bus cover upper portion 14) applied to the surface of the cable head 12 of the high-voltage distribution line supply opening / closing facility 11. In the dispersion value of the coating thickness data, the indoors are not easily affected by the environment, and the dispersion values are small as compared with the outdoors as originally expected. Further, it seems that at least the indoor minimum value (about 100 μm) or more was the initial coating thickness.

結論として、模擬試験による検電センサ15の「電圧有」の判定限界塗膜厚78.5μm付近に屋内及び屋外ともデータが存在しているため、屋内及び屋外に関わらず予防塗装は必要と考えられる。また、屋内については設置環境のパラメータに差異がないため、今後のパラメータ評価は、「屋外の母線カバー上部の塗膜厚測定データ」に絞り分析・評価することとした。   In conclusion, there is data for both indoors and outdoors in the vicinity of 78.5 μm, which is the judgment limit coating film thickness of the voltage sensor 15 of the electric detection sensor 15 by the simulation test. It is done. In addition, since there are no differences in the parameters of the installation environment for indoors, future parameter evaluation will be focused on analysis and evaluation of “film thickness measurement data on the outdoor bus bar cover”.

なお、検電センサ15の「電圧有」の判定限界塗膜厚78.5μmについては、塗膜厚をパラメータとして、注水試験により検電センサ15の故障発生有無を確認し、検電センサ15の「電圧有」の判定限界塗膜厚78.5μmのデータを取得した。   For the detection limit coating thickness 78.5 μm of “voltage present” of the voltage detection sensor 15, the presence or absence of failure of the voltage detection sensor 15 is confirmed by a water injection test using the film thickness as a parameter. The data of the judgment limit coating film thickness of 78.5 μm was acquired.

図5は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無の評価グラフである。図5では高圧配電線供給開閉設備11のケーブルヘッド12の表面に施された塗膜厚(母線カバー上部14の塗膜厚)の環境壁有無の塗膜データを示している。また、環境壁は高圧配電線供給開閉設備に対して1m〜5mの間に設置されたものを示している。   FIG. 5 is an evaluation graph of the presence / absence of an environmental wall as an environmental condition of the high-voltage distribution line supply switching facility targeted in the embodiment of the present invention. FIG. 5 shows coating film data on the presence or absence of an environmental wall of the coating thickness (the coating thickness of the bus cover upper portion 14) applied to the surface of the cable head 12 of the high-voltage distribution line supply opening / closing facility 11. Moreover, the environmental wall has shown what was installed between 1m-5m with respect to the high voltage distribution line supply switching facility.

塗膜厚データのバラツキ値では、環境壁「有」の場合は、屋内同様に環境の影響を受けにくいと想定され、環境壁「無」と比較しバラツキ値は小さかった。   In the dispersion value of the coating film thickness data, it was assumed that the environmental wall “Yes” was less affected by the environment as well as indoors, and the variation value was smaller than the environmental wall “No”.

環境壁「無」の塗膜厚データが大きい所については、外壁等が極端に近接しているためと想定される。結論として、模擬試験による検電センサの「電圧有」点灯限界塗膜厚78.5μm付近に環境壁有/無データ共に存在しているため、環境壁の有無に関わらず予防塗装は必要と考えられる。   It is assumed that the outer wall is extremely close to the place where the coating thickness data of the environmental wall “No” is large. In conclusion, the presence of the environmental wall is present / absent in the vicinity of 78.5 μm of the “with voltage” lighting limit coating thickness of the voltage detection sensor in the simulation test. It is done.

図6は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無及びケーブルヘッド(CH)方位別の評価グラフである。図6では高圧配電線供給開閉設備11のケーブルヘッド12の表面に施された塗膜厚(母線カバー上部14の塗膜厚)の環境壁有無及びケーブルヘッド(CH)方位別の塗膜データを示している。ケーブルヘッド(CH)方位は紫外線の影響がどの程度あるかを調査するために考慮したものである。   FIG. 6 is an evaluation graph according to the presence / absence of an environmental wall and cable head (CH) orientation as environmental conditions of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. In FIG. 6, the coating thickness data (the coating thickness of the bus cover upper portion 14) applied to the surface of the cable head 12 of the high-voltage distribution line supply opening / closing facility 11 and the coating data by the cable head (CH) direction are shown. Show. The cable head (CH) direction is considered in order to investigate the degree of influence of ultraviolet rays.

塗膜厚データのバラツキ度合いでは、ケーブルヘッド(CH)方位に相関した傾向は確認できなかった。結論として、模擬試験による検電センサの「電圧有」の判定限界塗膜厚78.5μm付近に、どのCH方位でも共に存在しているため、CHの方位に関わらず予防塗装は必要と考えられる。   A tendency correlated with the cable head (CH) orientation could not be confirmed with the degree of variation in the coating thickness data. In conclusion, the detection sensor “voltage-existing” judgment threshold by the simulation test is present in the vicinity of the film thickness of 78.5 μm in any CH direction, and therefore it is considered that preventive coating is necessary regardless of the CH direction. .

図7は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無及び塩害区分別の評価グラフである。図7では高圧配電線供給開閉設備11のケーブルヘッド12の表面に施された塗膜厚(母線カバー上部14の塗膜厚)の環境壁有無及び塩害区分別(各地区ごと)の塗膜データを示している。また、B地区では環境壁「有」の設備がなかったのでその塗膜厚データは採取していない。   FIG. 7 is an evaluation graph according to the presence / absence of an environmental wall and a salt damage classification as the environmental conditions of the high-voltage distribution line supply switching facility targeted in the embodiment of the present invention. In FIG. 7, the coating thickness data on the surface of the cable head 12 of the high-voltage distribution line supply opening / closing facility 11 (the coating thickness of the bus cover upper part 14) and the environmental wall, and the coating data for each salt damage category (each area) Is shown. In addition, the coating thickness data is not collected because there is no equipment with an environmental wall in the B area.

塗膜厚データのバラツキ度合いでは、塩害区分が重汚損地区になるにつれ最小値が小さくなると共に、バラツキ値が大きくなる傾向が見られたが、最小値はB地区を除き100μm以下のデータとなったことから、いずれ100μm以下に達するものと思われる。結論として、模擬試験による検電センサの「電圧有」の判定限界塗膜厚78.5μm付近に塩害区分別データ内に共に存在しているため、塩害区分に関わらず予防塗装は必要と考えられる。   With regard to the degree of coating thickness variation, the minimum value decreased and the variation value tended to increase as the salt damage category became heavily fouled, but the minimum value was 100 μm or less except for the B region. Therefore, it seems that it will eventually reach 100 μm or less. As a conclusion, the judgment limit of “voltage existence” of the voltage detection sensor by the simulation test is present in the data by the salt damage classification in the vicinity of the film thickness of 78.5 μm. Therefore, preventive coating is considered necessary regardless of the salt damage classification. .

以上の評価結果から、屋内については環境の影響を受けにくいが屋外と同じ様に劣化すると考えられる。つまり、湿気や塵埃により検電センサの装置異常が発生する可能性もあるため、屋内についても予防塗装は必要と考えられる。また、環境壁有無、CH方位、塩害区分についての評価では、模擬試験による検電センサの「電圧有」の判定限界塗膜厚78.5μm付近に塗膜厚データが存在しているため、環境条件に関わらず予防塗装は必要と考えられる。   From the above evaluation results, it is considered that indoors are not easily affected by the environment but are deteriorated in the same way as outdoors. In other words, since there is a possibility that the device abnormality of the voltage detection sensor may occur due to moisture or dust, it is considered that preventive coating is necessary even indoors. In addition, in the evaluation of the presence or absence of environmental wall, CH orientation, and salt damage classification, the coating thickness data exists in the vicinity of the judgment limit coating thickness 78.5 μm of the “voltage present” of the voltage detection sensor by the simulation test. Preventive painting is considered necessary regardless of the conditions.

次に、本発明の実施の形態で対象とした高圧配電線供給開閉設備の設置後の経過年と塗膜厚とから塗膜厚減少速度を求め、環境条件ごとの経過年と塗膜厚との相関性について評価を実施した。すべての環境条件を含んだ全体データ、環境条件ごととして、屋内及び屋外、環境壁有無、塩害区分のデータについて評価した。   Next, the coating film thickness reduction rate is obtained from the elapsed year and the coating thickness after the installation of the high-voltage distribution line supply opening and closing equipment targeted in the embodiment of the present invention, and the elapsed year and coating thickness for each environmental condition The correlation was evaluated. Overall data including all environmental conditions, and for each environmental condition, we evaluated indoor and outdoor, environmental wall presence, and salt damage classification data.

図8は、本発明の実施の形態で対象とした高圧配電線供給開閉設備のすべての環境条件を含んだ全体データの塗膜厚減少速度のグラフである。塗膜厚減少速度vの算出は、塗膜厚減少速度v[μm/年]=(塗膜厚初期値−現状塗膜厚)/経過年として求めた。塗膜厚初期値は、使用した塗膜厚データの最大値208μmを参考にし、210μmに設定した。   FIG. 8 is a graph of the coating thickness reduction rate of the entire data including all the environmental conditions of the high-voltage distribution line supply switching facility targeted in the embodiment of the present invention. The calculation of the coating thickness reduction rate v was obtained as coating thickness reduction rate v [μm / year] = (initial coating thickness-current coating thickness) / elapsed year. The initial value of the coating thickness was set to 210 μm with reference to the maximum value 208 μm of the coating thickness data used.

図8から分かるように、経過年数初期は塗膜厚減少速度が大きく、その後、経過年数10年前後から塗膜厚減少速度は低下する傾向にあり、経過年数20年以降になると飽和状態になる。図8より塗膜厚減少速度は累乗関数的に分布していることから、塗膜厚減少速度vの年数(時間)tの近似式を求めると、v=At−B(A=50.58、B=0.8422)で相関係数(R)が0.714である相関関数が得られる。 As can be seen from FIG. 8, the coating thickness reduction rate is large at the beginning of the elapsed years, and then the coating thickness reduction rate tends to decrease from around 10 years, and becomes saturated after 20 years. . From FIG. 8, since the coating thickness reduction rate is distributed in a power function, an approximate expression of years (hours) t of the coating thickness reduction rate v is obtained as follows: v = At− B (A = 50.58) , B = 0.8422) and a correlation function (R 2 ) of 0.714 is obtained.

結論として、塗膜厚減少速度と経過年数とに相関性があることがわかった。そこで、高圧配電線供給開閉設備の設置環境条件別による塗膜厚減少速度−経過年数特性(v−t特性)を求め、環境条件別に塗膜厚減少速度と経過年数との相関性を評価することとした。   In conclusion, it was found that there was a correlation between the rate of decrease in coating thickness and the number of years elapsed. Therefore, the coating thickness reduction rate-elapsed years characteristics (vt characteristics) according to the installation environment conditions of the high-voltage distribution line supply switching facility is obtained, and the correlation between the coating thickness reduction rate and the elapsed years is evaluated for each environmental condition. It was decided.

図9は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の屋外と屋内別の環境条件での塗膜厚減少速度のグラフである。図9(a)は屋外の環境条件での塗膜厚減少速度のグラフ、図9(b)は屋内の環境条件での塗膜厚減少速度のグラフである。   FIG. 9 is a graph of the coating thickness reduction rate under the outdoor and indoor environmental conditions of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. FIG. 9A is a graph of the coating thickness reduction rate under outdoor environmental conditions, and FIG. 9B is a graph of the coating thickness reduction rate under indoor environmental conditions.

屋内及び屋外ともに塗膜厚減少速度は累乗関数的に分布している。塗膜厚減少速度は累乗関数的に分布していることから近似式を求めると、屋外の環境条件では、v=At−B(A=52.472、B=0.8603)で相関係数(R)が0.6805である相関関数が得られ、屋内の環境条件では、v=At−B(A=44.572、B=0.7781)で相関係数(R)が0.9078である相関関数が得られる。 The coating thickness reduction rate is distributed in a power function both indoors and outdoors. Since the coating thickness reduction rate is distributed in a power function, the approximate expression is obtained. Under the outdoor environmental conditions, the correlation coefficient is v = At− B (A = 52.472, B = 0.8603). A correlation function with (R 2 ) of 0.6805 is obtained. Under indoor environmental conditions, v = At− B (A = 44.572, B = 0.7781) and the correlation coefficient (R 2 ) is 0. A correlation function of .9078 is obtained.

結論として、屋内は相関係数が約0.91で強い相関性が認められたため、このv−t特性を適用することとする。一方、屋外は相関係数が約0.68と全体データより低いため、さらに細分化して評価をすることとする。   In conclusion, the vt characteristic is applied because indoors have a strong correlation with a correlation coefficient of about 0.91. On the other hand, since the correlation coefficient is about 0.68, which is lower than the whole data, outdoor evaluation will be further subdivided.

図10は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境壁の有無の環境条件での塗膜厚減少速度のグラフである。図10(a)は環境壁有の環境条件での塗膜厚減少速度のグラフ、図10(b)は環境壁無の環境条件での塗膜厚減少速度のグラフである。   FIG. 10 is a graph of the coating thickness reduction rate under the environmental conditions of the presence or absence of the environmental wall of the high-voltage distribution line supply opening / closing facility targeted in the embodiment of the present invention. FIG. 10A is a graph of the coating thickness reduction rate under an environmental condition with an environmental wall, and FIG. 10B is a graph of the coating thickness reduction rate under an environmental condition without an environmental wall.

環境壁の有無にかかわらず塗膜厚減少速度は累乗関数的に分布している。塗膜厚減少速度は累乗関数的に分布していることから近似式を求めると、環境壁有の環境条件では、v=At−B(A=75.001、B=0.9819)で相関係数(R)が0.8763である相関関数が得られ、環境壁無の環境条件では、v=At−B(A=50.251、B=0.843)で相関係数(R)が0.6456である相関関数が得られる。 Regardless of the presence or absence of the environmental wall, the coating thickness reduction rate is distributed in a power function. Since the coating thickness reduction rate is distributed in the form of a power function, an approximate expression is obtained. Under an environmental condition with an environmental wall, the phase is v = At− B (A = 75.001, B = 0.9819). A correlation function having a relationship number (R 2 ) of 0.8763 is obtained. Under an environmental condition without an environmental wall, v = At −B (A = 50.251, B = 0.743) and a correlation coefficient (R A correlation function with 2 ) of 0.6456 is obtained.

結論として、環境壁有については、相関係数が約0.88と強い相関性が認められたため、このv−t特性を適用することとする。一方、環境壁無については、相関係数が約0.65となり全体データより低いため、さらに細分化して評価することとする。   In conclusion, for the existence of an environmental wall, a strong correlation with a correlation coefficient of about 0.88 was recognized, so this vt characteristic is applied. On the other hand, when there is no environmental wall, the correlation coefficient is about 0.65, which is lower than the whole data.

図11は、本発明の実施の形態で対象とした高圧配電線供給開閉設備の塩害区分の環境条件での塗膜厚減少速度のグラフである。図11(a)は塩害区分B地区の環境条件での塗膜厚減少速度のグラフ、図11(b)は塩害区分C地区の環境条件での塗膜厚減少速度のグラフ、図11(c)は塩害区分D地区の環境条件での塗膜厚減少速度のグラフ、図11(d)は塩害区分E地区の環境条件での塗膜厚減少速度のグラフである。   FIG. 11 is a graph of the coating thickness reduction rate under the environmental conditions of the salt damage classification of the high-voltage distribution line supply switching facility targeted in the embodiment of the present invention. FIG. 11A is a graph of the coating thickness reduction rate under the environmental conditions in the salt damage category B area, FIG. 11B is a graph of the coating thickness reduction rate under the environmental conditions in the salt damage category C area, and FIG. ) Is a graph of the coating thickness reduction rate under the environmental conditions in the salt damage category D area, and FIG. 11D is a graph of the coating thickness reduction rate under the environmental conditions in the salt damage category E area.

塩害区分の各地区の塗膜厚減少速度は累乗関数的に分布しているとして近似式を求めると、塩害区分B地区の環境条件では、v=At−B(A=14.413、B=0.5023)で相関係数(R)が0.3604である相関関数が得られ、塩害区分C地区の環境条件では、v=At−B(A=27.113、B=0.6404)で相関係数(R)が0.752である相関関数が得られ、塩害区分D地区の環境条件では、v=At−B(A=99.286、B=1.1086)で相関係数(R)が0.8379である相関関数が得られ、塩害区分E地区の環境条件では、v=At−B(A=65.781、B=0.9048)で相関係数(R)が0.8031である相関関数が得られる。 When an approximate expression is obtained on the assumption that the coating thickness reduction rate in each zone of the salt damage category is distributed as a power function, v = At− B (A = 14.413, B = 0.5023) and a correlation function with a correlation coefficient (R 2 ) of 0.3604 is obtained, and v = At− B (A = 27.113, B = 0.6404 under the environmental conditions of the salt damage category C area. ) To obtain a correlation function having a correlation coefficient (R 2 ) of 0.752. Under the environmental conditions in the salt damage category D area, v = At− B (A = 99.286, B = 1.1086). A correlation function having a relational number (R 2 ) of 0.8379 is obtained. Under the environmental conditions in the salt damage category E area, the correlation coefficient (v = At− B (A = 65.781, B = 0.09048)) A correlation function with R 2 ) of 0.8031 is obtained.

相関係数(R)について評価すると、塩害区分CDE地区については、相関係数が0.75〜0.84となり強い相関性が認められた。一方、塩害区分B地区については、データ数が少ないため信頼性の高い評価はできない。 When the correlation coefficient (R 2 ) was evaluated, the correlation coefficient was 0.75 to 0.84 and a strong correlation was recognized for the salt damage classification CDE area. On the other hand, the salt damage category B area cannot be evaluated with high reliability because the number of data is small.

結論として、塩害区分D地区のv−t特性は他の塩害区分BCE地区と比較し、塗膜厚減少速度が大きいため、これを採用すると塗膜厚減少速度に対する安全率が高い。よって、環境壁無については相関係数(R)が高く、また塗膜厚減少速度が大きい塩害区分D地区のv−t特性を使うこととする。 In conclusion, the vt characteristic of the salt damage category D area has a higher coating thickness reduction rate than other salt damage category BCE districts, so that when this is adopted, the safety factor for the coating thickness reduction rate is high. Therefore, the VT characteristic of the salt damage division D district where the correlation coefficient (R 2 ) is high and the coating thickness reduction rate is large is used for the case of no environmental wall.

以上の塗膜厚減少速度の評価結果から、塗膜厚減少に影響を与える評価環境条件として、下記の3種類のv−t特性を適用することとした。   From the above evaluation results of the coating thickness reduction rate, the following three types of vt characteristics were applied as the evaluation environmental conditions affecting the coating thickness reduction.

(イ)屋内
(ロ)屋外で環境壁有
(ハ)屋外で環境壁無
なお、屋外で環境壁無については、塩害区分D地区のv−t特性を適用することとする。これは、塩害区分D地区のv−t特性は、塗膜厚減少速度が大きいため、これを採用すると塗膜厚減少速度に対する安全率が高いからである。
(A) Indoor (b) With an environmental wall outdoors (c) Without an environmental wall outdoors With no environmental wall outdoors, the VT characteristics of the salt damage category D district shall be applied. This is because the vt characteristic in the salt damage category D area has a high coating thickness reduction rate, and if this is adopted, the safety factor against the coating thickness reduction rate is high.

次に、評価環境条件ごとに経年変化に伴う塗膜厚減少速度の相関関数を求める。この相関関数は、塗膜厚減少速度が累乗関数的に分布していることから下記の(1)式で示される近似式とし、評価環境条件ごとの塗膜厚減少速度データから定数A、Bを定め、評価環境条件ごとの相関関数を求める。   Next, a correlation function of the coating thickness reduction rate with aging is obtained for each evaluation environmental condition. This correlation function is an approximate expression expressed by the following equation (1) because the coating thickness reduction rate is distributed in a power function, and constants A and B are obtained from the coating thickness reduction rate data for each evaluation environmental condition. And a correlation function for each evaluation environmental condition is obtained.

[数1]
v=At−B
図12は、(1)式の相関関数の一例を示すグラフである。この相関関数に基づいて将来の塗膜厚を推定することになる。いま、現時点がm(t=m)であり、現時点m(t=m)での塗膜厚がTmであるとする。現時点m(t=m)からy年後の将来経過年をn(t=n、n>m)とし、その将来経過年nの塗膜厚をTnとすると、将来塗膜厚Tnは下記の(2)式で示される。

Figure 2009229217
[Equation 1]
v = At- B
FIG. 12 is a graph showing an example of the correlation function of equation (1). The future coating thickness is estimated based on this correlation function. Now, suppose that the present time is m (t = m) and the coating thickness at the current m (t = m) is Tm. When the future elapsed year y years after the current m (t = m) is n (t = n, n> m), and the coating thickness of the future elapsed year n is Tn, the future coating thickness Tn is as follows: It is shown by the formula (2).
Figure 2009229217

そして、求めた相関関数に基づいて将来の塗膜厚Tnを推定する。例えば、屋内の環境条件では、図9(b)で示したように、塗膜厚減少速度データから(1)式の定数A、Bは、A=52.472、B=0.8603として得られるので、(1)式に、A=52.472、B=0.8603を代入した相関関数を用いて将来塗膜厚Tnを推定する。   And the future coating film thickness Tn is estimated based on the calculated | required correlation function. For example, under indoor environmental conditions, as shown in FIG. 9B, the constants A and B in the formula (1) are obtained as A = 52.472 and B = 0.8603 from the coating thickness reduction rate data. Therefore, the future coating thickness Tn is estimated using a correlation function in which A = 52.472 and B = 0.8603 are substituted into the equation (1).

同様に、屋外で環境壁有の環境条件では、図10(a)で示したように、塗膜厚減少速度データから(1)式の定数A、Bは、A=75.001、B=0.9819として得られるので、(1)式に、A=75.001、B=0.9819を代入した相関関数を用いて将来塗膜厚Tnを推定する。   Similarly, under the environmental conditions with an environmental wall outdoors, as shown in FIG. 10A, the constants A and B in the formula (1) are A = 75.001 and B = Since it is obtained as 0.9819, the future coating thickness Tn is estimated using a correlation function obtained by substituting A = 75.001 and B = 0.9819 into the equation (1).

また、屋外で環境壁無の環境条件では、図11(c)で示したように、塗膜厚減少速度データから(1)式の定数A、Bは、A=99.286、B=1.1086として得られるので、(1)式に、A=99.286、B=1.1086を代入した相関関数を用いて将来塗膜厚Tnを推定する。   Further, under environmental conditions without an environmental wall outdoors, as shown in FIG. 11C, the constants A and B in the formula (1) are A = 99.286 and B = 1 as shown in the coating thickness reduction rate data. .1086, the future coating thickness Tn is estimated using a correlation function in which A = 99.286 and B = 1.1086 are substituted into equation (1).

このように、現状の塗膜厚Tmを採取したデータと経過年数とから、塗装厚減少速度vは一定ではなく、経過年数初期は塗膜厚減少速度が大きく、経過年数tが増えるほど減少速度が少なくなるデータが得られた。また、設備の設置環境条件で相関係数(R)の強かった3分類「屋内」「屋外−環境壁有」「屋外−環境壁無」の年間の塗膜厚減少速度vについて累乗関数的に分布していることから、(1)式に基づく相関関数を求め、その相関関数を用いて年間の塗膜厚減少速度vを算出することにより、塗膜の劣化スピードが予測可能となった。 Thus, from the data obtained from the current coating thickness Tm and the elapsed years, the coating thickness reduction rate v is not constant, the coating thickness reduction rate is large at the beginning of the elapsed years, and the reduction rate as the elapsed time t increases. Data with less was obtained. In addition, the annual coating thickness reduction rate v of the three categories “indoor”, “outdoor-environmental wall present”, and “outdoor-environmental wall-free” of the three classifications having a strong correlation coefficient (R 2 ) in the installation environment conditions of the equipment Therefore, by calculating the correlation function based on the equation (1) and calculating the annual coating thickness reduction rate v using the correlation function, the coating film deterioration speed can be predicted. .

図13は、図1に示した塗膜厚推定方法で推定した将来の塗膜厚Tnに基づいて、被保護部材に塗料を再塗装する予防塗装時期を求める場合の工程を示す流れ図である。図13において、工程S1〜工程S4までは図1と同じであるので重複する説明は省略する。工程S5において、将来の塗膜厚Tnに基づいて、被保護部材の保全のための再塗装時期を判断するにあたっては、(2)式の将来塗膜厚Tnに予め定めた再塗装の管理値Tcを代入し、将来経過年nについて解いた(3)式により再塗装時期を判定する。

Figure 2009229217
FIG. 13 is a flowchart showing a process in the case of obtaining a preventive coating time for repainting the coating material to be protected based on the future coating thickness Tn estimated by the coating thickness estimation method shown in FIG. In FIG. 13, steps S1 to S4 are the same as those in FIG. In step S5, in determining the repainting time for the maintenance of the protected member based on the future coating thickness Tn, the repainting control value predetermined for the future coating thickness Tn in equation (2) is used. Substituting Tc, the repainting time is determined by equation (3) solved for the future elapsed year n.
Figure 2009229217

再塗装の管理値Tcは、例えば、検電センサ15の「電圧有」の判定限界塗膜厚78.5μmに余裕を見込んだ100μmを用いる。(3)式より将来経過年nを求め、現時点mから減算して、現時点よりの再塗装時期y(=n−m)を求める。これにより、適正に被保護部材の保全を行うことができる。   As the repainting control value Tc, for example, 100 μm is used in which a margin is expected for the judgment limit coating film thickness 78.5 μm of the “voltage present” of the voltage detection sensor 15. A future elapsed year n is obtained from the equation (3), and is subtracted from the current time m to obtain a repainting time y (= nm) from the current time. Thereby, a to-be-protected member can be maintained appropriately.

図14は、図1に示した塗膜厚推定方法で推定した将来の塗膜厚Tnに基づいて、被保護部材の塗膜の寿命を予測する工程を示す流れ図である。図14において、工程S1〜工程S4までは図1と同じであるので重複する説明は省略する。工程S5’において、将来の塗膜厚Tnに基づいて、被保護部材の塗膜の寿命を予測するにあたっては、(2)式の将来塗膜厚Tnに検電センサ15の「電圧有」の判定限界塗膜厚78.5μmを代入し、将来経過年nについて解いた(3)式により被保護部材の塗膜の寿命を予測する。   FIG. 14 is a flowchart showing a process of predicting the lifetime of the coating film of the protected member based on the future coating thickness Tn estimated by the coating thickness estimation method shown in FIG. In FIG. 14, steps S1 to S4 are the same as those in FIG. In step S5 ′, in predicting the life of the coating film of the member to be protected based on the future coating thickness Tn, the “voltage present” of the voltage detection sensor 15 is added to the future coating thickness Tn of equation (2). Substituting the judgment limit coating film thickness of 78.5 μm, the lifetime of the coating film of the protected member is predicted by the equation (3) solved for the future elapsed year n.

図15は、図1に示した塗膜厚推定方法で推定した将来の塗膜厚Tnに基づいて、設備の耐用年数に応じて新規に設置する同種の設備の被保護部材の塗膜厚を決定する工程を示す流れ図である。図15において、工程S1〜工程S4までは図1と同じであるので重複する説明は省略する。工程S5”において、将来の塗膜厚Tnに基づいて、設備の耐用年数に応じて新規に設置する同種の設備の被保護部材の塗膜厚を決定するにあたっては、(2)式の将来塗膜厚Tnに検電センサ15の「電圧有」の判定限界塗膜厚78.5μmを代入し、将来経過年nについて解いた(3)式により、設備の耐用年数に応じて新規に設置する同種の設備の被保護部材の塗膜厚を決定する。これにより、設備の耐用年数に応じた塗膜厚とすることができる。   FIG. 15 shows the coating thickness of the protected member of the same type of equipment newly installed according to the service life of the equipment based on the future coating thickness Tn estimated by the coating thickness estimation method shown in FIG. It is a flowchart which shows the process to determine. In FIG. 15, steps S1 to S4 are the same as those in FIG. In step S5 ″, when determining the coating thickness of the protected member of the same type of equipment to be newly installed according to the service life of the equipment based on the future coating thickness Tn, Substituting 78.5 μm of the judgment limit coating thickness of “voltage present” of the voltage detection sensor 15 into the film thickness Tn, and newly installing it according to the service life of the equipment by the equation (3) solved for the future elapsed year n Determine the coating thickness of the protected member of the same type of equipment. Thereby, it can be set as the coating-film thickness according to the lifetime of an installation.

本発明の実施の形態によれば、設備の置かれた環境条件に応じて、その環境条件下での経年変化に伴う塗膜厚減少速度の相関関数に基づいて将来の塗膜厚を推定するので、より適切に効率的に被保護部材の塗膜厚を推定できる。環境条件に応じて経年変化により減少する被保護部材の塗膜厚を適切に推定できることから、被保護部材の塗膜厚の保全を適正に行え、被保護部材の塗膜の寿命を容易に推定できる。さらには、設備の耐用年数に応じた被保護部材の塗膜厚の決定を容易に行える。   According to the embodiment of the present invention, the future coating thickness is estimated based on the correlation function of the coating thickness reduction rate with the secular change under the environmental condition according to the environmental condition where the equipment is placed. Therefore, the coating thickness of the protected member can be estimated more appropriately and efficiently. Since the coating thickness of the protected member that decreases due to aging according to environmental conditions can be estimated appropriately, the coating thickness of the protected member can be properly maintained and the coating life of the protected member can be easily estimated it can. Furthermore, the coating thickness of the protected member can be easily determined according to the service life of the equipment.

本発明の実施の形態に係わる塗膜厚推定方法の工程を示す流れ図。The flowchart which shows the process of the coating-film thickness estimation method concerning embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の外観図。The external view of the high voltage distribution line supply opening / closing facility made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備のケーブルヘッドに設置された検電センサの説明図。Explanatory drawing of the voltage detection sensor installed in the cable head of the high voltage distribution line supply opening / closing facility made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として屋内と屋外の評価グラフ。The indoor and outdoor evaluation graph as an environmental condition of the high-voltage distribution line supply opening and closing equipment targeted in the embodiment of the present invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無の評価グラフ。The evaluation graph of the presence or absence of an environmental wall as an environmental condition of the high-voltage distribution line supply opening and closing equipment targeted in the embodiment of the present invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無及びケーブルヘッド(CH)方位別の評価グラフ。The evaluation graph according to the presence or absence of an environmental wall and a cable head (CH) direction as an environmental condition of the high-voltage distribution line supply opening / closing facility which was made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境条件として環境壁有無及び塩害区分別の評価グラフ。The evaluation graph according to the presence or absence of an environmental wall and a salt damage classification as an environmental condition of the high voltage distribution line supply opening and closing equipment which was made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備のすべての環境条件を含んだ全体データの塗膜厚減少速度のグラフ。The graph of the coating-film thickness reduction rate of the whole data including all the environmental conditions of the high voltage distribution line supply opening / closing equipment made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の屋外と屋内別の環境条件での塗膜厚減少速度のグラフ。The graph of the coating-film thickness reduction | decrease rate in the outdoor and indoor environmental conditions of the high voltage distribution line supply opening / closing equipment made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の環境壁の有無の環境条件での塗膜厚減少速度のグラフ。The graph of the coating-film thickness reduction | decrease rate in the environmental conditions of the presence or absence of the environmental wall of the high voltage distribution line supply opening / closing equipment made into object by embodiment of this invention. 本発明の実施の形態で対象とした高圧配電線供給開閉設備の塩害区分の環境条件での塗膜厚減少速度のグラフ。The graph of the coating-film thickness reduction | decrease rate in the environmental condition of the salt damage classification of the high voltage distribution line supply switching equipment made into object by embodiment of this invention. 本発明の実施の形態における相関関数の一例を示すグラフ。The graph which shows an example of the correlation function in embodiment of this invention. 本発明の実施の形態に係わる塗膜保全方法の工程を示す流れ図。The flowchart which shows the process of the coating-film maintenance method concerning embodiment of this invention. 本発明の実施の形態に係わる塗膜寿命予想方法の工程を示す流れ図。The flowchart which shows the process of the coating-film lifetime prediction method concerning embodiment of this invention. 本発明の実施の形態に係わる塗膜厚決定方法の工程を示す流れ図。The flowchart which shows the process of the coating-film thickness determination method concerning embodiment of this invention.

符号の説明Explanation of symbols

11…高圧配電線供給開閉設備、12…ケーブルヘッド、13…電力ケーブル、14…母線カバー上部、15…検電センサ、16…主回路導体、17…モールド層、18…メタリコン層、19…保護塗装膜、20…電圧判定部、21…整流波形整形手段、22…判定手段、23…出力リレー DESCRIPTION OF SYMBOLS 11 ... High voltage distribution line supply opening and closing equipment, 12 ... Cable head, 13 ... Electric power cable, 14 ... Bus-bar cover upper part, 15 ... Electric detection sensor, 16 ... Main circuit conductor, 17 ... Mold layer, 18 ... Metallicon layer, 19 ... Protection Paint film 20 ... Voltage determination unit 21 ... Rectified waveform shaping means 22 ... Determination means 23 ... Output relay

Claims (4)

設備の被保護部材の表面に塗膜を形成し設備の置かれた環境条件から経年変化した塗膜厚を計測し、計測した塗膜厚に基づいて環境条件のうち塗膜厚減少に影響を与える環境条件を評価環境条件として抽出し、抽出した評価環境条件下での経年変化に伴う塗膜厚減少速度の相関関数を求め、求めた相関関数に基づいて将来の塗膜厚を推定することを特徴とする塗膜厚推定方法。   A coating film is formed on the surface of the protected member of the equipment, and the coating thickness that has changed over time is measured from the environmental conditions in which the equipment is placed. The environmental conditions to be given are extracted as the evaluation environmental conditions, the correlation function of the coating thickness reduction rate with aging under the extracted evaluation environmental conditions is obtained, and the future coating thickness is estimated based on the obtained correlation function A coating thickness estimation method characterized by 請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、被保護部材に塗料を再塗装し被保護部材の保全を行うことを特徴とする塗膜保全方法。   A coating film maintenance method comprising: repainting a member to be protected and maintaining the member to be protected based on a future coating thickness estimated by the coating thickness estimation method according to claim 1. 請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、被保護部材の塗膜の寿命を予測することを特徴とする塗膜寿命予測方法。   A coating film life prediction method characterized by predicting a coating film life of a member to be protected based on a future coating film thickness estimated by the coating film thickness estimation method according to claim 1. 請求項1の塗膜厚推定方法で推定した将来の塗膜厚に基づいて、設備の耐用年数に応じて新規に設置する同種の設備の被保護部材の塗膜厚を決定することを特徴とする塗膜厚決定方法。   Based on the future coating thickness estimated by the coating thickness estimation method of claim 1, the coating thickness of the protected member of the same type of equipment newly installed is determined according to the service life of the equipment, How to determine the coating thickness to be used.
JP2008074376A 2008-03-21 2008-03-21 Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film Pending JP2009229217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074376A JP2009229217A (en) 2008-03-21 2008-03-21 Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074376A JP2009229217A (en) 2008-03-21 2008-03-21 Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film

Publications (1)

Publication Number Publication Date
JP2009229217A true JP2009229217A (en) 2009-10-08

Family

ID=41244795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074376A Pending JP2009229217A (en) 2008-03-21 2008-03-21 Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film

Country Status (1)

Country Link
JP (1) JP2009229217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178271A (en) * 2013-05-16 2013-09-09 Hitachi Cable Ltd Life inspection method of cable coating material
RU2683156C2 (en) * 2015-12-30 2019-03-26 Общество с ограниченной ответственностью "Инновационно-технологический центр "НАНОМЕР" Device for diagnosing and predicting of parameters of quality of coatings produced by method of microarging oxidation
JP2020148666A (en) * 2019-03-14 2020-09-17 東日本電信電話株式会社 Estimation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178271A (en) * 2013-05-16 2013-09-09 Hitachi Cable Ltd Life inspection method of cable coating material
RU2683156C2 (en) * 2015-12-30 2019-03-26 Общество с ограниченной ответственностью "Инновационно-технологический центр "НАНОМЕР" Device for diagnosing and predicting of parameters of quality of coatings produced by method of microarging oxidation
JP2020148666A (en) * 2019-03-14 2020-09-17 東日本電信電話株式会社 Estimation device

Similar Documents

Publication Publication Date Title
Biryulin et al. Method for cable lines insulation monitoring
CN105324900B (en) The method and apparatus of the early warning of the defects of for power equipment
Rigatos et al. Power transformers’ condition monitoring using neural modeling and the local statistical approach to fault diagnosis
US20220128539A1 (en) A sensor for transformer condition assessment
JP7241476B2 (en) Short-circuit remaining life diagnostic method and short-circuit remaining life diagnostic system for power receiving and distributing equipment
CN112611924B (en) Method for evaluating service life of circuit breaker mechanism
US11067639B2 (en) Trending functions for predicting the health of electric power assets
JP2009229217A (en) Thickness estimation method of coating film, coating film preserving method, life estimation method of coating film and thickness determining method of coating film
Hassan et al. Effects of temperature and pressure on failure risk of electric motors based on partial discharge measurements
US20120197559A1 (en) Method of predicting probability of abnormality occurrence in oil-filled electrical device
KR101600698B1 (en) System and Method for Predicting Life of Power Transformer
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
KR101798531B1 (en) System for managementing electrical equipment knowledge based risk management
JP4932759B2 (en) Corrosion risk measurement and evaluation method for buried metal pipelines
KR20220055323A (en) Method and apparatus for determining risk of deterioration of electric lines
KR101413788B1 (en) Method and apparratus of malfunction detection of transformer
Radionov et al. Monitoring partial discharges in stationary condition monitoring system of furnace transformer
Atanasov et al. Changes of iron losses during the service of distribution transformers
Golubev et al. On-line partial discharge applications to MV electrical switchgear
Brazis Jr et al. Effectiveness of circuit breakers in mitigating parallel arcing faults in the home run
Dmitriev et al. Partial Discharges: Physics and Classification
FUJITA et al. Quantitative Evaluation Method of Measures for Prolonging Lifetime of Electronic Signalling Equipment
Mircea et al. Optimization techniques for improving the preventive maintenance on power transformers
Popov et al. Electrometric diagnostics of corrosion protection for linear sections of gas main pipelines
Didden et al. Geographic generalization of limited voltage sag monitoring data