JP2009228706A - Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device - Google Patents

Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device Download PDF

Info

Publication number
JP2009228706A
JP2009228706A JP2008071938A JP2008071938A JP2009228706A JP 2009228706 A JP2009228706 A JP 2009228706A JP 2008071938 A JP2008071938 A JP 2008071938A JP 2008071938 A JP2008071938 A JP 2008071938A JP 2009228706 A JP2009228706 A JP 2009228706A
Authority
JP
Japan
Prior art keywords
pressure
injection
mold clamping
hydraulic
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008071938A
Other languages
Japanese (ja)
Inventor
Shigeru Takakura
茂 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Plustech Co Ltd
Original Assignee
Sodick Plustech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Plustech Co Ltd filed Critical Sodick Plustech Co Ltd
Priority to JP2008071938A priority Critical patent/JP2009228706A/en
Publication of JP2009228706A publication Critical patent/JP2009228706A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact pressure absorbing device releasing pressure so as not to generate surge pressure in a returning pipe returning to an oil tank when a servo valve that high speed controls a driving device of a hydraulic control device including an accumulator is switched, and to provide an injection control circuit or a clamping control circuit including the impact pressure absorbing device. <P>SOLUTION: The impact pressure absorbing having a bladder filled with atmospheric pressure and a coupling member in a hollow space comprises; a linear through-hole generally linearly communicating from an external pipe to the hollow space on the coupling member; a bending member positioned in the middle of the linear through-hole, and changing a direction of a flow of hydraulic fluid flowing into the hollow space to a direction which does not directly hitting the bladder; and a branch through-hole branching off from the linear through-hole to the external pipe in a generally right angle direction. The surge pressure generated in the returning pipe is temporary absorbed in the hollow space. The impact pressure absorbing device is provided in the middle of a depressed pipe provided adjacently to a supplying pipe of the injection control circuit or the clamping control circuit, and make full use of its function. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、油圧制御装置の配管中を通過する油圧作動油が過渡的に高圧になったときに、その高圧を一時的に吸収する衝撃圧吸収装置に関する。また、本発明は、油圧シリンダを制御するサーボ弁からオイルタンクに至る圧抜き配管ラインに取り付けられて、そのサーボ弁の切り換えに伴ってその圧抜き配管で生じた油圧作動油のサージ圧を吸収する衝撃圧吸収装置を含む射出装置の射出制御回路及び型締装置の型締制御回路に関する。   The present invention relates to an impact pressure absorbing device that temporarily absorbs high pressure when hydraulic hydraulic fluid passing through a pipe of a hydraulic control device becomes transiently high in pressure. Further, the present invention is attached to a pressure relief piping line from the servo valve that controls the hydraulic cylinder to the oil tank, and absorbs the surge pressure of the hydraulic fluid generated in the pressure relief piping when the servo valve is switched. The present invention relates to an injection control circuit of an injection device including an impact pressure absorbing device and a mold clamping control circuit of a mold clamping device.

油圧ポンプ等の油圧源から油圧シリンダに至る配管ラインの途中にサーボ弁を設けて、その油圧シリンダのピストンロッドの動作をそのサーボ弁によって切り換えて駆動制御する油圧制御装置において、特にそのピストンロッドの動作を高速化するために、油圧源とサーボ弁の間の配管ラインの途中にアキュムレータを設けて、そのアキュムレータに蓄圧した高圧多量の油圧作動油(以下、単に作動油と言う。)を油圧シリンダに一気に供給する油圧制御装置がある。そのような油圧制御装置は、例えば射出成形機の射出装置に採用されて、射出プランジャを高速駆動して射出シリンダ装置中の可塑化された成形樹脂を金型装置内のキャビティに高速に充填する。   In a hydraulic control device in which a servo valve is provided in the middle of a piping line from a hydraulic power source such as a hydraulic pump to a hydraulic cylinder, and the operation of the piston rod of the hydraulic cylinder is switched by the servo valve to control the drive, In order to speed up the operation, an accumulator is provided in the middle of the piping line between the hydraulic power source and the servo valve, and a large amount of high-pressure hydraulic fluid (hereinafter simply referred to as hydraulic fluid) accumulated in the accumulator is hydraulic cylinder. There is a hydraulic control device that supplies at once. Such a hydraulic control device is employed, for example, in an injection device of an injection molding machine, and the injection plunger is driven at high speed to fill the cavity in the mold device with plasticized molding resin in the injection cylinder device at high speed. .

そのようなアキュムレータを含む射出成形機の油圧制御装置では、油圧シリンダに供給する作動油の供給方向切換と流量制御がサーボ弁によって高応答かつ高精密に行われる。それで、溶融樹脂の充填開始と完了のタイミングが高応答に切り換えられるとともに充填速度が高速高精密に制御されて、例えば、薄物成形において狭いキャビティの末端にまで溶融樹脂を充填することや過充填を避けることなどが可能になる。したがって、そのような高速高精度な充填制御は、近時の導光板等の薄肉精密成形品の成形では欠かせない成形技術となっている。   In a hydraulic control device for an injection molding machine including such an accumulator, the supply direction switching of the hydraulic oil supplied to the hydraulic cylinder and the flow rate control are performed with high response and high precision by a servo valve. Therefore, the timing of starting and completing the filling of the molten resin is switched to a high response, and the filling speed is controlled at high speed and high precision, for example, filling the molten resin to the end of a narrow cavity or overfilling in thin molding. It can be avoided. Therefore, such high-speed and high-precision filling control has become a molding technique that is indispensable for molding thin-walled precision molded products such as a recent light guide plate.

しかしながら、射出開始速度の急速立ち上げと充填完了間際の充填圧力の急速脱圧制御がサーボ弁の切り換え性能の限界近くで行われるようになってきたために、その切り換えの際に配管ライン中に生じるサージ圧がより激しくなってきた。例えば、充填開始の際にサーボ弁を急速に切り換えて作動油を射出側油室(通常ヘッド側油室)に一気に供給するときに、その射出側油室に通じる配管ラインと後退側油室(通常ロッド側油室)に通じる配管ラインの、いずれでもサージ圧を発生した。また、樹脂の充填完了とともに射出側油室の充填圧力を急速に脱圧するときに、その充填圧力がその供給配管ラインの中でサージ圧を発生した。   However, since the rapid start-up of the injection start speed and the quick depressurization control of the filling pressure just before the completion of filling are performed near the limit of the switching performance of the servo valve, it occurs in the piping line at the time of the switching. The surge pressure has become more intense. For example, when supplying the hydraulic oil to the injection side oil chamber (usually the head side oil chamber) at once by switching the servo valve rapidly at the start of filling, the piping line leading to the injection side oil chamber and the reverse side oil chamber ( Surge pressure was generated in any piping line that normally leads to the rod side oil chamber. Moreover, when the filling pressure of the injection side oil chamber was rapidly released along with the completion of the filling of the resin, the filling pressure generated a surge pressure in the supply piping line.

そこで、上記のような問題を解決するために、特許文献1(特公平7−4846号公報)が提唱されている。その文献の射出成形機の油圧制御装置は、射出駆動用の補助動力用蓄圧器の他に、小型蓄圧器を供給側圧油配管と戻り側圧油配管の両方に備えた装置である。その油圧制御装置は、従来のように、射出スクリュを進退させる油圧シリンダ装置(射出シリンダ)と、その油圧シリンダ装置と油圧ポンプの間に設けられたサーボ弁と、そのサーボ弁とポンプの間の供給側圧油配管と、そのサーボ弁とオイルタンクの間の戻り側の圧油配管と、その供給側圧油配管の途中の補助動力用蓄圧器とを備えたうえに、それら供給側圧油配管と戻り側圧油配管の途中に高圧を吸収する小型蓄圧器をそれぞれ備えている。そして、それらの小型蓄圧器が、できるだけその射出シリンダの直近に取り付けられている。   Therefore, Patent Document 1 (Japanese Patent Publication No. 7-4846) has been proposed to solve the above problems. The hydraulic control device for an injection molding machine in that document is a device provided with a small pressure accumulator in both a supply-side pressure oil pipe and a return-side pressure oil pipe in addition to an auxiliary power accumulator for injection driving. The hydraulic control device includes a hydraulic cylinder device (injection cylinder) for advancing and retracting an injection screw, a servo valve provided between the hydraulic cylinder device and the hydraulic pump, and a servo valve between the servo valve and the pump, as in the past. In addition to the supply-side pressure oil piping, the return-side pressure oil piping between the servo valve and the oil tank, and the auxiliary power accumulator in the middle of the supply-side pressure oil piping, the supply-side pressure oil piping and return A small pressure accumulator that absorbs high pressure is provided in the middle of the side pressure oil piping. These small pressure accumulators are attached as close as possible to the injection cylinder.

それら文献の油圧制御装置では、油圧シリンダ装置の前後の油室が一つのサーボ弁に接続され、そのサーボ弁の一次側に作動油の供給用の圧油配管と戻り用の圧油配管が一組接続されている。そして、それらの圧油配管の両方に小型蓄圧器がそれぞれ設けられて、特に、供給用の圧油配管では補助動力用蓄圧器と小型蓄圧器が直列に配置されている。このような構成によって、充填開始時には、供給圧油配管で生じる衝撃圧と戻り用圧油配管で付随して生じる衝撃圧とが、それぞれの小型蓄圧器の協働作用によって吸収される。また、充填完了時には、供給圧油配管で生じやすい、高速圧油流れを遮断することによる衝撃圧に因る圧力ハンチングが、主として供給圧油配管の小型蓄圧器によって吸収される。このような油圧制御装置は、他に、特許文献2(特許2591885号公報)にも開示されている。   In these hydraulic control devices, the oil chambers before and after the hydraulic cylinder device are connected to one servo valve, and a hydraulic oil supply line and a return pressure oil pipe are connected to the primary side of the servo valve. Pair connected. A small pressure accumulator is provided in each of these pressure oil pipes. In particular, in the pressure oil pipe for supply, the auxiliary power pressure accumulator and the small pressure accumulator are arranged in series. With such a configuration, at the start of filling, the impact pressure generated in the supply pressure oil piping and the impact pressure generated in the return pressure oil piping are absorbed by the cooperative action of the respective small pressure accumulators. Further, when filling is completed, pressure hunting due to the impact pressure caused by blocking the high-speed pressure oil flow, which is likely to occur in the supply pressure oil piping, is mainly absorbed by the small pressure accumulator of the supply pressure oil piping. Such a hydraulic control device is also disclosed in Patent Document 2 (Japanese Patent No. 2591885).

ただし、それら文献では、蓄圧器そのものの説明がない。したがって、その蓄圧器は従来の標準的なものである。   However, these documents do not describe the pressure accumulator itself. Therefore, the accumulator is a conventional standard one.

その従来の蓄圧器は、図6と図7に示されるプラダ式のアキュムレータである。図中、図6の中心線より上側半分の図が、プラダと中空空間に高圧ガスと作動油が未充填である状態を示し、下側半分の図が、プラダと中空空間に高圧ガスと作動油が充填済みである状態を示している。また、図7(a)が、プラダに高圧ガスが充填済みであるが中空空間に作動油が未だ蓄圧されていない状態を示し、図7(b)が、プラダに高圧ガスが充填済みであって中空空間に作動油の蓄圧がまさに開始された状態を示している。   The conventional pressure accumulator is a Prada-type accumulator shown in FIGS. In the figure, the upper half of the center line in FIG. 6 shows the state where the high pressure gas and hydraulic oil are not filled in the prada and the hollow space, and the lower half of the drawing shows the high pressure gas and the operation in the prada and the hollow space. The state where oil is filled is shown. FIG. 7A shows a state where the high pressure gas is filled in the prada, but no hydraulic oil is accumulated in the hollow space, and FIG. 7B shows that the high pressure gas is filled in the prada. This shows a state in which hydraulic oil pressure accumulation has just started in the hollow space.

そのプラダ式アキュムレータ1は、円筒管の両端を略半球状に絞った中空容器2と、その一端に取り付けられた高圧ガスの封入部材3と、その部材を介して高圧ガスが封入されるプラダ4と、もう一端に取り付けられてその中空容器の中空空間2aと外部配管(図示省略)とを連通する透孔5aを有する連結部材5とを含む。そして、その連結部材の透孔5aを開閉するポペット弁6が、圧縮コイルばね7によって中空空間2a側に向かって弾性的に付勢された状態で設けられる。より詳細には、連結部材5の透孔5aを途中で仕切る隔壁5bの中心位置にポペット弁6が進退自在に取り付けられ、そのポペット弁の軸周りに圧縮コイルばね7が装着される。そして、隔壁5bのポペット弁6装着孔の外側に、複数個の副透孔5cが円周上に等間隔に形成されて透孔5aに一直線をなして連通している。また、必要に応じて、径違いブッシュに相当するブッシュ部材8が取り付けられて、外部配管の配管径に合わせた接続を可能にしている。連結部材5と中空容器2とは、容器外側のねじ部材9aと容器内側の係止部材9bとそれらの間のOリング等のシール部材10とによって液封状態で固定されている。   The Prada accumulator 1 includes a hollow container 2 in which both ends of a cylindrical tube are squeezed into a substantially hemispherical shape, a high-pressure gas sealing member 3 attached to one end thereof, and a prada 4 in which high-pressure gas is sealed via the member. And a connecting member 5 having a through hole 5a that is attached to the other end and communicates the hollow space 2a of the hollow container and an external pipe (not shown). And the poppet valve 6 which opens and closes the through-hole 5a of the connecting member is provided in a state where it is elastically biased toward the hollow space 2a by the compression coil spring 7. More specifically, the poppet valve 6 is attached to the center position of the partition wall 5b that partitions the through-hole 5a of the connecting member 5 in the middle, and the compression coil spring 7 is attached around the axis of the poppet valve. A plurality of sub through holes 5c are formed at equal intervals on the circumference outside the poppet valve 6 mounting hole of the partition wall 5b, and communicate with the through holes 5a in a straight line. In addition, a bush member 8 corresponding to a different diameter bush is attached as necessary to enable connection according to the pipe diameter of the external pipe. The connecting member 5 and the hollow container 2 are fixed in a liquid-sealed state by a screw member 9a outside the container, a locking member 9b inside the container, and a seal member 10 such as an O-ring between them.

このような構成によって、アキュムレータ1は、高圧ガスの充填によって膨張したプラダ4が作動油によって図6の下半分のように収縮して、プラダ4と中空容器2の間の中空空間2aに作動油を蓄圧する。そして、アキュムレータ1が作動油を放出するときには、収縮したプラダ4の高圧の反発圧力によって高圧の作動油を透孔5aから外部の配管に高速かつ多量に押し出す。   With such a configuration, the accumulator 1 is configured so that the prada 4 expanded by filling with the high-pressure gas contracts like the lower half of FIG. 6 by the working oil, and the working oil enters the hollow space 2 a between the prada 4 and the hollow container 2. Is accumulated. When the accumulator 1 releases the hydraulic oil, the high-pressure hydraulic oil is pushed out from the through hole 5a to the external pipe at a high speed and in a large amount by the high repulsive pressure of the contracted prada 4.

この構成のアキュムレータ1には、つぎのような特徴がある。その一つは、ポペット弁6の弁部分6aの厚みが薄いと言う特徴である。これによって、高圧ガスを充填されて膨張したプラダ4が図7(a)のようにポペット弁6に押し付けられるときに、そのプラダがポペット弁6に沿って無理なく変形してその局部的な損傷が回避される。なお、ポペット弁6の弁部分6aは、作動油の流れ方向に対して衝立のように遮る構成であることから、アキュムレータ1に作動油を流入させるときに流動抵抗となる一面もあるが、アキュムレータ1の役割が専ら作動油を高速多量に放出することから、その構成が従来問題になることはならなかった。もう一つは、作動油の通過する流路に圧縮コイルばね7が存在すると言う特徴であり、それによって、ポペットの開閉が簡単な構成で可能になることである。他の一つの特徴は、当然ではあるが、作動油が出入りする透孔5a、5cが一直線に形成されて、作動油ができるだけ抵抗なく通過できるように配慮されていることである。   The accumulator 1 having this configuration has the following characteristics. One of the features is that the thickness of the valve portion 6a of the poppet valve 6 is thin. As a result, when the prada 4 filled with the high-pressure gas and expanded is pressed against the poppet valve 6 as shown in FIG. 7A, the prada is deformed easily along the poppet valve 6 and the local damage is caused. Is avoided. Since the valve portion 6a of the poppet valve 6 is configured to block like a partition with respect to the flow direction of the hydraulic oil, there is one aspect that causes flow resistance when the hydraulic oil flows into the accumulator 1. Since the role of No. 1 exclusively releases a large amount of hydraulic oil at high speed, its configuration has not been a problem in the past. The other feature is that the compression coil spring 7 is present in the flow path through which the hydraulic oil passes, whereby the poppet can be opened and closed with a simple configuration. Another characteristic is that, as a matter of course, the through holes 5a and 5c through which the hydraulic oil enters and exits are formed in a straight line so that the hydraulic oil can pass through with as little resistance as possible.

特公平7−4846号公報Japanese Patent Publication No. 7-4846 特許2591885号公報Japanese Patent No. 2591885

しかしながら、本願発明人は、上記特許文献の戻し配管のサージ圧を解消する対策が、本発明人の課題の解決策としては不充分であると思料する。本願発明人が重点をおく課題は、特に、サーボ弁の切り換えに伴って戻し配管に戻る高圧作動油が発生するサージ圧を解消することであり、さらには、そのために戻し配管とその先のオイルタンクに悪影響をあたえることを除去することであるからである。これに対して、上記文献の対策は、サーボ弁の切り換えに伴って油圧シリンダ装置が動作するときに、その動作の最初あるいは直後を不安定にする衝撃圧、あるいは圧力ハンチングを防止するもので、動作の安定化に重点をおく対策である。その違いは、その文献の、小型蓄圧器が供給用と戻り用の両方の圧油配管にそれぞれ設けられた構成に現れている。また、上記対策が、蓄圧器をサーボ弁の近くに配置することと、それらをできるだけ射出シリンダ装置の近くに配置することを望ましいとすることから、射出装置の周りを大袈裟にすることにも不満である。これらのことは、従来の蓄圧器をそのまま配管に設けても、そこには限界があることを意味している。   However, the inventor of the present application considers that the countermeasure for eliminating the surge pressure of the return pipe in the above-mentioned patent document is insufficient as a solution to the problem of the present inventor. The problem that the inventor of the present application focuses on is to eliminate the surge pressure generated by the high-pressure hydraulic oil that returns to the return pipe especially when the servo valve is switched. This is because it removes the adverse effects on the tank. On the other hand, the countermeasure of the above document is to prevent shock pressure or pressure hunting that makes the first or immediately after the operation unstable when the hydraulic cylinder device operates in accordance with the switching of the servo valve. This is a measure that emphasizes the stabilization of operation. The difference appears in the configuration in which a small pressure accumulator is provided in each of the supply and return pressure oil pipes. In addition, since the above measures are desirable to place the accumulator close to the servo valve and to place them as close to the injection cylinder device as possible, it is also unsatisfactory to make a large area around the injection device. It is. These means that there is a limit even if the conventional pressure accumulator is provided in the pipe as it is.

そこで、本願発明人は、プラダ式アキュムレータに求められる、従来の機能とサージ圧吸収のための機能とを基本に立ち返って比較した。そして、本願発明人は、従来のアキュムレータが作動油を急速に流入させる機能では非常に劣っていることと、サージ圧吸収用のアキュムレータが作動油を抵抗なく流入させる機能を求められることは当然としても、容積的に多くの量を流入させる機能を求められていないこととを、しっかりアキュムレータの構成に反映させなければならないと考えた。そのうえ、本願発明人は、戻し配管の脱圧を特に問題にしていることからアキュムレータのプラダのガス圧が大気圧程度で充分であり、この場合にプラダがポペットに接触するまで膨張しないことから、従来の可動式ポペットの省略も検討されるべきであると考えた。   Therefore, the inventors of the present invention returned and compared the conventional function required for the Prada accumulator and the function for absorbing the surge pressure. And, the inventor of the present application is naturally inferior in the function that the conventional accumulator allows the hydraulic oil to flow in rapidly, and the surge pressure absorbing accumulator is required to have the function of flowing the hydraulic oil without resistance. However, I thought that it was necessary to reflect in the structure of the accumulator that the function of flowing a large volume in volume was not required. In addition, since the inventor of the present application makes the depressurization of the return pipe particularly problematic, the gas pressure of the accumulator prada is about atmospheric pressure, and in this case, the prada does not expand until it contacts the poppet. We thought that the omission of the conventional movable poppet should be considered.

より細部については、本願発明人は、既述したポペット弁6の特徴についても解決すべき課題として考えた。すなわち、弁部分6aが作動油の流れを衝立のように遮る特徴については、その衝立形状がサージ圧を吸収する際に作動油の中空容器内への円滑な流入を著しく妨げることになることである。圧縮コイルばね7が存在する特徴については、そのばねが作動油の高速流れに対して抵抗となって外部配管側のサージ圧を上昇させることになることである。そして、作動油が出入りする透孔5a、5cが一直線に形成されている特徴については、一旦アキュムレータ内に流入した作動油が再び外部配管側に放出されようとして流入を阻害することである。   For more details, the inventors of the present application considered the above-described characteristics of the poppet valve 6 as a problem to be solved. That is, as for the feature that the valve portion 6a blocks the flow of hydraulic oil like a partition, when the partition shape absorbs the surge pressure, the smooth flow of the hydraulic oil into the hollow container is remarkably prevented. is there. A feature of the presence of the compression coil spring 7 is that the spring acts as a resistance against the high-speed flow of hydraulic oil and increases the surge pressure on the external piping side. The feature that the through holes 5a and 5c through which the hydraulic oil enters and exits is formed in a straight line is that the hydraulic oil that has once flowed into the accumulator is once again released to the external pipe side, thereby inhibiting the inflow.

そのうえ、本願発明人は、この種の油圧制御装置で頻発するオイルタンクの破損事故もこのサージ圧による問題として捉えた。その事故は、例えば射出成形機の油圧制御装置において、サーボ弁の高応答切換制御により射出側油室中の高圧の作動油が戻し配管に急速に流入して、最後にオイルタンク内に吐き出されるときにオイルタンク壁に激しく衝突して、オイルタンクが破損することである。このことは、特に射出完了直後に射出圧力を一気に下げたときに、戻し配管中のサージ圧を充分に脱圧できない場合に発生した。それで、本発明人は、この問題を解決するには、上記特許文献の油圧制御装置とは異なる、より徹底した脱圧のための油圧制御回路が必要であると認識した。特に、既述した、一つのサーボ弁に対して一組の作動油の供給配管と戻り配管とで構成される制御回路では、蓄圧器の組み込み方に限界があると考えた。本願発明人は、以上の観点から他の先行技術を調べたが、関連しそうなものを発見できなかった。   Moreover, the inventor of the present application has recognized that the oil tank breakage accidents that frequently occur in this type of hydraulic control device are caused by this surge pressure. For example, in the hydraulic control device of an injection molding machine, the high-pressure hydraulic oil in the injection-side oil chamber rapidly flows into the return pipe and is finally discharged into the oil tank in the hydraulic control device of the injection molding machine. Sometimes the oil tank collides violently and damages the oil tank. This occurred particularly when the surge pressure in the return pipe could not be sufficiently released when the injection pressure was lowered immediately after completion of the injection. Therefore, the present inventor has recognized that in order to solve this problem, a hydraulic control circuit for more thorough decompression is required, which is different from the hydraulic control device of the above-mentioned patent document. In particular, in the control circuit composed of a set of hydraulic oil supply piping and return piping for one servo valve as described above, it was considered that there was a limit to how the pressure accumulator was incorporated. The inventor of the present application investigated other prior arts from the above viewpoint, but could not find anything that seemed relevant.

そこで、本発明は、戻し配管中に発生した高圧のサージ圧を速やかに抵抗なく収容することができる衝撃圧吸収装置そのものを提案する。そのうえ、本発明は、その衝撃圧吸収装置を脱圧配管に組み込んだ射出成形機の射出装置の射出制御回路、及び型締装置の型締制御回路を提案する。   Therefore, the present invention proposes an impact pressure absorbing device itself that can quickly accommodate a high surge pressure generated in a return pipe without resistance. Moreover, the present invention proposes an injection control circuit for an injection device of an injection molding machine in which the impact pressure absorbing device is incorporated in a decompression pipe, and a mold clamping control circuit for a mold clamping device.

本発明の衝撃圧吸収装置は、上記の課題を解決するために、アキュムレータに蓄圧された作動油をサーボ弁から油圧駆動装置に供給して制御する油圧制御装置の、該サーボ弁からオイルタンクに至る戻し配管ラインの途中に設けられて、該サーボ弁の切り換えに伴って該戻し配管中に過渡的に生じた高圧の作動油を該戻し配管から一時的に流入させる中空容器を有する衝撃圧吸収装置において、該中空容器が、その一方の側に大気圧が封入されるプラダを有するとともにその他方の側に該戻し配管ラインと該中空容器内の中空空間とを連通する連結部材を有し、その連結部材が、該サーボ弁に接続する該戻し配管に対して略一直線に連通して該中空空間に開口する直線透孔と、その直線透孔の該中空空間側開口近傍に位置して該中空空間内に流入する作動油の流れを該プラダに直撃しない方向に方向変換するそらせ部材と、該直線透孔から略直角方向に分岐して該オイルタンクへ通じる戻し配管に連結する分岐透孔と、を有するように構成される。   In order to solve the above problems, an impact pressure absorbing device according to the present invention supplies hydraulic oil accumulated in an accumulator from a servo valve to a hydraulic drive device to control the hydraulic control device, from the servo valve to the oil tank. Shock pressure absorption provided in the middle of the return pipe line, and having a hollow container for temporarily flowing high-pressure hydraulic oil generated transiently into the return pipe as the servo valve is switched from the return pipe In the device, the hollow container has a connecting member that communicates the return pipe line and the hollow space in the hollow container on the other side thereof with a prada in which atmospheric pressure is sealed on one side. The connecting member communicates with the return pipe connected to the servo valve in a substantially straight line and opens into the hollow space, and is positioned near the hollow space side opening of the straight hole. In the hollow space A deflecting member that changes the direction of the incoming hydraulic oil flow in a direction that does not directly hit the prada, and a branched through hole that branches from the straight through hole in a substantially right angle direction and is connected to a return pipe that leads to the oil tank. Configured as follows.

また、前記衝撃圧吸収装置を含む射出装置の射出制御回路は、該衝撃圧吸収装置を含む前記油圧制御装置に該射出装置の射出油圧シリンダを含み、該射出油圧シリンダの射出側油室が前記サーボ弁に、そして後退側油室が別異の制御弁に接続され、該サーボ弁の一次側に接続される配管ラインが、前記アキュムレータから作動油を供給する供給配管ラインと、前記オイルタンクに作動油を戻す圧抜き配管ラインとを含み、該圧抜き配管ラインの該サーボ弁に至る第一の圧抜き配管が該衝撃圧吸収装置の前記直線透孔に接続され、そして、該圧抜き配管ラインの該オイルタンクに至る第二の圧抜き配管が該衝撃圧吸収装置の前記分岐透孔に接続されることによって、成形樹脂の充填の際に射出速度を急速に立ち上げるときには、該サーボ弁を急速に切り換えて該アキュムレータから作動油を該射出側油室に急速に供給し、充填完了の間際に射出圧力を急速に脱圧するときには、該サーボ弁を急速に切り換えて該射出側油室の高圧の作動油を該直線透孔から該衝撃圧吸収装置に急速に収容させて、その後該第二の圧抜き配管の圧力が低下したときに該衝撃圧吸収装置内の作動油を該分岐透孔から該オイルタンクに戻すように構成される。   The injection control circuit of the injection device including the impact pressure absorbing device includes an injection hydraulic cylinder of the injection device in the hydraulic control device including the impact pressure absorbing device, and an injection-side oil chamber of the injection hydraulic cylinder includes the injection hydraulic cylinder. A servo valve and a retreat side oil chamber are connected to different control valves, and a piping line connected to the primary side of the servo valve includes a supply piping line for supplying hydraulic oil from the accumulator, and the oil tank. A pressure relief piping line for returning hydraulic fluid, and a first pressure relief piping to the servo valve of the pressure relief piping line is connected to the linear through hole of the impact pressure absorbing device, and the pressure relief piping When the injection pressure is rapidly increased during filling of the molding resin by connecting the second pressure release pipe leading to the oil tank of the line to the branch through hole of the impact pressure absorbing device, the servo valve Suddenly When the hydraulic oil is rapidly supplied from the accumulator to the injection-side oil chamber and the injection pressure is rapidly released immediately after the completion of filling, the servo valve is rapidly switched to increase the high pressure of the injection-side oil chamber. The hydraulic oil is rapidly accommodated in the impact pressure absorbing device from the straight through hole, and then the hydraulic oil in the impact pressure absorbing device is discharged from the branch through hole when the pressure of the second pressure release pipe is lowered. It is configured to return to the oil tank.

また、前記衝撃圧吸収装置を含む型締装置の型締制御回路は、該衝撃圧吸収装置を含む前記油圧制御装置に該型締装置の型締油圧シリンダを含み、該型締油圧シリンダの型締側油室が前記サーボ弁に、そして型開側油室が別異の制御弁に接続され、該サーボ弁の一次側に接続される配管ラインが、前記アキュムレータから作動油を供給する供給配管ラインと、前記オイルタンクに作動油を戻す圧抜き配管ラインとを含み、該圧抜き配管ラインの該サーボ弁に至る第一の圧抜き配管が該衝撃圧吸収装置の前記直線透孔に接続され、そして、該圧抜き配管ラインの該オイルタンクに至る第二の圧抜き配管が該衝撃圧吸収装置の前記分岐透孔に接続されることによって、型締め中に型締力を急上昇させるときには、該サーボ弁を急速に切り換えて該アキュムレータから作動油を該型締側油室に急速に供給し、型締め後に型締力を急速に脱圧するときには、該サーボ弁を急速に切り換えて該型締側油室の高圧の作動油を該直線透孔から該衝撃圧吸収装置に急速に収容させて、その後該第二の圧抜き配管の圧力が低下したときに該衝撃圧吸収装置内の作動油を該分岐透孔から該オイルタンクに戻すように構成される。   The mold clamping control circuit of the mold clamping device including the impact pressure absorbing device includes a mold clamping hydraulic cylinder of the mold clamping device in the hydraulic control device including the impact pressure absorbing device, and the mold of the mold clamping hydraulic cylinder is included. A supply line for supplying hydraulic oil from the accumulator is connected to the servo valve, the mold opening side oil chamber is connected to a different control valve, and a piping line connected to the primary side of the servo valve. And a pressure relief piping line that returns the hydraulic oil to the oil tank, and a first pressure relief piping that reaches the servo valve of the pressure relief piping line is connected to the linear through hole of the impact pressure absorbing device. And when the second pressure release pipe reaching the oil tank of the pressure release pipe line is connected to the branch through hole of the impact pressure absorbing device, when the mold clamping force is rapidly increased during mold clamping, The servo valve is rapidly switched to When the hydraulic oil is rapidly supplied from the accumulator to the mold clamping side oil chamber and the mold clamping force is rapidly released after mold clamping, the servo valve is switched quickly to supply the high pressure hydraulic oil in the mold clamping side oil chamber. When the pressure of the second pressure release pipe is lowered from the straight through hole to the shock pressure absorbing device, the hydraulic oil in the shock pressure absorbing device is discharged from the branch through hole to the oil tank. Configured to return.

上記の本発明の衝撃圧吸収装置によれば、衝撃圧吸収装置と接続した戻し配管ラインにサージ圧が発生しても、高圧の作動油がその衝撃圧吸収装置の連結部材の直線透孔を通過して中空容器内へと小さい抵抗で一気に流入して、サージ圧が急速に吸収される。そして、このとき、そらせ部材が作動油のプラダへの直撃を回避してプラダを損傷させることはない。また、サージ圧を生じる作動油の量が通常少ないことやプラダ内のガス圧が大気圧程度に小さいことから、プラダの収縮による反発力の増加分も少なく、したがって作動油の中空空間への流入が阻害されることはない。そして、その後に戻し配管の圧力が低下したときに、衝撃圧吸収装置中の作動油が分岐透孔から戻し配管ラインに低圧で戻る。   According to the impact pressure absorbing device of the present invention described above, even if surge pressure is generated in the return pipe line connected to the impact pressure absorbing device, the high-pressure hydraulic oil causes the straight through hole of the connecting member of the impact pressure absorbing device to It passes through the hollow container at a stretch with a small resistance, and the surge pressure is rapidly absorbed. At this time, the deflecting member avoids direct hitting of the hydraulic oil to the prada and does not damage the prada. In addition, since the amount of hydraulic oil that generates surge pressure is usually small and the gas pressure in the prada is as small as atmospheric pressure, the increase in repulsive force due to the contraction of the prada is small, so that the hydraulic oil flows into the hollow space. Is not disturbed. Then, when the pressure in the return pipe subsequently decreases, the hydraulic oil in the impact pressure absorbing device returns from the branch through hole to the return pipe line at a low pressure.

また、本発明の射出装置の射出制御回路によれば、射出油圧シリンダの射出側油室がサーボ弁に、そして後退側油室が別異の制御弁に接続され、そのサーボ弁の一次側に接続される配管ラインが、作動油を前記アキュムレータから供給する供給配管ラインと、前記オイルタンクに作動油を戻す圧抜き配管ラインとを含み、その圧抜き配管ラインのそのサーボ弁に至る第一の圧抜き配管がその衝撃圧吸収装置の前記直線透孔に接続され、そして、その圧抜き配管ラインのそのオイルタンクに至る第二の圧抜き配管がその衝撃圧吸収装置の前記分岐透孔に接続される。それで、第一に、その圧抜き配管ラインが、高圧側の射出側油室に対する圧抜き専用の配管ラインとして、同じ高圧側の射出側油室に作動油を供給する供給配管ラインに対してサーボ弁で切り換え可能に接続されるので、射出完了間際にそのサーボ弁が切り換えられたときに、充填完了間際に射出側油室に充満していた高圧作動油が、射出側油室からその圧抜き配管ライン、そして衝撃圧吸収装置に一気に移動して、射出圧力を一気に降下させる急速脱圧が行われる。そして、第二に、その衝撃圧吸収装置がその圧抜き配管ラインに直線透孔と分岐透孔とで連通されるので、射出完了間際にそのサーボ弁が切り換えられたときに、高圧の作動油が衝撃圧吸収装置に直線透孔を経由して一気に流入して射出圧力が一気に降下し、その後その第二の圧抜き配管の圧力が低下したときに、その衝撃圧吸収装置内の作動油がその分岐透孔からそのオイルタンクに戻される。したがって、圧抜き配管ラインに生じるサージ圧が最小限に抑えられることはもちろん、オイルタンクの破損も防止される。また、第三に、射出油圧シリンダの射出側油室と後退側油室とが、そのサーボ弁とその別異の制御弁とによって協働制御されるので、そのサーボ弁とその別異の制御弁をそれぞれに求められる機能性能容量に合わせて最適に選定することができる。   Further, according to the injection control circuit of the injection device of the present invention, the injection side oil chamber of the injection hydraulic cylinder is connected to the servo valve, and the reverse side oil chamber is connected to a different control valve, on the primary side of the servo valve. The connected piping line includes a supply piping line that supplies hydraulic oil from the accumulator, and a pressure relief piping line that returns the hydraulic oil to the oil tank, and the first pressure line leading to the servo valve of the pressure relief piping line A pressure relief pipe is connected to the straight through hole of the shock pressure absorbing device, and a second pressure release pipe leading to the oil tank of the pressure relief pipe line is connected to the branch through hole of the shock pressure absorbing device. Is done. So, first, the depressurization piping line serves as a dedicated depressurization piping line for the high-pressure side injection-side oil chamber, and is servoed to the supply piping line that supplies hydraulic oil to the same high-pressure side injection-side oil chamber. Since the valve is connected so that it can be switched, when the servo valve is switched just before the completion of injection, the high-pressure hydraulic fluid that was filling the injection-side oil chamber just before filling is released from the injection-side oil chamber. Rapid depressurization is carried out by moving to the piping line and the impact pressure absorbing device at once, and dropping the injection pressure at once. Second, since the impact pressure absorbing device communicates with the pressure release piping line through a straight through hole and a branch through hole, when the servo valve is switched just before the injection is completed, Flows into the shock pressure absorber via a straight through hole, the injection pressure drops all at once, and when the pressure in the second pressure release pipe decreases, the hydraulic oil in the shock pressure absorber is It returns to the oil tank from the branched through hole. Therefore, the surge pressure generated in the pressure relief piping line can be minimized, and the oil tank can be prevented from being damaged. Thirdly, since the injection side oil chamber and the reverse side oil chamber of the injection hydraulic cylinder are cooperatively controlled by the servo valve and the different control valve, the servo valve and the different control are controlled. Valves can be optimally selected according to the required functional performance capacity.

また、本発明の型締装置の型締制御回路によれば、型締油圧シリンダの型締側油室がサーボ弁に、そして型開側油室が別異の制御弁に接続され、そのサーボ弁の一次側に接続される配管ラインが、作動油を前記アキュムレータから供給する供給配管ラインと、前記オイルタンクに作動油を戻す圧抜き配管ラインとを含み、その圧抜き配管ラインのそのサーボ弁に至る第一の圧抜き配管がその衝撃圧吸収装置の前記直線透孔に接続され、そして、その圧抜き配管ラインのそのオイルタンクに至る第二の圧抜き配管がその衝撃圧吸収装置の前記分岐透孔に接続される。それで、第一に、その圧抜き配管ラインが、高圧側の型締側油室に対する圧抜き専用の配管ラインとして、同じ高圧側の型締側油室に作動油を供給する供給配管ラインに対してサーボ弁で切り換え可能に接続されるので、本型締後の適宜タイミングでそのサーボ弁が切り換えられたときに、本型締によって射出側油室に充満していた高圧作動油が、型締側油室からその圧抜き配管ライン、そして衝撃圧吸収装置に一気に流入して型締力を一気に降下する急速脱圧が行われる。そして、第二に、その衝撃圧吸収装置がその圧抜き配管ラインに直線透孔と分岐透孔とで連通されるので、本型締後の適宜タイミングにそのサーボ弁が切り換えられたときに、高圧の作動油が型締側油室から衝撃圧吸収装置に直線透孔を経由して一気に流入して型締力が一気に降下し、その後その第二の圧抜き配管の圧力が低下したときに、その衝撃圧吸収装置内の作動油がその分岐透孔からそのオイルタンクに戻される。したがって、圧抜き配管に生じるサージ圧が最小限に抑えられることはもちろん、オイルタンクの破損も防止される。また、第三に、型締油圧シリンダの型締側油室と型開側油室とが、そのサーボ弁とその別異の制御弁とによって協働制御されるので、そのサーボ弁とその別異の制御弁をそれぞれに求められる機能性能容量に合わせて最適に選定することができる。   According to the mold clamping control circuit of the mold clamping apparatus of the present invention, the mold clamping side oil chamber of the mold clamping hydraulic cylinder is connected to the servo valve, and the mold opening side oil chamber is connected to a different control valve. A piping line connected to the primary side of the valve includes a supply piping line that supplies hydraulic oil from the accumulator and a pressure relief piping line that returns the hydraulic oil to the oil tank, and the servo valve of the pressure relief piping line A first pressure relief pipe connected to the straight through hole of the impact pressure absorber, and a second pressure relief pipe leading to the oil tank of the pressure relief line is a part of the impact pressure absorber. Connected to the branch through hole. So, firstly, the pressure release piping line is a dedicated pressure release piping line for the high pressure side clamping chamber oil chamber, and the supply piping line that supplies hydraulic oil to the same high pressure side clamping chamber oil chamber. Therefore, when the servo valve is switched at an appropriate timing after the main mold is clamped, the high-pressure hydraulic fluid that has filled the injection side oil chamber by the main mold clamping is Rapid depressurization is performed in which the mold clamping force is reduced at once by flowing into the pressure relief piping line and the impact pressure absorbing device from the side oil chamber. And secondly, since the impact pressure absorbing device communicates with the depressurization piping line through a straight through hole and a branch through hole, when the servo valve is switched at an appropriate timing after the mold clamping, When high-pressure hydraulic fluid flows from the mold clamping side oil chamber into the shock pressure absorbing device through the straight through holes at once, the mold clamping force drops all at once, and then the pressure in the second depressurization pipe decreases. The hydraulic oil in the impact pressure absorbing device is returned to the oil tank from the branch through hole. Therefore, the surge pressure generated in the depressurizing pipe can be minimized, and the oil tank can be prevented from being damaged. Third, since the mold clamping side oil chamber and the mold opening side oil chamber of the mold clamping hydraulic cylinder are controlled in cooperation by the servo valve and the different control valve, the servo valve and the Different control valves can be optimally selected according to the required functional performance capacity.

以下、本発明の衝撃圧吸収装置11が図1ないし図3とともに説明される。この衝撃圧吸収装置11の構成は、従来のプラダ式のアキュムレータと共通する部分を含む。それで、従来と同じ部材には図6の従来部材と同じ符号を付けて以下説明する。図1は、衝撃圧吸収装置の一部断面図であり、中心線より上側半分の図が、プラダにガスが充填済みであるが内部空間に作動油が蓄圧されていない状態であり、下側半分の図が、プラダにガスが充填されかつ内部空間に作動油が蓄圧されている状態である。図2は衝撃圧吸収装置の連結部材の組み立て状態にある拡大断面であり、図3は衝撃圧吸収装置の連結部材の分解状態にある拡大断面である。   Hereinafter, the impact pressure absorbing device 11 of the present invention will be described with reference to FIGS. The configuration of the impact pressure absorbing device 11 includes a portion common to a conventional Prada type accumulator. Therefore, the same members as those in the prior art are denoted by the same reference numerals as those of the conventional members in FIG. FIG. 1 is a partial cross-sectional view of an impact pressure absorbing device, and the upper half of the center line shows a state where the gas is filled in the prada but no hydraulic oil is accumulated in the inner space. The half figure shows a state where the prada is filled with gas and the hydraulic oil is accumulated in the internal space. FIG. 2 is an enlarged cross-section in an assembled state of the connecting member of the impact pressure absorbing device, and FIG. 3 is an enlarged cross-section in an exploded state of the connecting member of the impact pressure absorbing device.

本発明の衝撃圧吸収装置11は、中空容器2の一方の側のガス封入部材3とプラダ4とを従来どおりに備えるが、もう一方の側に中空容器2の中空空間2aと外部の配管(図示省略)とを連通する連結部材15、16を備える。それらの連結部材は、第一の連結部材15と第二の連結部材16から成り、第一の連結部材15に第一の透孔15aが形成され、第二の連結部材16に第二の透孔16aが形成される。そして、第二の連結部材16に、第二の透孔16aに対して略直角方向に分岐して別の外部配管に連結される分岐透孔16bが形成される。また、第一の連結部材15の中空空間2a側に面する側に隔壁15bが形成されて、その隔壁15bに副透孔15cとそらせ部材15dが形成される。すなわち、その隔壁の中心位置で中空空間2a側に飛び出した部材としてそらせ部材15dが一体に形成され、その隔壁の中心より外側の、等間隔に配置された円周上に複数本の副透孔15cが形成される。こうして、連結部材15、16は、中空空間2aと外部配管とを直線的に連通する、副透孔15c、第一の透孔15a、及び第二の透孔16aから成る直線透孔と、その直線透孔から略直角方向に分岐して外部配管に連結する分岐透孔16bとを有する。   The impact pressure absorbing device 11 of the present invention includes the gas sealing member 3 and the prada 4 on one side of the hollow container 2 as usual, but on the other side, the hollow space 2a of the hollow container 2 and external piping ( The connecting members 15 and 16 are provided for communication with each other. These connecting members include a first connecting member 15 and a second connecting member 16, a first through hole 15 a is formed in the first connecting member 15, and a second through hole is formed in the second connecting member 16. A hole 16a is formed. The second connecting member 16 is formed with a branched through hole 16b that branches in a substantially perpendicular direction to the second through hole 16a and is connected to another external pipe. Further, a partition wall 15b is formed on the side of the first connecting member 15 facing the hollow space 2a, and a sub through hole 15c and a deflecting member 15d are formed in the partition wall 15b. That is, the deflecting member 15d is integrally formed as a member protruding to the hollow space 2a side at the center position of the partition wall, and a plurality of sub through holes are provided on the circumference arranged at equal intervals outside the center of the partition wall. 15c is formed. Thus, the connecting members 15 and 16 are linear through holes composed of the sub through holes 15c, the first through holes 15a, and the second through holes 16a that linearly communicate the hollow space 2a and the external pipe, A branched through hole 16b branched from the straight through hole in a substantially right angle direction and connected to an external pipe.

より詳細には、第一の連結部材15と中空容器2とは、従来どおりのねじ部材9aと係止部材9bとシール部材10を介して液密に連結される。第一の連結部材15と第二の連結部材16とは、図3のように、例えば雌ねじ部15eと雄ねじ部16cとで螺合されるとともにOリング等のパッキン17によって液封状態で接続される。第二の連結部材16は、第二の透孔16aに形成されたねじ部16dと、分岐透孔16bに形成されたねじ部16eを介して外部配管と螺合される。なお、ねじ部は、図示例では雌ねじに形成されているが雄ねじであっても良い。そらせ部材15dは、図2のように、隔壁15bの中心位置で中空空間2a側に突き出すように形成されて、その中空空間側の先端に鍔状部材15fが形成される。鍔状部材15fは、副透孔15cの中空空間2a側の開口に接近した位置に設けられて、副透孔15cから中空容器2内に流入する作動油の流れをプラダ4に直撃させない方向に方向変換させる。ただし、鍔状部材15fがその作動液の流れに対してできるだけ抵抗にならないように、鍔状部材15fの副透孔15c側の円錐面、すなわちそらせ面15gは、その傾斜角度をそらせ部材15dの中心軸線に対して略45°に交差するように形成される。それで、流入した作動油の多くは、中空容器2の内壁近くを流れてプラダ4に直接衝突することが回避される。   More specifically, the first connecting member 15 and the hollow container 2 are liquid-tightly connected via the conventional screw member 9a, the locking member 9b, and the seal member 10. As shown in FIG. 3, the first connecting member 15 and the second connecting member 16 are screwed together by, for example, a female screw portion 15e and a male screw portion 16c, and are connected in a liquid-sealed state by a packing 17 such as an O-ring. The The second connecting member 16 is screwed to the external pipe via a screw portion 16d formed in the second through hole 16a and a screw portion 16e formed in the branch through hole 16b. The screw portion is formed as a female screw in the illustrated example, but may be a male screw. As shown in FIG. 2, the baffle member 15d is formed so as to protrude toward the hollow space 2a at the center position of the partition wall 15b, and a hook-shaped member 15f is formed at the tip of the hollow space side. The flange-shaped member 15f is provided at a position close to the opening of the sub through hole 15c on the hollow space 2a side, and does not cause the flow of the hydraulic oil flowing into the hollow container 2 from the sub through hole 15c to directly hit the pradder 4. Change direction. However, the conical surface on the side of the sub-through hole 15c of the flange-shaped member 15f, that is, the deflecting surface 15g, has an inclination angle of the deflecting member 15d so that the flange-shaped member 15f is not as resistant as possible to the flow of the hydraulic fluid. It is formed so as to intersect with the central axis at approximately 45 °. Therefore, it is avoided that much of the flowing hydraulic oil flows near the inner wall of the hollow container 2 and directly collides with the prada 4.

このような衝撃圧吸収装置11では、プラダ4に封入されるガスが大気圧程度にしか昇圧されない。それで、図1の上側半分の図のように、プラダ4が膨張してもそらせ部材15dと干渉することがなく、したがって、そらせ部材15dが中空容器2内に突き出した固定部材であっても何ら支障はない。なお、プラダ4に封入するガス圧を大気圧程度に調整することは、高圧ガスボンベからガス封入部材3にガスを注入するときに、注入を短時間にしたり必要に応じて封入栓からガス圧を抜いたりすることによって行われる。   In such an impact pressure absorbing device 11, the gas sealed in the prada 4 is boosted only to about atmospheric pressure. Therefore, as shown in the upper half of FIG. 1, even if the prada 4 is expanded, it does not interfere with the deflecting member 15d. Therefore, even if the deflecting member 15d is a fixing member protruding into the hollow container 2, no matter what. There is no hindrance. Note that adjusting the gas pressure sealed in the prada 4 to about atmospheric pressure means that when the gas is injected from the high-pressure gas cylinder into the gas sealing member 3, the gas pressure is reduced from the sealing plug if necessary for a short time. This is done by unplugging.

以上説明した衝撃圧吸収装置11によれば、接続した外部配管側にサージ圧が発生しても、作動油が第二の透孔16a、第一の透孔15a、そして副透孔15cの直線透孔を一気に通過して中空容器2の中に流入して、衝撃圧吸収装置11がそのサージ圧を吸収する。このとき、直線透孔が一直線であること、また、従来のポペットに付属する流動抵抗を増加させるコイルばねがないこと、そして、そらせ部材15dのそらせ面15gが従来のポペット弁の弁部分のように衝立として流れを著しく阻害する形状でないことから、衝撃圧吸収装置11は高圧の作動油を急速にかつ抵抗なく流入させる。そのうえ、プラダ4内のガス圧が大気圧程度に小さいことと、サージを発生したときの作動油の容積が通常少ないこととによって、プラダ4の収縮が限定的であってその反発力が増加することはほとんどない。その結果、中空空間2a内の圧力上昇がそれほど発生せず、したがって、作動油の流入が阻害されることもほとんどない。そして、外部配管の圧力が低下したときに、プラダ4の比較的小さい反発圧力が作動油を分岐透孔16bから低圧で放出する。なお、オイルタンク側に連通する分岐透孔16b側の外部配管の圧力は直線透孔側外部配管圧力より低い。   According to the impact pressure absorbing device 11 described above, even if a surge pressure is generated on the connected external pipe side, the hydraulic oil is straight in the second through hole 16a, the first through hole 15a, and the sub through hole 15c. The shock pressure absorbing device 11 absorbs the surge pressure by passing through the through-holes and flowing into the hollow container 2. At this time, the straight through holes are straight, there is no coil spring for increasing the flow resistance attached to the conventional poppet, and the deflecting surface 15g of the deflecting member 15d is like the valve portion of the conventional poppet valve. Therefore, the impact pressure absorbing device 11 allows high-pressure hydraulic oil to flow in rapidly and without resistance. In addition, the contraction of the prada 4 is limited and its repulsive force increases due to the gas pressure in the prada 4 being as small as atmospheric pressure and the volume of hydraulic oil usually being small when a surge occurs. There is hardly anything. As a result, the pressure increase in the hollow space 2a does not occur so much, and therefore the inflow of hydraulic oil is hardly inhibited. When the pressure of the external piping is reduced, the relatively small repulsive pressure of the prada 4 releases the hydraulic oil from the branch through hole 16b at a low pressure. In addition, the pressure of the external pipe on the branch through hole 16b side communicating with the oil tank side is lower than the pressure on the straight through hole side external pipe.

以上の衝撃圧吸収装置11は、射出成形機の射出装置の射出制御回路に組み込まれても良い。その射出装置は、少なくともその射出装置が油圧制御される装置であれば良いが、好ましくは図4のようなプリプラ式射出装置であると良い。   The above impact pressure absorbing device 11 may be incorporated in an injection control circuit of an injection device of an injection molding machine. The injection apparatus may be at least an apparatus in which the injection apparatus is hydraulically controlled, but is preferably a pre-plastic injection apparatus as shown in FIG.

20は、そのプリプラ式射出装置であり、成形樹脂を可塑化するプリプラ装置21と、その可塑化された樹脂をプランジャ23によって金型のキャビティ(図示省略)に射出する射出シリンダ装置22とを含み、そのプランジャが射出油圧シリンダ24のピストン25によって駆動される。そのため、射出油圧シリンダ24のヘッド側油室がピストン25を前進させる射出側油室24aになり、ロッド側油室がピストン25を後退させる後退側油室24bになるように射出制御回路30に接続される。このようなプリプラ式射出装置20では、プランジャ23がインラインスクリュ式射出装置のスクリュに比べて短いので、溶融樹脂の高速充填制御や充填完了時の充填圧力の急上昇防止を高応答にかつ精密に制御できる。   Reference numeral 20 denotes a pre-plastic injection device, which includes a pre-plastic device 21 that plasticizes a molding resin, and an injection cylinder device 22 that injects the plasticized resin into a mold cavity (not shown) by a plunger 23. The plunger is driven by the piston 25 of the injection hydraulic cylinder 24. Therefore, the head side oil chamber of the injection hydraulic cylinder 24 is connected to the injection control circuit 30 so that it becomes the injection side oil chamber 24a for moving the piston 25 forward, and the rod side oil chamber becomes the reverse side oil chamber 24b for moving the piston 25 backward. Is done. In such a pre-plastic injection device 20, since the plunger 23 is shorter than the screw of the in-line screw injection device, high-speed filling control of molten resin and prevention of sudden rise in filling pressure at the completion of filling are controlled with high response and precision. it can.

このようなプリプラ式射出装置20(以下単に射出装置と言う。)によって特に導光板成形など薄物精密成形を射出成形する際に、溶融樹脂の金型キャビティに対する充填性能の向上や成形品の形状精度や寸法精度の向上のため、また成形品の残留歪み除去等のために、最初の充填開始速度を急速に立ち上げたり充填完了の瞬間に充填圧力を急速に脱圧させたりする射出制御が求められる。そこで、その射出装置の射出制御回路には、アキュムレータと本発明の衝撃圧吸収装置を含む図4のような射出制御回路30が採用される。なお、射出シリンダ装置22以外の、例えば、プリプラ装置21のスクリュ回転モータ等の駆動装置に対する油圧制御回路については、従来どおりであるからその説明が省略される。   With such a pre-plastic injection device 20 (hereinafter simply referred to as an injection device), particularly when thin precision molding such as light guide plate molding is injection-molded, the filling performance of the molten resin into the mold cavity and the shape accuracy of the molded product are improved. In order to improve dimensional accuracy and to eliminate residual distortion of molded parts, injection control is required to rapidly increase the initial filling start speed or to quickly release the filling pressure at the moment of filling completion. It is done. Therefore, an injection control circuit 30 as shown in FIG. 4 including an accumulator and the impact pressure absorbing device of the present invention is employed as the injection control circuit of the injection device. Note that the hydraulic control circuit for the driving device other than the injection cylinder device 22, for example, a drive device such as a screw rotation motor of the pre-pla device 21 is the same as the conventional one, and the description thereof is omitted.

まず、プランジャ23をアキュムレータ33の作動油で高速前進させる制御回路は、油圧ポンプ31からサーボ弁32を経由して射出油圧シリンダ24の射出側油室24aに至る供給配管ラインを含む。その配管ラインは、油圧ポンプ31からサーボ弁32までの供給ラインP1、P2と、サーボ弁32から射出側油室24aまでの供給ラインP3と、そして、供給ラインP1と供給ラインP2の間から分岐してアキュムレータ33に連通するチャージラインCとから成る。供給ラインP2にはパイロット操作チェック弁34が設けられて、そのチェック弁が、図示の丸A方向から図示省略された切換バルブによってパイロット圧力を掛けられたときに開いて、アキュムレータ33に蓄圧されていた作動油を供給ラインP2からサーボ弁32に供給する。供給ラインP1には逆止弁37が設けられて、アキュムレータ33内の作動油のオイルタンク35への逆流が防止される。一方、ピストン25の前進に伴って後退側油室24bからオイルタンク35に作動油を戻す配管ラインは、後退側油室24bと方向切換弁36の間のラインBと、方向切換弁36からオイルタンク35に至るタンクラインTとから成る。   First, the control circuit for moving the plunger 23 forward at high speed with the hydraulic oil of the accumulator 33 includes a supply piping line from the hydraulic pump 31 through the servo valve 32 to the injection side oil chamber 24a of the injection hydraulic cylinder 24. The piping lines branch from the supply lines P1, P2 from the hydraulic pump 31 to the servo valve 32, the supply line P3 from the servo valve 32 to the injection side oil chamber 24a, and between the supply line P1 and the supply line P2. The charge line C communicates with the accumulator 33. The supply line P2 is provided with a pilot operation check valve 34, which opens when the pilot pressure is applied by a switching valve (not shown) from the direction of the circle A shown in the figure, and is accumulated in the accumulator 33. The supplied hydraulic oil is supplied to the servo valve 32 from the supply line P2. A check valve 37 is provided in the supply line P1, and the backflow of the hydraulic oil in the accumulator 33 to the oil tank 35 is prevented. On the other hand, as the piston 25 moves forward, the piping line that returns the working oil from the reverse side oil chamber 24b to the oil tank 35 includes the line B between the reverse side oil chamber 24b and the direction switching valve 36, and the oil from the direction switching valve 36 to the oil. The tank line T extends to the tank 35.

上記のプランジャ23を前進させる制御回路に対して、本発明の制御回路は、射出側油室24a内の高圧作動油を供給ラインP3からオイルタンク35にサーボ弁32によって切り換え可能に戻す、圧抜きラインを備える。すなわち、同じ射出側油室24aにサーボ弁32によって切り換え可能に接続された供給ラインP1、P2に対して併設された、圧抜き配管ラインである。その圧抜きラインは、その途中に本発明の衝撃圧吸収装置11を含み、その衝撃圧吸収装置11からサーボ弁32迄の第一の圧抜き配管R1と、その衝撃圧吸収装置11からオイルタンク35迄の第二の圧抜き配管R2とを含む。そして、第一の圧抜き配管R1が衝撃圧吸収装置11の直線透孔としての第二の透孔16a(図2参照)に連通し、第二の圧抜き配管R2が衝撃圧吸収装置11の分岐透孔16b(図2参照)に連通している。この衝撃圧吸収装置11は、既述したように封入ガス圧が大気圧程度であり、作動油を流入させる能力において従来品より優れている。また、圧抜きのために衝撃圧吸収装置11に流入する作動油の量は、充填動作がほとんど完了してプランジャ23の前進動作が略停止しようとしているときに、作動油が高速流動状態から停止状態になろうとして作動油の流れ方向が逆転したときのものであることから、量的には少ない。それで、この衝撃圧吸収装置11は、充填完了とともに急上昇する射出側油室24aの射出圧力を第一の圧抜き配管R1から自身の内部空間2aに急速にかつ抵抗なく吸収する。衝撃圧吸収装置11の容積については、例えば、射出プランジャ23の外形がφ28mmである射出装置では、上記衝撃圧吸収装置11に流入する作動油の量は200cc程度である。したがって、その容器容量は5L程度のものを利用することができる。   In contrast to the control circuit for moving the plunger 23 forward, the control circuit of the present invention returns the high-pressure hydraulic oil in the injection-side oil chamber 24a from the supply line P3 to the oil tank 35 so that it can be switched by the servo valve 32. With line. That is, it is a pressure relief piping line provided for supply lines P1, P2 connected to the same injection side oil chamber 24a by a servo valve 32 so as to be switchable. The depressurization line includes the impact pressure absorbing device 11 of the present invention in the middle, the first depressurization pipe R1 from the impact pressure absorbing device 11 to the servo valve 32, and the shock pressure absorbing device 11 to the oil tank. Up to 35 second pressure release pipes R2. The first pressure release pipe R1 communicates with a second through hole 16a (see FIG. 2) as a straight through hole of the impact pressure absorbing device 11, and the second pressure release pipe R2 is connected to the impact pressure absorbing device 11. It communicates with the branch through hole 16b (see FIG. 2). As described above, the impact pressure absorbing device 11 has an enclosed gas pressure of about atmospheric pressure, and is superior to the conventional product in the capability of flowing hydraulic oil. Further, the amount of hydraulic oil that flows into the impact pressure absorbing device 11 for depressurization is such that when the filling operation is almost completed and the forward movement of the plunger 23 is about to stop, the hydraulic oil stops from the high-speed flow state. Since it is a thing when the flow direction of hydraulic oil reverses trying to be in a state, it is few in quantity. Therefore, the impact pressure absorbing device 11 absorbs the injection pressure of the injection side oil chamber 24a, which rapidly rises upon completion of filling, from the first depressurization pipe R1 to the internal space 2a quickly and without resistance. Regarding the volume of the impact pressure absorbing device 11, for example, in an injection device whose outer shape of the injection plunger 23 is φ28 mm, the amount of hydraulic oil flowing into the impact pressure absorbing device 11 is about 200 cc. Therefore, the container capacity of about 5L can be used.

一方、プランジャ23を後退させる制御回路の配管ラインは、供給ラインP1と、供給ラインP1から分岐して方向切換弁36に接続される供給ラインP4と、方向切換弁36と後退側油室24bの間のラインBとから成る。そして、そのプランジャの後退に伴って射出側油室24aから作動油を逃がす管路は、供給ラインP3から分岐したラインAと、方向切換弁36とオイルタンク35とを連通するタンクラインTである。   On the other hand, the piping line of the control circuit for retreating the plunger 23 includes a supply line P1, a supply line P4 branched from the supply line P1 and connected to the direction switching valve 36, and the direction switching valve 36 and the backward oil chamber 24b. It consists of a line B in between. The pipeline for releasing hydraulic oil from the injection-side oil chamber 24a as the plunger moves backward is a line A branched from the supply line P3, and a tank line T that communicates the direction switching valve 36 and the oil tank 35. .

ところで、射出側油室24aに作動油を供給する配管ラインと、後退側油室24bから作動油を逃がす配管ラインとが、サーボ弁32と方向切換弁36の別異の制御弁によって制御されるのは、既述したように、サーボ弁32の一次側に供給ラインP1、P2と圧抜き配管R1、R2とが併設されるためである。すなわち、その圧抜き配管ラインが、高圧側の射出側油室24aから作動油を抜く一方の配管ラインとして、射出側油室24aに作動油を供給するもう一方の供給配管ラインに対して併設されるためである。それで、射出油圧シリンダ24では、もう一方の後退側油室24bに別の方向切換弁36が接続されて、サーボ弁32と方向切換弁36の協働制御によって射出充填制御が行われる。このような構成は、サーボ弁32と方向切換弁36とを、それぞれに求められる機能性能容量に合わせて最適に選定することを可能にする。実際、それぞれの制御弁は、例えばつぎに説明されるようなもので構成されると良い。このことは、特に大型型締装置において高速射出と急速脱圧を行う場合にそれぞれの制御弁を最適化する際に有利である。   By the way, a piping line that supplies hydraulic oil to the injection-side oil chamber 24a and a piping line that releases hydraulic oil from the reverse-side oil chamber 24b are controlled by different control valves of the servo valve 32 and the direction switching valve 36. This is because the supply lines P1 and P2 and the pressure relief pipes R1 and R2 are provided on the primary side of the servo valve 32 as described above. That is, the depressurization piping line is provided as one piping line for extracting hydraulic oil from the high-pressure side injection-side oil chamber 24a with respect to the other supply piping line that supplies the operating oil to the injection-side oil chamber 24a. Because. Thus, in the injection hydraulic cylinder 24, another direction switching valve 36 is connected to the other reverse side oil chamber 24b, and injection filling control is performed by the cooperative control of the servo valve 32 and the direction switching valve 36. Such a configuration makes it possible to optimally select the servo valve 32 and the direction switching valve 36 in accordance with the required functional performance capacity. Actually, each control valve may be configured as described below, for example. This is advantageous when optimizing each control valve, particularly when performing high speed injection and rapid depressurization in a large mold clamping device.

まず、サーボ弁32には、高速高応答に配管ラインを切り換えるとともに精密に流量制御する、リニアモータ駆動のリニアサーボ弁が採用される。そして、そのサーボ弁32は、弁スプール(図示省略)の位置によって4配管ポートの接続方向を切り換える3位置を有して、それぞれの位置がつぎに説明されるように構成される。また、方向切換弁36には、つぎのような簡単なシングルソレノイドの切換弁が採用される。   First, the servo valve 32 employs a linear servo valve driven by a linear motor that switches the piping line with high speed and high response and precisely controls the flow rate. The servo valve 32 has three positions for switching the connection direction of the four piping ports depending on the position of a valve spool (not shown), and each position is described next. The direction switching valve 36 employs the following simple single solenoid switching valve.

サーボ弁32と方向切換弁36は、より詳細には、既述した配管ラインにつぎのように接続されると良い。まず、サーボ弁32の、A、Bの2ポートは、供給ラインP3にまとめて接続される。この場合、サーボ弁32の配管ポート接続位置がa側にオフセットされてPポートとA、Bの2ポートが連通したときに、供給ラインP2と供給ラインP3とがA、Bの2ポートを利用して連通する。それで、アキュムレータ33からの作動油がサーボ弁32の中を大量にかつ安定に通過することができる。そのうえ、サーボ弁32の中立切り換え位置の、A、Bの2ポートの少なくとも1ポートをTポートに連通するように構成して、a側オフセット位置からb側オフセット位置に切り替わる過渡状態からそれらの連通が開始されるようにして、切り換えを速めることができる。つぎに、方向切換弁36には、ソレノイドbを励磁したときの配管ポート接続位置とスプリングリターンしたときの配管ポート接続位置の2位置を有するものが採用され、その弁のスプリングリターン位置がPポートとAポートを連通しない片流れの配管ポート接続位置に構成されると良い。   More specifically, the servo valve 32 and the direction switching valve 36 are preferably connected to the above-described piping line as follows. First, the two ports A and B of the servo valve 32 are collectively connected to the supply line P3. In this case, when the piping port connection position of the servo valve 32 is offset to the a side and the two ports A and B communicate with each other, the supply line P2 and the supply line P3 use the two ports A and B. And communicate. Therefore, the hydraulic oil from the accumulator 33 can pass through the servo valve 32 in a large amount and stably. In addition, at least one of the two ports A and B at the neutral switching position of the servo valve 32 is configured to communicate with the T port, and the communication from the transient state where the a side offset position is switched to the b side offset position is established. Is started so that the switching can be speeded up. Next, the directional switching valve 36 has two positions: a piping port connection position when the solenoid b is excited and a piping port connection position when the spring is returned, and the spring return position of the valve is the P port. It is preferable to be configured at a single-flow piping port connection position that does not communicate with the A port.

アキュムレータ33は、例えば、射出プランジャ23の外形がφ28mm、その射出ストロークが130mm程度の射出装置では、その容量が20L程度に選定されて、蓄圧された作動油の最大圧力が17MPa程度を示すように封入ガス圧が11MPa程度に調整される。そして、アキュムレータ33内の作動油の圧力が圧力センサ38によって検出されて射出成形機の制御装置に送られる。それで、その圧力が降下したときに、方向切換弁36を非励磁にして供給ラインP4をブロックするとともにパイロット操作逆止弁34のパイロット圧を止めて供給ラインP2をブロックした後、ポンプ31を駆動して作動油をアキュムレータ33に蓄圧する。アキュムレータ33内の作動油は、ラインD中の開閉バルブ39によって休転等のときに開かれて圧抜きされる。   For example, in the case of an injection device having an outer shape of the injection plunger 23 of φ28 mm and an injection stroke of about 130 mm, the accumulator 33 is selected to have a capacity of about 20 L so that the maximum pressure of the accumulated hydraulic oil is about 17 MPa. The enclosed gas pressure is adjusted to about 11 MPa. Then, the pressure of the hydraulic oil in the accumulator 33 is detected by the pressure sensor 38 and sent to the control device of the injection molding machine. Thus, when the pressure drops, the direction switching valve 36 is de-energized to block the supply line P4 and the pilot pressure of the pilot operation check valve 34 is stopped to block the supply line P2, and then the pump 31 is driven. Then, the hydraulic oil is accumulated in the accumulator 33. The hydraulic oil in the accumulator 33 is opened and depressurized by the open / close valve 39 in the line D at rest or the like.

なお、射出制御回路30には、図示省略されているが、リリーフバルブとそれからオイルタンク35に至るリリーフ配管やドレーン配管等が、従来のように適宜に設けられている。また、ポンプ31には、例えば電磁比例流量制御ポンプ等の可変流量型のポンプが採用される。   Although not shown in the figure, the injection control circuit 30 is appropriately provided with a relief valve and a relief pipe, a drain pipe, etc. extending from the relief valve to the oil tank 35 as in the prior art. The pump 31 is a variable flow type pump such as an electromagnetic proportional flow rate control pump.

以上説明した射出制御回路30によって、射出シリンダ装置22の射出制御が以下のように行われる。なお、その射出制御は、薄物精密成形品等を圧縮成形するときに行われる高速射出制御と、充填完了間際に充填圧力を急速に降下する急速脱圧制御を主に説明される。   The injection control of the injection cylinder device 22 is performed as follows by the injection control circuit 30 described above. The injection control is mainly explained by high-speed injection control that is performed when compression molding thin precision molded products and the like, and rapid depressurization control that rapidly lowers the filling pressure immediately after the completion of filling.

まず、従来公知の計量が行われた後に充填制御が行われるが、充填開始の際にパイロットチェック弁34が開くとともにサーボ弁32の配管ポート接続位置がa側にオフセットする方向に制御される。それで、サーボ弁32のPポートとA、Bの2ポートが連通して、アキュムレータ33内の作動油がラインCから供給ラインP2、サーボ弁32、そして供給ラインP3へと流れて射出側油室24aに供給される。このとき、方向切換弁36のソレノイドbが非励磁に制御されており、ラインAがブロックされるとともにラインBとタンクラインTが連通して、後退側油室24bの作動油がオイルタンク35に戻る。こうして、サーボ弁32が供給ラインP3へ供給する作動油の流量を大量にかつ一気に制御することによってプランジャ23の前進動作が高速に制御されて、射出速度を急速に立ち上げる高速射出制御が実現される。このとき、射出シリンダ装置中の溶融樹脂に発生する充填圧力が、適宜な抵抗となってプランジャ23の前進動作を安定にする。   First, filling control is performed after a conventionally known metering is performed. At the start of filling, the pilot check valve 34 is opened, and the piping port connection position of the servo valve 32 is controlled to be offset to the a side. Therefore, the P port of the servo valve 32 and the two ports A and B communicate with each other, and the hydraulic oil in the accumulator 33 flows from the line C to the supply line P2, the servo valve 32, and the supply line P3. 24a. At this time, the solenoid b of the direction switching valve 36 is controlled to be non-excited, the line A is blocked, the line B and the tank line T communicate with each other, and the hydraulic oil in the backward oil chamber 24b is transferred to the oil tank 35. Return. In this way, by controlling the flow rate of the hydraulic oil supplied from the servo valve 32 to the supply line P3 in a large amount and at once, the forward movement of the plunger 23 is controlled at a high speed, and high-speed injection control for rapidly increasing the injection speed is realized. The At this time, the filling pressure generated in the molten resin in the injection cylinder device becomes an appropriate resistance to stabilize the forward movement of the plunger 23.

つぎに、高速充填完了の瞬間又は充填直前に射出側油室24a中の高圧をオイルタンク35に逃がす圧抜き制御が行われる。このため、サーボ弁32の配管ポート接続位置がb側にオフセットされてA、Bの2ポートがTポートに連通して、供給ラインP3が第一の圧抜き配管R1に連通して射出側油室24aが上記衝撃圧吸収装置11の直線透孔としての第二の透孔16aに連通する。そして、射出側油室24a内の高圧作動油が第一の圧抜き配管R1から衝撃圧吸収装置11に高応答にかつ急速に一気に流入して、射出側油室24aの射出圧力が一気に脱圧される。このとき、方向切換弁36でソレノイドbが非励磁に制御されて、ラインBとタンクラインTの接続が確保されて後退側油室24bとオイルタンク35との連通が確保されている。そのうえ、衝撃圧吸収装置11の第二の透孔16aと第一の圧抜き配管R1とが一直線に連通するとともに、衝撃圧吸収装置11の分岐透孔16bと第二の圧抜き配管R2とがその一直線から分岐状態で連通しているので、高圧作動油は専ら第一の圧抜き配管R1から収容されて第二の圧抜き配管R2側にはそれほど流出しない。そして、その後に第二の圧抜き配管R2の圧力が低下したときに、衝撃圧吸収装置11は作動油をオイルタンク35に低圧で戻す。こうして、衝撃圧吸収装置11は、充填完了間際の射出側油室24a内の高圧を一気に脱圧することはもちろん、第一の圧抜き配管R1、第二の圧抜き配管R2でのサージ圧発生を極力防止して、射出圧力の急速脱圧制御を実現するとともにオイルタンク35の破損も防止する。この作用効果は、もちろんサーボ弁32や衝撃圧吸収装置11を射出装置の近くに配置することを条件として奏されるものではない。   Next, depressurization control is performed to release the high pressure in the injection-side oil chamber 24a to the oil tank 35 at the moment of completion of high-speed filling or immediately before filling. For this reason, the piping port connection position of the servo valve 32 is offset to the b side, the two ports A and B communicate with the T port, and the supply line P3 communicates with the first pressure relief piping R1 and the injection side oil. The chamber 24a communicates with a second through hole 16a as a straight through hole of the impact pressure absorbing device 11. Then, the high-pressure hydraulic oil in the injection-side oil chamber 24a flows from the first pressure release pipe R1 into the impact pressure absorbing device 11 with high response and rapidly, and the injection pressure in the injection-side oil chamber 24a is depressurized all at once. Is done. At this time, the solenoid b is controlled to be non-excited by the direction switching valve 36, the connection between the line B and the tank line T is ensured, and the communication between the backward oil chamber 24b and the oil tank 35 is ensured. In addition, the second through hole 16a of the impact pressure absorbing device 11 and the first pressure releasing pipe R1 communicate with each other in a straight line, and the branch through hole 16b of the impact pressure absorbing device 11 and the second pressure releasing pipe R2 are connected. Since it communicates in a branched state from the straight line, the high-pressure hydraulic oil is accommodated exclusively from the first pressure relief pipe R1 and does not flow out to the second pressure relief pipe R2 side. Then, when the pressure in the second pressure release pipe R2 subsequently decreases, the shock pressure absorber 11 returns the hydraulic oil to the oil tank 35 at a low pressure. Thus, the impact pressure absorbing device 11 not only releases the high pressure in the injection side oil chamber 24a just before the filling is completed, but also generates surge pressure in the first pressure release pipe R1 and the second pressure release pipe R2. This prevents the oil tank 35 from being damaged as much as possible to realize a quick depressurization control of the injection pressure. Of course, this effect is not achieved under the condition that the servo valve 32 and the impact pressure absorbing device 11 are arranged near the injection device.

その後、必要に応じて保圧制御が行われて、つぎの可塑化計量が行われるが、それらは従来どおりの工程であることからその説明が省略される。そして、計量完了後にプランジャ23を僅かに後退させて射出ノズル先端から樹脂洩れを防ぐ、公知のサックバック動作が行われる。このとき、方向切換弁36のソレノイドbを励磁して供給ラインP4をラインBに連通するとともにラインAをタンクラインTに連通して、後退側油室24bに作動油を供給するとともに射出側油室24aの作動油をオイルタンク35に戻す。   Thereafter, holding pressure control is performed as necessary, and the following plasticizing measurement is performed. However, since these are conventional processes, the description thereof is omitted. Then, a known suck-back operation is performed to prevent the resin leakage from the tip of the injection nozzle by slightly retracting the plunger 23 after completion of the measurement. At this time, the solenoid b of the direction switching valve 36 is excited to connect the supply line P4 to the line B, and the line A is connected to the tank line T to supply hydraulic oil to the backward oil chamber 24b and injection side oil. The hydraulic oil in the chamber 24 a is returned to the oil tank 35.

一方、本発明の衝撃圧吸収装置11は、射出成形機の型締装置の型締制御回路に組み込まれても良い。その型締装置は、好ましくは型開閉を電動式に行い型締めを油圧式に行う図5のようなハイブリッド式型締装置40であるとなお良い。   On the other hand, the impact pressure absorbing device 11 of the present invention may be incorporated in a mold clamping control circuit of a mold clamping device of an injection molding machine. The mold clamping device is preferably a hybrid mold clamping device 40 as shown in FIG. 5 that performs mold opening and closing electrically and mold clamping is hydraulic.

ハイブリッド式型締装置40(以下単に型締装置と言う。)は、固定プラテン41と可動プラテン42とを含み、それらの間に金型43が固定されて開閉される。そのため、その型締装置40は、図示省略された電動駆動装置とそれによって回転駆動されるボールねじ44(一部のみ図示)とボールねじナット(図示省略)とを含む型開閉駆動装置によって、可動プラテン42と一体の型締軸45を移動させることによって型開閉を行う。また、型締装置40は、型締油圧シリンダ47と型締ラム48とその型締ラム48の前面に配置されたハーフナット46を備えて、ハーフナット46を型締軸45の環状凸部45aに対して歯合させた後、型締ラム48を前進させて型締めを行う。そのため、型締油圧シリンダ47は、型締側油室47aに作動油が供給されたときに型締ラム48が前進し、型開側油室47bに作動油が供給されたときに型締ラム48が後退するように、型締制御回路50に接続される。なお、ハーフナット46が閉じたときに、型閉じ完了した型締軸45の環状凸部45aに歯合するように、ハーフナット46の通常保持される位置が、予め公知の型厚調整によって調整された型厚調整位置に位置決めされている。型締油圧シリンダ47を一体に内蔵する支持プラテンと固定プラテン41との間には、タイバ49が張架されている。   The hybrid mold clamping device 40 (hereinafter simply referred to as a mold clamping device) includes a fixed platen 41 and a movable platen 42, and a mold 43 is fixed between them to open and close. Therefore, the mold clamping device 40 is movable by a mold opening / closing drive device including an electric drive device (not shown), a ball screw 44 (only a part is shown) and a ball screw nut (not shown) that are driven by rotation. The mold is opened and closed by moving the mold clamping shaft 45 integral with the platen 42. The mold clamping device 40 includes a mold clamping hydraulic cylinder 47, a mold clamping ram 48, and a half nut 46 disposed on the front surface of the mold clamping ram 48, and the half nut 46 is connected to the annular protrusion 45 a of the mold clamping shaft 45. Then, the mold clamping ram 48 is advanced to perform mold clamping. Therefore, the mold clamping hydraulic cylinder 47 moves forward when the hydraulic oil is supplied to the mold clamping side oil chamber 47a, and the mold clamping ram 48 moves when the hydraulic oil is supplied to the mold opening side oil chamber 47b. The mold clamping control circuit 50 is connected so that 48 moves backward. When the half nut 46 is closed, the normally held position of the half nut 46 is adjusted in advance by a known mold thickness adjustment so as to mesh with the annular convex portion 45a of the mold clamping shaft 45 that has been closed. It is positioned at the mold thickness adjustment position. A tie bar 49 is stretched between a support platen that integrally incorporates the mold clamping hydraulic cylinder 47 and the fixed platen 41.

このような型締装置40では、型締動作には強力な推力を要する一方、型締力解除後ハーフナットを型厚調整位置まで後退させる動作にはそれほど大きな引っ張り力を要しないことから、型締側油室47aの断面積が型開側油室47bの断面積に比べてかなり大きい。また、型締ラム48の動作に必要な移動距離はつぎに説明されるように小さい。それで、型締側油室47aの容積は直圧式のそれに比べて充分に小さい。したがって、型締力を昇圧させるときに型締側油室47aの作動油が圧縮されて収縮する容積は小さく、結局、その昇圧のために型締側油室47aに供給する作動油の量は少なくて済む。また、同様の理由から、型締力を一気に降下するときに型締側油室47aから圧抜き配管ラインに戻す作動油の量も少ない。   In such a mold clamping device 40, a strong thrust is required for the mold clamping operation, but a large pulling force is not required for the operation of retracting the half nut to the mold thickness adjustment position after releasing the mold clamping force. The sectional area of the clamping side oil chamber 47a is considerably larger than the sectional area of the mold opening side oil chamber 47b. Further, the moving distance necessary for the operation of the mold clamping ram 48 is small as will be described below. Therefore, the volume of the mold clamping side oil chamber 47a is sufficiently smaller than that of the direct pressure type. Therefore, when the mold clamping force is increased, the volume of the hydraulic oil in the mold clamping side oil chamber 47a which is compressed and contracted is small. As a result, the amount of hydraulic oil supplied to the mold clamping side oil chamber 47a for the pressure increase is Less is enough. For the same reason, the amount of hydraulic oil returned from the mold clamping side oil chamber 47a to the pressure relief piping line when the mold clamping force is lowered at a stroke is small.

因みに、型締ラム48の移動距離が小さいのは、型閉じ後型締め完了するまでの間に前進する型締ラム48のストロークが、ハーフナット46の型厚調整位置から環状凸部45aに当接するまで前進する距離と、型締めによって伸びるタイバ49の伸び代の分との合計を僅かに上回る程度であり、型厚調整のために必要な型締ラム48の調整代が、環状凸部45aの1ピッチ分の距離を僅かに上回る程度であるからである。   Incidentally, the movement distance of the mold clamping ram 48 is small because the stroke of the mold clamping ram 48 that moves forward after the mold closing until the mold clamping is completed hits the annular protrusion 45a from the mold thickness adjustment position of the half nut 46. The adjustment distance of the mold clamping ram 48 necessary for mold thickness adjustment is slightly larger than the sum of the distance to advance until contact and the amount of extension of the tie bar 49 extended by mold clamping. This is because the distance slightly exceeds the distance of one pitch.

このような型締装置40を有する射出成形機でも、最近の導光板成形など薄物精密成形で圧縮成形を行うときに、成形品の形状精度や寸法精度の改善や残留歪みの除去のために、型締力を急速に上昇させたりその後に急速に脱圧したりする型締制御が要求される。そこで、このような型締制御にも、アキュムレータと衝撃圧吸収装置を含む、既述の射出装置の射出制御回路に類似した、図5のような型締制御回路50が採用される。なお、ハーフナット46等のその余の駆動装置に対する油圧制御回路は、従来技術であるからその説明が省略される。   Even in an injection molding machine having such a mold clamping device 40, when performing compression molding with thin precision molding such as recent light guide plate molding, in order to improve the shape accuracy and dimensional accuracy of the molded product and to remove residual distortion, There is a need for mold clamping control in which the mold clamping force is rapidly increased and then the pressure is rapidly released. Therefore, a mold clamping control circuit 50 as shown in FIG. 5 similar to the above-described injection control circuit of the injection apparatus including the accumulator and the impact pressure absorbing device is also used for such mold clamping control. Note that the hydraulic control circuit for the other driving devices such as the half nut 46 is a conventional technique, and therefore the description thereof is omitted.

まず、型締ラム48を前進させて型締動作をする制御回路は、油圧ポンプ51からサーボ弁52を経由して型締油圧シリンダ47の型締側油室47aに至る供給配管ラインを含む。その配管ラインは、油圧ポンプ51からサーボ弁52までの供給ラインP11、P12と、サーボ弁52から型締側油室47aまでの供給ラインP13と、そして、供給ラインP11と供給ラインP12の間から分岐してアキュムレータ53に連通するチャージラインCC1とから成る。供給ラインP12に設けられたパイロット操作チェック弁54は、図示の丸B方向から図示省略された切換バルブによってパイロット圧力が掛けられたときに開いて、アキュムレータ53に蓄圧された作動油をサーボ弁52に供給する。供給ラインP11に設けられた逆止弁57はアキュムレータ53から作動油が逆流することを防止する。   First, the control circuit for performing the mold clamping operation by moving the mold clamping ram 48 forward includes a supply piping line from the hydraulic pump 51 via the servo valve 52 to the mold clamping side oil chamber 47a of the mold clamping hydraulic cylinder 47. The piping lines include supply lines P11 and P12 from the hydraulic pump 51 to the servo valve 52, a supply line P13 from the servo valve 52 to the mold clamping side oil chamber 47a, and from between the supply line P11 and the supply line P12. The charge line CC1 branches and communicates with the accumulator 53. The pilot operation check valve 54 provided in the supply line P12 is opened when a pilot pressure is applied from a circle B direction shown in the figure by a switching valve (not shown), and the hydraulic oil accumulated in the accumulator 53 is supplied to the servo valve 52. To supply. A check valve 57 provided in the supply line P <b> 11 prevents hydraulic fluid from flowing back from the accumulator 53.

一方、型締ラム48の前進に伴って型開側油室47bから作動油を逃がす配管ラインは、アキュムレータ60に接続する分岐ラインCC2と、型開側油室47bからそのラインCC2に合流するラインBBとから成る。それで、型締めに伴う型締ラム48の前進によって容積を収縮する型開側油室47bの作動油は、アキュムレータ60に収容されることになる。このとき、アキュムレータ60に流入する容積は、既述したように、成形運転時に型締ラム48の前進するストロークが小さく、かつ型開側油室47bの断面積が小さいことから、少ない量である。そのため、アキュムレータ60の容量は、例えば型締力が4000N程度の型締装置であっても、20L程度の標準的なもので充分である。アキュムレータ60に封入されるガス圧は、例えば1MPa程度に弱く調整され、アキュムレータ60内の作動油の圧力は、つぎに説明される減圧弁61によって2MPaになるように設定される。このアキュムレータ60の作動油の圧力は、後に説明されるように型開側油室47bに背圧として常時掛けられる。   On the other hand, as the mold clamping ram 48 advances, a piping line that releases hydraulic oil from the mold opening side oil chamber 47b is a branch line CC2 connected to the accumulator 60, and a line that joins the line CC2 from the mold opening side oil chamber 47b. It consists of BB. Therefore, the hydraulic oil in the mold opening side oil chamber 47 b whose volume is contracted by the advance of the mold clamping ram 48 accompanying mold clamping is accommodated in the accumulator 60. At this time, the volume flowing into the accumulator 60 is small because the stroke of the mold clamping ram 48 that is advanced during the molding operation is small and the sectional area of the mold opening side oil chamber 47b is small as described above. . Therefore, a standard capacity of about 20 L is sufficient for the capacity of the accumulator 60 even if the mold clamping device has a mold clamping force of about 4000 N, for example. The gas pressure sealed in the accumulator 60 is adjusted to be as weak as about 1 MPa, for example, and the pressure of the hydraulic oil in the accumulator 60 is set to 2 MPa by the pressure reducing valve 61 described next. The pressure of the hydraulic oil in the accumulator 60 is constantly applied as a back pressure to the mold opening side oil chamber 47b as will be described later.

なお、アキュムレータ60内の作動油の圧力は、分岐ラインCC2に配設した圧力センサ65によって検出されて射出成形機の制御装置にフィードバックされる。そして、アキュムレータ60内の圧力は、後に説明されるように制御される。そのための、アキュムレータ60に作動油を供給する配管ラインは、分岐ラインCC2とラインBBの合流点から方向切換弁56に至る供給ラインP15と、方向切換弁56と供給ラインP11の間の供給ラインP14である。そして、2次側の圧力を2MPa程度に減圧する減圧弁61が供給ラインP14に設けられる。また、方向切換弁56からオイルタンク55の間にタンクラインTTが設けられている。アキュムレータ60内の作動油は、ラインDD2中の開閉バルブ66によって休転等のときに手動で圧抜きされる。   Note that the pressure of the hydraulic oil in the accumulator 60 is detected by a pressure sensor 65 disposed in the branch line CC2, and fed back to the control device of the injection molding machine. The pressure in the accumulator 60 is controlled as will be described later. For this purpose, a piping line for supplying hydraulic oil to the accumulator 60 includes a supply line P15 from the junction of the branch line CC2 and the line BB to the direction switching valve 56, and a supply line P14 between the direction switching valve 56 and the supply line P11. It is. A pressure reducing valve 61 for reducing the pressure on the secondary side to about 2 MPa is provided in the supply line P14. A tank line TT is provided between the direction switching valve 56 and the oil tank 55. The hydraulic oil in the accumulator 60 is manually depressurized by the open / close valve 66 in the line DD2 when it is idle.

また、アキュムレータ53には、従来のように、例えば型締力が4000N程度の型締装置である場合に、その封入ガス圧を例えば11MPa程度に調整した容量20Lのものが2本用意される。そして、アキュムレータ53内の作動油の圧力が20MPa程度になるように制御される。そのため、その圧力が圧力センサ58によって検出されて射出成形機の制御装置に送られて、必要に応じて作動油がアキュムレータ53に後に説明されるように補充される。また、アキュムレータ53内の作動油は、ラインDD1中の開閉バルブ59によって休転等のときなどに開かれて圧抜きされる。   In addition, two accumulators 53 having a capacity of 20 L in which the sealed gas pressure is adjusted to about 11 MPa, for example, when a mold clamping device having a mold clamping force of about 4000 N, for example, is prepared. And it controls so that the pressure of the hydraulic fluid in the accumulator 53 will be about 20 MPa. Therefore, the pressure is detected by the pressure sensor 58 and sent to the control device of the injection molding machine, and the hydraulic oil is replenished to the accumulator 53 as necessary, as described later. In addition, the hydraulic oil in the accumulator 53 is opened and depressurized by the open / close valve 59 in the line DD1 at the time of rest or the like.

上記の型締ラム48を前進させる制御回路に対して、本発明の制御回路は、型締側油室47a内の高圧作動油を供給ラインP13からオイルタンク55にサーボ弁52によって切り換え可能に戻す圧抜きラインを備える。すなわち、同じサーボ弁52によって切り換え可能に接続された供給ラインP11、P12に対して併設された圧抜き配管ラインである。その圧抜きラインは、その途中に本発明の衝撃圧吸収装置11を含み、その衝撃圧吸収装置11からサーボ弁52迄の第一の圧抜き配管R11と、その衝撃圧吸収装置11からオイルタンク55迄の第二の圧抜き配管R12とを含む。そして、第一の圧抜き配管R11が衝撃圧吸収装置11の直線透孔としての第二の透孔16aに連通し、第二の圧抜き配管R12が衝撃圧吸収装置11の分岐透孔16bに連通している。この衝撃圧吸収装置11は、既述したように封入ガス圧が大気圧であり、かつ作動油を流入させる能力で優れている。また、圧抜きのために衝撃圧吸収装置11に流入する作動油の量は、型締動作によってタイバー49が伸び分だけ型締ラム48が後退することによって生じる量だけであるから、量的に少ない。それで、この衝撃圧吸収装置11は、型締め中に型締力を瞬間的に脱圧するときに、型締側油室47a及び供給ラインP13に存在する高圧を急速にかつ抵抗なく吸収する。衝撃圧吸収装置11の容積については、例えば型締力が4000N程度の型締装置では、衝撃圧吸収装置11の中空容器には標準的な20L程度の中空容器を利用することができる。   In contrast to the control circuit for advancing the mold clamping ram 48, the control circuit of the present invention returns the high pressure hydraulic oil in the mold clamping side oil chamber 47a from the supply line P13 to the oil tank 55 so that it can be switched by the servo valve 52. Equipped with a pressure release line. In other words, the pressure release piping line is provided adjacent to the supply lines P11 and P12 connected to be switched by the same servo valve 52. The depressurization line includes the impact pressure absorbing device 11 of the present invention in the middle thereof, the first depressurization pipe R11 from the impact pressure absorbing device 11 to the servo valve 52, and the shock pressure absorbing device 11 to the oil tank. And second pressure release pipe R12 up to 55. The first pressure release pipe R11 communicates with the second through hole 16a as a straight through hole of the impact pressure absorbing device 11, and the second pressure release pipe R12 communicates with the branch through hole 16b of the impact pressure absorbing device 11. Communicate. As described above, the impact pressure absorbing device 11 is excellent in the sealed gas pressure is atmospheric pressure and the ability to flow in hydraulic fluid. In addition, the amount of hydraulic oil that flows into the impact pressure absorbing device 11 for pressure release is only the amount that is generated when the mold clamping ram 48 is retracted by the amount of extension of the tie bar 49 by the mold clamping operation. Few. Therefore, the impact pressure absorbing device 11 absorbs the high pressure existing in the mold clamping side oil chamber 47a and the supply line P13 rapidly and without resistance when the mold clamping force is instantaneously released during mold clamping. Regarding the volume of the impact pressure absorbing device 11, for example, in a mold clamping device having a clamping force of about 4000 N, a standard hollow container of about 20 L can be used as the hollow container of the impact pressure absorbing device 11.

一方、型締ラム48を後退させる配管ラインは、既述した型開側油室47bと方向切換弁56の間のラインBBとアキュムレータ60とラインBBの間の分岐ラインCC2である。そして、型締ラム48の後退に伴って型締側油室47aの作動油をオイルタンク55に逃がす管路は、既述した供給ラインP13と、サーボ弁52とオイルタンク55とを連通する第一の圧抜き配管R11、衝撃圧吸収装置11、及び第二の圧抜き配管R12である。このような配管ラインにおいて、後に説明されるようにアキュムレータ60内の弱い圧力が型開側油室47bに常時掛けられるとともに、サーボ弁52が型締ラム48の後退動作をメータアウト的に制御する。   On the other hand, the piping line for retreating the mold clamping ram 48 is the aforementioned line BB between the mold opening side oil chamber 47b and the direction switching valve 56 and the branch line CC2 between the accumulator 60 and the line BB. A pipe line through which hydraulic oil in the mold clamping side oil chamber 47a is released to the oil tank 55 as the mold clamping ram 48 is retracted communicates the supply line P13, the servo valve 52, and the oil tank 55 described above. One pressure release pipe R11, impact pressure absorbing device 11, and second pressure release pipe R12. In such a piping line, as described later, a weak pressure in the accumulator 60 is constantly applied to the mold opening side oil chamber 47b, and the servo valve 52 controls the backward movement of the mold clamping ram 48 in a meter-out manner. .

特に、上記のラインBBには、パイロット操作逆止弁62が設けられる。そして、その弁62は、図示丸Cの方向の切換弁(図示省略)からパイロット圧力を加えられて通常開いている。それで、アキュムレータ60中の圧力が型開側油室47bに常時作用して、型締ラム48は常時背圧を掛けられている。また、上記の供給ラインP15にはアキュムレータ60側から方向切換弁56までの間に順番に、パイロット操作逆止弁63、絞り弁付き逆止弁64が順番に設けられる。そして、その弁62は、一方、パイロット操作逆止弁63が後に説明されるように通常閉じた状態に制御されて、アキュムレータ60中の作動油の逆流を阻止している。   In particular, a pilot operated check valve 62 is provided in the line BB. The valve 62 is normally opened by applying pilot pressure from a switching valve (not shown) in the direction of the circle C shown in the figure. Thus, the pressure in the accumulator 60 is constantly applied to the mold opening side oil chamber 47b, and the mold clamping ram 48 is constantly subjected to back pressure. The supply line P15 is provided with a pilot operated check valve 63 and a check valve 64 with a throttle valve in order from the accumulator 60 side to the direction switching valve 56. On the other hand, the valve 62 is controlled so that the pilot operation check valve 63 is normally closed as will be described later, thereby preventing the backflow of hydraulic oil in the accumulator 60.

ところで、型締側油室47aに作動油を供給する配管ラインと型開側油室47bから作動油を戻す配管ラインとが、サーボ弁52と方向切換弁56の別異の制御弁によって制御されるのは、既述したように、サーボ弁52の一次側に供給ラインP11、P12と圧抜き配管R11、R12とが併設されるためである。すなわち、その圧抜きラインが、高圧側の型締側油室47aから作動油を抜く一方の配管ラインとして、型締側油室47aに作動油を供給するもう一方の供給配管ラインに対して併設されるためである。それで、型締油圧シリンダ47では、もう一方の型開側油室47bに別の方向切換弁56が接続されて、サーボ弁52と方向切換弁56の協働制御によって型締制御が行われる。このような構成は、サーボ弁52と方向切換弁56とを、それぞれに求められる機能性能容量に合わせて最適に選定することを可能にする。実際、それぞれの制御弁は、例えばつぎに説明されるようなもので構成されると良い。このことは、特に大型装置において上記の急速型締と急速脱圧を行う場合にそれぞれの制御弁を最適化する際に有利である。   By the way, a piping line that supplies hydraulic oil to the mold clamping side oil chamber 47 a and a piping line that returns hydraulic oil from the mold opening side oil chamber 47 b are controlled by different control valves of the servo valve 52 and the direction switching valve 56. This is because the supply lines P11 and P12 and the pressure release pipes R11 and R12 are provided on the primary side of the servo valve 52 as described above. That is, the depressurization line is provided as one piping line for draining the hydraulic oil from the high-pressure side mold clamping side oil chamber 47a to the other supply piping line for supplying the hydraulic oil to the mold clamping side oil chamber 47a. It is to be done. Therefore, in the mold clamping hydraulic cylinder 47, another direction switching valve 56 is connected to the other mold opening side oil chamber 47b, and mold clamping control is performed by cooperative control of the servo valve 52 and the direction switching valve 56. Such a configuration makes it possible to optimally select the servo valve 52 and the direction switching valve 56 in accordance with the required functional performance capacity. Actually, each control valve may be configured as described below, for example. This is advantageous when optimizing each control valve especially when performing the above-mentioned rapid mold clamping and rapid depressurization in a large-sized apparatus.

まず、サーボ弁52には、例えば高速高応答に配管ラインを切り換えるとともに精密に流量制御するリニアモータ駆動のリニアサーボ弁が採用される。そして、そのサーボ弁52は、弁スプール(図示省略)の位置によって配管ポートの接続方向を切り換える3位置を有して、それぞれの位置がつぎに説明されるように構成され、特にその中立位置についてはオールポートブロックに構成される。また、方向切換弁56には、図示のようなダブルソレノイドの、サーボ弁より容量の小さい切換弁が採用されて、その中立位置については、AポートとBポートが絞りを介してTポートと連通している。   First, as the servo valve 52, for example, a linear servo valve driven by a linear motor that switches the piping line at high speed and high response and precisely controls the flow rate is adopted. The servo valve 52 has three positions for switching the connection direction of the piping port according to the position of the valve spool (not shown), and each position is described next. Is configured as an all-port block. Further, the directional switching valve 56 employs a double solenoid switching valve having a capacity smaller than that of the servo valve as shown in the figure, and in its neutral position, the A port and the B port communicate with the T port via a restriction. is doing.

サーボ弁52と方向切換弁56は、より詳細には、既述した配管ラインにつぎのように接続されて制御される。まず、サーボ弁52については、Pポートが供給ラインP12に接続されAポートが供給ラインP13に接続されBポートがプラグで塞がれる。それで、サーボ弁52の配管ポート接続位置がb側のオフセット位置に移動してPポートとAポートが連通し、かつパイロット操作逆止弁54が開かれたときに、アキュムレータ53が供給ラインP12から供給ラインP13、そして型締側油室47aに連通される。つぎに、方向切換弁56については、例えばダブルソレノイドの3位置を有する方向切換弁が採用されて、特にその中立位置で、Pポートがブロックされる一方TポートがA、Bの両ポートに絞りを介して連通するように構成される。そして、Aポートがパイロット操作逆止弁63のパイロットラインPPに接続し、Bポートが絞り弁付き逆止弁64に接続している。また、Pポートが供給ラインP14に、TポートがタンクラインTTに接続している。   More specifically, the servo valve 52 and the direction switching valve 56 are connected to the above-described piping line and controlled as follows. First, for the servo valve 52, the P port is connected to the supply line P12, the A port is connected to the supply line P13, and the B port is closed with a plug. Thus, when the connection position of the piping port of the servo valve 52 is moved to the offset position on the b side, the P port and the A port are communicated, and the pilot check valve 54 is opened, the accumulator 53 is disconnected from the supply line P12. It communicates with the supply line P13 and the mold clamping side oil chamber 47a. Next, for the directional switching valve 56, for example, a directional switching valve having three positions of a double solenoid is adopted. In particular, in the neutral position, the P port is blocked while the T port is restricted to both the A and B ports. It is comprised so that it may communicate via. The A port is connected to the pilot line PP of the pilot operated check valve 63, and the B port is connected to the check valve 64 with a throttle valve. The P port is connected to the supply line P14, and the T port is connected to the tank line TT.

なお、アキュムレータ60に蓄圧される作動油の量を、必要に応じてポンプ51側から補充する制御は、方向制御弁56のソレノイドbを励磁して、供給ラインP14を供給ラインP15に連通して行う。このとき、パイロット操作逆止弁63は、作動油を順方向に流す一方、アキュムレータ60に蓄圧された作動油がオイルタンク55側に逆流することを防止する。また、減圧弁61は、作動油を減圧し、絞り弁付き逆止弁64は絞りによって作動油の流速を抑える。分岐ラインCC2に配設した圧力センサ65は、アキュムレータ60の圧力を検出して射出成形機の制御装置にその圧力値を伝達し、制御装置がその圧力値に応じて方向制御弁56のソレノイドbの励磁を制御する。ただし、アキュムレータ60には、型締めによって型開側油室47bから戻った作動油が蓄圧されるので、通常補充は必要ない。一方、アキュムレータ60の作動油をオイルタンク55に戻す制御は、方向制御弁56のソレノイドaを励磁して供給ラインP14をパイロットラインPPに連通するとともに供給ラインP15をタンクラインTTに連通して行う。それで、パイロット操作逆止弁63にパイロット圧が掛かってパイロット操作逆止弁63が開かれて、アキュムレータ60の作動油がオイルタンク55に戻される。   In addition, the control which replenishes the quantity of the hydraulic oil accumulate | stored in the accumulator 60 from the pump 51 side as needed excites the solenoid b of the direction control valve 56, and connects the supply line P14 to the supply line P15. Do. At this time, the pilot operation check valve 63 allows the hydraulic oil to flow in the forward direction, while preventing the hydraulic oil accumulated in the accumulator 60 from flowing backward to the oil tank 55 side. Further, the pressure reducing valve 61 depressurizes the hydraulic oil, and the check valve 64 with a throttle valve suppresses the flow rate of the hydraulic oil by the throttle. The pressure sensor 65 disposed on the branch line CC2 detects the pressure of the accumulator 60 and transmits the pressure value to the control device of the injection molding machine. The control device responds to the pressure value with the solenoid b of the direction control valve 56. Control the excitation of. However, the accumulator 60 accumulates the hydraulic oil that has returned from the mold opening side oil chamber 47b by clamping, so replenishment is not usually required. On the other hand, the control to return the hydraulic oil of the accumulator 60 to the oil tank 55 is performed by exciting the solenoid a of the direction control valve 56 to connect the supply line P14 to the pilot line PP and to connect the supply line P15 to the tank line TT. . Thus, pilot pressure is applied to the pilot operation check valve 63 to open the pilot operation check valve 63, and the hydraulic oil in the accumulator 60 is returned to the oil tank 55.

また、最初にアキュムレータ53に作動油を蓄圧する制御は、方向切換弁56を中立位置にして供給ラインP14をブロックするとともにパイロット操作逆止弁54にパイロット圧を印加させずに供給ラインP12をブロックした状態でポンプ51によって行われる。また、図示が省略されているが、リリーフバルブとそれからオイルタンク55に至るリリーフ配管やドレーン配管等が、従来のように適宜に設けられている。また、ポンプ51には、例えば電磁比例流量制御ポンプ等可変容量型のポンプが採用される。   In addition, in the control for accumulating hydraulic oil in the accumulator 53 for the first time, the supply line P14 is blocked by setting the direction switching valve 56 to the neutral position, and the supply line P12 is blocked without applying the pilot pressure to the pilot check valve 54. In this state, it is performed by the pump 51. Although not shown, a relief valve and a relief pipe, a drain pipe, and the like from the relief valve to the oil tank 55 are appropriately provided as in the prior art. The pump 51 is a variable displacement pump such as an electromagnetic proportional flow control pump.

以上の型締制御回路50によって、型締装置40の型締制御が以下のように行われる。なお、その型締制御は、特に薄物精密成形品等を圧縮成形するときに行われる、予備型締後に適宜タイミングで行われる急速型締制御と、型締め後射出充填を開始した後の適宜タイミングで行われる急速脱圧制御を主に説明される。   With the mold clamping control circuit 50 described above, mold clamping control of the mold clamping device 40 is performed as follows. The mold clamping control is performed especially when compression molding thin precision molded products, etc., with rapid mold clamping control performed at an appropriate timing after preliminary mold clamping and appropriate timing after starting injection filling after mold clamping. Will be mainly explained.

まず、既述したように、回転駆動されるボールねじ44によって型締軸45の移動が制御されて型閉じが行われる。そして、型厚調整位置に保持されていたハーフナット46が閉じて型締軸45に歯合する。   First, as described above, the movement of the mold clamping shaft 45 is controlled by the ball screw 44 that is rotationally driven, and the mold is closed. Then, the half nut 46 held at the mold thickness adjustment position is closed and meshed with the mold clamping shaft 45.

つぎに、ハーフナット46が環状凸部45aに当接するまで型締ラム48が前進する。そのため、パイロット操作チェック弁54がパイロット圧によって開放されるとともに、サーボ弁52の弁スプールがb側にオフセットされてPポートとAポートが連通して、アキュムレータ53内の高圧の作動油がチャージラインCC1から供給ラインP12、サーボ弁52、そして供給ラインP13を経由して型締側油室47aに供給される。そして、同時に方向切換弁56の配管ポート接続位置が中立位置に制御されて、パイロット圧が圧抜きされてパイロット操作逆止弁63が逆止状態に保たれて、型開側油室47bの作動油がパイロット操作逆止弁62の中を順方向に流れてアキュムレータ60の中に収容される。アキュムレータ60に収容された作動油は、背圧として型開側油室に作用して型締ラム48の飛び出し動作を防止して、結果、型締制御を安定化する。こうして、アキュムレータ53内の作動油がサーボ弁52によって制御されながら型締側油室47aに供給されることによって、型締ラム48の前進が制御される。なお、上記の背圧は、開いた状態にあるハーフナット46を型厚調整位置に保持することのみならず、型締ラム48の前進中の飛び出し防止にも役立っている。   Next, the mold clamping ram 48 advances until the half nut 46 abuts on the annular convex portion 45a. Therefore, the pilot operation check valve 54 is opened by the pilot pressure, and the valve spool of the servo valve 52 is offset to the b side so that the P port and the A port communicate with each other, and the high pressure hydraulic oil in the accumulator 53 is charged to the charge line. It is supplied from CC1 to the mold clamping side oil chamber 47a via the supply line P12, the servo valve 52, and the supply line P13. At the same time, the piping port connection position of the direction switching valve 56 is controlled to the neutral position, the pilot pressure is released, the pilot operation check valve 63 is kept in the check state, and the mold opening side oil chamber 47b is operated. The oil flows forward through the pilot operated check valve 62 and is contained in the accumulator 60. The hydraulic oil stored in the accumulator 60 acts as a back pressure on the mold opening side oil chamber to prevent the mold clamping ram 48 from popping out, thereby stabilizing the mold clamping control. Thus, the hydraulic oil in the accumulator 53 is supplied to the mold clamping side oil chamber 47a while being controlled by the servo valve 52, whereby the advance of the mold clamping ram 48 is controlled. The back pressure not only holds the half nut 46 in the open state at the mold thickness adjustment position, but also helps prevent the mold clamping ram 48 from popping out during advancement.

つぎに、型締ラム48がハーフナット46を介して型締軸を前進させて型締めが行われる。この型締制御は、特に薄物精密成形品等を圧縮成形するときに、予備型締と本型締の2段階に分けて行われることが多い。すなわち、充填開始の初期において、射出充填の充填圧力に負けて型開きする程度の弱い型締力によって行われる予備型締と、充填中の適宜タイミングで、強力な型締力によって行われる本型締である。   Next, the mold clamping ram 48 advances the mold clamping shaft through the half nut 46 to perform mold clamping. This mold clamping control is often performed in two stages, that is, preliminary mold clamping and main mold clamping, particularly when compression molding a thin precision molded product or the like. That is, at the initial stage of filling, preliminary mold clamping performed by a weak clamping force that can open the mold against the filling pressure of injection filling, and main mold performed by a strong clamping force at an appropriate timing during filling. It is tightening.

この圧縮成形では、予備型締から本型締への移行は、でき得る限り急速に行われなければならない。それで、予備型締と本型締の間に、型締力を本型締状態まで急上昇させる高速型締が行われる。これらの型締制御は、型締ラム48を前進させる制御であることでは共通している。それで、既述したハーフナット46を環状凸部45aに当接させるときの制御と基本的には同じ制御が行われる。異なる点は、サーボ弁が型締ラム48を前進させるときの速度圧力の制御にある。したがって、高速型締を行うときには、サーボ弁52の弁スプールをb側に適宜にオフセットしていた予備型締での制御から、完全にオフセットした制御に瞬時に切り換えられる。こうすることによって、アキュムレータ53内の高圧作動油が型締側油室47aに一気に急速に供給される。その後、本型締がそのまま継続されるが、型締力を例えばステップ状に任意の型締力に変化させる場合には、もちろん、サーボ弁52が流量制御される。   In this compression molding, the transition from pre-clamping to permanent clamping must be done as quickly as possible. Therefore, high-speed mold clamping is performed between the preliminary mold clamping and the main mold clamping to rapidly increase the mold clamping force to the final mold clamping state. These mold clamping controls are common in that the mold clamping ram 48 is advanced. Therefore, basically the same control as that when the half nut 46 described above is brought into contact with the annular convex portion 45a is performed. The difference is in the control of the speed pressure when the servo valve advances the mold clamping ram 48. Therefore, when high-speed mold clamping is performed, the control with the preliminary mold clamping, in which the valve spool of the servo valve 52 is appropriately offset to the b side, is instantaneously switched to the completely offset control. By doing so, the high pressure hydraulic oil in the accumulator 53 is rapidly supplied to the mold clamping side oil chamber 47a at once. Thereafter, the main mold clamping is continued as it is. However, when the mold clamping force is changed to an arbitrary mold clamping force in a stepped manner, for example, the servo valve 52 is flow-controlled.

つぎに、射出装置側で溶融樹脂の充填が行われ、その充填制御が完了した直後あるいは寸前等の適宜タイミングで、型締力を脱圧する高速脱圧制御が行われる。この制御も、薄物精密成形品の圧縮成形では最速で行われる必要がある。そこで、その急速脱圧制御をするときには、サーボ弁52の配管ポート接続位置をa側に急速にオフセットして、TポートとAポートを連通して供給ラインP13と第一の圧抜き配管R11とを連通し、型締側油室47aを第一の圧抜き配管R11から上記衝撃圧吸収装置11の第二の透孔16aに瞬時に連通する。それで、型締側油室47a及び供給ラインP13内の高圧作動油が、サーボ弁52の切り換えと同時に衝撃圧吸収装置11に一気に流入する。   Next, filling of the molten resin is performed on the injection device side, and high-speed depressurization control for depressurizing the mold clamping force is performed immediately after completion of the filling control or at an appropriate timing such as just before. This control also needs to be performed at the highest speed in compression molding of a thin precision molded product. Therefore, when performing the quick depressurization control, the piping port connection position of the servo valve 52 is rapidly offset to the a side, the T port and the A port are communicated, and the supply line P13 and the first depressurizing piping R11 are connected. And the mold clamping side oil chamber 47a is instantaneously communicated from the first pressure release pipe R11 to the second through hole 16a of the impact pressure absorbing device 11. Thus, the high pressure hydraulic oil in the mold clamping side oil chamber 47a and the supply line P13 flows into the impact pressure absorbing device 11 at the same time as the servo valve 52 is switched.

このとき、特に、第一の圧抜き配管R11と衝撃圧吸収装置11の第二の透孔16aとが一直線に連通し、第二の圧抜き配管R12がその第二の透孔16aから分岐した分岐透孔16bに連通しているので、第一の圧抜き配管R11の高圧作動油は直線透孔としての第二の透孔16aから収容されて第二の圧抜き配管R12側にはそれほど流出しない。そして、その後に第二の圧抜き配管R12の圧力が低下したときに、衝撃圧吸収装置11は作動油をオイルタンク55に低圧で戻す。その結果、第一の圧抜き配管R11はもちろん、第二の圧抜き配管R12にもサージ圧が発生せず、オイルタンク55の破損が防止される。なお、このとき、パイロット操作逆止弁62が開いているので、アキュムレータ60から型開側油室47bには作動油が自由に補充される状態にあるが、成形品と金型キャビティとが密着しているので、型締ラム48が一気に後退することはない。   At this time, in particular, the first pressure release pipe R11 and the second through hole 16a of the impact pressure absorbing device 11 communicate with each other in a straight line, and the second pressure release pipe R12 branches from the second through hole 16a. Since it communicates with the branch through hole 16b, the high pressure hydraulic oil in the first pressure release pipe R11 is accommodated from the second through hole 16a as a straight through hole and flows out to the second pressure release pipe R12 side. do not do. Then, when the pressure in the second pressure release pipe R12 subsequently decreases, the shock pressure absorber 11 returns the hydraulic oil to the oil tank 55 at a low pressure. As a result, no surge pressure is generated not only in the first pressure release pipe R11 but also in the second pressure release pipe R12, and the oil tank 55 is prevented from being damaged. At this time, since the pilot check valve 62 is open, the hydraulic fluid is freely replenished from the accumulator 60 to the mold opening side oil chamber 47b, but the molded product and the mold cavity are in close contact with each other. Therefore, the mold clamping ram 48 does not retract at a stretch.

その後型開きする迄の間、原則的には上記の脱圧状態が維持されるが、適宜型締力で型締めが再開されることもある。この場合、既述した型締制御が適宜に行われることは言うまでもない。また、上記脱圧が急速脱圧でない場合には、上記同様サーボ弁52の配管ポート接続位置をa側にオフセットするとき、そのオフセット量が流量を調整するように制御されて、サーボ弁52がメータアウトに制御される。   After that, until the mold is opened, the above depressurization state is maintained in principle, but the mold clamping may be restarted with a mold clamping force as appropriate. In this case, needless to say, the mold clamping control described above is appropriately performed. If the depressurization is not rapid depressurization, the offset amount is controlled so as to adjust the flow rate when the piping port connection position of the servo valve 52 is offset to the a side, as described above. Controlled by meter-out.

その後、型開きを行うために、ハーフナット46が型厚調整位置に戻るまで型締ラム48を後退させる。そのため、上記と同様にパイロット操作逆止弁62が開いた状態でサーボ弁52がその配管ポート接続位置をどちらかと言えばa側にオフセットするように制御されて、型締側油室47aからオイルタンク55側に流れる作動油の流量がサーボ弁52によってメータアウトに制御される。このとき、型開側油室47bに供給される作動油の量は、既述したように型締めによってアキュムレータ60に戻った量にほぼ等しく、量的に少なくかつ圧力も小さい。そして、型閉側油室47aの作動油が第一の圧抜き配管R11から衝撃圧吸収装置11を経由してオイルタンクに戻る。このとき、圧抜き配管ラインに生じる圧力が小さいので、作動油は衝撃圧吸収装置11の直線透孔としての第二の透孔16aからから分岐透孔16bに主として流れて衝撃圧吸収装置11を素通りする。その後、ハーフナット46が型厚調整位置に後退した後に、ハーフナット46が開いて従来どおりに型開きが行われる。   Thereafter, in order to perform mold opening, the mold clamping ram 48 is retracted until the half nut 46 returns to the mold thickness adjustment position. Therefore, the servo valve 52 is controlled so as to offset the piping port connection position to the a side rather than the pilot operation check valve 62 in the same manner as described above, and the oil is released from the mold clamping side oil chamber 47a. A servo valve 52 controls the flow rate of hydraulic oil flowing to the tank 55 side to meter-out. At this time, the amount of hydraulic oil supplied to the mold opening side oil chamber 47b is almost equal to the amount returned to the accumulator 60 by mold clamping, as described above, and is small in quantity and low in pressure. Then, the hydraulic oil in the mold closing side oil chamber 47a returns from the first pressure release pipe R11 to the oil tank via the impact pressure absorbing device 11. At this time, since the pressure generated in the pressure release piping line is small, the hydraulic oil mainly flows from the second through hole 16a serving as the straight through hole of the impact pressure absorbing device 11 to the branched through hole 16b and flows through the impact pressure absorbing device 11. Go through. Thereafter, after the half nut 46 is moved back to the mold thickness adjustment position, the half nut 46 is opened and the mold is opened as usual.

本発明の衝撃圧吸収装置を概略的に示す一部断面図であり、中心線より上側半分の図がプラダにガスが充填済みであるが中空空間に油圧作動油が蓄圧されていない状態であり、下側半分の図がプラダにガスが充填され、かつ中空空間に油圧作動油が蓄圧されている状態である。FIG. 2 is a partial cross-sectional view schematically showing the impact pressure absorbing device of the present invention, and a diagram in the upper half of the center line is a state where the gas is filled in the prada but no hydraulic hydraulic oil is accumulated in the hollow space. The lower half of the figure shows a state where the prada is filled with gas and the hydraulic fluid is accumulated in the hollow space. 図1の衝撃圧吸収装置の組み立て状態にある連結部材の拡大断面である。It is an expanded section of the connection member in the assembly state of the impact pressure absorber of FIG. 図1の衝撃圧吸収装置の分解状態にある連結部材の拡大断面である。It is an expanded section of the connection member in the decomposition | disassembly state of the impact pressure absorption apparatus of FIG. 本発明の衝撃圧吸収装置とアキュムレータを含む射出装置の射出制御回路図である。It is an injection control circuit diagram of an injection device including an impact pressure absorbing device and an accumulator of the present invention. 本発明の衝撃圧吸収装置とアキュムレータを含む型締装置の型締制御回路図である。It is a mold clamping control circuit diagram of a mold clamping device including an impact pressure absorbing device and an accumulator of the present invention. 従来のアキュムレータを一部断面にして示す側面図であって、中心線より上側半分の図がプラダと中空空間に高圧ガスと油圧作動油が未充填である状態であり、下側半分の図がプラダと中空空間に高圧ガスと油圧作動油が充填済みである状態である。It is a side view showing a conventional accumulator with a partial cross section, the upper half view from the center line is a state where the high pressure gas and hydraulic fluid are not filled in the prada and the hollow space, and the lower half view is The prada and the hollow space are filled with high-pressure gas and hydraulic fluid. 従来のアキュムレータの連結部材の拡大断面であって、(a)がプラダに高圧ガスが充填済みであるが中空空間に油圧作動油が未だ蓄圧されていない状態であり、(b)がプラダに高圧ガスが充填済みであり中空空間に油圧作動油が蓄圧されつつある状態である。It is an expanded section of the connecting member of the conventional accumulator, (a) is a state where high pressure gas has been filled in the prada, but hydraulic hydraulic oil has not yet been accumulated in the hollow space, and (b) is high pressure in the prada. In this state, the gas is filled and the hydraulic fluid is being accumulated in the hollow space.

符号の説明Explanation of symbols

2 中空容器
2a 中空空間
4 プラダ
11 衝撃圧吸収装置
15 第一の連結部材(連結部材)
15a 第一の透孔(直線透孔)
15c 副透孔(直線透孔)
15d そらせ部材
16 第二の連結部材(連結部材)
16a 第二の透孔(直線透孔)
16b 分岐透孔
20 射出装置
24 射出油圧シリンダ(油圧駆動装置)
24a 射出側油室
24b 後退側油室
30 射出制御回路(油圧制御装置)
32 サーボ弁
33 アキュムレータ
35 オイルタンク
P1 供給ライン(供給配管ライン)
P2 供給ライン(供給配管ライン)
C チャージライン(供給配管ライン)
R1 第一の圧抜き配管(戻し配管ライン/圧抜き配管ライン)
R2 第二の圧抜き配管(戻し配管ライン/圧抜き配管ライン)
40 型締装置
47 型締油圧シリンダ(油圧駆動装置)
47a 型締側油室
47b 型開側油室
50 型締制御回路(油圧制御装置)
52 サーボ弁
53 アキュムレータ
55 オイルタンク
P11 供給ライン(供給配管ライン)
P12 供給ライン(供給配管ライン)
CC1 チャージライン(供給配管ライン)
R11 第一の圧抜き配管(戻し配管ライン/圧抜き配管ライン)
R12 第二の圧抜き配管(戻し配管ライン/圧抜き配管ライン)
2 Hollow container 2a Hollow space 4 Prada 11 Impact pressure absorbing device 15 First connecting member (connecting member)
15a First through hole (straight through hole)
15c Sub through hole (straight through hole)
15d Bending member 16 Second connecting member (connecting member)
16a Second through hole (straight through hole)
16b Branch through hole 20 Injection device 24 Injection hydraulic cylinder (hydraulic drive device)
24a Injection side oil chamber 24b Reverse side oil chamber 30 Injection control circuit (hydraulic control device)
32 Servo valve 33 Accumulator 35 Oil tank P1 Supply line (Supply piping line)
P2 supply line (supply piping line)
C charge line (supply piping line)
R1 First pressure release pipe (return pipe line / pressure release line)
R2 Second pressure release pipe (return pipe line / pressure release line)
40 Clamping device 47 Clamping hydraulic cylinder (hydraulic drive device)
47a Mold clamping side oil chamber 47b Mold opening side oil chamber 50 Mold clamping control circuit (hydraulic control device)
52 Servo Valve 53 Accumulator 55 Oil Tank P11 Supply Line (Supply Piping Line)
P12 supply line (supply piping line)
CC1 charge line (supply piping line)
R11 1st pressure release pipe (return pipe line / pressure release line)
R12 Second pressure relief piping (return piping line / pressure relief piping line)

Claims (3)

アキュムレータに蓄圧された油圧作動油をサーボ弁から油圧駆動装置に供給して制御する油圧制御装置の、該サーボ弁からオイルタンクに至る戻し配管ラインの途中に設けられて、該サーボ弁の切り換えに伴って該戻し配管中に過渡的に生じた高圧の油圧作動油を該戻し配管から一時的に流入させる中空容器を有する衝撃圧吸収装置において、該中空容器が、その一方の側に大気圧が封入されるプラダを有するとともにその他方の側に該戻し配管ラインと該中空容器内の中空空間とを連通する連結部材を有し、その連結部材が、該サーボ弁に接続する該戻し配管に対して略一直線に連通して該中空空間に開口する直線透孔と、その直線透孔の該中空空間側開口近傍に位置して該中空空間内に流入する油圧作動油の流れを該プラダに直撃しない方向に方向変換するそらせ部材と、該直線透孔から略直角方向に分岐して該オイルタンクへ通じる戻し配管に連結する分岐透孔と、を有することを特徴とする油圧制御装置の衝撃圧吸収装置。   The hydraulic control device that supplies and controls the hydraulic fluid accumulated in the accumulator from the servo valve to the hydraulic drive device is provided in the middle of the return piping line from the servo valve to the oil tank. In addition, in the impact pressure absorption device having a hollow container for temporarily flowing high-pressure hydraulic fluid generated transiently in the return pipe from the return pipe, the hollow container has an atmospheric pressure on one side thereof. A connecting member for connecting the return pipe line and the hollow space in the hollow container to the other side of the return pipe connected to the servo valve; A straight through hole that communicates in a substantially straight line and opens into the hollow space, and a flow of hydraulic hydraulic fluid that flows into the hollow space and is positioned in the vicinity of the hollow space side opening of the straight through hole directly hits the prada. do not do And a branch through hole that branches from the straight through hole in a substantially right angle direction and connects to a return pipe that leads to the oil tank. apparatus. 請求項1記載の前記衝撃圧吸収装置を含む前記油圧制御装置が射出装置の射出油圧シリンダを含み、該射出油圧シリンダの射出側油室が前記サーボ弁に、そして後退側油室が別異の制御弁に接続され、該サーボ弁の一次側に接続される配管ラインが、前記アキュムレータから油圧作動油を供給する供給配管ラインと、前記オイルタンクに油圧作動油を戻す圧抜き配管ラインとを含み、該圧抜き配管ラインの該サーボ弁に至る第一の圧抜き配管が該衝撃圧吸収装置の前記直線透孔に接続され、そして、該圧抜き配管ラインの該オイルタンクに至る第二の圧抜き配管が該衝撃圧吸収装置の前記分岐透孔に接続されることによって、成形樹脂の充填の際に射出速度を急速に立ち上げるときには、該サーボ弁を急速に切り換えて該アキュムレータから油圧作動油を該射出側油室に急速に供給し、充填完了の間際に射出圧力を急速に脱圧するときには、該サーボ弁を急速に切り換えて該射出側油室の高圧の油圧作動油を該直線透孔から該衝撃圧吸収装置に急速に収容させて、その後該第二の圧抜き配管の圧力が低下したときに該衝撃圧吸収装置内の油圧作動油を該分岐透孔から該オイルタンクに戻すことを特徴とする射出装置の射出制御回路。   The hydraulic control device including the impact pressure absorbing device according to claim 1 includes an injection hydraulic cylinder of an injection device, wherein an injection side oil chamber of the injection hydraulic cylinder is different from the servo valve, and a reverse side oil chamber is different. A piping line connected to the control valve and connected to the primary side of the servo valve includes a supply piping line that supplies hydraulic fluid from the accumulator, and a pressure relief piping line that returns the hydraulic fluid to the oil tank. A first pressure release pipe reaching the servo valve of the pressure release pipe line is connected to the linear through hole of the impact pressure absorbing device, and a second pressure reaching the oil tank of the pressure release pipe line When the injection pipe is connected to the branch through-hole of the impact pressure absorbing device and the injection speed is rapidly increased when filling with the molding resin, the servo valve is rapidly switched to remove the accumulator from the accumulator. When the hydraulic fluid is rapidly supplied to the injection-side oil chamber and the injection pressure is rapidly released immediately after the completion of filling, the servo valve is rapidly switched to supply the high-pressure hydraulic fluid in the injection-side oil chamber to the The hydraulic pressure oil in the impact pressure absorbing device is transferred from the branch through hole to the oil tank when the pressure in the second pressure release pipe is lowered after the straight pressure through hole is quickly accommodated in the impact pressure absorbing device. An injection control circuit for an injection device, wherein 請求項1記載の前記衝撃圧吸収装置を含む前記油圧制御装置が型締装置の型締油圧シリンダを含み、該型締油圧シリンダの型締側油室が前記サーボ弁に、そして型開側油室が別異の制御弁に接続され、該サーボ弁の一次側に接続される配管ラインが、前記アキュムレータから油圧作動油を供給する供給配管ラインと、前記オイルタンクに油圧作動油を戻す圧抜き配管ラインとを含み、該圧抜き配管ラインの該サーボ弁に至る第一の圧抜き配管が該衝撃圧吸収装置の前記直線透孔に接続され、そして、該圧抜き配管ラインの該オイルタンクに至る第二の圧抜き配管が該衝撃圧吸収装置の前記分岐透孔に接続されることによって、型締め中に型締力を急上昇させるときには、該サーボ弁を急速に切り換えて該アキュムレータから油圧作動油を該型締側油室に急速に供給し、型締め後に型締力を急速に脱圧するときには、該サーボ弁を急速に切り換えて該型締側油室の高圧の油圧作動油を該直線透孔から該衝撃圧吸収装置に急速に収容させて、その後該第二の圧抜き配管の圧力が低下したときに該衝撃圧吸収装置内の油圧作動油を該分岐透孔から該オイルタンクに戻すことを特徴とする型締装置の型締制御回路。   The hydraulic control device including the impact pressure absorbing device according to claim 1 includes a mold clamping hydraulic cylinder of a mold clamping device, wherein a mold clamping side oil chamber of the mold clamping hydraulic cylinder is provided in the servo valve, and a mold opening side oil is provided. The chamber is connected to a different control valve, the piping line connected to the primary side of the servo valve is a supply piping line that supplies hydraulic fluid from the accumulator, and the pressure relief that returns the hydraulic fluid to the oil tank A first pressure relief pipe including the pipe line and reaching the servo valve of the pressure relief pipe line is connected to the straight through hole of the impact pressure absorber, and is connected to the oil tank of the pressure relief pipe line. By connecting the second pressure relief pipe to the branch through hole of the impact pressure absorbing device, when the mold clamping force is rapidly increased during mold clamping, the servo valve is rapidly switched to hydraulically operate from the accumulator. Oil the mold When supplying the side oil chamber rapidly and releasing the mold clamping force rapidly after mold clamping, the servo valve is switched quickly so that the hydraulic fluid of the high pressure in the mold clamping side oil chamber is impacted from the straight through hole. The hydraulic fluid in the impact pressure absorber is returned from the branch through hole to the oil tank when the pressure in the second pressure relief pipe is lowered and then quickly stored in the pressure absorber. A mold clamping control circuit for the mold clamping device.
JP2008071938A 2008-03-19 2008-03-19 Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device Pending JP2009228706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071938A JP2009228706A (en) 2008-03-19 2008-03-19 Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071938A JP2009228706A (en) 2008-03-19 2008-03-19 Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device

Publications (1)

Publication Number Publication Date
JP2009228706A true JP2009228706A (en) 2009-10-08

Family

ID=41244351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071938A Pending JP2009228706A (en) 2008-03-19 2008-03-19 Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device

Country Status (1)

Country Link
JP (1) JP2009228706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101727A1 (en) 2017-01-27 2018-08-02 Engel Austria Gmbh Piston-cylinder unit
WO2018194121A1 (en) * 2017-04-19 2018-10-25 キョーラク株式会社 Molding machine
JP2018176645A (en) * 2017-04-19 2018-11-15 キョーラク株式会社 Molding machine, and method for producing foam molded body
CN112922927A (en) * 2021-01-28 2021-06-08 西安天云智控航空科技有限公司 Pressure accumulator pressure transmission sensitivity experiment test and analysis system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564503U (en) * 1992-02-07 1993-08-27 宣行 杉村 Accumulator with partition tube to enhance pulsation absorption effect
JPH084702A (en) * 1994-06-23 1996-01-09 Nhk Spring Co Ltd Liquid pressure surge absorbing device and manufacture thereof
JP2591885B2 (en) * 1992-08-05 1997-03-19 日精樹脂工業株式会社 Injection equipment of injection molding machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564503U (en) * 1992-02-07 1993-08-27 宣行 杉村 Accumulator with partition tube to enhance pulsation absorption effect
JP2591885B2 (en) * 1992-08-05 1997-03-19 日精樹脂工業株式会社 Injection equipment of injection molding machine
JPH084702A (en) * 1994-06-23 1996-01-09 Nhk Spring Co Ltd Liquid pressure surge absorbing device and manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101727A1 (en) 2017-01-27 2018-08-02 Engel Austria Gmbh Piston-cylinder unit
AT519581A1 (en) * 2017-01-27 2018-08-15 Engel Austria Gmbh Piston-cylinder unit
AT519581B1 (en) * 2017-01-27 2019-02-15 Engel Austria Gmbh Piston-cylinder unit
DE102018101727B4 (en) * 2017-01-27 2020-11-12 Engel Austria Gmbh Piston-cylinder unit for a molding machine and a molding machine
WO2018194121A1 (en) * 2017-04-19 2018-10-25 キョーラク株式会社 Molding machine
JP2018176645A (en) * 2017-04-19 2018-11-15 キョーラク株式会社 Molding machine, and method for producing foam molded body
US11241810B2 (en) 2017-04-19 2022-02-08 Kyoraku Co., Ltd. Molding machine
CN112922927A (en) * 2021-01-28 2021-06-08 西安天云智控航空科技有限公司 Pressure accumulator pressure transmission sensitivity experiment test and analysis system
CN112922927B (en) * 2021-01-28 2023-02-28 西安天云智控航空科技有限公司 Pressure accumulator pressure transmission sensitivity experiment test and analysis system

Similar Documents

Publication Publication Date Title
US9968998B2 (en) Injection device and molding apparatus
US20060016327A1 (en) Variable regeneration valve of heavy equipment
CN109982789B (en) Hydraulic casting unit
CA2279435A1 (en) Linear actuator
US11052524B2 (en) Hydraulic hammering device
JP2009228706A (en) Impact pressure absorbing device of hydraulic control device, injection control circuit of injection device including the impact pressure absorbing device, and clamping control circuit of clamping device including the impact pressure absorbing device
RU2679954C1 (en) Pressure amplifier
US7686067B2 (en) Die casting machine
WO2023050660A1 (en) Oil drain valve, energy accumulation device, hydraulic system, and working machine
US8356546B2 (en) Holding control valve
KR101577744B1 (en) Electro hydrostatic actuator system with unpressurized variable volume closed reservoir
JP2006208094A (en) Impact testing device
JP7132876B2 (en) Injection device and molding machine
US5409038A (en) Hydraulic circuit including pressure compensating valve
JP2009250252A (en) Hydraulic cylinder device
JP5162294B2 (en) Injection machine for molding machine
CN109139593B (en) Pilot unloading valve
CN109854551B (en) Hydraulic system for a molding machine, in particular for a die-casting machine
CN111566357B (en) Actuating drive with hydraulic drainage booster
EP3106676A1 (en) Fluid pressure system, accumulating method for accumulator, and method for actuating fluid pressure actuator
KR20020027230A (en) Sensor for cylinder control, and cylinder device incorporating the same
KR100853894B1 (en) Fuel injection device
JPH08105401A (en) Booster device
KR101965966B1 (en) automatic volumetric flow compensation valve for electro hydrostatic actuator
JP6720736B2 (en) Hydraulic circuit for hydraulic cylinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121127