JP2009225252A - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
JP2009225252A
JP2009225252A JP2008069249A JP2008069249A JP2009225252A JP 2009225252 A JP2009225252 A JP 2009225252A JP 2008069249 A JP2008069249 A JP 2008069249A JP 2008069249 A JP2008069249 A JP 2008069249A JP 2009225252 A JP2009225252 A JP 2009225252A
Authority
JP
Japan
Prior art keywords
output
pixel
correction
filter
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008069249A
Other languages
English (en)
Other versions
JP5091734B2 (ja
Inventor
Kenji Shiraishi
賢二 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008069249A priority Critical patent/JP5091734B2/ja
Publication of JP2009225252A publication Critical patent/JP2009225252A/ja
Application granted granted Critical
Publication of JP5091734B2 publication Critical patent/JP5091734B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Analysis (AREA)

Abstract

【課題】露光量を変え複数回の撮影を行って画像を合成することなく、1回の撮影でダイナミックレンジを拡大することができる撮像装置および撮像方法を提供する。
【解決手段】輝度レベル判定部60により所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて所定の規定値以上の画素の出力を補正する飽和画素補正処理部61と、飽和画素補正処理部61によって補正を行う際の補正係数を設定する補正係数設定部63と、被写体に対する撮影シーンを判定する撮影シーン判定部と、人物の顔部を検出する顔検出部を備え、補正係数設定部63は、撮影シーン判定部により判定した撮影シーン情報及び顔検出部による顔部検出情報を入力し、入力したこれらの情報に基づいて、飽和画素補正処理部61によって補正を行う際の補正係数を設定する。
【選択図】図7

Description

本発明は、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置および撮像方法に関し、特に撮影画像のダイナミックレンジを拡大することができる撮像装置および撮像方法に関する。
銀塩写真フィルムを用いる従来の銀塩カメラで撮影される画像のダイナミックレンジに比べ、CCD等の固体撮像素子を有するデジタルスチルカメラやデジタルビデオカメラ等で撮影される画像のダイナミックレンジは極めて狭い。ダイナミックレンジが狭いと、被写体の暗い部分は「黒つぶれ」といわれる現象が発生し、逆に被写体の明るい部分は「白とび」といわれる現象が発生して画像品質が低下する。
そこで、CCD等の固体撮像素子で撮像される画像のダイナミックレンジを拡大するために、例えば、同一被写体に対して露光量を変えて複数回の撮影を行い、露光量の異なる複数の画像を取得し、これらの画像を加算してダイナミックレンジが拡大された合成画像を生成する技術が従来より知られている(例えば、特許文献1参照)。
特開2000−92378号公報
ところで、ダイナミックレンジを拡大するために、前記特許文献1のように露光量を変えて複数回の撮影を行う方法では、移動物体の被写体を撮影したりすると、被写体が2重にずれた画像になり、正しく画像を合成できないことがある。
そこで、本発明は、露光量を変え複数回の撮影を行って画像を合成することなく、1回の撮影によってダイナミックレンジを拡大することができる撮像装置および撮像方法を提供することを目的とする。
前記目的を達成するために請求項1に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、被写体に対する撮影シーンを判定する撮影シーン判定手段と、前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出手段と、を備え、前記補正係数設定手段は、前記撮影シーン判定手段により判定した撮影シーン情報及び前記顔検出手段による顔部検出情報を入力し、入力したこれらの情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項2に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、被写体に対する撮影シーンを判定する撮影シーン判定手段と、を備え、前記補正係数設定手段は、前記撮影シーン判定手段により判定した撮影シーン情報を入力し、入力した撮影シーン情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項3に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出手段と、を備え、前記補正係数設定手段は、前記顔検出手段による顔部検出情報を入力し、入力した顔部検出情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項4に記載の発明は、前記撮像素子から出力される電気信号から被写体までの距離を検出する距離検出手段と、前記撮像素子から出力される電気信号から被写体の色分布を検出する色分布検出手段と、前記撮像素子から出力される電気信号から被写体の輝度の分布を検出する輝度分布検出手段を更に備え、前記撮影シーン判定手段は、前記距離検出手段で検出される距離情報、前記色分布検出手段で検出される色分布情報、前記輝度分布検出手段で検出される輝度分布情報のうちのいずれか1つ以上の情報に基づいて、撮影シーンを判定することを特徴としている。
請求項5に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、被写体に対する撮影シーンを判定する撮影シーン判定工程と、前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出工程と、を含み、前記補正係数設定工程は、前記撮影シーン判定工程により判定した撮影シーン情報及び前記顔検出工程による顔部検出情報を入力し、入力したこれらの情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項6に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、被写体に対する撮影シーンを判定する撮影シーン判定工程と、を含み、前記補正係数設定工程は、前記撮影シーン判定工程により判定した撮影シーン情報を入力し、入力した撮影シーン情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項7に記載の発明は、光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出工程と、を含み、前記補正係数設定工程は、前記顔検出工程による顔部検出情報を入力し、入力した顔部検出情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定することを特徴としている。
請求項8に記載の発明は、前記撮像素子から出力される電気信号から被写体までの距離を検出する距離検出工程と、前記撮像素子から出力される電気信号から被写体の色分布を検出する色分布検出工程と、前記撮像素子から出力される電気信号から被写体の輝度の分布を検出する輝度分布検出工程を更に含み、前記撮影シーン判定工程は、前記距離検出工程で検出された距離情報、前記色分布検工程で検出した色分布情報、前記輝度分布検出工程で検出した輝度分布情報のうちのいずれか1つ以上の情報に基づいて、撮影シーンを判定することを特徴としている。
本発明によれば、各画素のいずれかの画素からの出力が所定の規定値以上に達していると判定した場合に、その周辺の画素からの出力に基づいて所定の規定値以上の画素の出力を補正してダイナミックレンジを拡大することにより、露光量を変え複数回の撮影を行って画像を合成することなく、1回の撮影によってダイナミックレンジを拡大することができる。
更に、本発明によれば、顔検出手段(顔検出工程)による顔検出情報及び撮影シーン判別手段(撮影シーン判別工程)による撮影シーンの判別情報、あるいはいずれか一方の情報に基づいて、入力したこれらの情報に基づいて、画素出力補正手段(画素出力補正工程)によって補正を行う際の補正係数を設定することにより、撮影シーンの状況や、撮影シーン内に人物の顔の有無に応じて、適切な拡大幅のダイナミックレンジを設定することができる。
以下、本発明を図示の実施形態に基づいて説明する。
〈実施形態1〉
図1(a)は、本発明の実施形態1に係る撮像装置の一例としてのデジタルスチルカメラ(以下、「デジタルカメラ」という)を示す正面図、図1(b)は、その上面図、図1(c)は、その背面図、図2は、図1(a),(b),(c)に示したデジタルカメラ内のシステム構成の概要を示すブロック図である。
(デジタルカメラの外観構成)
図1(a),(b),(c)に示すように、本実施形態に係るデジタルカメラ1の上面側には、レリーズボタン(シャッタボタン)2、電源ボタン3、撮影・再生切替ダイアル4が設けられており、デジタルカメラ1の正面(前面)側には、撮影レンズ系5を有する鏡胴ユニット6、ストロボ発光部(フラッシュ)7、光学ファインダ8が設けられている。
デジタルカメラ1の背面側には、液晶モニタ(LCD)9、前記光学ファインダ8の接眼レンズ部8a、広角側ズーム(W)スイッチ10、望遠側ズーム(T)スイッチ11、メニュー(MENU)ボタン12、確定ボタン(OKボタン)13等が設けられている。また、デジタルカメラ1の側面内部には、撮影した画像データを保存するためのメモリカード14(図2参照)を収納するメモリカード収納部15が設けられている。
(デジタルカメラのシステム構成)
図2に示すように、このデジタルカメラ1は、鏡胴ユニット6の撮影レンズ系5を通して入射される被写体画像が受光面上に結像する固体撮像素子としてのCCD20、CCD20から出力される電気信号(アナログRGB画像信号)をデジタル信号に処理するアナログフロントエンド部(以下、「AFE部」という)21、AFE部21から出力されるデジタル信号を処理する信号処理部22、データを一時的に格納するSDRAM23、制御プログラム等が記憶されたROM24、鏡胴ユニット6を駆動するモータドライバ25等を有している。
鏡胴ユニット6は、ズームレンズやフォーカスレンズ等を有する撮影レンズ系5、絞りユニット26、メカシャッタユニット27を備えており、撮影レンズ系5、絞りユニット26、メカシャッタユニット27の各駆動ユニットは、モータドライバ25によって駆動される。モータドライバ25は、信号処理部22の制御部(CPU)28からの駆動信号により駆動制御される。
CCD20は、図3に示すように、CCD20を構成する複数の画素20a上にベイヤ配列のRGB原色フィルタ(以下、「RGBフィルタ」という)が配置されており、各画素からRGB3原色に対応した電気信号(アナログRGB画像信号)が出力される。
AFE部21は、CCD20を駆動するTG(タイミング信号発生部)30、CCD20から出力される電気信号(アナログRGB画像信号)をサンプリングするCDS(相関2重サンプリング部)31、CDS31にてサンプリングされた信号のゲインを調整するAGC(アナログ利得制御部)32、AGC32でゲイン調整された信号をデジタル信号(以下、「RAW−RGBデータ」という)に変換するA/D変換部33を備えている。
信号処理部22は、AFE部21のTG30へ画面水平同期信号(HD)と画面垂直同期信号(VD)の出力を行い、これらの同期信号に合わせて、AFE部21のA/D変換部33から出力されるRAW−RGBデータを取り込むCCDインターフェース(以下、「CCDI/F」という)34と、SDRAM23を制御するメモリコントローラ35と、取り込んだRAW−RGBデータを表示や記録が可能なYUV形式の画像データに変換するYUV変換部36と、表示や記録される画像データのサイズに合わせて画像サイズを変更するリサイズ処理部37と、画像表示に必要な処理を行う表示出力制御部38と、画像データをJPEG形成などで記録するためのデータ圧縮部39と、画像データをメモリカード14へ書き込み、又はメモリカード14に書き込まれた画像データを読み出すメディアインターフェース(以下、「メディアI/F」という)40と、操作部41からの操作入力情報に基づき、ROM24に記憶された制御プログラムに基づいてデジタルカメラ1全体のシステム制御等を行う制御部(CPU)28を備えている。
操作部41は、デジタルカメラ1(図1(a),(b),(c)参照)の外観表面に設けられているレリーズボタン2、電源ボタン3、撮影・再生切替ダイアル4、広角側ズームスイッチ10、望遠側ズームスイッチ11、メニューボタン12、確定ボタン13等であり、撮影者の操作によって所定の動作指示信号が制御部28に入力される。SDRAM23には、CCDI/F34に取り込まれたRAW−RGBデータが保存されると共に、YUV変換部36で変換処理されたYUVデータ(YUV形式の画像データ)が保存され、更に、データ圧縮部39で圧縮処理されたJPEG形成などの画像データが保存される。なお、前記YUVデータのYUVは、輝度データ(Y)と、色差(輝度データと青色(B)成分データの差分(U)と、輝度データと赤色(R)成分データの差分(V))の情報で色を表現する形式である。
(デジタルカメラのモニタリング動作、静止画撮影動作)
次に、前記したデジタルカメラ1のモニタリング動作と静止画撮影動作について説明する。このデジタルカメラ1は、静止画撮影モード時には、以下に説明するようなモニタリング動作を実行しながら静止画撮影動作が行われる。
先ず、撮影者が電源ボタン3をONし、撮影・再生切替ダイアル4を撮影モードに設定することで、デジタルカメラ1が記録モードで起動する。電源ボタン3がONされて、撮影・再生切替ダイアル4が撮影モードに設定されたことを制御部28が検知すると、制御部28はモータドライバ25に制御信号を出力して、鏡胴ユニット6を撮影可能位置に移動させ、かつ、CCD20、AFE部21、信号処理部22、SDRAM23、ROM24、液晶モニタ9等を起動させる。
そして、鏡胴ユニット6の撮影レンズ系5を被写体に向けることにより、撮影レンズ系5を通して入射される被写体画像がCCD20の各画素の受光面上に結像する。そして、CCD20から出力される被写体画像に応じた電気信号(アナログRGB画像信号)は、CDS31、AGC32を介してA/D変換部33に入力され、A/D変換部33により12ビット(bit)のRAW−RGBデータに変換する。
このRAW−RGBデータは、信号処理部22のCCDI/F34に取り込まれてメモリコントローラ35を介してSDRAM23に保存される。そして、SDRAM23から読み出されたRAW−RGBデータは、YUV変換部36で表示可能な形式であるYUVデータ(YUV信号)に変換された後に、メモリコントローラ35を介してSDRAM23にYUVデータが保存される。
そして、SDRAM23からメモリコントローラ35を介して読み出したYUVデータは、表示出力制御部38を介して液晶モニタ(LCD)9へ送られ、撮影画像が表示される。前記した液晶モニタ(LCD)9に撮影画像を表示しているモニタリング時においては、CCDI/F34による画素数の間引き処理により1/30秒の時間で1フレームを読み出している。
なお、このモニタリング動作時は、電子ファインダとして機能する液晶モニタ(LCD)9に撮影画像が表示されているだけで、まだレリーズボタン2が押圧操作されていない状態である。
この撮影画像の液晶モニタ(LCD)9への表示によって、静止画を撮影するための構図の確認等を撮影者が行うことができる。なお、表示出力制御部38からTVビデオ信号として出力して、ビデオケーブルを介して外部のTV(テレビ)に撮影画像を表示することもできる。
そして、信号処理部22のCCDI/F34は、取り込まれたRAW−RGBデータより、AF(自動合焦)評価値、AE(自動露出)評価値、AWB(オートホワイトバランス)評価値を算出する。
AF評価値は、例えば、高周波成分抽出フィルタの出力積分値や、近接画素の輝度差の積分値によって算出される。合焦状態にあるときは、被写体のエッジ部分がはっきりとしているため、高周波成分が一番高くなる。これを利用して、AF動作時(合焦検出動作時)には、撮影レンズ系5内の各フォーカスレンズ位置におけるAF評価値を取得して、その極大になる点を合焦検出位置としてAF動作が実行される。
AE評価値とAWB評価値は、RAW−RGBデータにおけるRGB値のそれぞれの積分値から算出される。例えば、CCD20の全画素の受光面に対応した画面を1024エリアに等分割(水平32分割、垂直32分割)し、それぞれのエリアのRGB積算を算出する。
そして、制御部28は、算出されたRGB積算値を読み出し、AE処理では、画面のそれぞれのエリアの輝度を算出して、輝度分布から適正な露光量を決定する。決定した露光量に基づいて、露光条件(CCD20の電子シャッタ回数、絞りユニット26の絞り値等)を設定する。また、AWB処理では、RGBの分布から被写体色や光源色を判定し、光源の色に合わせたAWBの制御値を決定する。このAWB処理により、YUV変換部36でYUVデータに変換処理するときのホワイトバランスを合わせる。なお、前記したAE処理とAWB処理は、前記モニタリング時には連続的に行われている。
そして、前記したモニタリング動作時に、レリーズボタン2が押圧(半押しから全押し)操作されて静止画撮影動作が開始されると、合焦位置検出動作であるAF動作と静止画記録処理が行われる。
即ち、レリーズボタン2が押圧(半押しから全押し)操作されると、制御部28からモータドライバ25への駆動指令により撮影レンズ系5のフォーカスレンズが移動し、例えば、いわゆる山登りAFと称されるコントラスト評価方式のAF動作が実行される。
AF(合焦)対象範囲が無限から至近までの全領域であった場合、撮影レンズ系5のフォーカスレンズは、至近から無限、又は無限から至近までの間の各フォーカス位置に移動し、CCDI/F34で算出されている各フォーカス位置における前記AF評価値を制御部28が読み出す。そして、各フォーカス位置のAF評価値が極大になる点を合焦位置としてフォーカスレンズを合焦位置に移動させ、合焦させる。
そして、前記したAE処理が行われ、露光完了時点で、制御部28からモータドライバ25への駆動指令によりメカシャッタユニット27が閉じられ、CCD20から静止画用のアナログRGB画像信号が出力される。そして、前記モニタリング時と同様に、AFE部21のA/D変換部33によりRAW−RGBデータに変換される。
そして、このRAW−RGBデータは、信号処理部22のCCDI/F34に取り込まれ、後述するYUV変換部36でYUVデータに変換されて、メモリコントローラ35を介してSDRAM23に保存される。そして、このYUVデータはSDRAM23から読み出されて、リサイズ処理部37で記録画素数に対応するサイズに変換され、データ圧縮部39でJPEG形式等の画像データへと圧縮される。
圧縮されたJPEG形式等の画像データは、SDRAM23に書き戻された後にメモリコントローラ35を介してSDRAM23から読み出され、メディアI/F40を介してメモリカード14に保存される。
また、本実施形態では、図4に示すように、制御部28内に顔検出部42と、撮影シーン判定部43を有している。
顔検出部42は、例えば、SDRAM23に書き込まれたYUVデータの輝度データ(Y)を読み出し、予め記憶されている人物の顔の目と鼻の輝度パターンテンプレートとのマッチングを行うことで、人物の顔を検出する。前記輝度パターンテンプレートは、複数種類の大きさのものが予めROM24に記憶されており、それぞれの大きさの輝度パターンテンプレートで画面内の各点においてパターンマッチングすることで人物の顔部の検出を行う。なお、顔検出部42による顔部の検出動作は、モニタリング動作時に連続的に行われており、AE(自動露出)において適正輝度を決める基準位置として利用される。また、AF(自動合焦)時は、合焦位置を決定するピーク検出位置としても利用される。
撮影シーン判定部43は、AF時に取得としたAF評価値から算出される被写体画面内の各位置の距離情報、前記AE評価値による画面内での輝度分布情報、及び前記AWB評価値による画面内での色分布情報を入力し、入力したこれらの情報に基づいて撮影シーンを判定する。
例えば、撮影シーン判定部43は、入力される距離情報、輝度分布情報、色分布情報に基づいて、被写体までの距離が近くでなく、画面全体の輝度が高く、画面上部に青色が分布していると判断した場合には、屋外の昼間の風景シーンと判定する。同様に、入力される距離情報、輝度分布情報、色分布情報に基づいて、被写体までの距離が近くでなく、画面全体の輝度が低く、画面の一部に高輝度が点在していると判断した場合には、夜景シーンと判定する。
更に、顔検出部42によって前記したように画面内に人物の顔部を検出し、かつ撮影シーン判定部43により被写体である人物の顔部までの距離が近く、それ以外の部分が遠距離であると判断している場合は、風景を背景とした人物撮影シーンと判定する。また、同様に、顔検出部42によって前記したように画面内に人物の顔部を検出し、かつ撮影シーン判定部43により被写体である人物の顔部までの距離が近く、それ以外の部分が遠距離であると判断し、更に、撮影シーン判定部43により画面全体の輝度が低く、画面の一部に高輝度が点在していると判断している場合には、夜景を背景とした人物撮影シーンと判定する。
(本発明におけるダイナミックレンジの拡大原理)
デジタルカメラ1のCCD20を構成する各画素上には、ベイヤ配列のRGBフィルタ(図3参照)が配置されているが、太陽光のように広い波長帯域を持つ光に対して、通常のRGBフィルタは各色ごとに輝度に対する感度が異なっている。
例えば、図5に示すように、G(グリーン)フィルタの感度が、R(レッド)フィルタ、B(ブルー)フィルタの2倍程度の感度を有するRGBフィルタ(図5のa、b、c)を有するCCD20の場合、太陽光のように広い波長帯域を持つ光が同じだけRGBフィルタに入射したときに、R、Bフィルタの各画素出力に対してGフィルタ(図5のcの斜線部分)の画素出力の方が先に飽和レベルAに達してしまう。なお、図5において、fはGフィルタの画素感度特性、gはR、Bフィルタの各画素感度特性であり、Gフィルタの画素感度特性は、R、Bフィルタの各画素感度特性の2倍程度の感度を有している。
ところで、RGBフィルタが配置されたCCDなどの固体撮像素子を有する従来のデジタルカメラでは、図5のa、b、cのRGBフィルタのように、感度の高いGフィルタの画素出力に応じた飽和レベルAに合わせてダイナミックレンジの範囲を設定している。このため、Gフィルタの画素出力が飽和レベルAに達している場合でも、R、Bフィルタの画素出力は飽和レベルAの1/2程度である。
これに対して、本発明では、図5のd、eのRGBフィルタのように、Gフィルタの画素出力が飽和レベルAを超えていても、R、Bフィルタの各画素出力が飽和レベルAを超えていない範囲内にあるときに、R、Bフィルタの各画素出力レベルから、R、Bフィルタの各画素感度特性(図5のg)とGフィルタの画素感度特性(図5のf)とに基づいてGフィルタの画素出力レベルを予測補間補正(一点鎖線部分)し、この予測補間した分だけダイナミックレンジを拡大するようにした。
前記したように本実施形態では、太陽光のように広い波長帯域を持つ光に対して、Gフィルタの画素感度特性は、R、Bフィルタの各画素感度特性の2倍程度の感度を有している。よって、本実施形態におけるダイナミックレンジの拡大幅の最大値は、ダイナミックレンジの拡大処理動作を行わない通常の撮影時に対して2倍程度である。
なお、本実施形態では、Gフィルタの画素感度特性がR、Bフィルタの各画素感度特性の2倍程度の感度を有し、これに基づいてダイナミックレンジの拡大幅の最大値が2倍としたが、R、G、Bフィルタの各画素感度特性を変化させることにより、ダイナミックレンジの拡大幅の最大値を2倍以上の所定値、あるいは2倍以下の所定値に設定することができる。
(YUV変換部36によるダイナミックレンジ拡大処理)
本実施形態に係るデジタルカメラ1のYUV変換部36は、前記したダイナミックレンジを拡大するためのダイナミックレンジ拡大処理機能を有している。
図6に示すように、YUV変換部36は、後述するダイナミックレンジ拡大予測補間部(以下、「Dレンジ拡大予測補間部」という)50、ビット圧縮変換部51、ホワイトバランス制御部52、同時化部53、トーンカーブ変換部54、RGB−YUV変換部55、画像サイズコンバータ部56、輝度ヒストグラム生成部57、およびエッジエンハンス部58を備えている。
Dレンジ拡大予測補間部50は、図7に示すように、輝度レベル判定部60、飽和画素補正処理部61、非飽和画素補正処理部62、補正係数設定部63、およびビット拡張処理部64を備えている。
輝度レベル判定部60は、入力されるRAW−RGBデータからRGBフィルタを設けた各画素の画素出力を検出するとともに、感度が一番高いGフィルタを設けた画素の画素出力(以下、「Gフィルタの画素出力」という)が飽和レベル以上に達したか否かを判定する。
飽和画素補正処理部61は、輝度レベル判定部60でGフィルタの画素出力が飽和レベル以上に達したと判定した場合に、その周囲のR、Bフィルタを設けた画素の画素出力(以下、「R、Bフィルタの画素出力」という)によって飽和レベル以上に達しているGフィルタの画素出力の補正(予測補間処理)を行う。なお、飽和画素補正処理部61は、飽和レベル以上に達しているGフィルタの画素出力を補正する際に、補正係数設定部63から入力される補正係数に基づいて補正処理を行う(詳細は後述する)。非飽和画素補正処理部62は、飽和画素補正処理部61で補正されたGフィルタの画素出力の値に基づいて、R、Bフィルタの画素出力を補正する。
補正係数設定部63は、撮影シーン判定部43により判定した撮影シーン情報及び前記顔検出部42による顔部検出情報を入力し、入力したこれらの情報に基づいて、飽和画素補正処理部61によってGフィルタの画素出力の補正を行う際の補正係数を設定する(詳細は後述する)。
ビット拡張処理部64は、輝度レベル判定部60でGフィルタの画素出力が飽和レベルに達していないと判定された場合に、Gフィルタの画素出力、およびR、Bフィルタの画素出力に対して、出力レベルの補正を行うことなく12ビットから14ビットにそれぞれビット拡張のみを行う。
以下、本実施形態におけるダイナミックレンジの拡大処理動作について説明する。
例えば、撮影したい被写体の背景の一部にその周囲よりも極端に明るい部分が有る場合や、夜景を背景にして人物をフラッシュ発光で撮影するときに人物の顔部分が白飛びするおそれがある場合などにおいて、ダイナミックレンジを拡大して高い輝度部分に対して良好な階調を有する画像を得たいことがある。このように、通常の撮影時よりもダイナミックレンジを拡大して撮影したいときには、メニューボタン12(図1(C)参照)を撮影者が押圧操作することにより、例えば、図8に示すような撮影設定画面が液晶モニタ(LCD)9に表示される。
そして、図8に示すように、メニューボタン12の押圧操作により選択された「ダイナミックレンジ2倍」の項目に対し、確定ボタン(図1(C)参照)13を押して「ダイナミックレンジ2倍」を決定する。これにより、ダイナミックレンジ拡大処理動作がONされ、制御部28から輝度レベル判定部60へダイナミックレンジの拡大幅を2倍とする信号が出力される。
そして、制御部28から輝度レベル判定部60へダイナミックレンジの拡大幅を2倍とする信号が出力されて、ダイナミックレンジ拡大処理動作が実行されると、Dレンジ拡大予測補間部50の輝度レベル判定部60は、入力されるRAW−RGBデータに基づいてGフィルタの画素出力が飽和レベル以上に達したか否かを判定処理する。
この判定処理を行う場合において、本実施形態では、RGBフィルタが設置されたCCD20の各画素に対して、図3に示したように、太枠A内の2×2画素(Gフィルタが2画素、R、Bフィルタがそれぞれ1画素)を処理単位(最小単位)とする。
この処理単位(太枠A)内にある2つのGフィルタの画素のうちの少なくとも1つの画素出力が飽和レベル以上に達している場合に、Gフィルタの感度は、前記したようにR、Bフィルタの感度の約2倍であるため、Gフィルタの画素出力値(G)は、下記の式(1)から算出する。
G={(R+B)/2}×2 …式(1)
飽和画素補正処理部61は、式(1)のように、R、Bフィルタの画素出力の平均値を算出して、それを2倍することでGフィルタの画素出力値を算出する。算出されたGフィルタの画素出力値は、処理単位(2×2画素)内にある2つのGフィルタの画素出力値として置き換えられる。なお、前記Gフィルタの画素出力値は12ビットを超えたデータになるため、ここでは一度14ビットのデータに置き換える。よって、R、Bフィルタの画素出力の最大値はいずれも4095(12ビット)なので、Gフィルタの画素出力の最大値は8190(13ビット)となることによって、14ビットのデータとして扱うことができる。
なお、前記式(1)では、Gフィルタの画素出力値の算出を2×2画素で行っているが、これに限定するものではなく、補正対象のGフィルタの画素周辺のR、Bフィルタの画素をそれぞれn(2以上)個用いて、式(1)と同様にその平均値を算出し、それを2倍するようにしてもよい。
この際、補正係数設定部63は、撮影シーン判定部43により判定した撮影シーン情報及び顔検出部42による顔部検出情報を入力し、入力したこれらの情報に基づいて、飽和画素補正処理部61によってGフィルタの画素出力の補正を行う際の補正係数を設定する。飽和画素補正処理部61は、補正係数設定部63で設定された補正係数に基づいて、飽和レベル以上に達しているGフィルタの画素出力の補正を行う。
具体的には、撮影シーン判定部43及び顔検出部42により、例えば、前記のように夜景を背景としたフラッシュ発光による人物撮影シーンと判定した場合、フラッシュ発光により人物の顔部が少し露出オーバーになり易い。これは、通常のフラッシュ発光による撮影時には撮影直前に弱い発光であるプレ発光を行い、その反射光で必要な発光量を算出し、算出した露光量に応じたフラッシュ発光を行って撮影を行う。この際、背景が遠景のときは人物からの反射光によって発光量算出を行うが、相対的に面積が広い人物の胴体部の服や髪の毛の反射率が発光量の算出に影響を与え、人物の顔部よりも反射率の低い服を着ていた場合、顔部が少し露出オーバーになってしまうことが多い。このような場合は顔部が白飛びとなってしまう。
そこで、補正係数設定部63は、撮影シーン判定部43及び顔検出部42から入力される情報(前記した夜景を背景としたフラッシュ発光による人物撮影シーン)に基づいて、ダイナミックレンジの拡大幅が最大(本実施形態では、通常時の約2倍)となるような補正係数(この場合の補正係数は、1.0)を設定して、この補正係数を飽和画素補正処理部61に出力する。飽和画素補正処理部61は、この補正係数に基づいて飽和レベル以上に達しているGフィルタの画素出力を補正する。この場合は、ダイナミックレンジの拡大幅が最大となるような補正処理である。
また、撮影シーン判定部43及び顔検出部42により、例えば、前記のように人物がいない夜景シーンと判定した場合、夜景シーンにおいては、画面内の高輝度部は電灯等の光源である可能性が高い。よって、夜景シーンの場合には、この光源(高輝度部)が白くキラキラと光っている画像の方が好まれるため、この光源(高輝度部)が飽和レベルを超えたままの方が好まれる画像となる。
そこで、補正係数設定部63は、撮影シーン判定部43及び顔検出部42から入力される情報(前記した夜景シーン)に基づいて、ダイナミックレンジの拡大幅を最大(本実施形態では、通常時の約2倍)よりも制限するような補正係数(この場合の補正係数は、例えば、0.7)を設定して、この補正係数を飽和画素補正処理部61に出力する。飽和画素補正処理部61は、この補正係数に基づいて飽和レベル以上に達しているGフィルタの画素出力を補正する。この場合は、ダイナミックレンジの拡大幅が補正係数(この場合の補正係数は、例えば0.7)に応じて低減されるような補正処理である。
このように、補正係数設定部63は、予め撮影シーン判定部43及び顔検出部42からそれぞれ入力される情報に対応した複数の補正係数が格納されており、撮影シーン判定部43及び顔検出部42からそれぞれ入力される情報に基づいて適切な補正係数を飽和画素補正処理部61に出力する。
ところで、輝度レベル判定部60でGフィルタの画素出力が飽和レベル以上に達しているか否かを判定処理する前に、欠陥画素の補正が完了している必要がある。即ち、Gフィルタを設けた画素に欠陥画素があり、常に飽和する値を出力する画素があった場合、同じ処理単位内にあるGフィルタを設けた画素を大きな値に置き換えてしまうため、新たな欠陥画素を生成してしまうことになる。
また、R、Bフィルタが配置された画素に欠陥画素がある場合、前記式(1)によるGフィルタを設けた画素の換算が正しくない値になってしまう。このため、本実施形態では、CCDI/F34に欠陥画素を取り除く欠陥画素除去処理部(不図示)を備えている。
ところで、前記したように補正係数設定部63から入力される補正係数に基づいて、飽和画素補正処理部61で飽和レベル以上に達しているGフィルタの画素出力の補正を行うと、その周囲の飽和していないR、Bフィルタの画素出力とのバランスがくずれて、色相(色合い)がずれてしまう場合がある。そこで、非飽和画素補正処理部62は、飽和画素補正処理部61で補正されたGフィルタの画素出力に応じて、以下のようにR、Bフィルタの画素出力を補正するようにした。
図9は、光源の色温度(2000K(ケルビン)以下〜9000K(ケルビン)以上)の違いに対するRGBフィルタの各画素出力の比率の一例を示した特性図である。図9から明らかなように、Gフィルタの画素出力は色温度が変化しても殆ど変化しないが、Rフィルタの画素出力は色温度が低い(赤っぽい光源)ほど大きくなり、Bフィルタの画素出力は色温度が高い(青っぽい光源)ほど大きくなる。
図9に示したような色温度とRGBフィルタの各画素出力値の比率関係は、RGBフィルタが配置されたCCDに依存している。そこで、デジタルカメラ1に前記RGBフィルタが配置されたCCD20を組み込む際に、このRGBフィルタが配置されたCCD20に応じた図9のような異なる色温度に対するRGBフィルタの各画素出力値の比率関係を示したテーブル(以下、「RGB出力比率テーブル」という)を、ROM24に保存しておく。
そして、制御部28は、CCDI/F34から取得したAWB評価値であるRGBの分布から被写体の光源の色温度を決定した後、ROM24から前記RGB出力比率テーブルを読み出し、非飽和画素補正処理部62に出力する。非飽和画素補正処理部62は、撮影時における光源の色温度に対する、飽和画素補正処理部61で補正されたGフィルタの画素出力値と該Gフィルタの画素周囲のR、Bフィルタの画素出力値との比率が、前記RGB出力比率テーブルの画素出力比率と同じになるように、R、Bフィルタの画素出力値を補正する。補正されたR、Bフィルタの画素出力は14ビットに拡張されて、ビット圧縮変換部51に出力される。
そして、ビット圧縮変換部51は、例えば、図10(a)に示すような変換特性(3箇所の節点を指定し、それらの間を直線で近似する4区間の折れ線近似特性)によって、14ビットに拡張されたR、G、Bフィルタの画素出力のうちのGフィルタの画素出力を12ビットに圧縮する。なお、図10(a)において、aは12ビットの範囲であり、bは最大値8190のデータを1ビットシフト(1/2倍)する単純な線形変換特性(一点鎖線部分)である。
図10(a)に示す変換特性では、Gフィルタの画素出力の最大値は8190なので、ダイナミックレンジを最大に拡大する場合には、8190が4095になるように圧縮する。そして、Gフィルタの画素出力の圧縮倍率に合わせて、R、Bフィルタの画素出力の値も圧縮する。
また、前記のようにダイナミックレンジを最大(本実施形態では、通常時の約2倍)に拡大するのではなく、ダイナミックレンジの拡大幅を最大よりも制限する場合には、図10(b)に示すように、8190よりも小さい値、例えば、5461が4095になるように圧縮する。なお、図10(b)のような設定とした場合には、ダイナミックレンジの拡大幅は通常時の約4/3倍になっている。
図10(b)のように、ダイナミックレンジの拡大幅を最大よりも制限する場合としては、例えば、前記した人物がいない夜景シーンがある。この場合には、前記したようにダイナミックレンジの拡大幅を最大よりも制限するような補正係数を設定することにより、前記補正(予測補間処理)されたGフィルタの画素出力値を低減させて、ビット圧縮変換部51に出力される。これにより、例えば、図10(b)に示すように、8190よりも小さい値、例えば、5461が4095になるように圧縮される。
前記したように本実施形態では、最大値が8190に拡張されたGフィルタの画素出力を最大値が4095に圧縮する場合の一例として、図10(a)の実線で示したような3つの節点を有する変換特性を用いた。本実施形態では、単純な節点のない線形変換特性(図10(a)のb)では得られない以下のような2つの効果が得られる。
第1の効果としては、データの信頼性が高いデータにより多くのビット数を割り当てることができる。即ち、飽和レベル以上に達しているGフィルタの画素出力に対して予測補間処理する場合、前記したようにGフィルタの画素出力の飽和レベル付近の規定値以上の値になった範囲について予測補間を行い、この規定値以下の範囲では予測補間は行われない。よって、予測補間を行う範囲と行わない範囲とでは、データの精度が異なっている。
即ち、例えば、前記式(1)によって飽和しているGフィルタの画素出力値を予測補間(補正)する場合、主被写体の色によっては、予測補間を行う範囲においては被写体の輝度レベルが正確に再現できていない場合がある。これに対して予測補間を行っていない範囲は、RGBフィルタが配置されたCCD20から出力される実際のデータ(アナログRGB画像信号)をA/D変換したデータであるので、このデータの信頼性は高いものとなる。
即ち、図10(a)に示した本実施形態における変換特性(実線で示した部分)では、例えば、入力14ビットデータが1024ときに出力12ビットデータは1024になっており、元のデータがそのまま使われている。これに対し、例えば、入力14ビットデータが3072ときに出力12ビットデータは2560になっており、この範囲では予測補間前のビット割付よりも少ない割付となることによって、多少のビット誤差が発生する。
このように、単純な節点のない線形変換を行う特性(一点鎖線で示した部分)ではなく、本実施形態のように3つの節点を有する変換特性(実線で示した部分)を採用することにより、ビット割付をだんだんと少なくしていくことができるので、データの信頼性が高いデータにより多くのビット数を割り当てることができる。
そして、第2の効果としては、低・中輝度における階調を正確に保存することができる。即ち、単純な線形変換特性(図10(a)のb)でビット圧縮を行った場合、低輝度側の予測補間が行われていない範囲では、ビット割付が1/4になってしまう。このため、階調感のない画像になってしまう。これに対し、図10(a)に示したような本実施形態における変換特性(実線部分)でビット圧縮を行った場合には、飽和レベル以下で低輝度レベルにおける画素出力に対応したデータに対しては、ビット圧縮変換部51でビット圧縮する前とビット圧縮した後で略同じ値となるような圧縮率を用いることにより、低・中輝度レベルにおける階調性を良好に保持することができる。
なお、本実施形態では、拡張したGフィルタの画素出力の14ビットデータを12ビットに縮小するときに、図10(a)のように3つの節点を指定し、それらの間を直線で近似する4区間の折れ線近似特性(変換特性)でビット圧縮を行う構成であったが、この区間数は特に限定されるものではない。例えば、1つの節点を指定する2区間の折れ線近似特性としてもよいが、節点付近でビット割付が大きく変わることにより、前記した2つの効果が小さくなる。よって、3区間以上の区間数を有する折れ線近似特性(変換特性)が好ましい。
また、拡張したGフィルタの画素出力の14ビットデータを12ビットに縮小する変換特性を、複数の節点を有していない曲線による変換特性としてもよい。即ち、区間数を8192にすれば、入力14ビットのデータにおいては分解能が8192なので、滑らかな曲線による変換と同等に考えることができる。よって、ビット圧縮変換部51で、入力8192のルックアップテーブルを持つことができれば、曲線による変換も可能になり、節点付近でビット割付量が変わってしまうという不具合を防止することができる。
そして、ビット圧縮変換部51で14ビットから12ビットに圧縮変換されたR、G、Bフィルタの画素出力データは、ホワイトバランス制御部52に入力される。
ホワイトバランス制御部52は、入力されるR、G、Bフィルタの画素出力値データに対してホワイトバランスを合わせるための補正係数を乗算する。この補正係数は、CCDI/F34で生成された前記AWB評価値に基づいて制御部28で算出される。なお、この補正係数は、光源色を白くするような係数である。
具体的には、図9に示したような異なる色温度に対するRGBフィルタの画素出力値の比率に基づいて、Rフィルタの画素出力値には、補正係数としてのG/R(Gフィルタの画素出力値/Rフィルタの画素出力値)を乗算し、Bフィルタの画素出力値には、補正係数としてのG/B(Gフィルタの画素出力値/Bフィルタの画素出力値)を乗算することによって、R、G、Bフィルタの画素出力値のレベルを合わせる。
ところで、前記したDレンジ拡大予測補間部50の飽和画素補正処理部61、非飽和画素補正処理部62での補正処理により、R、G、Bフィルタの画素出力値の比率は、光源色より決定したR、G、Bフィルタの画素出力値の比率になっている。
よって、Dレンジ拡大予測補間部50からの出力にホワイトバランス制御部52で前記補正係数が乗算された出力は、R、G、Bフィルタのレベルが略同じになり、無彩色に近い値となる。なお、R、G、Bフィルタのすべての画素出力値が飽和している画像領域は白とびが生じ、白く飛んでしまう。また、感度の高いGフィルタの画素出力値のみが飽和している画像領域も、輝度が高く入射している光量が大きい可能性が高いため、画素出力の補正対象となる画像領域が無彩色でも違和感は少なくなる。
そして、ホワイトバランス制御部52からホワイトバランスが合わされたR、G、Bフィルタの画素出力値データ(12ビット)は、同時化部53に入力される。同時化部53は、ベイヤ配列の1画素に1色のデータしか持っていないRAWデータに対して補間演算処理を行い、1画素に対してRGBの全てのデータを生成する。
そして、同時化部53で生成されたRGBの全てのデータ(12ビット)は、トーンカーブ変換部54に入力される。トーンカーブ変換部54は、例えば、図11に示すような変換テーブルによって12ビットのRGBのデータを8ビットのRGBのデータに変換するγ変換を行って、8ビットのRGB値を生成し、RGB−YUV変換部55に出力する。RGB−YUV変換部55は、入力されるRGBデータ(8ビット)をマトリックス演算によりYUVデータに変換し、画像サイズコンバータ部56に出力する。画像サイズコンバータ部56は、入力されるYUVデータ(8ビット)に対して所望の画像サイズに縮小または拡大を行い、輝度ヒストグラム生成部57およびエッジエンハンス部58に出力する。
輝度ヒストグラム生成部57は、入力されるYUVデータにより輝度ヒストグラムを生成する。エッジエンハンス部58は、入力されるYUVデータに対して画像に合わせたエッジ強調等の処理を行い、メモリコントローラ35を介してSDRAM23に保存する。
このように、本実施形態では、処理単位内の感度の高いGフィルタの画素出力が飽和レベルを超えているような場合においても、その周囲の飽和レベルに達していないR、Bフィルタの画素出力に基づいて、飽和しているGフィルタの画素出力を補正(予測補間処理)することにより、図5に示したように、Gフィルタ(図5のd、e)の画素出力の予測補間した拡張領域(図5のd、eのGフィルタの画素出力の一点鎖線部分)に基づいて、1回の撮影でダイナミックレンジを2倍に拡大することが可能となる。
よって、撮影画像内の背景等に高輝度部分がある場合でも、白とびの発生を防止して良好な階調性を得ることが可能となる。
更に、本実施形態では、前記したように補正係数設定部63は、撮影シーン判定部43により判定した撮影シーン情報及び顔検出部42による顔部検出情報を入力し、入力したこれらの情報に基づいて、飽和画素補正処理部61によってGフィルタの画素出力の補正を行う際の補正係数を設定し、飽和画素補正処理部61は、補正係数設定部63で設定された補正係数に基づいて、飽和レベル以上に達しているGフィルタの画素出力の補正を行う。これにより、撮影シーンの状況や、撮影シーン内に人物の顔の有無に応じて、適切な拡大幅のダイナミックレンジを設定することができる。
図12(a)は、Gフィルタの画素出力が飽和レベルを超えたときに、前記した本実施形態におけるダイナミックレンジを最大に拡大処理した場合の、輝度ヒストグラム生成部57で生成されたヒストグラムの一例である。このヒストグラムは、前記した夜景を背景としたフラッシュ発光による人物撮影シーンの例であり、人物の顔部(図12(a)の領域a)付近での白飛びがほとんど発生していなく、良好な階調で再現されている。
これに対し、図12(b)は、同様の撮影シーンで前記した本実施形態におけるダイナミックレンジの拡大処理を行わなかった場合の、輝度ヒストグラム生成部57で生成されたヒストグラムの一例である。このヒストグラムから明らかなように、ダイナミックレンジの拡大処理を行わなかったことにより、人物の顔部(図12(b)の領域a)付近が白飛びに近い状態となっている。
〈実施形態2〉
前記実施形態1では、被写体の光源の色温度に合わせて、補正されたGフィルタの画素出力値と該Gフィルタの画素周囲のR、Bフィルタの画素出力値との比率が、前記RGB出力比率テーブルの画素出力比率と同じになるように、R、Bフィルタの画素出力値を補正するようにしたが、簡易的な構成として、特定の光源下におけるR、G、Bフィルタの画素出力の感度差に応じた比率を予め測定してROM24(図2参照)に記憶しておき、この予め測定されている比率と同じになるようにR、Bフィルタの画素出力値を補正するようにしてもよい。他の構成は、前記した実施形態1のデジタルカメラと同様である。
例えば、図13(a),(b)は、特定の光源下においてそれぞれ感度特性が異なる2つのR、G、Bフィルタの画素出力の一例を示したものである。
図13(a)のR、G、Bフィルタの画素出力特性を有するデジタルカメラ(撮像装置)では、このR、G、Bフィルタの画素出力の比率が予め記憶されることになる。また、図13(b)のR、G、Bフィルタの画素出力特性を有するデジタルカメラ(撮像装置)では、このR、G、Bフィルタの画素出力の比率が予め記憶されることになる。
そして、例えば、図13(a)に示したようなR、G、Bフィルタの画素出力の比率が予め記憶されているデジタルカメラ(撮像装置)では、この予め測定されている比率と同じになるようにR、Bフィルタの画素出力値を補正する。
なお、本実施形態では、通常のホワイトバランスの制御範囲が2000〜8000K(ケルビン)程度なので、その中心付近の4000〜5000K(ケルビン)程度の色温度を有する光源下で測定したR、G、Bフィルタの画素出力の比率を予め記憶しておくことが望ましい。
このように、本実施形態では、特定の光源下におけるR、G、Bフィルタの画素出力の感度差に応じた比率を予め測定して記憶しておき、この予め測定されている比率と同じになるようにR、Bフィルタの画素出力値を補正する構成なので、実施形態1の場合よりも簡易な構成とすることができる。
〈実施形態3〉
前記実施形態1では、補正係数設定部63は、撮影シーン判定部43により判定した撮影シーン情報及び顔検出部42による顔部検出情報を入力し、入力したこれらの情報に基づいて、飽和画素補正処理部61によってGフィルタの画素出力の補正を行う際の補正係数を設定する構成であったが、撮影シーン判定部43により判定した撮影シーン情報、もしくは顔検出部42による顔部検出情報のいずれか一方の情報に基づいて、飽和画素補正処理部61によってGフィルタの画素出力の補正を行う際の補正係数を設定する構成でもよい。
〈実施形態4〉
前記実施形態1、2では、一番感度の高いGフィルタの画素出力が飽和レベル以上に達したか否かを判定する構成であったが、Rフィルタの画素出力又はBフィルタの画素出力によって飽和レベル以上に達したか否かを判定することも可能である。
Rフィルタの画素及びBフィルタの画素が、図9のような特性を持っている場合には、Rフィルタの画素又はBフィルタの画素のいずれか一方が、例えば、飽和レベルの70%以上になったらGフィルタの画素は飽和していると判断することができる。つまり、規定値を飽和レベルの70%として、Rフィルタの画素又はBフィルタの画素出力を検出対象とすることが可能である。
ここでRフィルタの画素出力とBフィルタの画素出力のいずれかが規定以上と判断された場合には、Rフィルタの画素出力とBフィルタの画素出力の比率より光源の色温度を判定し、図9のRGB出力比率テーブルの選択を行い、選択された出力比率とRフィルタの画素出力または又はBフィルタの画素出力に基づいて、RGBフィルタの各画素出力値が決定される。
更には、Rフィルタの画素出力とBフィルタの画素出力の平均値による高輝度検出としてもよい。Rフィルタの画素出力とBフィルタの画素出力が図9のような関係があるので、例えば、規定値を飽和レベルの70%として、平均値に対して高輝度判定を行う。補正に関しては、前記同様にRフィルタの画素出力とBフィルタの画素出力の出力比率から図9の光源色温度を判定し、Rフィルタの画素出力または又はBフィルタの画素出力の少なくとも一方の出力レベルより全体の出力レベルを決定し、RGBフィルタの各画素出力を決定する。
なお、前記実施形態1では、CCD20の全画素の受光面に対応した画面を1024エリアに等分割(水平32分割、垂直32分割)し、飽和レベル以上に達しているGフィルタの画素が前記1024エリア(水平32分割、垂直32分割)のどのエリアに含まれるかを判定するようにしたが、CCD20の全画素の受光面に対応した画面を、例えば1画素単位等のようにさらに細かいエリアに分割しない方がよい。
これは、R、G、Bフィルタの画素出力は、画素ごとに多少の感度差があり、また欠陥画素のように、入射光によらずに特定の出力を出してしまうものがあるためである。このため、例えば、AWB評価値の生成時の積分対象が10画素以上あれば、平均化により画素ごとの特性ばらつきを吸収できるようなばらつきを有しているRGBフィルタが設置されたCCDを用いるようにすることが望ましい。
なお、前記した各実施形態では、色分解フィルタとしてRGBの3原色系フィルタを配置した構成であったが、色分解フィルタとして補色系フィルタを配置した構成においても、同様に本発明を適用することができる。
また、前記した各実施形態では、撮影レンズ系とCCD等の固体撮像素子を有するデジタルカメラなどの撮像装置についての説明であったが、画像処理装置においも同様に本発明を適用することが可能である。例えば、単板式カラー撮像素子からのアナログ出力をデジタル信号に変換して保存したRAWデータを入力して、RGBデータやYCbCrデータを出力するような画像処理装置においても、同様に本発明を適用することが可能である。
(a)は、本発明の実施形態1に係る撮像装置の一例としてのデジタルカメラを示す正面図、(b)は、その上面図、(c)は、その背面図。 本発明の実施形態1に係る撮像装置の一例としてのデジタルカメラ内のシステム構成の概要を示すブロック図。 本発明の実施形態1におけるRGBフィルタが配置されたCCDの画素配置位置と処理単位を示す図。 顔検出部と撮影シーン判定部を有する制御部を示す図。 本発明の実施形態1におけるダイナミックレンジ拡大の原理を説明するための図。 本発明の実施形態1におけるYUV変換部の構成を示すブロック図。 本発明の実施形態1におけるDレンジ拡大予測補間部の構成を示すブロック図。 液晶モニタに表示された撮影設定画面の一例を示す図。 色温度とRGBフィルタの画素出力との関係を示す図。 (a)は、本発明の実施形態1における、拡張したGフィルタの画素出力の14ビットデータを12ビットに圧縮する変換特性を示す図、(b)は、ダイナミックレンジの拡大幅を制限した場合における、拡張したGフィルタの画素出力の14ビットデータを12ビットに圧縮する変換特性を示す図。 12ビットのRGBのデータを8ビットのRGBのデータに変換(γ変換)する変換テーブルを示す図。 (a)は、本発明の実施形態1におけるダイナミックレンジの拡大処理を行った場合のヒストグラムを示す図、(b)は、本実施形態におけるダイナミックレンジの拡大処理を行わなかった場合のヒストグラムを示す図。 (a),(b)は、本発明の実施形態2における特定の光源下においてそれぞれ感度特性が異なるR、G、Bフィルタの画素出力の一例を示す図。
符号の説明
1 デジタルカメラ(撮像装置)
5 撮影レンズ系(光学系)
6 鏡胴ユニット
9 液晶モニタ
12 メニューボタン
20 CCD(撮像素子)
21 アナログフロントエンド部
22 信号処理部
23 SDRAM
28 制御部
34 CCDインターフェース
35 メモリコントローラ
36 YUV変換部
42 顔検出部(顔検出手段)
43 撮影シーン判定部(撮影シーン判定手段)
50 Dレンジ拡大予測補間部
51 ビット圧縮変換部
60 輝度レベル判定部(画素出力検出手段)
61 飽和画素補正処理部(画素出力補正処理手段)
62 非飽和画素補正処理部
63 補正係数設定部(補正係数設定手段)
64 ビット拡張処理部

Claims (8)

  1. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、
    前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、
    前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、
    被写体に対する撮影シーンを判定する撮影シーン判定手段と、
    前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出手段と、を備え、
    前記補正係数設定手段は、前記撮影シーン判定手段により判定した撮影シーン情報及び前記顔検出手段による顔部検出情報を入力し、入力したこれらの情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像装置。
  2. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、
    前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、
    前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、
    被写体に対する撮影シーンを判定する撮影シーン判定手段と、を備え、
    前記補正係数設定手段は、前記撮影シーン判定手段により判定した撮影シーン情報を入力し、入力した撮影シーン情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像装置。
  3. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出手段と、
    前記画素出力検出手段により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正手段と、
    前記画素出力補正手段によって前記補正を行う際の補正係数を設定する補正係数設定手段と、
    前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出手段と、を備え、
    前記補正係数設定手段は、前記顔検出手段による顔部検出情報を入力し、入力した顔部検出情報に基づいて、前記画素出力補正手段によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像装置。
  4. 前記撮像素子から出力される電気信号から被写体までの距離を検出する距離検出手段と、前記撮像素子から出力される電気信号から被写体の色分布を検出する色分布検出手段と、前記撮像素子から出力される電気信号から被写体の輝度の分布を検出する輝度分布検出手段を更に備え、
    前記撮影シーン判定手段は、前記距離検出手段で検出される距離情報、前記色分布検出手段で検出される色分布情報、前記輝度分布検出手段で検出される輝度分布情報のうちのいずれか1つ以上の情報に基づいて、撮影シーンを判定する、
    ことを特徴とする請求項1又は請求項2に記載の撮像装置。
  5. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、
    前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、
    前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、
    被写体に対する撮影シーンを判定する撮影シーン判定工程と、
    前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出工程と、を含み、
    前記補正係数設定工程は、前記撮影シーン判定工程により判定した撮影シーン情報及び前記顔検出工程による顔部検出情報を入力し、入力したこれらの情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像方法。
  6. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、
    前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、
    前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、
    被写体に対する撮影シーンを判定する撮影シーン判定工程と、を含み、
    前記補正係数設定工程は、前記撮影シーン判定工程により判定した撮影シーン情報を入力し、入力した撮影シーン情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像方法。
  7. 光学系を通して入射される被写体像を複数の画素を有する受光面に受光して電気信号に変換するとともに、前記各画素の前面側に3原色系フィルタまたは補色系フィルタの色分解フィルタが配置された撮像素子を備え、広い波長帯域を持つ光に対して前記色分解フィルタのうちの特定色のフィルタが他の色のフィルタよりも高い輝度感度を有している撮像装置の撮像方法において、
    前記撮像素子から出力される電気信号に基づいて、前記色分解フィルタが配置された前記各画素からの出力を検出するとともに、前記各画素のいずれかの画素からの出力が所定の規定値以上に達しているか否かを判定する画素出力検出工程と、
    前記画素出力検出工程により前記所定の規定値以上の出力の画素が有ると判定した場合に、その周辺の画素からの出力に基づいて前記所定の規定値以上の画素の出力を補正する画素出力補正工程と、
    前記画素出力補正工程によって前記補正を行う際の補正係数を設定する補正係数設定工程と、
    前記撮像素子から出力される電気信号から、人物の顔部を検出する顔検出工程と、を含み、
    前記補正係数設定工程は、前記顔検出工程による顔部検出情報を入力し、入力した顔部検出情報に基づいて、前記画素出力補正工程によって前記補正を行う際の補正係数を設定する、
    ことを特徴とする撮像方法。
  8. 前記撮像素子から出力される電気信号から被写体までの距離を検出する距離検出工程と、前記撮像素子から出力される電気信号から被写体の色分布を検出する色分布検出工程と、前記撮像素子から出力される電気信号から被写体の輝度の分布を検出する輝度分布検出工程を更に含み、
    前記撮影シーン判定工程は、前記距離検出工程で検出される距離情報、前記色分布検出工程で検出される色分布情報、前記輝度分布検出工程で検出される輝度分布情報のうちのいずれか1つ以上の情報に基づいて、撮影シーンを判定する、
    ことを特徴とする請求項5又は請求項6に記載の撮像方法。
JP2008069249A 2008-03-18 2008-03-18 撮像装置および撮像方法 Expired - Fee Related JP5091734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069249A JP5091734B2 (ja) 2008-03-18 2008-03-18 撮像装置および撮像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069249A JP5091734B2 (ja) 2008-03-18 2008-03-18 撮像装置および撮像方法

Publications (2)

Publication Number Publication Date
JP2009225252A true JP2009225252A (ja) 2009-10-01
JP5091734B2 JP5091734B2 (ja) 2012-12-05

Family

ID=41241539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069249A Expired - Fee Related JP5091734B2 (ja) 2008-03-18 2008-03-18 撮像装置および撮像方法

Country Status (1)

Country Link
JP (1) JP5091734B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079508A (ja) * 2012-10-18 2014-05-08 Olympus Medical Systems Corp 調光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199117A (ja) * 2001-12-25 2003-07-11 Sony Corp 撮像装置及び固体撮像素子の信号処理方法
JP2004312553A (ja) * 2003-04-09 2004-11-04 Fuji Photo Film Co Ltd ホワイトバランス制御方法及び撮像装置
JP2006217277A (ja) * 2005-02-03 2006-08-17 Nikon Corp 撮像装置
JP2007194971A (ja) * 2006-01-20 2007-08-02 Hitachi Kokusai Electric Inc 画像処理装置および画像処理方法
JP2008022521A (ja) * 2006-06-14 2008-01-31 Toshiba Corp 固体撮像素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199117A (ja) * 2001-12-25 2003-07-11 Sony Corp 撮像装置及び固体撮像素子の信号処理方法
JP2004312553A (ja) * 2003-04-09 2004-11-04 Fuji Photo Film Co Ltd ホワイトバランス制御方法及び撮像装置
JP2006217277A (ja) * 2005-02-03 2006-08-17 Nikon Corp 撮像装置
JP2007194971A (ja) * 2006-01-20 2007-08-02 Hitachi Kokusai Electric Inc 画像処理装置および画像処理方法
JP2008022521A (ja) * 2006-06-14 2008-01-31 Toshiba Corp 固体撮像素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079508A (ja) * 2012-10-18 2014-05-08 Olympus Medical Systems Corp 調光装置

Also Published As

Publication number Publication date
JP5091734B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5123137B2 (ja) 撮像装置および撮像方法
JP5347707B2 (ja) 撮像装置および撮像方法
JP6521776B2 (ja) 画像処理装置、画像処理方法
JP5660341B2 (ja) 撮像装置、撮像方法
JP2007180631A (ja) 撮像装置および撮影方法
US7884866B2 (en) Imaging apparatus and imaging method
US8319864B2 (en) Imaging apparatus and imaging method
JP5223686B2 (ja) 撮像装置および撮像方法
JP5458937B2 (ja) 撮像装置及び撮像方法及びこの撮像方法を実行するためのプログラムが記録されたコンピュータが読み取り可能な記録媒体
JP4999871B2 (ja) 撮像装置およびその制御方法
JP2018006827A (ja) 撮像装置、撮像プログラム、撮像方法
JP5256947B2 (ja) 撮像装置、撮像方法およびその方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
WO2016117137A1 (ja) 撮像装置、撮像方法、および画像表示装置
JP5277863B2 (ja) 撮像装置および撮像方法
JP5948997B2 (ja) 撮像装置及び撮像方法
JP5091781B2 (ja) 撮像装置および撮像方法
JP5146015B2 (ja) 撮像装置及び撮像方法
JP5310331B2 (ja) 撮像装置および撮像方法
JP5316923B2 (ja) 撮像装置及びそのプログラム
JP2010068331A (ja) 撮像装置および撮像方法
JP5335964B2 (ja) 撮像装置およびその制御方法
JP5803233B2 (ja) 撮像装置および撮像方法
JP5091734B2 (ja) 撮像装置および撮像方法
JP5169540B2 (ja) 撮像装置および撮像方法
JP5145876B2 (ja) 撮像装置および撮像方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees