JP2009224162A - Pipe body structure - Google Patents

Pipe body structure Download PDF

Info

Publication number
JP2009224162A
JP2009224162A JP2008066847A JP2008066847A JP2009224162A JP 2009224162 A JP2009224162 A JP 2009224162A JP 2008066847 A JP2008066847 A JP 2008066847A JP 2008066847 A JP2008066847 A JP 2008066847A JP 2009224162 A JP2009224162 A JP 2009224162A
Authority
JP
Japan
Prior art keywords
tube
short
fluid
ultrapure water
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008066847A
Other languages
Japanese (ja)
Inventor
Junji Nakao
順次 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2008066847A priority Critical patent/JP2009224162A/en
Publication of JP2009224162A publication Critical patent/JP2009224162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology to surely remove fluid charge generated on the interface between a fluid and a pipe, when the fluid is circulated inside the pipe. <P>SOLUTION: A pipe body 100 includes a hollow and spiral conduit 100C which is spirally wound and in which the fluid circulates, a short-circuiting member 140 to electrically short-circuit the vicinity of the inlet 100A and outlet 100B of the spiral conduit 100C, and a grounding part 160 connected to the vicinity of the inlet 100A to ground a closed circuit composed of the spiral conduit 100C and the short-circuiting member 140. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、流動体が内部を流通するようになした管体構造に関する。   The present invention relates to a tubular structure in which a fluid circulates inside.

この種の管体構造として、次のような技術が従来技術として知られている。   As this type of tube structure, the following techniques are known as conventional techniques.

例えば、特許文献1には、容器内に収容される流動体としての石油燃料などの絶縁性液体を供給パイプを介して別の容器に移す技術が開示され、特許文献2には、半導体シリコンウエハに流動体としての超純水(純水)をノズルを介して供給し、ウエハを洗浄する技術が開示され、また、特許文献3には、加熱装置及び冷却装置を使用して、恒温液槽及び処理液槽間で液体供給路を介して流動体としての薬液を循環させることで、薬液の温度を調整するサーキュレータ方式の熱交換装置が開示されている。
特開2002−231493号公報 特開2007−5584号公報 実公平6−12394号公報
For example, Patent Document 1 discloses a technique for transferring an insulating liquid such as petroleum fuel as a fluid contained in a container to another container through a supply pipe, and Patent Document 2 discloses a semiconductor silicon wafer. Discloses a technique of supplying ultrapure water (pure water) as a fluid through a nozzle to clean a wafer. Patent Document 3 discloses a constant temperature liquid tank using a heating device and a cooling device. And the circulator type heat exchange apparatus which adjusts the temperature of a chemical | medical solution by circulating the chemical | medical solution as a fluid via a liquid supply path between process liquid tanks is disclosed.
JP 2002-231493 A Japanese Patent Laid-Open No. 2007-5584 Japanese Utility Model Publication No. 6-12394

しかしながら、いずれの技術においても、流動体が容器(特許文献1)やノズル(特許文献2)或いは液体供給路(特許文献3)のような管体を流通した際に、当該管体と流動体との界面に流動帯電が発生してしまうが、この流動帯電に対する対策が未だ充分とはいい難い。   However, in any technique, when a fluid flows through a tubular body such as a container (Patent Document 1), a nozzle (Patent Document 2), or a liquid supply path (Patent Document 3), the tubular body and the fluid However, it is difficult to take measures against the flow charge.

すなわち、上記特許文献に開示された技術のうち、例えば、特許文献1に開示された技術のように、容器内に収容される石油燃料などの絶縁性液体を供給パイプを介して別の容器に移すような場合においては、石油燃料などの絶縁性液体が供給パイプを流通する際に、流動帯電が発生してしまうが、石油燃料などの絶縁性液体は可燃性を有していることから、前記流動帯電により石油燃料などの絶縁性液体に電界が生じて放電を起こして、これが着火の起因ともなりかねない。   That is, among the techniques disclosed in the above patent document, for example, as in the technique disclosed in Patent Document 1, insulating liquid such as petroleum fuel stored in the container is put into another container through the supply pipe. In such a case, fluid charging occurs when an insulating liquid such as petroleum fuel circulates in the supply pipe, but since the insulating liquid such as petroleum fuel is flammable, The flow electrification generates an electric field in an insulating liquid such as petroleum fuel to cause a discharge, which may cause ignition.

また、例えば、特許文献2に開示された技術のように、半導体シリコンウエハに流動体としての超純水(純水)をノズルを介して供給し、ウエハを洗浄するような場合、超純水を半導体シリコンウエハに供給する際に、超純水が流通するノズルと超純水との界面に流動帯電が発生することがある。この流動帯電によって、いわゆる残留パーティクル成分のサイズが大きくなることがある。このような残留パーティクル成分のサイズの大型化は、半導体マスク形成工程や半導体ウエハ回路形成工程において悪影響を及ぼすおそれがある。   For example, as in the technique disclosed in Patent Document 2, ultrapure water (pure water) as a fluid is supplied to a semiconductor silicon wafer through a nozzle and the wafer is cleaned. May be generated at the interface between the nozzle through which ultrapure water flows and the ultrapure water. This flow electrification may increase the size of so-called residual particle components. Such an increase in the size of the residual particle component may adversely affect the semiconductor mask forming process and the semiconductor wafer circuit forming process.

また、このような事態は純水等の薬液だけではなく、薬品ガスを使用した場合でも同様であり、薬品ガスが管を流通すると、薬品ガス及び管との界面に発生する流動帯電によって、薬品ガスのクラスタ同士、クラスタ及びコロイド粒子が吸着し合い、帯電電荷が上昇するに連れてクラスタ及びコロイド粒子の集合体で構成するクラスタ集合体のサイズが大きくなる。その大型のクラスタ集合体が半導体マスク形成工程や半導体ウエハ回路形成工程において悪影響を及ぼすおそれがある。   In addition, this situation applies not only to chemical solutions such as pure water but also to chemical gases. When chemical gas flows through the pipe, the chemical charge is generated by the flow charge generated at the interface between the chemical gas and the pipe. As the gas clusters, the clusters, and the colloidal particles adsorb to each other and the charged charge increases, the size of the cluster aggregate composed of the clusters and the aggregates of the colloidal particles increases. The large cluster aggregate may adversely affect the semiconductor mask forming process and the semiconductor wafer circuit forming process.

さらに、例えば、特許文献3に開示された技術のように、加熱装置及び冷却装置を使用して、恒温液槽及び処理液槽間で液体供給路を介して薬液を循環させることで、流動体としての薬液の温度を調整するサーキュレータ方式の熱交換装置の場合には、薬液が液体供給路を流通する際に薬液と液体供給路との界面に流動帯電が発生することがあり、このような場合、熱交換装置で温度調整された薬液を、半導体シリコンウエハなどの表面の洗浄に用いると、半導体マスク形成工程や半導体ウエハ回路形成工程において悪影響を及ぼすおそれがある。   Further, for example, as in the technique disclosed in Patent Document 3, a fluid is circulated through a liquid supply path between a constant temperature liquid tank and a processing liquid tank using a heating device and a cooling device. In the case of a circulator-type heat exchange device that adjusts the temperature of the chemical liquid as a fluid charge may occur at the interface between the chemical liquid and the liquid supply path when the chemical liquid flows through the liquid supply path. In this case, when the chemical liquid whose temperature has been adjusted by the heat exchange device is used for cleaning the surface of a semiconductor silicon wafer or the like, there is a risk of adversely affecting the semiconductor mask forming process or the semiconductor wafer circuit forming process.

従って、上記のように、流動体を管内に流通させた場合に流動体と管との界面に発生する流動帯電は、様々な分野で懸念事項となりうることになる。   Therefore, as described above, the flow charge generated at the interface between the fluid and the tube when the fluid is circulated in the tube can be a concern in various fields.

そこで、本発明は、流動体を管内に流通させた場合に流動体と管との界面に発生する流動帯電をより確実に除去する技術を提供することを目的とする。   Therefore, an object of the present invention is to provide a technique for more reliably removing the flow charge generated at the interface between the fluid and the tube when the fluid is circulated in the tube.

本発明に係る管体構造は、螺旋状部が形成された中空管状体で構成され、その内部を流通体が流通するようになした管状部材と、該管状部材に両端部が接続されると共に前記管状部材の前記螺旋状部の一部分を電気的に短絡させることにより前記螺旋状部の前記一部分との間で閉回路を構成する短絡部材と、前記管状部材の一の部位に接続して前記閉回路を接地するアース部材と、を備えて、前記流通体が管内を流通することにより発生する流動帯電を徐電するように構成したことを特徴とする。   The tubular structure according to the present invention is composed of a hollow tubular body in which a spiral portion is formed, and a tubular member through which a flow body circulates, and both ends thereof are connected to the tubular member. A short-circuit member that constitutes a closed circuit with the part of the spiral part by electrically short-circuiting a part of the spiral part of the tubular member, and connected to one part of the tubular member And a grounding member for grounding the closed circuit, wherein the flow charge generated by the circulation of the circulating body through the pipe is gradually reduced.

本発明に係る管体構造によれば、管状部材が短絡部材と閉回路を構成し、アース部材により接地されているため、管状部材の内部を流動体が流通する際に発生した流動帯電が、アース部材を介して放電されることによって徐電されることになる。   According to the tubular structure according to the present invention, since the tubular member constitutes a short circuit member and a closed circuit and is grounded by the ground member, the flow charge generated when the fluid flows through the inside of the tubular member, By discharging through the ground member, the electric power is gradually reduced.

本発明に係る管体構造の1つの態様では、前記螺旋状部の一部分である両端部に、前記短絡部材の両端をそれぞれ接続したことを特徴とする。   One aspect of the tubular structure according to the present invention is characterized in that both ends of the short-circuit member are respectively connected to both end portions which are a part of the spiral portion.

本発明に係る管体構造の1つの態様によれば、前記短絡部材が前記管状部材の両端部に接続されるため、流動体が管状部材に流入してから流出するまでより確実に流動帯電を徐電することができる。   According to one aspect of the tubular structure according to the present invention, since the short-circuit member is connected to both ends of the tubular member, fluid charging is more reliably performed until the fluid flows into the tubular member and then flows out. Can be slowed down.

本発明に係る管体の1つの態様では、前記管状部材の一の部位が前記螺旋状部における前記流通体の流入口側の端部として、該流入口側の端部に前記アース部材を接続したことを特徴とする。   In one aspect of the tubular body according to the present invention, one part of the tubular member serves as an end portion on the inlet side of the flow body in the spiral portion, and the ground member is connected to the end portion on the inlet side. It is characterized by that.

本発明に係る管体構造の1つの態様によれば、アース部材が管状部材の流動体の流入口側の端部に接続されるため、流動体が管状部材に流入する前に流動帯電などにより帯電した場合でも、管状部材に流入する前に放電することができ、流動体の徐電効果をより確実なものとすることができる。   According to one aspect of the tubular structure according to the present invention, since the ground member is connected to the end of the tubular member on the inlet side of the fluid, the fluid is charged by flow charging or the like before flowing into the tubular member. Even when charged, it can be discharged before flowing into the tubular member, and the slowing effect of the fluid can be made more reliable.

本発明によれば、管状部材が短絡部材と閉回路を構成し、アース部材により接地されているため、管状部材の内部を流動体が流通する際に発生した流動帯電が、アース部材を介して放電されることによって徐電されることになる。   According to the present invention, since the tubular member forms a closed circuit with the short-circuit member and is grounded by the ground member, the flow charge generated when the fluid flows through the tubular member is passed through the ground member. As a result of the discharge, the electric charge is gradually reduced.

本発明を実施するための最良の形態(以下、「実施形態」と称す)について、以下図面を用いて説明する。   The best mode for carrying out the present invention (hereinafter referred to as “embodiment”) will be described below with reference to the drawings.

図1は、本実施形態に係る管体の略断面構造を示す図である。管体100は、液体、気体、粉体などの流動体が流通する流路であり、その一端(流入口100A)には第1導通管120Aが接続され、他端(流出口100B)には第2導通管120Bが接続される。管体100には、第1導通管120Aを介して流動体が流入し、第2導通管120Bを介してその流動体が流出する。   FIG. 1 is a diagram showing a schematic cross-sectional structure of a tubular body according to this embodiment. The tube body 100 is a flow path through which a fluid such as liquid, gas, and powder flows. The first conducting tube 120A is connected to one end (inlet 100A) and the other end (outlet 100B). The second conducting tube 120B is connected. The fluid flows into the tube body 100 through the first conducting tube 120A, and the fluid flows out through the second conducting tube 120B.

図1に示すように、管体100は、螺旋状に巻回し、内部に流動体が流通する中空の螺旋状導通管100Cと、螺旋状導通管100Cの流入口100A及び流出口100B近傍同士を電気的に短絡させる短絡部材140と、流入口100A近傍に接続されるアース部160とを含み構成される。螺旋状導通管100Cは、耐腐食性材料を用いることができ、例えば、ハステロイ、ステンレス、インコネル、チタンなどの導電性材料を用いることができる。   As shown in FIG. 1, the tubular body 100 is spirally wound, and a hollow spiral conducting tube 100C in which a fluid flows inside, and the vicinity of the inlet 100A and the outlet 100B of the spiral conducting tube 100C. It includes a short-circuit member 140 that is electrically short-circuited and a ground portion 160 that is connected in the vicinity of the inlet 100A. For the spiral conducting tube 100C, a corrosion-resistant material can be used, and for example, a conductive material such as Hastelloy, stainless steel, Inconel, or titanium can be used.

本実施形態において、螺旋状導通管100Cと短絡部材140とは、閉回路を構成し、その閉回路は、アース部160により接地されている。このように構成することで、螺旋状導通管100Cと流動体との界面で流動帯電が発生したとしても、アース部160を介してその帯電電荷を放電することができる。   In the present embodiment, the spiral conducting tube 100 </ b> C and the short-circuit member 140 constitute a closed circuit, and the closed circuit is grounded by the earth unit 160. With this configuration, even if flow charge is generated at the interface between the spiral conducting tube 100C and the fluid, the charged charge can be discharged through the ground portion 160.

なお、本実施形態では、螺旋状導通管100Cの流入口100A付近のみにアース部160を接地する例について説明する。しかし、流出口100B付近など他の部位も接地しても構わない。また、本実施形態では、短絡部材140は、螺旋状導通管100Cの両端部に接続する例について説明する。しかし、短絡部材140は、螺旋状導通管100Cの少なくとも2つの部位に接続されていれば、それらの部位間で閉回路が構成され、帯電電荷を外部に放電することができる。   In the present embodiment, an example in which the ground portion 160 is grounded only near the inlet 100A of the spiral conducting tube 100C will be described. However, other parts such as the vicinity of the outlet 100B may be grounded. In the present embodiment, an example in which the short-circuit member 140 is connected to both ends of the spiral conducting tube 100C will be described. However, if the short-circuit member 140 is connected to at least two parts of the spiral conducting tube 100C, a closed circuit is formed between these parts, and the charged charges can be discharged to the outside.

さらに、螺旋状導通管100Cの流入口100A付近をアース部160で接地することで、例えば、第1導通管120Aと流動体との間で流動帯電が発生していた場合でも、その流動体が螺旋状導通管100Cに流入する前に、その流動体に含まれる帯電電荷をアース部160にて放電することができる。よって、螺旋状導通管100Cに流入する前に発生した流動帯電による帯電電荷を流動体が螺旋状導通管100Cに流入する前に減らすことができる。   Further, by grounding the vicinity of the inlet 100A of the spiral conducting tube 100C with the grounding portion 160, for example, even when fluid charge is generated between the first conducting tube 120A and the fluid, the fluid is Prior to flowing into the spiral conducting tube 100C, the charged charge contained in the fluid can be discharged by the ground portion 160. Therefore, it is possible to reduce the charge generated by the flow charge generated before flowing into the spiral conducting tube 100C before the fluid flows into the spiral conducting tube 100C.

また、一般に、管と流動体との界面上で発生する流動帯電の影響により、管の流入口側と流出口側との間で電位差が生じることがある。その電位差が腐食電位に達すると、管の腐食が発生する。   In general, a potential difference may occur between the inlet side and the outlet side of the pipe due to the influence of the flow charge generated on the interface between the pipe and the fluid. When the potential difference reaches the corrosion potential, pipe corrosion occurs.

一方、本実施形態では、螺旋状導通管100Cは、短絡部材140と閉回路を構成し、さらにアース部160により接地されている。よって、螺旋状導通管100Cは、流入口100A側と流出口100B側とで同電位となる。つまり、螺旋状導通管100Cはどの部位間でも電位差が生じていない。よって、本実施形態によれば、螺旋状導通管100Cは、腐食電位が生じることで腐食が進行することを防ぐことができる。   On the other hand, in the present embodiment, the spiral conductive tube 100 </ b> C forms a closed circuit with the short-circuit member 140 and is further grounded by the ground portion 160. Therefore, the spiral conducting tube 100C has the same potential on the inlet 100A side and the outlet 100B side. That is, there is no potential difference between any parts of the spiral conducting tube 100C. Therefore, according to the present embodiment, the helical conducting tube 100C can prevent the corrosion from proceeding due to the occurrence of the corrosion potential.

図2は、(1)ステンレス製の螺旋状の中空の管(以下、「螺旋状管」と称す)に対して短絡部材のみを設ける場合と、(2)短絡部材およびアース部を設ける場合それぞれについて、超純水を流通させた際における螺旋状管の出口側の表面電位の測定結果を示す。今回の測定では、螺旋状管の入口側にテフロン製の中空の管の中空の管(全長:6m)を接続し、電気抵抗18.2MQの超純水を管内に流通させることで行った。このように超純水を流通させることで、テフロン製の中空の管の流出口側では4.00KVの流動帯電を確認できた。さらに、図2Bに示すように、(1)の短絡部材のみを設けた螺旋状管の流出口側の表面電位は、螺旋状管の径が大きく、超純水の流速が速いほど高いという結果を得た。このように、短絡部材のみを設けた螺旋状管の場合、テフロン製の中空の管を流通させることで発生した4.00KVの流通帯電をある程度低減することができるが、徐電の効果は完全ではないことがわかる。一方、(2)の短絡部材およびアース部を設けた螺旋状管の流出口側では突然、螺旋状管の径の大きさや、流速の速さに拘わらず、螺旋状管の流出口側の表面電位は、0.00KVという結果を得た。つまり、短絡部材とアース部とを設けた螺旋状管では、螺旋状管の径のや大きさや、流速の速さに拘わらず、管内に流動体を流通させることで発生する流動帯電をより確実に徐電することができるという結果を得た。また、このように短絡部材とアース部とを設けた螺旋状管では、入口側がアース部で接地され、さらに、出口側の表面電位の表面電位が0.00KVとであることから、流入口側と流出口側とで同電位となる。つまり、このように短絡部材とアース部とを設けた螺旋状管ではどの部位間でも電位差が生じていない。このことは、短絡部材とアース部とを設けた管の方が、腐食電位に達しにくく、流動帯電による影響で管の腐食が発生しにくくなることを示している。   FIG. 2 shows (1) a case where only a short-circuit member is provided for a stainless steel spiral hollow tube (hereinafter referred to as “spiral tube”), and (2) a case where a short-circuit member and a grounding portion are provided. Shows the measurement result of the surface potential on the outlet side of the spiral tube when ultrapure water is circulated. In this measurement, a hollow tube (total length: 6 m) made of Teflon was connected to the inlet side of the spiral tube, and ultrapure water having an electrical resistance of 18.2 MQ was circulated in the tube. By flowing ultrapure water in this way, 4.00 KV flow charge was confirmed on the outlet side of the Teflon hollow tube. Further, as shown in FIG. 2B, the surface potential on the outlet side of the spiral tube provided with only the short-circuit member of (1) is higher as the diameter of the spiral tube is larger and the flow rate of ultrapure water is higher. Got. In this way, in the case of a spiral tube provided with only a short-circuit member, the 4.00 KV flow charge generated by circulating a Teflon hollow tube can be reduced to some extent, but the effect of slow current is completely I understand that it is not. On the other hand, on the outlet side of the spiral tube provided with the short-circuit member and grounding part (2), the surface of the outlet side of the spiral tube suddenly regardless of the diameter of the spiral tube and the speed of the flow velocity. The electric potential obtained was 0.00 KV. In other words, in a spiral tube provided with a short-circuit member and a grounding part, the flow charge generated by circulating a fluid in the tube is more sure regardless of the diameter or size of the spiral tube and the speed of the flow velocity. As a result, it was possible to slow the current. Further, in the spiral tube provided with the short-circuit member and the ground part in this way, the inlet side is grounded by the ground part, and the surface potential of the surface potential on the outlet side is 0.00 KV. And the same potential on the outlet side. That is, there is no potential difference between any parts in the spiral tube provided with the short-circuit member and the ground portion. This indicates that the pipe provided with the short-circuit member and the ground portion is less likely to reach the corrosion potential, and the pipe is less likely to be corroded due to the influence of flow charging.

ここで、本実施形態に係る管体100の具体的な適用例について説明する。なお、下記に示す例は例示に過ぎず、流動体が内部を流通する中空状の部材を備え、流動体の流通過程で流動帯電が発生することを抑制することが好ましい装置などであれば、他の装置などにも適用することはできる。   Here, a specific application example of the tubular body 100 according to the present embodiment will be described. In addition, the example shown below is merely an example, and if the apparatus includes a hollow member in which the fluid circulates inside, and it is preferable to suppress the occurrence of fluid charge in the fluid circulation process, It can be applied to other devices.

まず、管体100は、例えば、図3に示すように、半導体シリコンウエハ200に超純水を供給する際の供給路となるノズル202に適用することができる。   First, the tubular body 100 can be applied to a nozzle 202 serving as a supply path for supplying ultrapure water to the semiconductor silicon wafer 200, for example, as shown in FIG.

半導体シリコンウエハに超純水をノズルを介して供給する場合、超純水とノズルとの界面上に流動帯電が発生することがある。この流動帯電によって、超純水の溶存酸素分子やカルマン渦等で発生した気泡がコロイド粒子を巻き込み、さらに、図4に示すように、連続的に発生する摩擦帯電電荷でコロイド粒子102同士や、コロイド粒子102と気泡101とが吸着し合い、帯電電荷が上昇するに連れて、その気泡101及びコロイド粒子102の集合体で構成する残留パーティクル成分のサイズが大きくなることがある。その結果、この大型の残留パーティクル成分を含む超純水でターゲット表面(ウエハ表面)を洗浄した場合、例えばターゲット面のPNPチャネル幅を約45nmとした場合、超純水洗浄後、約1/3(約15nm)を超えるサイズの残留パーティクル成分がターゲット面に残ることがある。この場合、例えば半導体マスク形成工程(露光工程、レジスト塗布、剥離工程、洗浄工程)や半導体ウエハ回路形成工程において歩留まりや、残留パーティクル成分のマスクやウエハへの物理吸着(ファン・デル・ワース吸着)による露光欠陥やレジスト膜形成欠陥等が発生するおそれがある。   When ultrapure water is supplied to a semiconductor silicon wafer through a nozzle, flow electrification may occur on the interface between the ultrapure water and the nozzle. Due to this flow electrification, bubbles generated by dissolved oxygen molecules, Karman vortices, etc. of ultrapure water involve colloidal particles, and as shown in FIG. As the colloidal particles 102 and the bubbles 101 adsorb each other and the charged charge increases, the size of the residual particle component constituted by the aggregate of the bubbles 101 and the colloidal particles 102 may increase. As a result, when the target surface (wafer surface) is cleaned with ultrapure water containing this large residual particle component, for example, when the PNP channel width of the target surface is about 45 nm, about 1/3 after cleaning with ultrapure water. Residual particle components having a size exceeding (about 15 nm) may remain on the target surface. In this case, for example, yield in the semiconductor mask forming process (exposure process, resist coating, peeling process, cleaning process) and semiconductor wafer circuit forming process, and physical adsorption (van der Worth adsorption) of residual particle components to the mask or wafer. Exposure defects, resist film formation defects, and the like may occur.

一方、ノズルに管体100を適用することで、螺旋状導通管100Cを流通する超純水に関わる残留パーティクル成分の帯電電荷がアース部160を介して放電され、例えば残留パーティクル成分の大型化の要因となるコロイド粒子及び気泡間の帯電電荷が低減する。これにより、コロイド粒子及び気泡間の帯電吸着が低減し、残留パーティクル成分の微細化が図れるとともに、流動体の帯電による悪影響を軽減することができる。   On the other hand, by applying the tube body 100 to the nozzle, the charged charge of the residual particle component related to the ultrapure water flowing through the spiral conducting tube 100C is discharged through the ground portion 160, and for example, the residual particle component is increased in size. The charged charge between the colloidal particles and the bubbles, which are factors, is reduced. Thereby, electrification and adsorption between colloidal particles and bubbles can be reduced, the residual particle component can be miniaturized, and adverse effects due to charging of the fluid can be reduced.

さらに、螺旋状導通管100Cは、第1導通管12Aから流入する流動体を管内壁面に衝突させることで乱流作用を発揮し、図5に示すように、その乱流作用で残留パーティクル成分を粉砕するとともに、残留パーティクル成分の「+」の帯電電荷が管内壁面「−」の帯電電荷に衝突して放電する。よって、流動体が流通する流路を螺旋状にすることで、流動体の徐電効果を図りながら残留パーティクル成分を粉砕化及び微細均一化することができる。   Further, the spiral conducting tube 100C exerts a turbulent action by causing the fluid flowing in from the first conducting tube 12A to collide with the inner wall surface of the pipe, and as shown in FIG. While being pulverized, the “+” charged charge of the residual particle component collides with the charged charge on the tube inner wall surface “−” and is discharged. Therefore, by making the flow path through which the fluid circulates, the residual particle component can be pulverized and finely uniformed while achieving the slow current effect of the fluid.

また、管体100は、例えば、容器内に収容される石油燃料などの絶縁性液体を別の容器に移す際に利用される供給パイプに適用することができる。図6に示すように、コーンルーフ形タンク210に収納された絶縁性液体212が、図示していない液体供給手段により、コーンルーフ形タンク2に設けられた供給パイプ214を介して例えば輸送用タンク(図示せず)に導入され貯蔵される。石油燃料などの絶縁性液体は導電性が低く電気絶縁性が高いため、絶縁性液体212が供給パイプ214を流通する際に絶縁性液体212と供給パイプ214との間の摩擦により流動帯電が発生する。このような流動帯電は、一般に絶縁性液体が正の帯電であり、帯電により発生した電荷216がコーンルーフ形タンク210内の絶縁性液体212に蓄積し、その液表面218およびその付近の電界を増加させる。特に、絶縁性液体212の流速が大きい場合には、供給パイプ214と液体212との間の摩擦力も増大し、液面の電界は増加する。石油燃料などの絶縁性液体は可燃性であり、放電により着火する場合があるため、このような液面の電界は極力抑制したことが好ましい。そこで、供給パイプ214に管体100を適用することで、つまり、供給パイプ214の少なくとも一部分を螺旋状に構成し、螺旋構造の両端を短絡し、かつ、両端のうち流入側の一端を接地することで、液面の電界の発生を抑制することができる。   Moreover, the tubular body 100 can be applied to, for example, a supply pipe used when an insulating liquid such as petroleum fuel accommodated in a container is transferred to another container. As shown in FIG. 6, the insulating liquid 212 stored in the corn roof type tank 210 is supplied from the supply pipe 214 provided in the corn roof type tank 2 by a liquid supply means (not shown), for example, a transport tank. It is introduced and stored (not shown). Insulating liquids such as petroleum fuel have low electrical conductivity and high electrical insulation. Therefore, when the insulating liquid 212 circulates through the supply pipe 214, fluid charging occurs due to friction between the insulating liquid 212 and the supply pipe 214. To do. In such flow charging, generally, the insulating liquid is positively charged, and the electric charge 216 generated by the charging accumulates in the insulating liquid 212 in the cone roof type tank 210, and the electric field around the liquid surface 218 and the vicinity thereof is accumulated. increase. In particular, when the flow rate of the insulating liquid 212 is large, the frictional force between the supply pipe 214 and the liquid 212 also increases, and the electric field at the liquid level increases. Since an insulating liquid such as petroleum fuel is flammable and may be ignited by discharge, it is preferable to suppress the electric field on the liquid surface as much as possible. Therefore, by applying the tube 100 to the supply pipe 214, that is, at least a part of the supply pipe 214 is formed in a spiral shape, both ends of the spiral structure are short-circuited, and one end on the inflow side of both ends is grounded. Thereby, generation | occurrence | production of the electric field of a liquid level can be suppressed.

さらに、本実施形態に係る管体100は、半導体洗浄システムに備えられる熱交換装置にも用いることができる。   Furthermore, the tubular body 100 according to the present embodiment can also be used for a heat exchange device provided in a semiconductor cleaning system.

図7に半導体洗浄システムの概略構成を示すブロック図を示す。   FIG. 7 is a block diagram showing a schematic configuration of the semiconductor cleaning system.

図7において、洗浄装置2は、半導体基板や液晶基板等のターゲットを内部に配置し、そのターゲット表面を超純水で洗浄する。純水製造装置3は、洗浄装置2に配置したターゲットを洗浄するための超純水を製造する。さらに、脱気膜4は、純水製造装置3からの超純水の気体成分を分離除去する。逆浸透膜装置5は、脱気膜4にて気体成分を分離除去した超純水のイオン成分を酢酸エステルやポリアミド系ポリマー粒子等の逆浸透膜5Aで分離除去する。熱交換装置8は、逆浸透膜5Aでイオン成分を分離除去した超純水を、第1導通管6を通じて供給し、この超純水を目標温度に温度調整し、この温度調整した超純水を、第2導通管7を通じて洗浄装置2に供給する。温度調節ユニット9は、超純水の目標温度を設定する。温度センサ10は、熱交換装置8の流出口近傍に配置し、流出口から排出する超純水の現在温度を検出する。PLCユニット11は、温度センサ10にて検出した超純水の現在温度と温度調節ユニット9にて設定した目標温度とを比較し、この比較結果に基づいて、熱交換装置8に対して超純水の目標温度までの加熱量に相当する電圧パルスを出力する。ドライバユニット12は、PLCユニット11の電圧パルスに基づいて、熱交換装置8に対して超純水の目標温度までの加熱量に相当する高周波電力を出力する。   In FIG. 7, the cleaning apparatus 2 arranges a target such as a semiconductor substrate or a liquid crystal substrate inside and cleans the surface of the target with ultrapure water. The pure water manufacturing apparatus 3 manufactures ultrapure water for cleaning the target placed in the cleaning apparatus 2. Further, the deaeration membrane 4 separates and removes the gaseous component of ultrapure water from the pure water production apparatus 3. The reverse osmosis membrane device 5 separates and removes the ion component of ultrapure water from which the gas component has been separated and removed by the degassing membrane 4 with a reverse osmosis membrane 5A such as acetate ester or polyamide polymer particles. The heat exchange device 8 supplies the ultrapure water from which the ionic components are separated and removed by the reverse osmosis membrane 5A through the first conducting pipe 6, adjusts the temperature of the ultrapure water to the target temperature, and adjusts the temperature of the ultrapure water. Is supplied to the cleaning device 2 through the second conducting tube 7. The temperature adjustment unit 9 sets a target temperature of ultrapure water. The temperature sensor 10 is disposed in the vicinity of the outlet of the heat exchange device 8 and detects the current temperature of the ultrapure water discharged from the outlet. The PLC unit 11 compares the current temperature of the ultrapure water detected by the temperature sensor 10 with the target temperature set by the temperature adjustment unit 9, and based on the comparison result, the PLC unit 11 A voltage pulse corresponding to the amount of heating up to the target temperature of water is output. Based on the voltage pulse of the PLC unit 11, the driver unit 12 outputs high-frequency power corresponding to the heating amount up to the target temperature of ultrapure water to the heat exchange device 8.

以上のように構成された半導体洗浄システムにおいて、熱交換装置8に対して管体100を適用することができる。   In the semiconductor cleaning system configured as described above, the tubular body 100 can be applied to the heat exchange device 8.

図8は、熱交換装置8に対して管体100を適用した場合の熱交換装置内部の略断面構造を示す説明図である。   FIG. 8 is an explanatory diagram showing a schematic cross-sectional structure inside the heat exchange device when the tube body 100 is applied to the heat exchange device 8.

熱交換装置8は、テフロン(登録商標)製の第1導通管6及び第2導通管7夫々と連結し、逆浸透膜5Aでイオン成分を分離除去した超純水を流通する、導電性材料の発熱管21と、この発熱管21の流入口(端部)21A及び流出口(端部)21B近傍同士を電気的に短絡させる非磁性材料の短絡部材22とを備える。さらに、発熱管21の流入口21A付近をアース部25にて接地する。図8に示すように、発熱管21は、中空の螺旋状導通管に相当する螺旋状部21Cを有し、発熱管21が短絡部材22により短絡され、アース部25により、発熱管21と短絡部材22とにより構成された閉回路が接地される。つまり、発熱管21、短絡部材22、アース部25により管体100が構成される。   The heat exchange device 8 is connected to the first conducting tube 6 and the second conducting tube 7 made of Teflon (registered trademark), and circulates ultrapure water from which ionic components are separated and removed by the reverse osmosis membrane 5A. And a short-circuit member 22 made of a nonmagnetic material that electrically short-circuits the vicinity of the inlet (end) 21 </ b> A and the outlet (end) 21 </ b> B of the heat-generating pipe 21. Further, the vicinity of the inlet 21 </ b> A of the heat generating tube 21 is grounded by the ground portion 25. As shown in FIG. 8, the heat generating tube 21 has a spiral portion 21 </ b> C corresponding to a hollow spiral conductive tube, the heat generating tube 21 is short-circuited by the short-circuit member 22, and short-circuited with the heat-generating tube 21 by the ground portion 25. A closed circuit constituted by the member 22 is grounded. That is, the heat generating tube 21, the short-circuit member 22, and the ground portion 25 constitute the tubular body 100.

さらに、熱交換装置8は、発熱管21及び短絡部材22を包囲するように配置し、高周波電力に応じて発熱管21に対して電磁誘導電力を発生する加熱コイル23と、加熱コイル23を収容する磁気遮蔽カバー24とを備える。加熱コイル23は、高周波電力に応じて一次側磁束を発生し、この一次側磁束で発熱管21に二次側磁束を発生し、これら一次側磁束及び二次側磁束に応じて発熱管21に電磁誘導電力を発生させる。また、短絡部材22は、発熱管21の電磁誘導電力に応じて短絡電流を発生し、この短絡電流に応じて発熱管21を温度調整し、発熱管21は、短絡電流の温度調整作用に応じて、同管内を流通する超純水の温度を目標温度になるように、この超純水を温度調整する。   Furthermore, the heat exchange device 8 is disposed so as to surround the heat generating tube 21 and the short-circuit member 22, and accommodates a heating coil 23 that generates electromagnetic induction power to the heat generating tube 21 according to high-frequency power, and the heating coil 23. And a magnetic shielding cover 24. The heating coil 23 generates a primary side magnetic flux in accordance with the high frequency power, generates a secondary side magnetic flux in the heat generating tube 21 with the primary side magnetic flux, and generates heat in the heat generating tube 21 in accordance with the primary side magnetic flux and the secondary side magnetic flux. Generate electromagnetic induction power. Further, the short-circuit member 22 generates a short-circuit current according to the electromagnetic induction power of the heat generation tube 21, and adjusts the temperature of the heat-generation tube 21 according to the short-circuit current. The heat generation tube 21 responds to the temperature adjustment action of the short-circuit current. Then, the temperature of the ultrapure water is adjusted so that the temperature of the ultrapure water flowing through the pipe becomes the target temperature.

また、熱交換装置8は、発熱管21と加熱コイル23とを磁気的に結合する強磁性部材26を備え、発熱管21の螺旋状部21Cで構成する挿通孔21D内に内挿配置し、ドライバユニット12からの高周波電力に応じて発生する電磁誘導電力および超音波振動の作用に応じて、発熱管21の管内を流通する超純水に関わる残留パーティクル成分を微細化する。   The heat exchanging device 8 includes a ferromagnetic member 26 that magnetically couples the heat generating tube 21 and the heating coil 23, and is inserted and disposed in an insertion hole 21 </ b> D configured by the spiral portion 21 </ b> C of the heat generating tube 21. Residual particle components related to ultrapure water flowing through the inside of the heat generating tube 21 are refined according to the action of electromagnetic induction power and ultrasonic vibration generated according to the high frequency power from the driver unit 12.

次に熱交換装置8の動作について説明する。純水製造装置3は、脱気膜4を通じて超純水の気体成分を分離除去し、この気体成分を分離除去した超純水のイオン成分を、逆浸透膜5Aを通じて分離除去し、このイオン成分を分離除去した超純水をUFフィルタで濾過し、これら脱気膜4、逆浸透膜5A及びUFフィルタで濾過した超純水を第1導通管6に流入する。   Next, the operation of the heat exchange device 8 will be described. The pure water production apparatus 3 separates and removes the gas component of ultrapure water through the deaeration membrane 4 and separates and removes the ion component of ultrapure water from which the gas component has been separated and removed through the reverse osmosis membrane 5A. The ultrapure water that has been separated and removed is filtered through a UF filter, and the ultrapure water that has been filtered through the degassing membrane 4, the reverse osmosis membrane 5A, and the UF filter flows into the first conducting pipe 6.

この際、第1導通管6内に流入した超純水には、図4に示すように、超純水の溶存酸素分子やカルマン渦等で発生した気泡101に、超純水の水圧によって逆浸透膜5Aで剥離した高分子ポリマー粒子、第1導通管6のフッ素粒子、超純水に混在するシリカ粒子等を含むコロイド粒子102が巻き込まれ、さらに第1導通管6の管内壁面及び超純水間で摩擦帯電電荷が発生し、この摩擦帯電電荷でコロイド粒子102及び気泡101間の帯電電荷が吸着し合い、その帯電電荷が上昇するに連れて、その気泡101及びコロイド粒子102の集合体で構成する残留パーティクル成分のサイズが大型化することになる。   At this time, as shown in FIG. 4, the ultrapure water that has flowed into the first conducting pipe 6 is reversed by bubbles of ultrapure water due to dissolved oxygen molecules, Karman vortices, and the like due to the water pressure of the ultrapure water. Colloidal particles 102 including polymer polymer particles peeled off by the osmotic membrane 5A, fluorine particles of the first conducting tube 6 and silica particles mixed in ultrapure water are entrained, and the inner wall surface of the first conducting tube 6 and the ultrapure A triboelectric charge is generated between the water, and the triboelectric charge adsorbs the charged charge between the colloidal particles 102 and the bubbles 101. As the charged charge rises, the aggregate of the bubbles 101 and the colloidal particles 102 is collected. This increases the size of the residual particle component formed by

温度センサ10は、熱交換装置8の流出口21Bから排出された超純水の現在温度を検出し、この現在温度をPLCユニット11に通知する。また、PLCユニット11内部の温度比較部では、温度センサ10にて超純水の現在温度を検出すると、この現在温度と、温度調節ユニット9で設定した超純水の目標温度とを比較する。   The temperature sensor 10 detects the current temperature of the ultrapure water discharged from the outlet 21B of the heat exchange device 8, and notifies the PLC unit 11 of this current temperature. When the temperature sensor 10 detects the current temperature of the ultrapure water by the temperature sensor 10, the temperature comparison unit compares the current temperature with the target temperature set by the temperature adjustment unit 9.

PLCユニット11内部の電圧パルス生成部は、温度比較部の比較結果に基づき、目標温度までの加熱量に相当する電圧パルスを生成し、電圧パルス出力部を通じて同電圧パルスをドライバユニット12に出力する。   The voltage pulse generation unit inside the PLC unit 11 generates a voltage pulse corresponding to the heating amount up to the target temperature based on the comparison result of the temperature comparison unit, and outputs the voltage pulse to the driver unit 12 through the voltage pulse output unit. .

ドライバユニット12内部の駆動制御部は、PLCユニット11からの電圧パルスに基づき、目標温度までの加熱量に相当する駆動制御信号を高周波電力生成部に供給する。   The drive control unit inside the driver unit 12 supplies a drive control signal corresponding to the heating amount up to the target temperature to the high frequency power generation unit based on the voltage pulse from the PLC unit 11.

高周波電力生成部は、駆動制御信号に応じてブリッジ接続された第1素子群及び第2素子群を駆動制御し、この駆動内容に応じて、目標温度までの加熱量に相当する高周波電力を生成し、この高周波電力を熱交換装置8内部のrLC直列共振回路(加熱コイル23)に供給する。尚、高周波電力は、20kHz以上の動作周波数、例えば52kHz前後の動作周波数を使用するものである。   The high-frequency power generation unit drives and controls the first element group and the second element group that are bridge-connected according to the drive control signal, and generates high-frequency power corresponding to the amount of heating up to the target temperature according to the drive content. The high-frequency power is supplied to the rLC series resonance circuit (heating coil 23) inside the heat exchange device 8. The high-frequency power uses an operating frequency of 20 kHz or higher, for example, an operating frequency of around 52 kHz.

rLC直列共振回路(加熱コイル23)は、高周波電力に応じて一次側磁束を発生すると、この一次側磁束に応じて、発熱管21(二次側コイル)に二次側磁束を発生させる。   When the rLC series resonance circuit (heating coil 23) generates the primary side magnetic flux according to the high frequency power, the rLC series resonance circuit (heating coil 23) generates the secondary side magnetic flux in the heat generating tube 21 (secondary side coil) according to the primary side magnetic flux.

強磁性部材26は、発熱管21の螺旋状部21Cのターン毎に発生する二次側漏れ磁束を二次側磁束に収束すると共に、この収束した二次側磁束と、加熱コイル23の一次側磁束とを収束することになる。その結果、強磁性部材26は、発熱管21の二次側磁束及び二次側漏れ磁束を収束することで発熱管21の自己インダクタンスが増加することになる。   The ferromagnetic member 26 converges the secondary side leakage magnetic flux generated every turn of the spiral portion 21 </ b> C of the heat generating tube 21 into the secondary side magnetic flux, and the converged secondary side magnetic flux and the primary side of the heating coil 23. The magnetic flux is converged. As a result, the ferromagnetic member 26 converges the secondary side magnetic flux and the secondary side leakage magnetic flux of the heat generating tube 21, thereby increasing the self inductance of the heat generating tube 21.

さらに短絡部材22は、発熱管21の自己インダクタンスの増加に応じて、これら自己インダクタンスに対応した電磁誘導電力の発生量に相当する短絡電流を発生し、この短絡電流に応じて発熱管21を温度調整する。その結果、発熱管21は、短絡電流の温度調整作用に応じて同管内を流通する超純水を温度調整することになる。   Further, the short-circuit member 22 generates a short-circuit current corresponding to the generation amount of electromagnetic induction power corresponding to the self-inductance according to an increase in the self-inductance of the heat-generating tube 21, and the temperature of the heat-generating tube 21 is increased according to the short-circuit current. adjust. As a result, the heat generating tube 21 adjusts the temperature of the ultrapure water flowing through the tube in accordance with the temperature adjusting action of the short circuit current.

熱交換装置8の発熱管21は、第1導通管6から残留パーティクル成分を含む超純水を流入すると、発熱管21の流入口21A付近をアース部25に接地しているため、「+」電荷を帯電した超純水が放電して、残留パーティクル成分の大型化の要因となるコロイド粒子102及び気泡101間の帯電電荷を減らすことで、残留パーティクル成分を微細化することができると共に、超純水の帯電を除電することで超純水の帯電に伴う悪影響を確実に軽減することができる。   When the ultrapure water containing residual particle components flows from the first conduction pipe 6 into the heat exchanger tube 21 of the heat exchange device 8, the vicinity of the inlet 21 </ b> A of the heat exchanger pipe 21 is grounded to the ground portion 25. By reducing the charged charge between the colloidal particles 102 and the bubbles 101 that causes the charge of the ultrapure water to discharge and increase the size of the residual particle component, the residual particle component can be miniaturized, By neutralizing the charge of pure water, the adverse effects associated with the charge of ultrapure water can be reliably reduced.

さらに、発熱管21は、残留パーティクル成分を含む超純水が螺旋状部21Cの管内を流通すると、図5に示すように、超純水の乱流作用に応じて、「+」電荷を帯電した超純水が「−」電荷を帯電した管内壁面に衝突して放電することになるため、コロイド粒子102及び気泡101間の帯電電荷を減らすことで残留パーティクル成分を微細化することができる。   Furthermore, when the ultrapure water containing residual particle components circulates in the pipe of the spiral portion 21C, the heating tube 21 charges “+” charge according to the turbulent action of the ultrapure water, as shown in FIG. Since the ultrapure water thus collided with the inner wall surface of the tube charged with the “−” charge is discharged, the charged particles between the colloidal particles 102 and the bubbles 101 can be reduced to make the residual particle component finer.

さらに、熱交換装置8は、ドライバユニット12からの52kHz前後の高周波電力に応じて加熱コイル23に電磁誘導電力を発生するため、その高周波電力の電磁誘導電力作用及び超音波振動作用に応じて超純水に含まれる残留パーティクル成分を粉砕化して、洗浄装置2内のターゲット面上のPNPチャネル幅、例えば45nmの約1/3未満のサイズまで残留パーティクル成分を微細化することになるため、その超純水でターゲット面を洗浄したとしても、半導体マスク形成工程や半導体ウエハ回路形成工程における残留パーティクル成分の悪影響を確実に防止することができる。   Furthermore, since the heat exchanging device 8 generates electromagnetic induction power in the heating coil 23 in response to the high frequency power around 52 kHz from the driver unit 12, the heat exchange device 8 is Since the residual particle component contained in the pure water is pulverized and the residual particle component is refined to a PNP channel width on the target surface in the cleaning device 2, for example, a size less than about 1/3 of 45 nm, Even if the target surface is cleaned with ultrapure water, it is possible to reliably prevent the adverse effect of the residual particle component in the semiconductor mask forming process and the semiconductor wafer circuit forming process.

その結果、熱交換装置8は、第1導通管6からの残留パーティクル成分を含む超純水を発熱管21の管内で目標温度まで超純水を温度調整し、この温度調整した超純水に含む残留パーティクル成分を微細化して第2導通管7を通じて洗浄装置2に供給し、洗浄装置2では、第2導通管7を通じて目標温度の超純水をターゲット面に噴射し、そのターゲット面を洗浄することができる。   As a result, the heat exchanging device 8 adjusts the temperature of the ultrapure water containing the residual particle component from the first conduction pipe 6 to the target temperature in the pipe of the heat generation pipe 21, and converts the temperature of the ultrapure water to the temperature-adjusted ultrapure water. The contained residual particle component is refined and supplied to the cleaning device 2 through the second conductive tube 7. The cleaning device 2 injects ultrapure water having a target temperature onto the target surface through the second conductive tube 7 to clean the target surface. can do.

本実施形態に係る管体構造によれば、流動体が流通する螺旋状導通管を短絡部材で短絡することで閉回路を構成し、その閉回路をアース部で接地することで、流動帯電による帯電電荷を外部に放電することができる。管体構造は、流動帯電による帯電電荷を低減することが好ましい管状部材を備える装置であれば、あらゆる装置に適用することができる。例えば、半導体シリコンウエハに超純水を供給する際の供給路となるノズル、半導体洗浄システムに備えられる熱交換装置、容器内に収容される石油燃料などの絶縁性液体を別の容器に移す際に利用される供給パイプなどに適用することができる。   According to the tubular structure according to the present embodiment, a closed circuit is configured by short-circuiting the spiral conducting tube through which the fluid flows with a short-circuit member, and the closed circuit is grounded at the ground portion, thereby causing fluid charging. The charged charge can be discharged to the outside. The tube structure can be applied to any device as long as the device includes a tubular member that is preferably reduced in charge due to flow charging. For example, when transferring an insulating liquid such as a nozzle serving as a supply path for supplying ultrapure water to a semiconductor silicon wafer, a heat exchange device provided in a semiconductor cleaning system, or petroleum fuel contained in a container to another container It can be applied to supply pipes used in

本実施形態に係る管体構造の略断面構造を示す図である。It is a figure which shows the general | schematic cross-section of the tubular structure concerning this embodiment. ステンレス製の螺旋状の管に対して短絡部材のみを設ける場合と短絡部材とアース部を設ける場合とについて、超純水を流通させた際に、管の流出口側の表面電位を測定した結果について説明するための図である。Results of measuring the surface potential on the outlet side of the tube when ultrapure water was circulated when only the short-circuit member was provided for the stainless steel spiral tube and when the short-circuit member and the grounding portion were provided It is a figure for demonstrating. ステンレス製の螺旋状の管に対して短絡部材のみを設ける場合と短絡部材とアース部を設ける場合とについて、超純水を流通させた際に管の流出口側の表面電位を測定した結果について説明するための図である。About the result of measuring the surface potential on the outlet side of the pipe when ultrapure water was circulated when only the short-circuit member was provided for the stainless steel spiral pipe and when the short-circuit member and the ground part were provided It is a figure for demonstrating. 半導体シリコンウエハに超純水をノズルを介して供給するシステムについて説明するための説明図である。It is explanatory drawing for demonstrating the system which supplies a ultra-pure water to a semiconductor silicon wafer through a nozzle. 管内を流通する流動体に含まれる残留パーティクル成分の変化を端的に示す説明図である。It is explanatory drawing which shows directly the change of the residual particle component contained in the fluid which distribute | circulates the inside of a pipe | tube. 螺旋状導通管内部の乱流作用を端的に示す説明図である。It is explanatory drawing which shows directly the turbulent flow effect | action inside a helical conducting tube. 容器内に収容される石油燃料などの絶縁性液体を供給ポンプを介して別の容器に移すシステムについて説明するための説明図である。It is explanatory drawing for demonstrating the system which transfers insulating liquids, such as a petroleum fuel accommodated in a container, to another container via a supply pump. 半導体洗浄システムの概略構成を示すブロック図を示す。1 is a block diagram showing a schematic configuration of a semiconductor cleaning system. 熱交換装置に対して管体を適用した場合の熱交換装置内部の略断面構造を示す説明図である。It is explanatory drawing which shows the general | schematic cross-section inside a heat exchange apparatus at the time of applying a tubular body with respect to a heat exchange apparatus.

符号の説明Explanation of symbols

100 管体
100A 流入口
100B 流出口
100C 螺旋状導通管
120A 導通管
120B 導通管
140 短絡部材
160 アース部




DESCRIPTION OF SYMBOLS 100 Tube 100A Inflow port 100B Outflow port 100C Spiral conducting tube 120A Conducting tube 120B Conducting tube 140 Short-circuit member 160 Ground part




Claims (3)

螺旋状部が形成された中空管状体で構成され、その内部を流通体が流通するようになした管状部材と、
該管状部材に両端部が接続されると共に前記管状部材の前記螺旋状部の一部分を電気的に短絡させることにより前記螺旋状部の前記一部分との間で閉回路を構成する短絡部材と、
前記管状部材の一の部位に接続して前記閉回路を接地するアース部材と、
を備えて、前記流通体が管内を流通することにより発生する流動帯電を徐電するように構成したことを特徴とする管体構造。
A tubular member composed of a hollow tubular body in which a spiral portion is formed, and through which the flow body circulates;
A short-circuit member having both ends connected to the tubular member and electrically short-circuiting a portion of the spiral portion of the tubular member to form a closed circuit with the portion of the spiral portion;
An earth member connected to one part of the tubular member and grounding the closed circuit;
The tubular structure is characterized in that it is configured to gradually charge the flow charge generated when the circulating body circulates in the pipe.
前記螺旋状部の一部分である両端部に、前記短絡部材の両端をそれぞれ接続したことを特徴とする請求項1に記載の管体構造。   The tubular structure according to claim 1, wherein both ends of the short-circuit member are connected to both ends which are a part of the spiral portion. 前記管状部材の一の部位が前記螺旋状部における前記流通体の流入口側の端部として、該流入口側の端部に前記アース部材を接続したことを特徴とする請求項2に記載の管体構造。



3. The grounding member according to claim 2, wherein one part of the tubular member serves as an end portion on the inlet side of the flow body in the spiral portion, and the ground member is connected to an end portion on the inlet side. Tube structure.



JP2008066847A 2008-03-14 2008-03-14 Pipe body structure Pending JP2009224162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066847A JP2009224162A (en) 2008-03-14 2008-03-14 Pipe body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066847A JP2009224162A (en) 2008-03-14 2008-03-14 Pipe body structure

Publications (1)

Publication Number Publication Date
JP2009224162A true JP2009224162A (en) 2009-10-01

Family

ID=41240729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066847A Pending JP2009224162A (en) 2008-03-14 2008-03-14 Pipe body structure

Country Status (1)

Country Link
JP (1) JP2009224162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110579A (en) * 2013-04-18 2014-10-22 申联生物医药(上海)有限公司 Solvent delivering system for peptide synthesis apparatus
CN113028293A (en) * 2021-04-09 2021-06-25 吉林中科博能科技有限公司 Oil pipeline convenient to real-time supervision

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110579A (en) * 2013-04-18 2014-10-22 申联生物医药(上海)有限公司 Solvent delivering system for peptide synthesis apparatus
CN113028293A (en) * 2021-04-09 2021-06-25 吉林中科博能科技有限公司 Oil pipeline convenient to real-time supervision

Similar Documents

Publication Publication Date Title
JP2008226720A (en) Heat exchanger
TW575725B (en) Exchange apparatus
JP4738033B2 (en) Substrate processing equipment
TWI491566B (en) Wash sterilization method of ultra pure water manufacturing system
JP2007128751A (en) Fluid heating apparatus and heat medium conduction roller device using same
JP2009224162A (en) Pipe body structure
TWI656237B (en) Method and apparatus for direct electrical heating flow-through chemical reactor
WO2000019154A1 (en) High temperature heat storage tank
US7862638B2 (en) Gas supply system for semiconductor manufacturing apparatus
CN105889188A (en) Foam suppression device for hydraulic oil in hydraulic pipeline
KR101983731B1 (en) Apparatus for rapidly heating of fluid and system for processing object using the same
US6652715B2 (en) High voltage electrostatic field for treatment of flowing liquids
JP6745162B2 (en) Apparatus and method for producing alkaline water for cleaning electronic devices
CN204874043U (en) A electromagnetism scale removal hinders dirty device for industrial cycle water treatment
CN105864168A (en) Bubble restraining system for high-pressure hydraulic pipeline
US20140202946A1 (en) Piping joint and semiconductor manufacturing apparatus
KR102017729B1 (en) Apparatus for generating steam
JP4528600B2 (en) Streaming potential measuring device and manufacturing method thereof
JP2010110667A (en) Electromagnetic treatment apparatus and method
JP2006292187A (en) Ice heat storage system using mixture liquid of oil and water
JP2001176730A (en) Stationary induction apparatus
JP2014153033A (en) Maintenance method of boiler device
TW202348312A (en) Charged particle filter device, charged particle removal system and semiconductor manufacturing process
TWI700253B (en) Apparatus and method to reduce and control resistivity of deionized water
CN116617956A (en) Gas-liquid two-phase flow electrification generation and control system