JP2009224145A - Electrode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Electrode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP2009224145A
JP2009224145A JP2008066482A JP2008066482A JP2009224145A JP 2009224145 A JP2009224145 A JP 2009224145A JP 2008066482 A JP2008066482 A JP 2008066482A JP 2008066482 A JP2008066482 A JP 2008066482A JP 2009224145 A JP2009224145 A JP 2009224145A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
lithium secondary
silicon
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008066482A
Other languages
Japanese (ja)
Other versions
JP5223393B2 (en
Inventor
Hideyuki Nakano
秀之 中野
Toru Shiga
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008066482A priority Critical patent/JP5223393B2/en
Publication of JP2009224145A publication Critical patent/JP2009224145A/en
Application granted granted Critical
Publication of JP5223393B2 publication Critical patent/JP5223393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a lithium secondary battery capable of taking out stably a charge and discharge capacity close to a theoretical capacity of silicon, even if charge and discharge are carried out repeatedly. <P>SOLUTION: The electrode for the lithium secondary battery has a structure in which a silicon nano sheet charged to positive and a metal oxide sheet (for example, titanium oxide nano sheet) charged to negative are stacked on a substrate or has a structure in which a silicon nano sheet and a poly-anion sheet charged to positive are stacked on a substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池用電極及びそれを用いたリチウム二次電池に関する。なお、本明細書において、リチウム二次電池とは、金属リチウム二次電池やリチウムイオン二次電池を含む用語とする。   The present invention relates to an electrode for a lithium secondary battery and a lithium secondary battery using the same. In this specification, the lithium secondary battery is a term including a metal lithium secondary battery and a lithium ion secondary battery.

従来より、炭素質物質を負極活物質とする負極と、コバルト酸リチウム(LiCoO2)を正極活物質とする正極と、正負極間でリチウムイオンを移動させるための非水電解液とを備えたリチウムイオン二次電池が知られている。こうしたリチウムイオン二次電池は、エネルギー密度や作動電圧が高く、自己放電が小さいという優れた利点を有している。 Conventionally, a negative electrode using a carbonaceous material as a negative electrode active material, a positive electrode using lithium cobaltate (LiCoO 2 ) as a positive electrode active material, and a non-aqueous electrolyte for moving lithium ions between the positive and negative electrodes are provided. Lithium ion secondary batteries are known. Such a lithium ion secondary battery has an excellent advantage that the energy density and the operating voltage are high and the self-discharge is small.

一方、炭素質物質よりも理論容量が1桁高い負極活物質として、シリコンが知られている。シリコンは、理論容量が4200mAh/gであるものの、充放電過程での体積膨張率が非常に大きいため、比較的短いサイクル数で急激に容量が低下してしまう。すなわち、シリコンを負極活物質として用いた場合、リチウムイオンが最大量吸蔵された状態では、その負極活物質はLi4.4Siで表される。ここで、SiからLi4.4Siに変化したときの体積変化率は4.1倍である。このように、活物質の体積変化が大きいと、活物質粒子の割れ、活物質と集電体との接触不良等が生じるため、充放電サイクル寿命が短くなるという問題が生じる。また、同じ原因により、不可逆容量が著しく大きくなり、電池容量の低減を招く。こうしたことから、シリコンを改良する試みがいくつか報告されている。 On the other hand, silicon is known as a negative electrode active material whose theoretical capacity is one digit higher than that of a carbonaceous material. Although silicon has a theoretical capacity of 4200 mAh / g, the volume expansion coefficient during the charge / discharge process is very large, so that the capacity rapidly decreases with a relatively short number of cycles. That is, when silicon is used as the negative electrode active material, the negative electrode active material is represented by Li 4.4 Si in a state where the maximum amount of lithium ions is occluded. Here, the volume change rate when changing from Si to Li 4.4 Si is 4.1 times. As described above, when the volume change of the active material is large, cracking of the active material particles, poor contact between the active material and the current collector, and the like occur, which causes a problem that the charge / discharge cycle life is shortened. In addition, due to the same cause, the irreversible capacity is remarkably increased, leading to a reduction in battery capacity. Because of this, several attempts to improve silicon have been reported.

例えば、特許文献1には、微細なシリコン相とシリコン酸化物と炭素質物質の3相を含む複合体の表面が炭素被覆されている負極活物質が開示されている。また、特許文献2には、金属酸化物を有するコーティング層によりコーティングされたシリコンコアを有する負極活物質が開示されている。この金属酸化物としては、酸化チタン、酸化ジルコニウム又はそれらの組み合わせが例示されている。更に、特許文献3には、酸化数0のシリコンと、酸化数+4のシリコン原子を有するシリコン化合物と、酸化数が0より大きく+4より小さいシリコン原子を有するシリコン低級酸化物とを含む負極活物質が開示されている。これらの特許文献は、いずれも、充放電時にシリコンの体積の膨張・収縮を抑制するためにシリコン酸化物などの酸化物を混合した電極を提案しており、サイクル特性を向上させることに成功している。
特開2006−92969 特開2006−190642 特開2005−183264
For example, Patent Document 1 discloses a negative electrode active material in which the surface of a composite including a fine silicon phase, a silicon oxide, and a carbonaceous material is coated with carbon. Patent Document 2 discloses a negative electrode active material having a silicon core coated with a coating layer having a metal oxide. Examples of the metal oxide include titanium oxide, zirconium oxide, or a combination thereof. Further, Patent Document 3 discloses a negative electrode active material containing silicon having an oxidation number of 0, a silicon compound having a silicon atom having an oxidation number of +4, and a silicon lower oxide having a silicon atom having an oxidation number of greater than 0 and smaller than +4. Is disclosed. Each of these patent documents has proposed an electrode mixed with an oxide such as silicon oxide in order to suppress the expansion and contraction of the volume of silicon during charging and discharging, and succeeded in improving the cycle characteristics. ing.
JP 2006-92969 A JP 2006-190642 A JP 2005-183264 A

しかしながら、シリコン本来の理論容量が4200mAh/gであるにも関わらず、上述した各特許文献により得られた電極の容量は、理論容量よりはるかに少ない1000mAh/g以下である。このように電極の容量を低く抑制すれば、シリコンの体積変化も抑制され、サイクル特性が改善されることは容易に想像できるが、電極の容量を高く維持したままサイクル特性が改善されることが望ましい。   However, although the theoretical capacity of silicon is 4200 mAh / g, the capacity of the electrodes obtained by the above-mentioned patent documents is 1000 mAh / g or less, which is much smaller than the theoretical capacity. In this way, if the electrode capacity is suppressed to a low level, it can be easily imagined that the change in the volume of silicon is suppressed and the cycle characteristics are improved, but the cycle characteristics can be improved while maintaining the electrode capacity high. desirable.

本発明はこのような問題を解決するためになされたものであり、充放電を繰り返し行ってもシリコンの理論容量に近い充放電容量を安定して取り出すことのできるリチウム二次電池用電極を提供することを主目的とする。   The present invention has been made to solve such problems, and provides an electrode for a lithium secondary battery that can stably take out a charge / discharge capacity close to the theoretical capacity of silicon even when charge / discharge is repeated. The main purpose is to do.

上述した目的を解決するために、本発明者は、白金板上にカチオン性ポリマー、負に帯電した酸化チタンナノシート、正に帯電したシリコンナノシートをこの順に積層して電極を作製し、この電極とリチウム金属箔からなる対極とを非水系電解液中に対向させて配置した評価セルを用いてその電極を評価したところ、シリコンの理論容量に近い充放電容量を繰り返し安定して取り出すことができることを確認するに至り、本発明を完成するに至った。   In order to solve the above-mentioned object, the present inventor made an electrode by laminating a cationic polymer, a negatively charged titanium oxide nanosheet, and a positively charged silicon nanosheet in this order on a platinum plate. When the electrode was evaluated using an evaluation cell in which a counter electrode made of lithium metal foil was placed facing the non-aqueous electrolyte solution, it was found that the charge / discharge capacity close to the theoretical capacity of silicon could be taken out repeatedly and stably. It came to confirm and came to complete this invention.

すなわち、本発明のリチウム二次電池用電極は、基板上に正に帯電したシリコンナノシートと負に帯電したポリアニオンシートとを積層した構造を有するものである。   That is, the electrode for a lithium secondary battery of the present invention has a structure in which a positively charged silicon nanosheet and a negatively charged polyanion sheet are laminated on a substrate.

リチウム二次電池に用いられている従来の炭素質物質の理論容量は300〜400mAh/gの範囲であるが、本発明のリチウム二次電池用電極を用いると、それよりも1桁高いシリコンの理論容量に近い容量を高い電流密度で充放電を繰り返し行っても安定して取り出すことができる。こうした効果が得られる理由は定かではないが、以下のように推察される。すなわち、本発明のリチウム二次電池用電極は、ナノサイズの厚みを有するシリコンナノシートを活物質としているため、従来の炭素質物質にみられるインターカレーションが起こらず、シリコンナノシート表面への吸着・脱着が起きていると考えられる。このため、体積変化がほとんど起こらず、シリコンの理論容量と同程度の容量を、高い電流密度で繰り返し安定して取り出すことができると推察される。また、仮にリチウムイオンがシリコンナノシートの内部へ挿入したとしても、シリコンナノシートの厚みがナノサイズのため体積変化はほとんど起こらず、また、内部での拡散速度も極めて速いと容易に想像できることから、シリコンの理論容量と同程度の容量を、高い電流密度で繰り返し安定して取り出すことができると推察される。   The theoretical capacity of the conventional carbonaceous material used in the lithium secondary battery is in the range of 300 to 400 mAh / g. However, when the electrode for the lithium secondary battery of the present invention is used, the silicon capacity is one digit higher than that. A capacity close to the theoretical capacity can be stably taken out even if charging and discharging are repeated at a high current density. The reason why such an effect is obtained is not clear, but is presumed as follows. That is, since the electrode for the lithium secondary battery of the present invention uses a silicon nanosheet having a nano-sized thickness as an active material, the intercalation seen in the conventional carbonaceous material does not occur, and the adsorption / Desorption is considered to have occurred. For this reason, it is presumed that almost no volume change occurs, and a capacity equivalent to the theoretical capacity of silicon can be repeatedly and stably taken out at a high current density. Also, even if lithium ions are inserted into the silicon nanosheet, the thickness of the silicon nanosheet is nano-sized, so there is almost no volume change, and it can be easily imagined that the internal diffusion rate is extremely fast. It is presumed that a capacity comparable to the theoretical capacity can be stably and repeatedly taken out at a high current density.

本発明のリチウム二次電池用電極は、基板上に正に帯電したシリコンナノシートと負に帯電した金属酸化物シートとを積層した構造を有するものであるか、又は、基板上に正に帯電したシリコンナノシートとポリアニオンシートとを積層した構造を有するものである。積層順序は、シリコンナノシートが最表層となるようにしてもよいし、金属酸化物シート又はポリアニオンシートが最表層となるようにしてもよい。   The electrode for a lithium secondary battery of the present invention has a structure in which a positively charged silicon nanosheet and a negatively charged metal oxide sheet are laminated on a substrate, or positively charged on a substrate. It has a structure in which a silicon nanosheet and a polyanion sheet are laminated. As for the stacking order, the silicon nanosheet may be the outermost layer, or the metal oxide sheet or the polyanion sheet may be the outermost layer.

本発明のリチウム二次電池用電極において、基板は、一般的に電極の基板として用いられるものであれば特に限定されないが、例えば、銅、銀、白金、金、ニッケル、ステンレス鋼、アルミニウムなどの金属板としてもよい。あるいは、InSnO2やSnO2,ZnO,In22などの透明導電材を用いてもよい。 In the electrode for the lithium secondary battery of the present invention, the substrate is not particularly limited as long as it is generally used as a substrate for the electrode. For example, copper, silver, platinum, gold, nickel, stainless steel, aluminum, etc. It is good also as a metal plate. Alternatively, a transparent conductive material such as InSnO 2 , SnO 2 , ZnO, or In 2 O 2 may be used.

本発明のリチウム二次電池用電極において、正に帯電したシリコンナノシートは、層状ポリシラン((Si66n)の水素のいくつかを水酸基で置換した構造を持ち、ζ電位が正の値となるものである。また、シリコンナノシートに含まれるSiは、隣接するSiとsp3結合を形成する4配位の原子であり、Siの結合手のうち3本がSiと結合し1本が水素又は水酸基と結合している。また、バルクの内部という概念がなく、すべてが表面であると考えられる。なお、層状ポリシランは、便宜上、Si66やSiHと表記することもある。 In the electrode for the lithium secondary battery of the present invention, the positively charged silicon nanosheet has a structure in which some of the hydrogen of the layered polysilane ((Si 6 H 6 ) n ) is substituted with a hydroxyl group, and the ζ potential is a positive value. It will be. In addition, Si contained in the silicon nanosheet is a tetracoordinate atom that forms an sp3 bond with adjacent Si, and three of the Si bonds are bonded to Si and one is bonded to hydrogen or a hydroxyl group. Yes. Moreover, there is no concept of the inside of the bulk, and everything is considered to be the surface. Note that the layered polysilane may be expressed as Si 6 H 6 or SiH for convenience.

こうしたシリコンナノシートは、例えば、層状ポリシランを無水のジメチルスルホキシド(DMSO)へ分散した分散液をポリテトラフルオロエチレン(PTFE)製の容器へ封入して加熱処理を施すことにより得ることができる。こうして得られるシリコンナノシートは、厚さが0.3〜5nm、面内長さが0.1〜2μm程度、形状が不定形のシート状物質であり、組成式SiH1-x(OH)x(0<x≦0.5)で表される。また、層状ポリシランは、例えば、ケイ化カルシウムを−30℃以下に冷却した濃塩酸と反応させることにより得ることができる。このとき、濃塩酸とケイ化カルシウムとのモル比(HCl/CaSi2)は1〜1000が好ましく、10〜100がより好ましい。また、反応時間は1日〜10日が好ましく、3日〜7日がより好ましい。また、この反応は、Si−Si結合が光で酸化されてSi−O−Si結合に変化するため、暗室で行うことが好ましい。反応終了後に塩化カルシウムを濃塩酸水溶液により除去したあとアセトン洗浄することにより層状ポリシランを得ることができる。 Such a silicon nanosheet can be obtained, for example, by enclosing a dispersion obtained by dispersing layered polysilane in anhydrous dimethyl sulfoxide (DMSO) in a container made of polytetrafluoroethylene (PTFE) and performing a heat treatment. The silicon nanosheet thus obtained is a sheet-like substance having a thickness of 0.3 to 5 nm, an in-plane length of about 0.1 to 2 μm, and an irregular shape, and has a composition formula SiH 1-x (OH) x ( 0 <x ≦ 0.5). The layered polysilane can be obtained, for example, by reacting calcium silicide with concentrated hydrochloric acid cooled to −30 ° C. or lower. At this time, the molar ratio (HCl / CaSi 2 ) between concentrated hydrochloric acid and calcium silicide is preferably 1 to 1000, and more preferably 10 to 100. The reaction time is preferably 1 day to 10 days, more preferably 3 days to 7 days. In addition, this reaction is preferably performed in a dark room because the Si—Si bond is oxidized by light and changed to a Si—O—Si bond. After completion of the reaction, the calcium chloride is removed with a concentrated hydrochloric acid aqueous solution and then washed with acetone to obtain a layered polysilane.

本発明のリチウム二次電池用電極において、負に帯電した金属酸化物シートとしては、例えば、酸化チタンナノシートや酸化マンガンナノシート、酸化ペロブスカイトナノシートなどが挙げられ、このうち酸化チタンナノシートや酸化マンガンナノシートが好ましい。こうした金属酸化物ナノシートは通常負に帯電している。また、ポリアニリンシートとしては、例えば、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリチオフェン−3−酢酸、ポリ(3−ヘキシルチオフェン)及びポリアミド酸からなる群より選ばれた1種又は2種以上が挙げられる。   In the electrode for the lithium secondary battery of the present invention, examples of the negatively charged metal oxide sheet include titanium oxide nanosheets, manganese oxide nanosheets, and perovskite oxide nanosheets. Among these, titanium oxide nanosheets and manganese oxide nanosheets are included. preferable. Such metal oxide nanosheets are usually negatively charged. The polyaniline sheet is, for example, one or more selected from the group consisting of polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, polythiophene-3-acetic acid, poly (3-hexylthiophene), and polyamic acid. Is mentioned.

本発明のリチウム二次電池用電極は、基板上に正に帯電したシリコンナノシートと負に帯電した金属酸化物シートとを積層した構造を有するものであるか、基板上に正に帯電したシリコンナノシートとポリアニオンシートとを積層した構造を有するものであるが、このように積層した構造を1段だけ有していてもよいし、多段に有していてもよい。また、このように積層した構造を構築する方法としては、例えば、反対電荷を有する2種類の物質間の静電的相互作用を利用して薄膜を積層するレイヤー・バイ・レイヤー法(LBL法、交互吸着法ともいう)を採用してもよい。   The electrode for a lithium secondary battery of the present invention has a structure in which a positively charged silicon nanosheet and a negatively charged metal oxide sheet are laminated on a substrate, or a positively charged silicon nanosheet on a substrate And the polyanion sheet are laminated, but the laminated structure may have only one stage or may have multiple stages. In addition, as a method for constructing such a laminated structure, for example, a layer-by-layer method (LBL method, which laminates thin films using electrostatic interaction between two kinds of substances having opposite charges) (Alternative adsorption method) may be employed.

本発明のリチウム二次電池は、正負極の一方に上述したリチウム二次電池用電極を有するものである。例えば、本発明のリチウム二次電池用電極をリチウム二次電池の負極に用いる場合、正極に用いる正極活物質としては、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、V25、V613、MnO2、MnO3等の金属酸化物、TiS2、MoS2等の金属硫化物等が好適に挙げられる。正極には、導電材が含まれていてもよい。導電材としては、導電性を有する材料であれば特に限定されない。例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよい。正極には、バインダが含まれていてもよい。バインダとしては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などが挙げられる。また、リチウム二次電池は、正負極の間に非水系のイオン伝導体が介在するが、こうしたイオン伝導体としては、有機溶媒に支持塩を溶解させた非水系電解液のほか、非水系ゲル電解質、固体電解質などが挙げられる。ここで、非水系電解液を例に挙げると、支持塩としては、例えば、LiPF6,LiClO4,LiBF4,Li(CF3SO22Nなどの公知の支持塩を用いることができ、有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(γ−BL)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)など従来の二次電池やキャパシタに使われる有機溶媒を用いることができる。こうしたリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、非水系蓄電デバイスの使用範囲に耐えうる組成で絶縁性を有するものであれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムが挙げられる。こうしたリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。 The lithium secondary battery of the present invention has the above-described electrode for a lithium secondary battery on one of the positive and negative electrodes. For example, when the electrode for a lithium secondary battery of the present invention is used for a negative electrode of a lithium secondary battery, the positive electrode active material used for the positive electrode is lithium such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2, and LiFePO 4. Preferred examples of the composite oxide include metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , and MnO 3 , and metal sulfides such as TiS 2 and MoS 2 . The positive electrode may contain a conductive material. The conductive material is not particularly limited as long as it is a conductive material. For example, carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black and thermal black may be used, and natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite may be used. Also, conductive fibers such as carbon fiber and metal fiber may be used. The positive electrode may contain a binder. The binder is not particularly limited, and examples thereof include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). In addition, in the lithium secondary battery, a non-aqueous ion conductor is interposed between the positive and negative electrodes. Examples of such an ion conductor include non-aqueous electrolytes obtained by dissolving a supporting salt in an organic solvent, and non-aqueous gels. Examples include electrolytes and solid electrolytes. Here, taking a non-aqueous electrolyte as an example, as the supporting salt, for example, a known supporting salt such as LiPF 6 , LiClO 4 , LiBF 4 , Li (CF 3 SO 2 ) 2 N can be used, As an organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), γ-butyrolactone (γ-BL), diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are used for conventional secondary batteries and capacitors. Organic solvents can be used. Such a lithium secondary battery may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has an insulating property with a composition that can withstand the use range of the non-aqueous power storage device. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, polyethylene or polypropylene, etc. A microporous film of an olefin resin may be mentioned. The shape of such a lithium secondary battery is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc.

[実施例1]
(1)シリコンナノシートの合成
まず、層状ポリシラン(Si66)の合成を行った。この合成は、−30℃に冷却した濃塩酸100ml中へケイ化カルシウム(CaSi2)3gを添加し、1週間、−30℃の暗室で静置した。この処理で、黒色のケイ化カルシウムは黄色へ変化した。この黄色固体をAr雰囲気下で加圧ろ過し、脱気塩酸(−30℃)で洗浄し、脱気HF(フッ化水素)水溶液(−30℃)で洗浄し、さらに脱気アセトン(−30℃)で洗浄し、110℃で一晩減圧乾燥して層状ポリシランを合成した。なお、層状ポリシランの合成の確認は、IRで行った。そのIRスペクトルを図1に示す。IRスペクトルでは、2100cm-1にSi−Hに帰属されるピークが観察された。このようにして得られた層状ポリシラン0.5gを無水ジメチルスルホキシド(DMSO)50mlへ分散し、この分散液をPTFE製の容器へ封入して80℃で5日処理することにより、層状ポリシランが膨潤して多数に分離し、シリコンナノシートが得られた。
[Example 1]
(1) Synthesis of silicon nanosheet First, layered polysilane (Si 6 H 6 ) was synthesized. In this synthesis, 3 g of calcium silicide (CaSi 2 ) was added to 100 ml of concentrated hydrochloric acid cooled to −30 ° C., and left in a dark room at −30 ° C. for 1 week. This treatment turned the black calcium silicide to yellow. The yellow solid was filtered under pressure in an Ar atmosphere, washed with degassed hydrochloric acid (−30 ° C.), washed with degassed HF (hydrogen fluoride) aqueous solution (−30 ° C.), and further degassed acetone (−30 The layered polysilane was synthesized by washing at 110 ° C. overnight under reduced pressure. The synthesis of the layered polysilane was confirmed by IR. The IR spectrum is shown in FIG. In the IR spectrum, a peak attributed to Si—H was observed at 2100 cm −1 . 0.5 g of the layered polysilane thus obtained was dispersed in 50 ml of anhydrous dimethyl sulfoxide (DMSO), and this dispersion was sealed in a PTFE container and treated at 80 ° C. for 5 days to swell the layered polysilane. As a result, the silicon nanosheet was obtained.

得られたシリコンナノシートのζ電位をマイクロテックニチオン社製のZC−2000を用いて測定したところ+30mVであったことから、正に帯電していることを確認した。また、このシリコンナノシートについて、Si−K吸収端のX線吸収端近傍構造(x-ray absorption near edge structure, XANES)の分析を行った。その結果を図2に示す。また、シリコンの2pの結合エネルギをX線光電子分光(x-ray photoelectron spectroscopy, XPS)で分析した。その結果を図3に示す。図2及び図3には、Si(酸化数0価)とSiO2(酸化数4価)の結果も併せて示す。これらの図から明らかなように、今回得られたシリコンナノシートは、ピーク位置がSiとSiO2の中間にあるので酸化数は2価と見積もることができる。したがって、シリコンナノシートの組成式はSiH1-x(OH)x(x=0.5)と考えられる。なお、XPSデータは、シリコンの酸化数が0価では99eV,1価では100eV,2価では101eV,3価では102eV,4価では103eVだと経験的に言われている。 When the ζ potential of the obtained silicon nanosheet was measured using ZC-2000 manufactured by Microtech Nithion Co., it was +30 mV, so it was confirmed that it was positively charged. The silicon nanosheet was analyzed for the X-ray absorption near edge structure (XANES) of the Si-K absorption edge. The result is shown in FIG. In addition, 2p binding energy of silicon was analyzed by X-ray photoelectron spectroscopy (XPS). The result is shown in FIG. 2 and 3 also show the results of Si (oxidation number 0 valence) and SiO 2 (oxidation number 4 valence). As is clear from these figures, the silicon nanosheet obtained this time has a peak position in the middle of Si and SiO 2 , so the oxidation number can be estimated to be divalent. Therefore, the composition formula of the silicon nanosheet is considered to be SiH 1-x (OH) x (x = 0.5). XPS data has been empirically said that the oxidation number of silicon is 99 eV for zero valence, 100 eV for monovalent, 101 eV for divalent, 102 eV for trivalent, and 103 eV for tetravalent.

(2)金属酸化物ナノシートの合成
金属酸化物ナノシートとして、酸化チタンナノシートを合成した。具体的には、レピドクロサイト型層状チタン酸化合物(Cs0.7Ti1.8250.1754,□:空孔)を出発原料として、酸化チタンナノシートを合成した。この合成は、J. Am. Chem. Soc., 1996, vol.118, p8329-8335に記載された手順に準じて行った。すなわち、まず、Cs0.7Ti1.8250.1754は、Cs2CO3とアナターゼ型TiO2をモル比で1:5.2の割合に混合し、700℃の大気中で10時間焼成後、室温に急冷して合成した。合成した粉末試料を1Nの塩酸水溶液中で1日攪拌し、洗浄後、再び1Nの塩酸で処理を行う操作を3回繰り返すことで、H0.7Ti1.8250.1754・H2Oを誘導した。このようにして得られたH0.7Ti1.8250.1754・H2Oにテトラブチルアンモニウムイオン((C494NOH,以下TBAOH)をプロトンと等モル量作用させて、激しく7日間、室温で攪拌することで酸化チタンナノシートを得た。得られた酸化チタンナノシートのζ電位を測定したところ、−40mVであったことから、負に帯電していることを確認した。なお、酸化チタンは、バルクとして、1.5V(vs.Li)付近に150mAh/gの蓄電容量を保持している。
(2) Synthesis of metal oxide nanosheet A titanium oxide nanosheet was synthesized as a metal oxide nanosheet. Specifically, titanium oxide nanosheets were synthesized using a lipidocrocite-type layered titanic acid compound (Cs 0.7 Ti 1.8250.175 O 4 , □: vacancy) as a starting material. This synthesis was performed according to the procedure described in J. Am. Chem. Soc., 1996, vol. 118, p8329-8335. That is, first, Cs 0.7 Ti 1.8250.175 O 4 is prepared by mixing Cs 2 CO 3 and anatase TiO 2 at a molar ratio of 1: 5.2, firing in the atmosphere at 700 ° C. for 10 hours, It was rapidly cooled to synthesize. H 0.7 Ti 1.8250.175 O 4 · H 2 O was derived by repeating the operation of stirring the synthesized powder sample in 1N hydrochloric acid aqueous solution for 1 day, washing, and treating with 1N hydrochloric acid again three times. . The H 0.7 Ti 1.8250.175 O 4 · H 2 O obtained in this way was allowed to act in an equimolar amount with tetrabutylammonium ion ((C 4 H 9 ) 4 NOH, hereinafter referred to as TBAOH) for 7 days vigorously. The titanium oxide nanosheet was obtained by stirring at room temperature. When the ζ potential of the obtained titanium oxide nanosheet was measured, it was -40 mV, so it was confirmed that it was negatively charged. Note that titanium oxide has a storage capacity of 150 mAh / g in the vicinity of 1.5 V (vs. Li) as a bulk.

(3)電極の作製方法
正に帯電したシリコンナノシートと負に帯電した酸化チタンナノシートとを白金基板上にレイヤー・バイ・レイヤー(LBL)法で積層することにより、実施例1の超薄膜電極を作製した。具体的には、まず、カチオン性ポリマー(ポリジアリルジメチルアンモニウムクロリド(PDDA))を対イオンとして選択した。また、自己組織化モノレイヤー吸着が起こるように、PDDAは濃度1mg/mLになるように0.5N NaCl水溶液に溶かした。一方、酸化チタンナノシートは、濃度0.01wt%、pH9になるように塩酸水溶液で調製した。シリコンナノシートは、濃度0.02wt%になるように水で調製した(pH調整は行わなかった)。そして、図4に示す手順にしたがって超薄膜電極を作製した。具体的には、まず、白金基板をPDDA溶液に20分浸漬した後、3回水洗(超純水を使用、以下同じ)してPDDAを白金表面へ吸着させ、表面を正に帯電させた。次いで、負に帯電した酸化チタンナノシートの溶液へ20分浸漬した後、3回水洗して酸化チタンナノシートを1層成膜した。更に、正に帯電したシリコンナノシートの溶液へ20分浸漬した後、3回水洗してシリコンナノシートを1層成膜した。このようにして、白金基板上に酸化チタンナノシートとシリコンナノシートとを積層した構造を有する超薄膜電極を得た。
(3) Electrode preparation method The ultra-thin electrode of Example 1 was formed by laminating positively charged silicon nanosheets and negatively charged titanium oxide nanosheets on a platinum substrate by the layer-by-layer (LBL) method. Produced. Specifically, first, a cationic polymer (polydiallyldimethylammonium chloride (PDDA)) was selected as a counter ion. Moreover, PDDA was dissolved in a 0.5N NaCl aqueous solution so that the concentration was 1 mg / mL so that self-assembled monolayer adsorption occurred. On the other hand, the titanium oxide nanosheet was prepared with a hydrochloric acid aqueous solution so as to have a concentration of 0.01 wt% and a pH of 9. The silicon nanosheet was prepared with water to a concentration of 0.02 wt% (pH adjustment was not performed). And the ultra-thin film electrode was produced according to the procedure shown in FIG. Specifically, first, the platinum substrate was immersed in a PDDA solution for 20 minutes, and then washed three times (using ultrapure water, the same applies hereinafter) to adsorb PDDA onto the platinum surface, and the surface was positively charged. Next, the film was immersed in a negatively charged titanium oxide nanosheet solution for 20 minutes, and then washed with water three times to form a single layer of titanium oxide nanosheet. Furthermore, after being immersed in a solution of positively charged silicon nanosheets for 20 minutes, it was washed with water three times to form one layer of silicon nanosheet. In this way, an ultrathin film electrode having a structure in which a titanium oxide nanosheet and a silicon nanosheet were laminated on a platinum substrate was obtained.

実施例1の超薄膜電極の原子間力顕微鏡(atomic force microscope)による画像を図5に示す。また、図5における白色線分の高さのプロファイルを図6に示す。図5から、シリコンナノシートが断片状に積層されていることが認められる。なお、図5では、PDDAシートと酸化チタンナノシートは視認できない。また、図6から、シリコンナノシート1層分の厚さは1〜2μmであり、面内長さは1μm程度であり、形状は不定形であることが認められる。また、実施例1の超薄膜電極のX線回折(x-ray diffraction, XRD)のパターンを図7に示す。   The image by the atomic force microscope of the ultra-thin electrode of Example 1 is shown in FIG. Moreover, the profile of the height of the white line segment in FIG. 5 is shown in FIG. From FIG. 5, it can be seen that the silicon nanosheets are laminated in pieces. In FIG. 5, the PDDA sheet and the titanium oxide nanosheet cannot be visually recognized. Moreover, it is recognized from FIG. 6 that the thickness for one layer of the silicon nanosheet is 1-2 μm, the in-plane length is about 1 μm, and the shape is indefinite. Moreover, the X-ray diffraction (x-ray diffraction, XRD) pattern of the ultra-thin electrode of Example 1 is shown in FIG.

(4)電気化学測定法
電解液として、ECとDECとを体積比で3:7の割合で混合した溶液へLiPF6を1Mとなるように溶かしたものを準備した。グローブボックス内でこの電解液0.1mLをセパレータ(東燃化学製の微多孔ポリエチレンフィルム)に含浸させ、上記(3)で作製した電極をφ17mmに切り出して試験電極とし、この試験電極と対極としてのリチウム金属箔(φ16mm,厚さ1mm)とを、セパレータを介して対向させて配置し、アルゴン雰囲気となるようにキャップを締めることにより、加圧セルを作製した。この加圧セルを用いて試験電極の評価を行った。評価は、電位窓0.02−2.8Vとし、電流密度100A/g(Si重量当り)の定電流で充放電を行った。ここで特筆すべきことは、この電流密度は通常のリチウムイオン電池を約100Cで評価するのと同等の値である点である。
(4) Electrochemical measurement method As an electrolytic solution, a solution in which LiPF 6 was dissolved to 1 M in a solution in which EC and DEC were mixed at a volume ratio of 3: 7 was prepared. In a glove box, 0.1 mL of this electrolyte solution was impregnated into a separator (a microporous polyethylene film manufactured by Tonen Chemical), and the electrode prepared in (3) was cut out to φ17 mm as a test electrode. Lithium metal foil (φ16 mm, thickness 1 mm) was placed opposite to each other with a separator interposed therebetween, and a cap was tightened so that an argon atmosphere was obtained, thereby producing a pressure cell. The test electrode was evaluated using this pressure cell. Evaluation was carried out with a potential window of 0.02-2.8 V, and charging / discharging was performed at a constant current of 100 A / g (per Si weight). What should be noted here is that this current density is the same value as that obtained when an ordinary lithium ion battery is evaluated at about 100C.

実施例1の超薄膜電極の評価結果を図8及び表1に示す。図8から明らかなように、初回の放電容量は13000mAh/gとなった。これは、酸化チタンナノシートを吸着させるために用いたPDDAの還元分解による容量であると推測される。2サイクル〜10サイクルは充電・放電共に7000mAh/gで安定した容量が得られた。この容量は、シリコンの理論容量の1.6倍の大容量である。このような大容量が得られた理由は定かではないが、シートの両面にリチウムイオンが吸着したためではないかと推測される。また、充放電曲線につき容量に対して電位がほぼ直線的に変化していることから、反応機構はキャパシタ的であると推測される。
The evaluation results of the ultrathin film electrode of Example 1 are shown in FIG. As is apparent from FIG. 8, the initial discharge capacity was 13000 mAh / g. This is presumed to be the capacity due to reductive decomposition of PDDA used for adsorbing the titanium oxide nanosheets. From 2 cycles to 10 cycles, stable capacity was obtained at 7000 mAh / g for both charging and discharging. This capacity is 1.6 times larger than the theoretical capacity of silicon. The reason why such a large capacity was obtained is not clear, but it is presumed that lithium ions were adsorbed on both sides of the sheet. Moreover, since the electric potential changes almost linearly with respect to the capacity in the charge / discharge curve, it is presumed that the reaction mechanism is a capacitor.

[実施例2]
実施例1の(3)電極の作製方法において、酸化チタンナノシートとシリコンナノシートとの積層を合計5回繰り返した以外は、実施例1と同様にして超薄膜電極を作製した。実施例2の超薄膜電極のX線回折のパターンを図9に示す。図9から明らかなように、実施例2の超薄膜電極では2θ=8°付近に回折パターンが現れている。これは、酸化チタンナノシートとシリコンナノシートとの周期性を表しており、実施例2の超薄膜電極で設計通りに両ナノシートが交互に積層していることを示している。
[Example 2]
An ultrathin electrode was produced in the same manner as in Example 1 except that in the method for producing an electrode of Example 1 (3), the lamination of the titanium oxide nanosheet and the silicon nanosheet was repeated 5 times in total. An X-ray diffraction pattern of the ultrathin film electrode of Example 2 is shown in FIG. As can be seen from FIG. 9, in the ultrathin film electrode of Example 2, a diffraction pattern appears in the vicinity of 2θ = 8 °. This represents the periodicity of the titanium oxide nanosheet and the silicon nanosheet, and shows that the nanosheets are alternately laminated as designed in the ultrathin film electrode of Example 2.

こうして得られた実施例2の超薄膜電極の評価を、実施例1の(4)電気化学測定法と同様にして行った。その結果を図10及び表1に示す。図10から明らかなように、初回の放電容量は9500mAh/gとなった。これは、実施例1と同様、酸化チタンナノシートを吸着させるために用いたPDDAの還元分解による容量であると推測される。2サイクル〜10サイクルは充電・放電共に3000mAh/gで安定した容量が得られた。この容量は、シリコンの理論容量の約0.7倍である。この場合のリチウムイオンの反応場は、シリコンナノシートの両面への吸着よりも内部への吸蔵と考えるのが妥当である。また、充放電曲線につき容量に対して電位がほぼ直線的に変化していることから、反応機構はキャパシタ的であると推測される。   Evaluation of the ultrathin film electrode of Example 2 thus obtained was performed in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in FIG. As is apparent from FIG. 10, the initial discharge capacity was 9500 mAh / g. This is presumed to be the capacity due to reductive decomposition of PDDA used for adsorbing the titanium oxide nanosheets, as in Example 1. From 2 cycles to 10 cycles, stable capacity was obtained at 3000 mAh / g for both charging and discharging. This capacity is about 0.7 times the theoretical capacity of silicon. The reaction field of lithium ions in this case is considered to be occlusion inside rather than adsorption on both sides of the silicon nanosheet. Moreover, since the electric potential changes almost linearly with respect to the capacity in the charge / discharge curve, it is presumed that the reaction mechanism is a capacitor.

[実施例3]
実施例1の(2)金属酸化物ナノシートの合成において、酸化チタンナノシートの代わりに酸化マンガンナノシートを合成した。具体的には、バーネサイト型層状マンガン酸化合物(K0.45MnO2)を出発原料として、酸化マンガンナノシートを合成した。この合成は、J. Am. Chem. Soc., 2003, vol.125, p3568-3575に記載された手順に準じて行った。すなわち、まず、K0.45MnO2は、KOHとMn23をモル比で1:1の割合に混合し、800℃の酸素気流中で60時間焼成後、室温に急冷して合成した。合成した粉末試料を1Nの塩酸水溶液中で1日攪拌し、洗浄後、再び1Nの塩酸で処理を行う操作を3回繰り返すことで、H0.13MnO2・0.7H2Oを誘導した。このようにして得られたH0.13MnO2・0.7H2OにTBAOHをプロトンと等モル量作用させて、激しく7日間、室温で攪拌することで酸化マンガンナノシートを得た。得られた酸化マンガンナノシートのζ電位を測定したところ、−35mVであったことから、負に帯電していることを確認した。なお、酸化マンガンは、バルクとして、2V(vs.Li)付近に約200mAh/gの蓄電容量を保持している。
[Example 3]
In the synthesis of (2) metal oxide nanosheet of Example 1, manganese oxide nanosheets were synthesized instead of titanium oxide nanosheets. Specifically, manganese oxide nanosheets were synthesized using a birnessite-type layered manganate compound (K 0.45 MnO 2 ) as a starting material. This synthesis was performed according to the procedure described in J. Am. Chem. Soc., 2003, vol. 125, p3568-3575. That is, first, K 0.45 MnO 2 was synthesized by mixing KOH and Mn 2 O 3 at a molar ratio of 1: 1, firing in an oxygen stream at 800 ° C. for 60 hours, and then rapidly cooling to room temperature. H 0.13 MnO 2 .0.7H 2 O was induced by repeating the operation of stirring the synthesized powder sample in a 1N hydrochloric acid aqueous solution for 1 day, washing, and treating with 1N hydrochloric acid again three times. Manganese oxide nanosheets were obtained by allowing TBAOH to act in equimolar amounts with protons on the resulting H 0.13 MnO 2 .0.7H 2 O and vigorously stirring at room temperature for 7 days. When the ζ potential of the obtained manganese oxide nanosheet was measured, it was −35 mV, so it was confirmed that it was negatively charged. Note that manganese oxide holds a storage capacity of about 200 mAh / g in the vicinity of 2 V (vs. Li) as a bulk.

そして、実施例1の(3)電極の作製方法において、酸化チタンナノシートの代わりに酸化マンガンナノシートを用いた以外は、実施例1と同様にして超薄膜電極を作製し、その超薄膜電極の評価を、実施例1の(4)電気化学測定法と同様にして行った。その結果を表1に示す。表1から明らかなように、実施例3の超薄膜電極によれば、実施例1と比べて10サイクル後の放電容量が約10%低下したものの、従来に比べると良好な充放電特性が得られることがわかった。   And in the manufacturing method of the electrode of Example 1 (3), an ultra-thin electrode was prepared in the same manner as in Example 1 except that a manganese oxide nanosheet was used instead of the titanium oxide nanosheet, and the evaluation of the ultrathin electrode was performed. Was performed in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in Table 1. As can be seen from Table 1, according to the ultrathin film electrode of Example 3, although the discharge capacity after 10 cycles was reduced by about 10% compared to Example 1, good charge / discharge characteristics were obtained compared to the conventional case. I found out that

[実施例4]
実施例3の(3)電極の作製方法において、酸化マンガンナノシートとシリコンナノシートとの積層を合計5回繰り返した以外は、実施例3と同様にして超薄膜電極を作製した。そして、その超薄膜電極の評価を実施例1の(4)電気化学測定法と同様にして行った。その結果を表1に示す。表1から明らかなように、実施例4の超薄膜電極によれば、実施例2と比べて10サイクル後の放電容量が約10%低下したものの、従来に比べると良好な充放電特性が得られることがわかった。
[Example 4]
An ultrathin electrode was produced in the same manner as in Example 3 except that in the method for producing an electrode of Example 3 (3), the lamination of the manganese oxide nanosheet and the silicon nanosheet was repeated 5 times in total. Then, the ultrathin film electrode was evaluated in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in Table 1. As is apparent from Table 1, according to the ultrathin electrode of Example 4, the discharge capacity after 10 cycles was reduced by about 10% compared to Example 2, but good charge / discharge characteristics were obtained compared to the conventional case. I found out that

[実施例5]
実施例1の(3)電極の作製方法において、酸化チタンナノシートの代わりに高分子電解質であるポリスチレンスルホン酸(PSS、アルドリッチ製)を用いた以外は、実施例1と同様にして超薄膜電極を作製した。そして、その超薄膜電極の評価を実施例1の(4)電気化学測定法と同様にして行った。その結果を表1に示す。表1から明らかなように、実施例5の超薄膜電極によれば、実施例1と比べて10サイクル後の放電容量が約20%低下したものの、従来に比べると良好な充放電特性が得られることがわかった。
[Example 5]
An ultrathin electrode was prepared in the same manner as in Example 1 except that polystyrene sulfonic acid (PSS, manufactured by Aldrich), which is a polymer electrolyte, was used instead of the titanium oxide nanosheet. Produced. Then, the ultrathin film electrode was evaluated in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in Table 1. As is clear from Table 1, according to the ultrathin film electrode of Example 5, the discharge capacity after 10 cycles was reduced by about 20% compared to Example 1, but good charge / discharge characteristics were obtained compared to the conventional case. I found out that

[実施例6]
実施例5の(3)電極の作製方法において、PSSとシリコンナノシートとの積層を合計5回繰り返した以外は、実施例5と同様にして超薄膜電極を作製した。そして、その超薄膜電極の評価を実施例1の(4)電気化学測定法と同様にして行った。その結果を表1に示す。表1から明らかなように、実施例6の超薄膜電極によれば、実施例2と比べて10サイクル後の放電容量が約20%低下したが、従来に比べると良好な充放電特性が得られることがわかった。
[Example 6]
An ultrathin electrode was produced in the same manner as in Example 5 except that in the method for producing an electrode of Example 5 (3), the lamination of PSS and silicon nanosheet was repeated 5 times in total. Then, the ultrathin film electrode was evaluated in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in Table 1. As is apparent from Table 1, according to the ultrathin film electrode of Example 6, the discharge capacity after 10 cycles was reduced by about 20% compared to Example 2, but good charge / discharge characteristics were obtained compared to the conventional case. I found out that

[比較例1]
実施例1の(1)シリコンナノシートの合成においてシリコンナノシートの原料として用いた層状ポリシランを活物質として電極を作製した。具体的には、層状ポリシラン:ケッチェンブラック:PTFE=70:25:5(wt%)で混合したものをSUSメッシュへ圧着して作製した。この電極を80℃で10時間減圧乾燥したあと、実施例1の(4)電気化学測定法と同様にして評価した。その結果を図11及び表1に示す。図11から明らかなように、初回の放電時のみ1300mAh/gの容量が得られたが、それ以降は300mAh/gとなった。各実施例の電極と異なりナノシート化されていないため、リチウムイオンの吸蔵が層状ポリシランのバルクの内部で起きていると推測される。
[Comparative Example 1]
In Example 1 (1) Synthesis of silicon nanosheets, an electrode was produced using layered polysilane used as a raw material for silicon nanosheets as an active material. Specifically, a mixture of layered polysilane: Ketjen black: PTFE = 70: 25: 5 (wt%) was prepared by pressure bonding to a SUS mesh. This electrode was dried under reduced pressure at 80 ° C. for 10 hours, and then evaluated in the same manner as in (4) electrochemical measurement method of Example 1. The results are shown in FIG. As can be seen from FIG. 11, a capacity of 1300 mAh / g was obtained only during the first discharge, but thereafter 300 mAh / g. Unlike the electrode of each Example, since it is not nanosheeted, it is estimated that occlusion of lithium ions occurs inside the bulk of the layered polysilane.

なお、本発明は上述した実施例に何ら限定されるものではなく、本発明の技術的範囲に属する限り、種々の態様で実施し得ることはいうまでもない。   In addition, this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.

層状ポリシランのIRスペクトルである。It is IR spectrum of layered polysilane. X線吸収分光のスペクトルである。It is a spectrum of X-ray absorption spectroscopy. X線光電子分光のスペクトルである。It is a spectrum of X-ray photoelectron spectroscopy. 実施例1の超薄膜電極の作製手順を表す説明図である。6 is an explanatory diagram illustrating a procedure for manufacturing the ultrathin film electrode of Example 1. FIG. 実施例1の超薄膜電極のAFM像である。2 is an AFM image of the ultrathin film electrode of Example 1. 図5における白色線分の高さのプロファイルを表すグラフである。It is a graph showing the profile of the height of the white line segment in FIG. 実施例1の超薄膜電極のXRDパターンである。2 is an XRD pattern of an ultrathin film electrode of Example 1. FIG. 実施例1の充放電曲線を表すグラフである。2 is a graph showing a charge / discharge curve of Example 1. FIG. 実施例2の超薄膜電極のXRDパターンである。3 is an XRD pattern of an ultrathin film electrode of Example 2. 実施例2の充放電曲線を表すグラフである。6 is a graph showing a charge / discharge curve of Example 2. 比較例1の充放電曲線を表すグラフである。5 is a graph showing a charge / discharge curve of Comparative Example 1.

Claims (7)

基板上に、正に帯電したシリコンナノシートと負に帯電した金属酸化物シートとを積層した構造を有する、リチウム二次電池用電極。   An electrode for a lithium secondary battery having a structure in which a positively charged silicon nanosheet and a negatively charged metal oxide sheet are laminated on a substrate. 前記金属酸化物シートは、酸化チタン、酸化マンガン又はそれらを組み合わせたものである、請求項1に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to claim 1, wherein the metal oxide sheet is titanium oxide, manganese oxide, or a combination thereof. 基板上に、正に帯電したシリコンナノシートとポリアニオンシートとを積層した構造を有する、リチウム二次電池用電極。   An electrode for a lithium secondary battery, having a structure in which a positively charged silicon nanosheet and a polyanion sheet are laminated on a substrate. 前記ポリアニオンシートは、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリチオフェン−3−酢酸、ポリ(3−ヘキシルチオフェン)及びポリアミド酸からなる群より選ばれた1種又は2種以上である、請求項3に記載のリチウム二次電池用電極。   The polyanion sheet is one or more selected from the group consisting of polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, polythiophene-3-acetic acid, poly (3-hexylthiophene) and polyamic acid, Item 4. The electrode for a lithium secondary battery according to Item 3. 前記シリコンナノシートは、厚さが0.3〜5nmである、請求項1〜4のいずれか1項に記載のリチウム二次電池用電極。   The electrode for a lithium secondary battery according to any one of claims 1 to 4, wherein the silicon nanosheet has a thickness of 0.3 to 5 nm. 前記シリコンナノシートは、組成式SiH1-x(OH)x(0<x≦0.5)で表される、請求項1〜5のいずれか1項に記載のリチウム二次電池用電極。 The electrode for a lithium secondary battery according to claim 1, wherein the silicon nanosheet is represented by a composition formula SiH 1-x (OH) x (0 <x ≦ 0.5). 正負極の一方が請求項1〜6のいずれか1項に記載のリチウム二次電池用電極である、リチウム二次電池。   A lithium secondary battery, wherein one of the positive and negative electrodes is the electrode for a lithium secondary battery according to any one of claims 1 to 6.
JP2008066482A 2008-03-14 2008-03-14 Electrode for lithium secondary battery and lithium secondary battery using the same Expired - Fee Related JP5223393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066482A JP5223393B2 (en) 2008-03-14 2008-03-14 Electrode for lithium secondary battery and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066482A JP5223393B2 (en) 2008-03-14 2008-03-14 Electrode for lithium secondary battery and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2009224145A true JP2009224145A (en) 2009-10-01
JP5223393B2 JP5223393B2 (en) 2013-06-26

Family

ID=41240713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066482A Expired - Fee Related JP5223393B2 (en) 2008-03-14 2008-03-14 Electrode for lithium secondary battery and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5223393B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
JP2011090806A (en) * 2009-10-20 2011-05-06 Toyota Central R&D Labs Inc Electrode for lithium secondary battery, and lithium secondary battery equipped with the same
JP2011096831A (en) * 2009-10-29 2011-05-12 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical device, electrode for electrochemical device fabricated thereby, and electrochemical device
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
JP2012231112A (en) * 2011-04-26 2012-11-22 Samsung Electro-Mechanics Co Ltd Multilayer thin film for ceramic electronic component and manufacturing method for the film
JP2013037809A (en) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
WO2014147935A1 (en) * 2013-03-18 2014-09-25 株式会社豊田自動織機 Negative electrode active material, manufacturing method therefor, and power storage device
WO2018074053A1 (en) * 2016-10-21 2018-04-26 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary cell, method for manufacturing negative electrode active material, and method for manufacturing lithium ion secondary cell
CN114180576A (en) * 2021-12-09 2022-03-15 海宁硅泰科技有限公司 Graphite-coated metal particle-containing silicon nanosheet rapid-charging negative electrode material, method and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964417A (en) * 1995-08-25 1997-03-07 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of siloxene compound thin film
JP2003326637A (en) * 2002-05-17 2003-11-19 National Institute For Materials Science Manganic acid nano-sheet ultrathin film and manufacturing method therefor
WO2006009073A1 (en) * 2004-07-16 2006-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon nanosheet, nanosheet solution and process for producing the same, nanosheet-containing composite, and nanosheet aggregate
JP2006049729A (en) * 2004-08-06 2006-02-16 Toyota Central Res & Dev Lab Inc Surface layer coating metal and green compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964417A (en) * 1995-08-25 1997-03-07 Kokusai Denshin Denwa Co Ltd <Kdd> Manufacture of siloxene compound thin film
JP2003326637A (en) * 2002-05-17 2003-11-19 National Institute For Materials Science Manganic acid nano-sheet ultrathin film and manufacturing method therefor
WO2006009073A1 (en) * 2004-07-16 2006-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Silicon nanosheet, nanosheet solution and process for producing the same, nanosheet-containing composite, and nanosheet aggregate
JP2006049729A (en) * 2004-08-06 2006-02-16 Toyota Central Res & Dev Lab Inc Surface layer coating metal and green compact

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044310A (en) * 2009-08-20 2011-03-03 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery, method of manufacturing the same, lithium ion secondary battery employing the same
JP2011090806A (en) * 2009-10-20 2011-05-06 Toyota Central R&D Labs Inc Electrode for lithium secondary battery, and lithium secondary battery equipped with the same
JP2011096831A (en) * 2009-10-29 2011-05-12 Nippon Zeon Co Ltd Method of manufacturing electrode for electrochemical device, electrode for electrochemical device fabricated thereby, and electrochemical device
JP2012059509A (en) * 2010-09-08 2012-03-22 Toyota Central R&D Labs Inc Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
US8974901B2 (en) 2011-04-26 2015-03-10 Samsung Electro-Mechanics Co., Ltd. Multilayer thin film for ceramic electronic component and method of manufacturing the same
JP2012231112A (en) * 2011-04-26 2012-11-22 Samsung Electro-Mechanics Co Ltd Multilayer thin film for ceramic electronic component and manufacturing method for the film
JP2013037809A (en) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
WO2014147935A1 (en) * 2013-03-18 2014-09-25 株式会社豊田自動織機 Negative electrode active material, manufacturing method therefor, and power storage device
JP2014182890A (en) * 2013-03-18 2014-09-29 Toyota Industries Corp Negative electrode active material, process of manufacturing the same, and power storage device
US10141563B2 (en) 2013-03-18 2018-11-27 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode active material, production process for the same and electric storage apparatus
WO2018074053A1 (en) * 2016-10-21 2018-04-26 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary cell, method for manufacturing negative electrode active material, and method for manufacturing lithium ion secondary cell
JP2018067518A (en) * 2016-10-21 2018-04-26 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for manufacturing negative electrode active material, and method for manufacturing lithium ion secondary battery
CN109906529A (en) * 2016-10-21 2019-06-18 信越化学工业株式会社 Negative electrode active material, cathode, lithium ion secondary battery, the manufacturing method of the preparation method of negative electrode active material and lithium ion secondary battery
TWI787199B (en) * 2016-10-21 2022-12-21 日商信越化學工業股份有限公司 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
US11909038B2 (en) 2016-10-21 2024-02-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, negative electrode, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
CN114180576A (en) * 2021-12-09 2022-03-15 海宁硅泰科技有限公司 Graphite-coated metal particle-containing silicon nanosheet rapid-charging negative electrode material, method and battery

Also Published As

Publication number Publication date
JP5223393B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Chen et al. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries
JP6524158B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, non-aqueous electrolyte secondary battery, battery pack and vehicle
JP5223393B2 (en) Electrode for lithium secondary battery and lithium secondary battery using the same
US10020491B2 (en) Silicon-based active materials for lithium ion batteries and synthesis with solution processing
US8790829B2 (en) Nonaqueous secondary battery
JP5174730B2 (en) Method for producing crystalline lithium titanate and crystalline lithium titanate
WO2013115390A1 (en) Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
Nageswaran et al. Morphology controlled Si-modified LiNi0. 5Mn1. 5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries
US20140248531A1 (en) Negative electrode active material for energy storage devices and method for making the same
WO2007043665A1 (en) Mixed body of lithium iron phosphate and carbon, electrode containing same, battery comprising such electrode, method for producing such mixed body, and method for producing battery
JP2008152923A (en) Cathode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using this cathode active material
WO2013151209A1 (en) Cathode active material for lithium ion capacitor and method for manufacturing same
JP2008117749A (en) Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery
EP3595059A1 (en) Positive electrode active material, and cell
EP3618152A1 (en) Positive electrode active material and battery
EP3029761B1 (en) Non-aqueous electrolyte secondary battery using solid solution of transition metal oxide containing lithium in positive electrode
JP2018116927A (en) Positive electrode active material and battery
WO2019163476A1 (en) Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, method for producing positive electrode, and method for producing non-aqueous electrolyte power storage element
KR101746188B1 (en) Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery
Khairy et al. Ternary V-doped Li4Ti5O12-polyaniline-graphene nanostructure with enhanced electrochemical capacitance performance
WO2015138019A1 (en) Negative electrode active material for energy storage devices and method for making the same
WO2015015894A1 (en) Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2016036091A1 (en) Electrode material mixture additive for secondary battery, method for preparing same, electrode for secondary battery comprising same, and secondary battery
JP2014534575A (en) Manufacturing method of electrode material and electrode material by the same method
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees