JP2009221961A - Binary power generating system - Google Patents

Binary power generating system Download PDF

Info

Publication number
JP2009221961A
JP2009221961A JP2008067592A JP2008067592A JP2009221961A JP 2009221961 A JP2009221961 A JP 2009221961A JP 2008067592 A JP2008067592 A JP 2008067592A JP 2008067592 A JP2008067592 A JP 2008067592A JP 2009221961 A JP2009221961 A JP 2009221961A
Authority
JP
Japan
Prior art keywords
power generation
evaporator
turbine
working medium
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067592A
Other languages
Japanese (ja)
Inventor
Yoshiaki Enami
義晶 榎並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008067592A priority Critical patent/JP2009221961A/en
Publication of JP2009221961A publication Critical patent/JP2009221961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved binary power generating system enhancing the utilization efficiency of heat source energy and the output of power generation by suppressing the equipment cost of the system. <P>SOLUTION: In the binary power generating system to drive a turbine generator 5 by introducing, to a steam turbine 4, the vapor of a low boiling point working medium 10 vaporized through heat exchange with a heat source fluid 1, a preheater 3 and evaporator 2 for the working medium heated by the heat source fluid, a steam turbine 4, a condenser 6, and a medium transporting pump 7 are combined in series to form a closed loop which constitutes a heat cycle of the working medium. The evaporator is divided into evaporator segments 2A and 2B constituting a plurality of stages having different evaporating temperature and pressure of the working medium, and differently generated vapor produced by the respective evaporator segments is introduced to the high pressure stage and low pressure stage of the steam turbine (mixed pressure turbine), whereby the turbine generator 5 is driven. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、地熱流体(熱水または蒸気)や工場設備,燃料電池設備の温排水などを熱源として、ペンタン,イソペンタン,ヘキサン,アンモニアなどの低沸点作動媒体を蒸発させ、この作動媒体の蒸気で蒸気タービンを駆動して発電するバイナリー発電システムに関する。   This invention evaporates low boiling point working media such as pentane, isopentane, hexane, and ammonia using geothermal fluid (hot water or steam), warm wastewater from factory equipment and fuel cell equipment as a heat source, and uses the steam of this working medium. The present invention relates to a binary power generation system that generates power by driving a steam turbine.

炭化水素やアンモニアなどの低沸点媒体の蒸気を利用して発電する頭記のバイナリー発電システムは、通常の蒸気タービンには不適な低温熱源から発電をすることができることから、地熱発電や産業排熱回収の分野で利用されている(例えば、非特許文献1参照)。   The binary power generation system described above, which generates power using steam from low-boiling-point media such as hydrocarbons and ammonia, can generate power from low-temperature heat sources that are unsuitable for ordinary steam turbines. It is used in the field of recovery (for example, see Non-Patent Document 1).

次に、バイナリー発電システムの基本的な構成を図5に示す。図5において、1は熱源流体(例えば、地熱水)、2は熱源流体1を一次側の加熱源として低沸点の作動媒体(例えば、イソペンタン)を熱交換により加熱,蒸発させる蒸発器、3は予熱器、4は蒸気タービン、5はタービン発電機、6は凝縮器、7は凝縮器6で凝縮液化した作動媒体を昇圧して予熱器3,蒸発器2に送液する媒体送液ポンプ、8は熱回収器、9は前記の各機器を直列に接続して熱サイクル(ランキンサイクル)を構成する作動媒体系の閉ループ配管路である。   Next, a basic configuration of the binary power generation system is shown in FIG. In FIG. 5, 1 is a heat source fluid (for example, geothermal water), 2 is an evaporator that heats and evaporates a low-boiling working medium (for example, isopentane) by heat exchange using the heat source fluid 1 as a primary heating source, 3 Is a preheater, 4 is a steam turbine, 5 is a turbine generator, 6 is a condenser, 7 is a medium feed pump that pressurizes the working liquid condensed and liquefied by the condenser 6 and sends it to the preheater 3 and the evaporator 2. , 8 is a heat recovery unit, and 9 is a closed loop piping line of a working medium system in which the above-mentioned devices are connected in series to constitute a thermal cycle (Rankine cycle).

上記の発電システムでは、熱源流体1を蒸発器2と予熱器3に通流し、送液ポンプ7により蒸発器2に送り込んだ作動媒体10を熱源流体1と熱交換して気化させた上、この作動媒体蒸気を蒸気タービン4に導いてタービンを駆動し、発電機5で発電する。また、蒸気タービン4から排出した作動媒体は熱回収器8を通過した後に凝縮器6にて冷却,液化され、さらに媒体送液ポンプ7により昇圧して熱回収器8,予熱器3を経て蒸発器2に戻される。   In the above power generation system, the heat source fluid 1 is passed through the evaporator 2 and the preheater 3, and the working medium 10 sent to the evaporator 2 by the liquid feed pump 7 is exchanged with the heat source fluid 1 for vaporization. The working medium steam is guided to the steam turbine 4 to drive the turbine, and the generator 5 generates power. The working medium discharged from the steam turbine 4 is cooled and liquefied by the condenser 6 after passing through the heat recovery unit 8, and further pressurized by the medium feed pump 7 and evaporated through the heat recovery unit 8 and the preheating unit 3. Returned to vessel 2.

また、前記構成のバイナリー発電システムのほかに、作動媒体の種類や蒸発温度を変えた複数の単位バイナリー発電ユニットを組み合わせ、単位の発電ユニットの間でユニットに附属する蒸発器,予熱器をカスケード接続した上で、熱源流体を直列に流して熱源流体の持つエネルギーの利用効率を高めるようにした方式のハイブリッド・バイナリー発電システム(例えば、特許文献1参照。)、あるは作動媒体にアンモニア−水などの混合液を用いて発電効率を高めるようにしたカリーナサイクルと呼ばれるバイナリー発電システム(例えば、特許文献2参照。)も知られている。
“地熱バイナリー発電方式について”、[online]、九州電力、[平成20年3月1日検索]、インターネット<URLhttp://www1.kyuden.co.jp/library/pdf/press/2005/h050225-3.pdf> 特開平1−2856076号公報(第1図) 特開平11−350920号公報(図1)
In addition to the binary power generation system configured as described above, multiple unit binary power generation units with different working medium types and evaporation temperatures are combined, and the evaporators and preheaters attached to the units are cascaded between the unit power generation units. In addition, a hybrid binary power generation system (see, for example, Patent Document 1) of a type in which the heat source fluid is flowed in series to increase the energy use efficiency of the heat source fluid, or the working medium is ammonia-water or the like. There is also known a binary power generation system called a carina cycle (see, for example, Patent Document 2) in which power generation efficiency is increased using a mixed solution of the above.
“About the geothermal binary power generation method”, [online], Kyushu Electric Power, [Search on March 1, 2008], Internet <URLhttp: //www1.kyuden.co.jp/library/pdf/press/2005/h050225- 3.pdf> JP-A-1-28556076 (FIG. 1) Japanese Patent Laid-Open No. 11-350920 (FIG. 1)

先記したバイナリー発電システムでは、熱源流体の保有するエネルギーの利用効率を高めて発電出力の向上を図ることが重要なテーマとなっている。   In the binary power generation system described above, it is an important theme to improve the power generation output by increasing the efficiency of using the energy held by the heat source fluid.

かかる点、先記した特許文献1のように複数のバイナリー発電ユニットを組み合わせ、各ユニットの蒸発器,予熱器をカスケード接続して熱源流体を直列に流すようにしたハイブリッド・バイナリー発電システムでは、各単位の発電ユニットごとにタービン,発電機,凝縮器を備えるために、発電システム全体では構成機器の数が増えて初期の設備コストが増加するという問題がある。また、特許文献2のようにカリーナサイクルのバイナリー発電システムにおいても、熱源流体との熱交換で作動媒体の蒸気を生成するために蒸発器の後段にセパレータ(気水分離器)を必要とするなど、システムの熱サイクルが複雑化して設備コストが増加する問題がある。   In this regard, in the hybrid binary power generation system in which a plurality of binary power generation units are combined as in the above-mentioned Patent Document 1, and the evaporator and preheater of each unit are cascaded to flow the heat source fluid in series, Since each unit of power generation unit includes a turbine, a generator, and a condenser, there is a problem in that the number of components increases in the entire power generation system and the initial equipment cost increases. Further, in the binary power generation system of the Carina cycle as in Patent Document 2, a separator (gas / water separator) is required after the evaporator in order to generate steam of the working medium through heat exchange with the heat source fluid. There is a problem in that the thermal cycle of the system becomes complicated and the equipment cost increases.

特に、産業排熱などのように元来利用されずに廃棄されていたエネルギーを回収して発電を行う発電システムでは投資する設備コストの低減化が重要課題であり、この観点からもできるだけ低い設備コストで高い熱効率,発電出力が発揮できる発電システムを構築することが望まれる。   In particular, in power generation systems that generate power by recovering energy that was originally discarded without being used, such as industrial waste heat, it is important to reduce the equipment cost to invest. It is desirable to build a power generation system that can exhibit high thermal efficiency and power generation output at low cost.

この発明は上記の点に鑑みなされたものであり、その目的は初期投資の設備コストを低く抑えて熱源エネルギーの利用効率,発電出力の向上が図れるように改良したバイナリー発電システムを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide an improved binary power generation system capable of improving the utilization efficiency and power generation output of heat source energy while keeping the equipment cost of initial investment low. is there.

上記目的を達成するために、本発明によれば、熱源流体との熱交換により蒸発した低沸点作動媒体の蒸気を蒸気タービンに導いてタービン発電機を駆動するバイナリー発電システムであり、熱源流体を加熱源とする作動媒体の蒸発器,蒸気タービン,凝縮器,媒体送液ポンプの各機器を直列に組み合わせた閉ループで作動媒体の熱サイクルを構成したものにおいて、
前記蒸発器を、作動媒体の蒸発温度,圧力が異なる熱源流体が複数段の蒸発器に分けられ、各段に熱源流体が流通するものとし、各段の蒸発器にて個別に生成した作動媒体の蒸気で蒸気タービンを駆動するように構成し(請求項1)、具体的には次記のような態様で構成するものとする。
(1)前記蒸気タービンが混圧タービンであり、複数の蒸発器で個別に生成した高温,高圧側の蒸気,および低温,低圧側の蒸気をそれぞれ前記混圧タービンの高圧段,低圧段に導入して駆動する(請求項2)。
(2)前記蒸気タービンが高圧用タービンと低圧用タービンを組み合わせたタンデムコンパウンド形タービンであり、複数の蒸発器で個別に生成した高温,高圧側の蒸気,および低温,低圧側の蒸気をそれぞれ前記高圧用タービン,低圧用タービンに導入して駆動する(請求項3)。
(3)前記複数の蒸発器のうち少なくとも2つ以上の蒸発器を、共通な外郭の内部に隔壁で仕切られた複数の蒸発室を画成し、かつ各蒸発室に跨がって熱源流体が通流するチューブを配管したシェル・アンド・チューブ型蒸発器で構成する(請求項4)。
(4)前記のバイナリー発電システムにおいて、蒸気タービンの出口と凝縮器との間の配管路に、蒸気タービンから出た作動媒体と凝縮器から各段の蒸発器に向けて個別にポンプ送液する作動媒体との間で同時に熱交換を行う単機構造の熱回収器を備える(請求項5)。
(5)前記のバイナリー発電システムにおいて、媒体送液ポンプと高温,高圧側の蒸発器との間に予熱器を挿入し、何れかの蒸発器の熱源流体出口からの熱源流体を予熱器に供給する(請求項6)。
In order to achieve the above object, according to the present invention, there is provided a binary power generation system for driving a turbine generator by introducing steam of a low boiling point working medium evaporated by heat exchange with a heat source fluid to a steam turbine, In what constitutes the thermal cycle of the working medium in a closed loop that combines the evaporator, steam turbine, condenser, and medium feed pump of the working medium as the heating source in series,
In the evaporator, heat source fluids having different evaporation temperatures and pressures of the working medium are divided into a plurality of stages of evaporators, and the heat source fluid flows through each stage, and the working medium generated individually in each stage of the evaporator The steam turbine is driven by the steam (Claim 1), and specifically, configured in the following manner.
(1) The steam turbine is a mixed-pressure turbine, and high-temperature and high-pressure-side steam separately generated by a plurality of evaporators and low-temperature and low-pressure-side steam are respectively introduced into the high-pressure stage and the low-pressure stage of the mixed-pressure turbine. (Claim 2).
(2) The steam turbine is a tandem compound type turbine in which a high pressure turbine and a low pressure turbine are combined, and the high temperature, high pressure side steam, and low temperature, low pressure side steam respectively generated by a plurality of evaporators are respectively described above. It is introduced into a high-pressure turbine and a low-pressure turbine and driven (claim 3).
(3) At least two or more evaporators among the plurality of evaporators define a plurality of evaporation chambers partitioned by a partition inside a common outer wall, and the heat source fluid straddles each evaporation chamber It is comprised with the shell and tube type evaporator which piped the tube which flows through (Claim 4).
(4) In the binary power generation system described above, pumping is individually performed from the working medium and the condenser that have come out of the steam turbine to the respective stages of evaporators in a pipe line between the outlet of the steam turbine and the condenser. A single-unit heat recovery device that simultaneously exchanges heat with the working medium is provided.
(5) In the above binary power generation system, a preheater is inserted between the medium feed pump and the high-temperature and high-pressure side evaporator, and the heat source fluid from the heat source fluid outlet of any evaporator is supplied to the preheater. (Claim 6).

上記構成のように、熱源流体との熱交換により作動媒体の蒸気を生成する蒸発器を複数段に分け、各段の蒸発器にて個別に生成した作動媒体蒸気を混圧タービン,またはタンデム・コンパウンド・タービンに導入して発電機を駆動するようにしたことにより、単一段のみの蒸発器から生成した作動媒体の蒸気で蒸気タービンを駆動するようにした非特許文献1のバイナリー発電システムと比べて熱源流体の保有する熱エネルギーの利用率を高めて発電出力が向上する。   As in the above configuration, the evaporator that generates the steam of the working medium by heat exchange with the heat source fluid is divided into a plurality of stages, and the working medium steam generated individually in each stage of the evaporator is mixed pressure turbine, or tandem Compared with the binary power generation system of Non-Patent Document 1 in which the steam turbine is driven by the steam of the working medium generated from the evaporator of only a single stage by introducing it into the compound turbine and driving the generator. This increases the utilization rate of the thermal energy held by the heat source fluid and improves the power generation output.

また、複数単位の発電ユニットを組み合わせ、各ユニットに附属の蒸発器,予熱器をカスケード接続して熱源流体を直列に流すようにした特許文献1のハイブリッド・バイナリー発電システムと比べて、発電システムを構成する蒸気タービン,発電機,凝縮器などの機器数が少なく、さらに特許文献2のカリーナサイクルのバイナリー発電システムと比べても投資する設備コストを低減できる。したがって、産業排熱利用の発電システムのように設備コストをできるだけ抑えることが要求されるバイナリー発電システムへの適用に有利である。   Compared with the hybrid binary power generation system of Patent Document 1 in which a plurality of units of power generation units are combined, and an evaporator and a preheater attached to each unit are cascaded to flow the heat source fluid in series. The number of equipment such as steam turbines, generators, condensers, and the like that are configured is small, and the equipment cost to be invested can be reduced as compared with the binary power generation system of the carina cycle disclosed in Patent Document 2. Therefore, it is advantageous for application to a binary power generation system that is required to suppress the equipment cost as much as possible, such as a power generation system using industrial waste heat.

また、蒸気タービンの出口と凝縮器との間に介装した熱回収器についても、蒸気タービンから出た作動媒体と凝縮器から各段の蒸発器に向け個別にポンプ送液する作動媒体との間で同時に熱交換を行う単機構造の熱回収器で構成したことにより、安価な設備コストでタービンから出た作動媒体の熱回収を効果的に行うことができる。   In addition, for the heat recovery unit interposed between the outlet of the steam turbine and the condenser, the working medium discharged from the steam turbine and the working medium pumped separately from the condenser to the evaporator of each stage By using a single-unit heat recovery unit that exchanges heat simultaneously, it is possible to effectively recover the heat of the working medium from the turbine at a low equipment cost.

以下、この発明の実施の形態を図示実施例に基づいて説明する。なお、実施例の図中で図5に対応する部材には同じ符号を付してその説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the illustrated examples. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 5, and the description is abbreviate | omitted.

まず、この発明の請求項1,2,5に対応する実施例として、蒸発器を高温段,低温段の2段に分け、各段の蒸発器で生成した作動媒体の蒸気を混圧タービンに導いて駆動するようにしたバイナリー発電システムのフローシートを図1に示す。なお、この実施例では、熱源流体が地熱水や産業排熱,燃料電池,ガスエンジンなどの排熱によって熱せられた熱水(流体温度200℃未満の温水)であり、作動媒体には低沸点物質としてイソペンタン(沸点28℃)を使用している。   First, as an embodiment corresponding to claims 1, 2, and 5 of the present invention, the evaporator is divided into two stages, a high temperature stage and a low temperature stage, and the steam of the working medium generated by the evaporator of each stage is supplied to the mixed pressure turbine. FIG. 1 shows a flow sheet of a binary power generation system that is guided and driven. In this embodiment, the heat source fluid is hot water (hot water having a fluid temperature of less than 200 ° C.) heated by exhaust heat from geothermal water, industrial exhaust heat, fuel cells, gas engines, etc., and low in the working medium. Isopentane (boiling point 28 ° C.) is used as the boiling point substance.

この実施例の熱サイクルは基本的に図5と同様であるが、熱源流体1との熱交換により作動媒体10の蒸気を生成する蒸発器2は、シェル・アンド・チューブ型になる高温段の蒸発器2Aと低温段の蒸発器2Bとに分けて作動媒体の熱サイクル回路に並列接続されている。ここで、各段の蒸発器2A,2Bは、イソペンタンを作動媒体として当該発電システムで目標の熱効率,発電出力が発揮できるように蒸発温度,圧力を決定しており、この実施例では各段蒸発器の仕様として、蒸発器2Aは作動媒体の蒸発温度を110℃,圧力を900kPa、蒸発器2Bは84℃,500kPaに定めている。   The thermal cycle of this embodiment is basically the same as that of FIG. 5 except that the evaporator 2 that generates steam of the working medium 10 by heat exchange with the heat source fluid 1 is a shell-and-tube type high-temperature stage. The evaporator 2A and the low-temperature stage evaporator 2B are divided and connected in parallel to the heat cycle circuit of the working medium. Here, the evaporators 2A and 2B in each stage determine the evaporation temperature and pressure so that the target thermal efficiency and power generation output can be exhibited in the power generation system using isopentane as a working medium. As the specifications of the evaporator, the evaporation temperature of the working medium is set to 110 ° C., the pressure is set to 900 kPa, and the evaporator 2B is set to 84 ° C. and 500 kPa.

そして、熱源流体1は、まず前段の蒸発器2Aのチューブ(一次側)を貫流し、シェル内部に送り込んだ作動媒体10と熱交換して高温の作動媒体蒸気を発生させる。蒸発器2Aを通過した熱源流体1は、さらに後段の蒸発器2Bを貫流して低温の作動媒体蒸気を発生させた後に系外に排出される。また、熱源流体1の一部は蒸発器2Aの出口から分岐して予熱器3を流れ、凝縮器6からポンプ送液されて来た作動流体を加熱した後に系外に排出される。なお、地熱発電システムでは予熱器3を通過した熱源流体が還元井から地下の貯留層に戻され、コージェネレーションでは例えば給湯熱源として回収利用される。   The heat source fluid 1 first flows through the tube (primary side) of the previous evaporator 2A, and exchanges heat with the working medium 10 fed into the shell to generate high-temperature working medium vapor. The heat source fluid 1 that has passed through the evaporator 2A flows through the subsequent evaporator 2B to generate a low-temperature working medium vapor, and is then discharged out of the system. Further, a part of the heat source fluid 1 branches from the outlet of the evaporator 2A and flows through the preheater 3, and the working fluid pumped from the condenser 6 is heated and then discharged out of the system. In the geothermal power generation system, the heat source fluid that has passed through the preheater 3 is returned from the reduction well to the underground reservoir, and is recovered and utilized as, for example, a hot water supply heat source in cogeneration.

そして、前記の蒸発器2Aで発生した高温,高圧の作動媒体蒸気、および蒸発器2Bで発生した低温,低圧の作動媒体蒸気は、それぞれ別な蒸気ラインを通じて混圧タービンの高圧段,低圧段に導入されて蒸気タービン4を回し、発電機5より電力を発生する。なお、混圧タービン4は、例えば単段の衝動タービンに高圧段用と低圧段用のノズルと動翼を備えることで実現される。   The high-temperature and high-pressure working medium steam generated in the evaporator 2A and the low-temperature and low-pressure working medium steam generated in the evaporator 2B are respectively supplied to the high-pressure stage and the low-pressure stage of the mixed pressure turbine through separate steam lines. The steam turbine 4 is introduced and electric power is generated from the generator 5. The mixed pressure turbine 4 is realized, for example, by providing a single-stage impulse turbine with high-pressure and low-pressure nozzles and moving blades.

一方、蒸気タービン4から出た作動媒体は熱回収器8を通過し、さらに凝縮器6で凝縮,液化された後に、媒体送液ポンプ7A,7Bによりそれぞれ異なる圧力に昇圧し、それぞれの送液ラインを通じて先記の蒸発器2A,2Bに供給される。   On the other hand, the working medium exiting from the steam turbine 4 passes through the heat recovery unit 8, and is further condensed and liquefied by the condenser 6, and then pressurized to different pressures by the medium feeding pumps 7A and 7B. It is supplied to the evaporators 2A and 2B through the line.

ここで、凝縮器6は空冷,または水冷(海水,地下水)式の熱交換器により作動媒体を液化するもので、図示例では凝縮器6を1台のフィンチューブ型空冷式熱交換器で構成して設備コストを低く抑えようにしている。   Here, the condenser 6 liquefies the working medium by an air-cooled or water-cooled (seawater, groundwater) type heat exchanger, and in the illustrated example, the condenser 6 is constituted by one fin tube type air-cooled heat exchanger. Therefore, the equipment cost is kept low.

また、熱回収器8は蒸気タービン4から排出される作動媒体の保有熱エネルギーを回収し、凝縮器6から蒸発器2A,2Bに送る作動媒体の加熱に利用するものであり、媒体送液ポンプ7A,7Bを経て個別に送液される作動媒体と蒸気タービン4から出た作動媒体との間で同時に熱交換が行えるようにプレート型の熱交換セル8a,8b,8cを交互に積層して熱交換を行う単機構造の熱交換器で構成されている。なお、図5に示した従来の熱回収器(2流体の熱交換器)を2基に分けて熱回収を実現することも可能であるが、図1に示した単機構造の熱交換器(3流体のプレート型熱交換器)を用いる方がコスト的に有利である。   The heat recovery unit 8 recovers the retained thermal energy of the working medium discharged from the steam turbine 4 and uses it to heat the working medium sent from the condenser 6 to the evaporators 2A and 2B. Plate-type heat exchange cells 8a, 8b, and 8c are alternately stacked so that heat exchange can be performed simultaneously between the working medium individually fed through 7A and 7B and the working medium discharged from the steam turbine 4. It consists of a single-unit heat exchanger that performs heat exchange. Although it is possible to achieve heat recovery by dividing the conventional heat recovery unit (two-fluid heat exchanger) shown in FIG. 5 into two units, the single-unit heat exchanger ( It is more cost-effective to use a three-fluid plate heat exchanger.

さらに、凝縮器6で液化した作動媒体を異なる圧力に昇圧して蒸発器2A,2Bに供給する送液ポンプ7A,7Bについても、図示例では2台のポンプ7A,7Bを1台の駆動モータ7aで駆動するようにして設備コストの低減を図っている。なお、図示には表してないが、送液ポンプ7Aの入口に通じる配管路の分岐部分,およびポンプの出口側には流量制御弁を設けるなどして予熱器3へ送液する作動媒体の流量,圧力を調整するようにしている。   Further, in the illustrated example, the two pumps 7A and 7B are supplied to a single drive motor with respect to the liquid feed pumps 7A and 7B that increase the working medium liquefied by the condenser 6 to different pressures and supply them to the evaporators 2A and 2B. The equipment cost is reduced by driving at 7a. Although not shown in the drawing, the flow rate of the working medium to be fed to the preheater 3 by providing a flow rate control valve at the branch portion of the pipeline leading to the inlet of the liquid feed pump 7A and the outlet side of the pump. , The pressure is adjusted.

次に、本実施例の熱サイクルにおける作動媒体の状態変化を、図2,図3のT−S線図,H−S線図に示す。なお、図2のT−S線図で実線(太線)は高温,高圧側の作動媒体,破線は低温,低圧側の作動媒体を表し、図中の線図に沿って要所に付した符号a〜d,およびb’,c’はそれぞれ図1の図中に付したa〜d,およびb’,c’の各地点に対応する作動媒体の状態を表している。また、図3のH−S線図は蒸発器で生成した作動媒体の蒸気が蒸気タービンで熱膨張する際のエンタルピー/エントロピーを拡大して表し、図中の実線(太線)は蒸気タービン(混圧タービン)の高圧段に導入した高温,高圧の作動媒体蒸気を、破線はタービンの低圧段に導入する低温,低圧の作動媒体蒸気である。   Next, the state change of the working medium in the thermal cycle of the present embodiment is shown in the TS diagram and HS diagram of FIGS. In the TS diagram of FIG. 2, the solid line (thick line) represents the working medium on the high temperature and high pressure side, the broken line represents the working medium on the low temperature and low pressure side, and the reference numerals attached to the important points along the diagram in the figure Reference symbols a to d and b ′ and c ′ denote the states of the working medium corresponding to the points a to d and b ′ and c ′, respectively, shown in FIG. 3 is an enlarged view of the enthalpy / entropy when the steam of the working medium generated in the evaporator thermally expands in the steam turbine, and the solid line (thick line) in the figure indicates the steam turbine (mixture). The high-temperature and high-pressure working medium steam introduced into the high-pressure stage of the pressure turbine) is the low-temperature and low-pressure working medium steam introduced into the low-pressure stage of the turbine.

図2,図3の線図から判るように、凝縮器6(図1参照)から出た液相の作動媒体(温度:40℃,圧力:150kPa)は送液ポンプ7A,7Bにより昇圧されて蒸発器2A,2Bに送り込まれ、ここで液相の作動媒体が熱源流体1との熱交換により加熱されて、b,b’において飽和蒸気となる(高温,高圧側蒸気:110℃,900kPa、低温,低圧側蒸気:84℃,500kPa)。さらに、c,c’まで過熱され、この過熱蒸気は、次に混圧タービンに導入して機械的な仕事を取り出し、ここで膨張し終わった作動媒体蒸気は再び凝縮器6に戻って液化されるように熱サイクルの閉ループを循環する。   As can be seen from the diagrams of FIGS. 2 and 3, the liquid-phase working medium (temperature: 40 ° C., pressure: 150 kPa) discharged from the condenser 6 (see FIG. 1) is pressurized by the liquid feed pumps 7A and 7B. It is sent to the evaporators 2A and 2B, where the liquid phase working medium is heated by heat exchange with the heat source fluid 1 and becomes saturated steam at b and b ′ (high temperature, high pressure side steam: 110 ° C., 900 kPa, Low temperature, low pressure side steam: 84 ℃, 500kPa). Further, the superheated steam is superheated to c and c ′, and this superheated steam is then introduced into the mixed pressure turbine to take out mechanical work, and the working medium steam that has expanded here returns to the condenser 6 and is liquefied again. Cycle through the closed loop of the thermal cycle.

上記の熱サイクルにより、蒸発器2Aを経てタービン4の高圧段に導入された高温,高圧側の作動媒体は機械的仕事の取り出しにより膨張して900kPaから150kPaに状態変化し、この熱落差で作動媒体の単位循環量当たり48kJ/kgのタービン出力が得られる。一方、蒸発器2Bを経てタービンの低圧段に導入される低温,低圧側の作動媒体では単位循環量当たり25kJ/kgのタービン出力が得られる。ここで、作動媒体の循環量を高温,高圧側が120kg/s、低温,低圧側が30kg/sとすれば、それぞれの作動媒体によるタービン出力は高圧側が5760kW,低圧側が750kWとなる。   Due to the above heat cycle, the working medium on the high temperature and high pressure side introduced into the high pressure stage of the turbine 4 via the evaporator 2A expands due to the removal of mechanical work and changes its state from 900 kPa to 150 kPa. A turbine output of 48 kJ / kg per unit circulation rate of the medium is obtained. On the other hand, a turbine output of 25 kJ / kg per unit circulation rate is obtained with the working medium on the low temperature and low pressure side introduced into the low pressure stage of the turbine via the evaporator 2B. Here, if the circulating amount of the working medium is 120 kg / s on the high pressure side and 120 kg / s on the high pressure side and 30 kg / s on the low pressure and low pressure side, the turbine output by each working medium will be 5760 kW on the high pressure side and 750 kW on the low pressure side.

したがって、単一段の蒸発器2で生成した作動媒体の蒸気を蒸気タービン4に導入して駆動するようにした図5の従来方式による発電システムと比べて、タービン出力が13%向上することが判る。しかも、発電システムを構成する機器についても、図5に示した従来の発電システムと比べて、高温段の蒸発器2Aに低温段の蒸発器2Bを追加し、これに合わせて媒体送液ポンプの1台追加、および熱回収器8の構造を変えるだけの僅かな設備変更だけで、初期投資の設備コストを低く抑えつつ熱源流体の熱利用効率を改善して高い発電出力を得ることができる。   Therefore, it is understood that the turbine output is improved by 13% compared with the conventional power generation system of FIG. 5 in which the steam of the working medium generated by the single stage evaporator 2 is introduced into the steam turbine 4 and driven. . In addition, as for the devices constituting the power generation system, a low temperature stage evaporator 2B is added to the high temperature stage evaporator 2A as compared with the conventional power generation system shown in FIG. By adding one unit and changing the equipment only by changing the structure of the heat recovery unit 8, the heat utilization efficiency of the heat source fluid can be improved and high power generation output can be obtained while keeping the equipment cost of the initial investment low.

次に、この発明の請求項3,5に対応する実施例として、2段一体型の蒸発器、および蒸気タービンにタンデム・コンパウンド・タービンを採用したバイナリー発電システムのフローシートを図4に示す。   Next, as an embodiment corresponding to claims 3 and 5 of the present invention, FIG. 4 shows a flow sheet of a binary power generation system in which a two-stage integrated evaporator and a tandem compound turbine are adopted as a steam turbine.

この実施例においては、蒸発器2が、共通な外郭(シェル)2aの内部に隔壁2cで仕切られた高温段の蒸発器2A,低温段の蒸発器2Bに対応する蒸発室を画成し、各蒸発室を直列に貫通して熱源流体1が通流するチューブ2bを配管したシェル・アンド・チューブ型蒸発器で構成し、さらに蒸発器2Bの後段に予熱器3を直列に接続して熱源流体1の流路を形成している。   In this embodiment, the evaporator 2 defines an evaporation chamber corresponding to the high-temperature stage evaporator 2A and the low-temperature stage evaporator 2B partitioned by a partition wall 2c inside a common shell 2a. It is composed of a shell-and-tube type evaporator having a tube 2b through which each heat source fluid 1 flows in series through each evaporation chamber, and a preheater 3 connected in series downstream of the evaporator 2B. A flow path for the fluid 1 is formed.

また、蒸気タービンは、高圧用タービン4Aと低圧用タービン4B(単段タービン)を発電機5の共通軸に連結したタンデム・コンパウンド・タービン(単軸串型タービン)を採用している。   The steam turbine employs a tandem compound turbine (single shaft skewer turbine) in which a high pressure turbine 4A and a low pressure turbine 4B (single stage turbine) are connected to a common shaft of the generator 5.

さらに、媒体送液ポンプは2台のポンプ7Aと7Bを別々にモータ7aで駆動するようにし、各ポンプを通じて前記蒸発器2A,2Bに送液する作動媒体の流量,圧力を個別に調整できるようにしている。   Further, the medium feeding pump is configured so that the two pumps 7A and 7B are separately driven by the motor 7a so that the flow rate and pressure of the working medium fed to the evaporators 2A and 2B through each pump can be individually adjusted. I have to.

これにより、先記実施例1のバイナリー発電システムと同様に、従来の発電システムに僅かな設備変更を加えるだけで熱効率,発電出力の向上化が図れる。特に蒸気タービンには、蒸発器2A,2Bで生成した高温,高圧の作動媒体蒸気,および低温,低圧の作動媒体蒸気と個別に対応して高圧用,低圧用の単段タービン4A,4Bを組み合わせたタンデム・コンパウンド・タービンを用いることで、高い発電出力が得られる。   As a result, similar to the binary power generation system of the first embodiment, thermal efficiency and power generation output can be improved only by making a slight change to the conventional power generation system. In particular, steam turbines are combined with high-pressure and low-pressure single-stage turbines 4A and 4B individually corresponding to high-temperature and high-pressure working medium steam generated by evaporators 2A and 2B and low-temperature and low-pressure working medium steam. High power output can be obtained by using a tandem compound turbine.

この発明の実施例1に係わるバイナリー発電システムのフローシートを表す図The figure showing the flow sheet of the binary power generation system concerning Example 1 of this invention 図1の発電システムにおける熱サイクルのT−S線図TS diagram of thermal cycle in power generation system of FIG. 図1の発電システムにおける熱サイクルのH−S線図HS diagram of thermal cycle in power generation system of FIG. この発明の実施例2に係わるバイナリー発電システムのフローシートを表す図The figure showing the flow sheet of the binary power generation system concerning Example 2 of this invention 従来におけるバイナリー発電システムのフローシートを表す図A diagram representing a conventional binary power generation system flow sheet

符号の説明Explanation of symbols

1 熱源流体
2 蒸発器
2A 高温段の蒸発器
2B 低温段の蒸発器
3 予熱器
4 蒸気タービン
4A 高圧用タービン
4B 低圧用タービン
5 タービン発電機
6 凝縮器
7A,7B 媒体送液ポンプ
8 熱回収器
DESCRIPTION OF SYMBOLS 1 Heat source fluid 2 Evaporator 2A High temperature stage evaporator 2B Low temperature stage evaporator 3 Preheater 4 Steam turbine 4A High pressure turbine 4B Low pressure turbine 5 Turbine generator 6 Condenser 7A, 7B Medium feed pump 8 Heat recovery device

Claims (6)

熱源流体との熱交換により蒸発した低沸点作動媒体の蒸気を蒸気タービンに導いてタービン発電機を駆動するバイナリー発電システムであり、熱源流体を加熱源とする蒸発器,蒸気タービン,凝縮器,媒体送液ポンプの各機器を直列に組み合わせた閉ループで作動媒体の熱サイクルを構成したものにおいて、
前記蒸発器を、作動媒体の蒸発温度,圧力が異なる熱源流体が複数段の蒸発器に分けられ、各段に熱源流体が流通するものとし、各段の蒸発器にて個別に生成した作動媒体の蒸気で蒸気タービンを駆動するように構成したことを特徴とするバイナリー発電システム。
It is a binary power generation system that drives the turbine generator by introducing the steam of the low boiling point working medium evaporated by heat exchange with the heat source fluid to the steam turbine. The evaporator, steam turbine, condenser, medium using the heat source fluid as the heating source In what constitutes the thermal cycle of the working medium in a closed loop that combines each device of the liquid pump in series,
In the evaporator, heat source fluids having different evaporation temperatures and pressures of the working medium are divided into a plurality of stages of evaporators, and the heat source fluid flows through each stage, and the working medium generated individually in each stage of the evaporator A binary power generation system configured to drive a steam turbine with steam.
請求項1に記載のバイナリー発電システムにおいて、蒸気タービンが混圧タービンであり、各段の蒸発器で個別に生成した高温,高圧側の蒸気,および低温,低圧側の蒸気をそれぞれ前記混圧タービンの高圧段,低圧段に導入して駆動するように構成したことを特徴とするバイナリー発電システム。 2. The binary power generation system according to claim 1, wherein the steam turbine is a mixed pressure turbine, and the high pressure, high pressure side steam, and low temperature, low pressure side steam respectively generated by the evaporators of each stage are respectively supplied to the mixed pressure turbine. A binary power generation system that is configured to be driven by being introduced into the high and low pressure stages. 請求項1に記載のバイナリー発電システムにおいて、蒸気タービンが高圧用タービンと低圧用タービンを組み合わせたタンデムコンパウンド形タービンであり、各段の蒸発器で個別に生成した高温,高圧側の蒸気,および低温,低圧側の蒸気をそれぞれ前記高圧用タービン,低圧用タービンに導入して駆動するように構成したことを特徴とするバイナリー発電システム。 2. The binary power generation system according to claim 1, wherein the steam turbine is a tandem compound turbine in which a high-pressure turbine and a low-pressure turbine are combined, and the high-temperature, high-pressure-side steam, and low-temperature generated individually in each stage of the evaporator. A binary power generation system configured to drive by introducing low-pressure side steam into the high-pressure turbine and the low-pressure turbine, respectively. 請求項1ないし3のいずれかの項に記載のバイナリー発電システムにおいて、蒸発器を、共通な外郭の内部に隔壁で仕切られた複数段の蒸発室を画成したものとし、各段の蒸発室を直列に経由して熱源流体を流すチューブを配管したシェル・アンド・チューブ型蒸発器で構成したことを特徴とするバイナリー発電システム。 4. The binary power generation system according to claim 1, wherein the evaporator includes a plurality of stages of evaporation chambers partitioned by a partition inside a common outer wall, and the evaporation chambers of the respective stages. A binary power generation system comprising a shell-and-tube evaporator with a tube through which a heat source fluid flows in series. 請求項1ないし4のいずれかの項に記載のバイナリー発電システムにおいて、蒸気タービンの出口と凝縮器との間の配管路に、蒸気タービンから出た作動媒体と凝縮器から各段の蒸発器に向けて個別にポンプ送液する作動媒体との間で同時に熱交換を行う単機構造の熱回収器を備えたことを特徴とするバイナリー発電システム。 The binary power generation system according to any one of claims 1 to 4, wherein a pipeline between the outlet of the steam turbine and the condenser is connected to the working medium and the condenser that are output from the steam turbine to the evaporator of each stage. A binary power generation system comprising a single-unit heat recovery unit that simultaneously exchanges heat with a working medium that is pumped separately toward the pump. 請求項1ないし5のいずれかの項に記載のバイナリー発電システムにおいて、媒体送液ポンプと高温,高圧側の蒸発器との間に予熱器を挿入し、何れかの蒸発器の熱源流体出口からの熱源流体を予熱器に供給することを特徴とするバイナリー発電システム。 The binary power generation system according to any one of claims 1 to 5, wherein a preheater is inserted between the medium feed pump and the high-temperature and high-pressure side evaporator, and the heat source fluid outlet of any evaporator is used. A binary power generation system characterized by supplying a heat source fluid of a preheater.
JP2008067592A 2008-03-17 2008-03-17 Binary power generating system Pending JP2009221961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067592A JP2009221961A (en) 2008-03-17 2008-03-17 Binary power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067592A JP2009221961A (en) 2008-03-17 2008-03-17 Binary power generating system

Publications (1)

Publication Number Publication Date
JP2009221961A true JP2009221961A (en) 2009-10-01

Family

ID=41238994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067592A Pending JP2009221961A (en) 2008-03-17 2008-03-17 Binary power generating system

Country Status (1)

Country Link
JP (1) JP2009221961A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103659A (en) * 1981-12-16 1983-06-20 Toshiba Corp Production of ion selective membrane
WO2013051265A1 (en) * 2011-10-03 2013-04-11 株式会社 東芝 Binary power generation system
CN103277157A (en) * 2013-05-24 2013-09-04 成都昊特新能源技术股份有限公司 Solar ORC power generation system and power generation method thereof
EP2669473A1 (en) * 2011-01-27 2013-12-04 Mitsubishi Heavy Industries, Ltd. Radial turbine
JP2013249857A (en) * 2012-05-30 2013-12-12 Mitsubishi Heavy Ind Ltd Magnetic coupling
JP2013545033A (en) * 2010-12-10 2013-12-19 バイキング ヒート エンジンズ エーエス Energy supply apparatus and method for a thermal power system for a building or a ship
JP2014023364A (en) * 2012-07-20 2014-02-03 Toshiba Corp Power generation system
WO2014084013A1 (en) * 2012-11-28 2014-06-05 株式会社Ihi Waste heat power generation device
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system
EP2846009A1 (en) 2013-09-10 2015-03-11 Panasonic Corporation Air cooling unit
JP2015520822A (en) * 2012-05-17 2015-07-23 エクセルギー エス.ピー.エー.Exergy S.P.A. ORC system and method for energy generation by organic Rankine cycle
CN104832232A (en) * 2015-05-13 2015-08-12 辽宁工程技术大学 Gradient heat exchange organic Rankine cycle power generation system and power generation method thereof
WO2016043653A1 (en) * 2014-09-19 2016-03-24 Ect Power Ab A multistage evaporation organic rankine cycle
JP2016114029A (en) * 2014-12-17 2016-06-23 大阪瓦斯株式会社 Binary power generating system
JP2021032241A (en) * 2019-08-29 2021-03-01 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Volume expander
CN112594950A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Low-temperature cold water refrigerating unit and control method
JP2022105292A (en) * 2020-12-31 2022-07-13 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード System and method of recovering waste heat from electrolyte for generating power, by using organic rankine cycle
KR20220163140A (en) * 2021-06-02 2022-12-09 한국해양과학기술원 Power generation system using heat of cooling water from fuel cell
CN116576039A (en) * 2023-05-05 2023-08-11 杭州途搏能源科技有限公司 Waste heat recycling structure

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103659A (en) * 1981-12-16 1983-06-20 Toshiba Corp Production of ion selective membrane
JP2013545033A (en) * 2010-12-10 2013-12-19 バイキング ヒート エンジンズ エーエス Energy supply apparatus and method for a thermal power system for a building or a ship
EP2669473A4 (en) * 2011-01-27 2014-10-08 Mitsubishi Heavy Ind Ltd Radial turbine
EP2669473A1 (en) * 2011-01-27 2013-12-04 Mitsubishi Heavy Industries, Ltd. Radial turbine
WO2013051265A1 (en) * 2011-10-03 2013-04-11 株式会社 東芝 Binary power generation system
JP2013079587A (en) * 2011-10-03 2013-05-02 Toshiba Corp Binary power generation system
US9410535B2 (en) 2011-10-03 2016-08-09 Kabushiki Kaisha Toshiba Binary power generation system
JP2015520822A (en) * 2012-05-17 2015-07-23 エクセルギー エス.ピー.エー.Exergy S.P.A. ORC system and method for energy generation by organic Rankine cycle
JP2013249857A (en) * 2012-05-30 2013-12-12 Mitsubishi Heavy Ind Ltd Magnetic coupling
JP2014023364A (en) * 2012-07-20 2014-02-03 Toshiba Corp Power generation system
US9382815B2 (en) 2012-07-20 2016-07-05 Kabushiki Kaisha Toshiba Power generating system
US9784138B2 (en) 2012-11-28 2017-10-10 Ihi Corporation Waste heat power generation device
JP2014105643A (en) * 2012-11-28 2014-06-09 Ihi Corp Waste heat generating device
WO2014084013A1 (en) * 2012-11-28 2014-06-05 株式会社Ihi Waste heat power generation device
WO2014087864A1 (en) 2012-12-03 2014-06-12 東京博善株式会社 Cremation system
KR20150092195A (en) 2012-12-03 2015-08-12 도쿄하쿠젠 가부시키가이샤 Cremation system
US9822972B2 (en) 2012-12-03 2017-11-21 Tokyo Hakuzen Co., Ltd. Cremation system
CN103277157A (en) * 2013-05-24 2013-09-04 成都昊特新能源技术股份有限公司 Solar ORC power generation system and power generation method thereof
US10161684B2 (en) 2013-09-10 2018-12-25 Panasonic Intellectual Property Management Co., Ltd. Air cooling unit
EP2846009A1 (en) 2013-09-10 2015-03-11 Panasonic Corporation Air cooling unit
US9726432B2 (en) 2013-09-10 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Air cooling unit
WO2016043653A1 (en) * 2014-09-19 2016-03-24 Ect Power Ab A multistage evaporation organic rankine cycle
JP2016114029A (en) * 2014-12-17 2016-06-23 大阪瓦斯株式会社 Binary power generating system
CN104832232A (en) * 2015-05-13 2015-08-12 辽宁工程技术大学 Gradient heat exchange organic Rankine cycle power generation system and power generation method thereof
JP2021032241A (en) * 2019-08-29 2021-03-01 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Volume expander
CN112594950A (en) * 2020-12-29 2021-04-02 深圳市海吉源科技有限公司 Low-temperature cold water refrigerating unit and control method
CN112594950B (en) * 2020-12-29 2024-02-09 深圳市海吉源科技有限公司 Low-temperature cold water refrigerating unit and control method
JP2022105292A (en) * 2020-12-31 2022-07-13 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード System and method of recovering waste heat from electrolyte for generating power, by using organic rankine cycle
KR20220163140A (en) * 2021-06-02 2022-12-09 한국해양과학기술원 Power generation system using heat of cooling water from fuel cell
KR102558037B1 (en) 2021-06-02 2023-07-21 한국해양과학기술원 Power generation system using heat of cooling water from fuel cell
CN116576039A (en) * 2023-05-05 2023-08-11 杭州途搏能源科技有限公司 Waste heat recycling structure

Similar Documents

Publication Publication Date Title
JP2009221961A (en) Binary power generating system
EP2751395B1 (en) Cascaded power plant using low and medium temperature source fluid
US9816402B2 (en) Heat recovery system series arrangements
JP5681711B2 (en) Heat effluent treatment method and apparatus in one or more industrial processes
US9341086B2 (en) Cascaded power plant using low and medium temperature source fluid
US9784248B2 (en) Cascaded power plant using low and medium temperature source fluid
US9671138B2 (en) Cascaded power plant using low and medium temperature source fluid
RU2673959C2 (en) System and method for energy regeneration of wasted heat
JP6808166B2 (en) Generation of process steam by high temperature heat pump
EP3728801B1 (en) Bottoming cycle power system
EP3242994B1 (en) Multi-pressure organic rankine cycle
US5007240A (en) Hybrid Rankine cycle system
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP5062380B2 (en) Waste heat recovery system and energy supply system
TW201211375A (en) Energy conversion using RANKINE cycle system
US9500205B2 (en) Multi-pressure radial turbine system
WO2013115668A1 (en) Heat engine and method for utilizing waste heat
US20170275190A1 (en) System using heat energy to produce power and pure water
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
CN105209724A (en) Volumetric energy recovery system with three stage expansion
KR20170039705A (en) Cooling equipment, combined cycle plant comprising same, and cooling method
JP6058680B2 (en) Improved ocean thermal energy conversion method and system
KR101282091B1 (en) Power Generation System of cold energy utilization
WO2014034354A1 (en) Cooling water supply system and binary cycle power plant comprising same
JP2010038160A (en) System and method for use in combined or rankine cycle power plant