JP2009221910A - Method for manufacturing common rail and partially reinforced common rail - Google Patents

Method for manufacturing common rail and partially reinforced common rail Download PDF

Info

Publication number
JP2009221910A
JP2009221910A JP2008065437A JP2008065437A JP2009221910A JP 2009221910 A JP2009221910 A JP 2009221910A JP 2008065437 A JP2008065437 A JP 2008065437A JP 2008065437 A JP2008065437 A JP 2008065437A JP 2009221910 A JP2009221910 A JP 2009221910A
Authority
JP
Japan
Prior art keywords
common rail
hole
region
rail
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008065437A
Other languages
Japanese (ja)
Other versions
JP4740275B2 (en
Inventor
Atsushi Sugibashi
敦史 杉橋
Koji Hirano
弘二 平野
Hiroshi Hasegawa
泰士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008065437A priority Critical patent/JP4740275B2/en
Publication of JP2009221910A publication Critical patent/JP2009221910A/en
Application granted granted Critical
Publication of JP4740275B2 publication Critical patent/JP4740275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a common rail having excellent fatigue strength by using low-cost steel material. <P>SOLUTION: Liquid phase diffusion bonding steel having toughness and fatigue strength, and containing C of 0.01-1.0%, Si of 0.01-1.0%, Mn of 0.05-3.0%, Ti of 0.005-0.1%, and Al of 0.01-0.2%, having contents of P, S, and O limited not greater than 0.03%, 0.01% and 0.01% respectively, having contents of any of As, Sn, Sb, Pb and Zn limited not greater than 0.005%, in mass percentage, and having rest of the material comprised of unavoidable impurities and Fe, is used as material for the common rail 1, and liquid phase diffusion bonding is performed. Laser peening irradiating pulse laser beam with making clear liquid exist is applied on a boundary circumference part of an inner surface 22 of a rail hole 5 and an inner surface 21 of a branch hole 6 positioned at an opening circumference part 23 of the branch hole 6. Then, a surface layer of material of the opening circumference part 23 is removed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ディーゼルエンジンの蓄圧式燃料噴射システムにおけるコモンレールの製造方法および部分強化されたコモンレールに関するものである。   The present invention relates to a common rail manufacturing method and a partially reinforced common rail in a pressure accumulation fuel injection system of a diesel engine.

流体通路を持つ機械部品において、流体が通過する管の端や、径が極端に変化する部位においては応力集中が発生しやすく、流体の圧力変動の結果として生ずる疲労破壊が問題となることがある。   In a machine part with a fluid passage, stress concentration tends to occur at the end of a pipe through which the fluid passes or at a part where the diameter changes extremely, and fatigue failure that occurs as a result of fluid pressure fluctuations can be a problem. .

コモンレールは、ディーゼルエンジンの蓄圧式燃料噴射システムにおいて燃料の軽油を圧送するポンプとインジェクターとの間に位置し、軽油を蓄圧するパイプ状の部品である。図1は、コモンレール1の断面の概略を示している。レール穴5がコモンレール1の主なるパイプであり、軽油を蓄圧する役割を有する。レール穴5には垂直に開口する分岐穴6が複数個配設され、分岐穴6を通って各インジェクターに軽油が圧送される。レール穴5の内径d1は10mm程度、分岐穴6の内径d2は1mm程度である。エンジンの作動に伴い、軽油が周期的に圧送され、コモンレール1内の軽油の圧力が周期的に変動する。この際、図1のレール穴5および分岐穴6には、周期的に周方向の引張応力に変動が生じる。図2は、分岐穴6の開口周辺部である分岐穴6の内面とレール穴5の内面との境界周辺部を拡大して示している。分岐穴6開口周辺部の中でも特に、分岐穴6の、レール穴の長手方向に平行となる直径の両端近傍7では、両穴5、6の引張応力が合成されるため、他の部分よりも大きな引張応力が発生し、内圧の変動により疲労破壊しやすいという問題がある。内圧の変動に対する疲労強度(内圧疲労強度)を向上させれば、燃料の高圧噴射が可能となり、排気ガスのクリーン化や燃費の向上につながるため、疲労強度向上が望まれている。   The common rail is a pipe-like component that is positioned between a pump that pumps light oil of fuel and an injector in a pressure accumulation fuel injection system of a diesel engine, and that accumulates light oil. FIG. 1 schematically shows a cross section of the common rail 1. The rail hole 5 is a main pipe of the common rail 1 and has a role of accumulating light oil. The rail hole 5 is provided with a plurality of branch holes 6 that open vertically, and light oil is pumped through the branch holes 6 to each injector. The inner diameter d1 of the rail hole 5 is about 10 mm, and the inner diameter d2 of the branch hole 6 is about 1 mm. With the operation of the engine, the light oil is periodically pumped, and the pressure of the light oil in the common rail 1 fluctuates periodically. In this case, the rail hole 5 and the branch hole 6 in FIG. FIG. 2 is an enlarged view of the boundary peripheral portion between the inner surface of the branch hole 6 and the inner surface of the rail hole 5, which is the peripheral portion of the opening of the branch hole 6. Especially in the vicinity of both ends 7 of the diameter of the branch hole 6 that is parallel to the longitudinal direction of the rail hole, the tensile stress of both the holes 5 and 6 is synthesized in the peripheral part of the opening of the branch hole 6 than in the other parts. There is a problem that a large tensile stress is generated and fatigue fracture is easily caused by fluctuations in internal pressure. If the fatigue strength against internal pressure fluctuations (internal pressure fatigue strength) is improved, high-pressure fuel injection becomes possible, leading to cleaner exhaust gas and improved fuel consumption. Therefore, an improvement in fatigue strength is desired.

従来、このような疲労強度の向上に向けたアプローチとしては、一般的に高強度の鋼材を用いることでコモンレールの疲労強度を高める方法が採られているが、素材の高強度化による成形性や加工性の低下、高性能化に伴うコストの増大の問題が発生している。そのため例えば、特許文献1には、従来の鍛造一体成形及び機械加工によるコモンレールの製造方法に代替する製造方法として、液相拡散接合による溶接コモンレールに関する発明が開示されている。さらに特許文献2には、接合時の制御冷却を不要とする液相拡散接合に適した鋼材に関する発明が開示されている。しかし、これらの特許文献に開示されている鋼材は、引張強度が600MPa程度の鋼材であり、近年指向されている高燃費性能を実現するための1500気圧やさらには2000気圧を超えるコモンレールに使用するには強度不足である。   Conventionally, as an approach for improving the fatigue strength, a method of increasing the fatigue strength of the common rail by using a high-strength steel material is generally employed. The problem of the increase in cost accompanying the fall of workability and performance enhancement has generate | occur | produced. Therefore, for example, Patent Document 1 discloses an invention related to a welding common rail by liquid phase diffusion bonding as a manufacturing method that replaces a conventional method for manufacturing a common rail by forging integral molding and machining. Further, Patent Document 2 discloses an invention relating to a steel material suitable for liquid phase diffusion bonding that does not require controlled cooling during bonding. However, the steel materials disclosed in these patent documents are steel materials having a tensile strength of about 600 MPa, and are used for a common rail exceeding 1500 atm or more than 2000 atm to achieve high fuel efficiency performance which has been recently directed. Is not strong enough.

また、鋼材の強度を上げるというオーソドックスな方法のみならず、例えばコモンレールの強化について、特許文献3や特許文献4に開示されているように、流体研磨やコイニング加工の手法を用いて分岐穴開口端部のエッジを面取りして、応力集中を緩和する方法が知られている。また、圧縮応力付与による疲労強度向上も検討されている。近年開発が進められているレーザピーニングは、金属物体の表面に液体等の透明媒質を置いた状態で、その表面へ高いピークパワー密度を持つパルスレーザビームを照射し、そこから発生するプラズマの膨張反力を利用して、金属物体の表面近傍に非接触処理で残留圧縮応力を付与する技術であり、例えば特許文献5にその方法が開示されている。レーザビームは、コモンレールのレール穴内面、分岐穴内面といった狭隘部へも伝送可能であり、レーザピーニングはコモンレールの分岐穴開口部近傍へ高い圧縮応力を付与するための現状唯一の方法である。そこで、特許文献6に開示されたように、レーザピーニングをコモンレールへ適用するための効果的な方法について検討されてきている。   In addition to the orthodox method of increasing the strength of the steel material, for example, for the reinforcement of the common rail, as disclosed in Patent Document 3 and Patent Document 4, the opening end of the branch hole using a fluid polishing or coining technique. There is known a method of chamfering the edge of a portion to relieve stress concentration. In addition, improvement of fatigue strength by applying compressive stress has been studied. Laser peening, which has been developed in recent years, expands the plasma generated by irradiating a surface of a metal object with a pulsed laser beam having a high peak power density while placing a transparent medium such as a liquid on the surface. This is a technique for applying a residual compressive stress to the vicinity of the surface of a metal object by a non-contact process using a reaction force. For example, Patent Document 5 discloses the method. The laser beam can be transmitted to narrow portions such as the inner surface of the rail hole and the inner surface of the branch hole of the common rail, and laser peening is the only current method for applying high compressive stress to the vicinity of the opening of the branch hole of the common rail. Therefore, as disclosed in Patent Document 6, an effective method for applying laser peening to a common rail has been studied.

特許文献6に開示された方法は、コモンレールの疲労強度を大きく向上させるものであるが、装置、効果の観点から以下のような問題があった。レーザピーニング処理においてサンプル表面にレーザビームを照射すると、照射スポット部表層近傍が溶融・再凝固することにより該スポット部の表層近傍の圧縮応力が減少することが多い。この問題を回避するために、レーザビームを吸収する吸収材料層を設置する方法が知られているが、この吸収材料層をコモンレールの分岐穴開口部へ設置するには複雑な装置を必要とするため、同工程の省略がコストや生産性の観点から望まれる。   The method disclosed in Patent Document 6 greatly improves the fatigue strength of the common rail, but has the following problems from the viewpoint of the device and the effect. When a laser beam is irradiated on the surface of a sample in the laser peening process, the vicinity of the surface area of the irradiated spot portion melts and resolidifies, and the compressive stress in the vicinity of the surface area of the spot portion often decreases. In order to avoid this problem, a method of installing an absorbing material layer that absorbs a laser beam is known, but a complicated device is required to install this absorbing material layer in the branch hole opening of the common rail. Therefore, omission of the same process is desired from the viewpoint of cost and productivity.

特許文献5には、熱影響部を除去するための方法として、レーザ光照射面とその近傍に対向して設置した電極間にレーザで制御した放電を生じさせる方法や、レーザ照射面に接する透明液体を電解液とし、レーザ照射中に照射面とその近傍に対向して設置した電極間で電解研磨を行う方法が開示されている。しかし、これらの方法は、レーザ照射の影響が大きいために、所望の加工形状を精度良く安定的に得ることが難しく、コモンレールの工業生産には適さない。また、特許文献6に開示されているように、パルスレーザのビームスポットの重畳面積割合を高めることで、上述の圧縮応力の減少の問題は緩和される。しかしながら、コモンレールの疲労強度の向上効果をさらに引き上げるためには、表層近傍の圧縮応力を最大限高める必要があり、別のアプローチが望まれている。   In Patent Document 5, as a method for removing the heat-affected zone, a laser-controlled discharge is generated between the laser beam irradiation surface and an electrode disposed in the vicinity thereof, or a transparent surface in contact with the laser irradiation surface. There has been disclosed a method in which a liquid is used as an electrolytic solution, and electrolytic polishing is performed between electrodes disposed opposite to an irradiation surface and its vicinity during laser irradiation. However, since these methods are greatly affected by laser irradiation, it is difficult to obtain a desired processed shape accurately and stably, and are not suitable for industrial production of common rails. Further, as disclosed in Patent Document 6, by increasing the overlapping area ratio of the beam spot of the pulse laser, the above-described problem of reduction in compressive stress is alleviated. However, in order to further increase the effect of improving the fatigue strength of the common rail, it is necessary to maximize the compressive stress in the vicinity of the surface layer, and another approach is desired.

特開007−40244号公報Japanese Unexamined Patent Publication No. 007-40244 特開2004−100027号公報JP 2004-100027 A 特開2004−204714号公報JP 2004-204714 A 特開2004−27968号公報JP 2004-27968 A 特許第3373638号公報Japanese Patent No. 3373638 特開2006−322446号公報JP 2006-322446 A

本発明は、上記の問題を解決し、応力集中により疲労破壊の起点となりやすいコモンレールの分岐穴の開口部近傍をレーザピーニング処理にて部分的に強化することにより、安価な鋼材を用いて優れた疲労強度を持つコモンレールの製造方法およびコモンレールを提供することを目的とする。   The present invention solves the above-mentioned problems and is excellent in using inexpensive steel by partially strengthening the vicinity of the opening of the branch hole of the common rail that tends to be a starting point of fatigue failure due to stress concentration by laser peening treatment. An object of the present invention is to provide a method of manufacturing a common rail having fatigue strength and a common rail.

本発明者らは上記課題を解決するために検討を行った結果、レーザピーニング処理による圧縮応力導入後に電解研磨等によりレーザピーニング処理した部分を含む領域の材料を除去すれば、コモンレールの疲労強度を大きく向上させられることが判った。   As a result of investigations to solve the above-mentioned problems, the inventors of the present invention have improved the fatigue strength of the common rail by removing the material in the region including the portion subjected to laser peening treatment by electrolytic polishing after introducing compressive stress by laser peening treatment. It was found that it can be greatly improved.

すなわち、本発明は、中心部にレール穴が形成され、前記レール穴を取り囲む筒壁部に前記レール穴に開口する複数の分岐穴が形成されたコモンレールの製造方法であって、前記コモンレールの素材として、質量%で、C:0.01〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%を含有し、かつP:0.03%以下,S:0.01%以下,O:0.01%以下に制限され、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限され、(As%+Sn%+Sb%+Pb%+Zn%)≦0.015%であり、残部が不可避的不純物およびFeからなる液相拡散接合用鋼を用い、液相拡散接合した継手をAc3変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却し、前記分岐穴の開口周辺部に位置する前記分岐穴の内面と前記レール穴の内面とに、透明液体を存在させてパルスレーザビームを照射するレーザピーニング処理を施した後に、前記開口周辺部の材料の表層を除去することにより、前記開口周辺部の疲労強度を高めることを特徴とする、コモンレールの製造方法である。   That is, the present invention is a method for manufacturing a common rail, in which a rail hole is formed in a central portion, and a plurality of branch holes that open to the rail hole are formed in a cylindrical wall portion surrounding the rail hole. As a mass%, C: 0.01 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti: 0.005 to 0.1%, Al: 0.01 to 0.2%, P: 0.03% or less, S: 0.01% or less, O: limited to 0.01% or less, In addition, As, Sn, Sb, Both Pb and Zn are limited to 0.005% or less, and (As% + Sn% + Sb% + Pb% + Zn%) ≦ 0.015%, and the balance is a steel for liquid phase diffusion bonding composed of inevitable impurities and Fe , Reheating the joint that has been liquid phase diffusion bonded to the Ac3 transformation point or higher, and then cooling the joint Laser peening treatment in which accelerated cooling is performed at a temperature of 1 ° C./s or more, and a pulsed laser beam is irradiated in the presence of a transparent liquid on the inner surface of the branch hole and the inner surface of the rail hole located around the opening of the branch hole In the method for manufacturing a common rail, the surface strength of the material in the periphery of the opening is removed after applying the step, thereby increasing the fatigue strength in the periphery of the opening.

前記素材として、更にB:0.0003〜0.005%,N:0.01%以下を含有する液相拡散接合用鋼を用いても良い。また、前記素材として、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有する液相拡散接合用鋼を用いても良い。また、前記素材として、更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W:0.01〜5.0%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上である液相拡散接合用鋼を用いても良い。また、前記素材として、更にNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする液相拡散接合用鋼を用いても良い。   A liquid phase diffusion bonding steel further containing B: 0.0003 to 0.005% and N: 0.01% or less may be used as the material. Further, as the material, Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0.0005 to 0.02% , La: 0.0005 to 0.02%, Zr: 0.001 to 0.02%, or a liquid phase diffusion bonding steel containing two or more of them may be used. Further, as the material, Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Cr: 0.01 to 13.0% , Mo: 0.01% to 5.0%, W: 0.01% to 5.0%, or a combination of two or more, strength of the joint after accelerated cooling or accelerated cooling and tempering is 1000 MPa or more The liquid phase diffusion bonding steel may be used. Further, as the material, Nb: 0.005 to 0.5%, V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0.005 to 0.5% , Re: 0.005 to 0.5% of one type or two or more types, and the strength of the joint after accelerated cooling or after accelerated cooling and tempering is 1000 MPa or more. Steel may be used.

また、前記開口周辺部の材料の表層の除去は、電解研磨もしくは流体研磨によって行っても良い。   Further, the removal of the surface layer of the material around the opening may be performed by electrolytic polishing or fluid polishing.

また、前記パルスレーザビームのパルスエネルギーが1mJ〜10Jであっても良い。   The pulse energy of the pulse laser beam may be 1 mJ to 10J.

また、前記レーザピーニング処理を施す領域が、前記レール穴の内面において(1)式を満足する領域に含まれ、前記表層を除去する領域は、前記レーザピーニング処理を施す領域を包含するものであって、除去する表層の厚みが前記レーザピーニング処理を施す領域において0.01mm〜0.3mmであっても良い。
分岐穴の中心からの距離≦分岐穴の直径×1.5 (1)
The region where the laser peening treatment is performed is included in the region satisfying the expression (1) on the inner surface of the rail hole, and the region where the surface layer is removed includes the region where the laser peening treatment is performed. The thickness of the surface layer to be removed may be 0.01 mm to 0.3 mm in the region where the laser peening treatment is performed.
Distance from the center of the branch hole ≦ Diameter of the branch hole × 1.5 (1)

また、前記レーザピーニング処理を施す領域が、前記分岐穴の内面から前記レール穴の直径の20%の距離までの領域に含まれても良い。   Moreover, the area | region which performs the said laser peening process may be contained in the area | region from the inner surface of the said branch hole to the distance of 20% of the diameter of the said rail hole.

また、前記レーザピーニング処理を施す前に、前記開口周辺部を面取り加工しても良い。   Further, the peripheral portion of the opening may be chamfered before performing the laser peening process.

また、前記面取り加工で面取りされる領域とされない領域との境界が、前記レール穴の内面において(2)式を満足し、前記分岐穴の内面において前記レール穴の内面から前記レール穴の直径の30%の距離までの領域に含まれ、前記レーザピーニング処理を施す領域が、前記面取り加工された面に包含されるものであり、かつ、前記表層を除去する領域が前記レーザピーニング処理領域を包含するものであって、除去する表層の厚みが前記レーザピーニング処理を施す領域において0.01mm〜0.3mmであっても良い。
分岐穴の直径×0.5≦分岐穴の中心から境界までの距離≦分岐穴の直径×2.5 (2)
In addition, the boundary between the region chamfered and the region not chamfered by the chamfering process satisfies the expression (2) on the inner surface of the rail hole, and the inner diameter of the rail hole from the inner surface of the rail hole on the inner surface of the branch hole. The region up to a distance of 30%, the region to be subjected to the laser peening treatment is included in the chamfered surface, and the region from which the surface layer is removed includes the laser peening processing region. The thickness of the surface layer to be removed may be 0.01 mm to 0.3 mm in the region where the laser peening treatment is performed.
Branch hole diameter × 0.5 ≦ Distance from the center of the branch hole to the boundary ≦ Branch hole diameter × 2.5 (2)

また、前記レーザピーニング処理に用いる透明液体がアルコールもしくは防錆剤の入った水であっても良い。   Further, the transparent liquid used for the laser peening treatment may be water containing alcohol or a rust inhibitor.

また、本発明によれば、これらの製造方法により製造されたことを特徴とする、部分強化されたコモンレールが提供される。   In addition, according to the present invention, a partially reinforced common rail characterized by being manufactured by these manufacturing methods is provided.

本発明によれば、拡散接合により母材を加工が容易な形状のブロック単位に分けて製造できるので、製造コストを安価にすることができる。また、コモンレールで疲労強度が問題となる分岐穴のレール穴側開口部周辺において、表面から高い圧縮応力が導入できると同時に、分岐穴開口部形状の改善により応力集中が緩和される結果、疲労強度を大きく向上させられる。この結果、安価な鋼材を使用して燃料の高圧噴射を行うことが可能となり、排気ガスのクリーン化や燃費の向上が得られ、産業上有用な効果を奏する。   According to the present invention, since the base material can be divided and manufactured into blocks having a shape that can be easily processed by diffusion bonding, the manufacturing cost can be reduced. In addition, high compressive stress can be introduced from the surface around the branch hole side opening of the branch hole where fatigue strength is a problem with the common rail, and at the same time, stress concentration is reduced by improving the shape of the branch hole opening, resulting in fatigue strength. Can be greatly improved. As a result, it becomes possible to perform high-pressure injection of fuel using inexpensive steel materials, and it is possible to clean exhaust gas and improve fuel consumption, which has industrially useful effects.

本発明のコモンレールの製造方法およびコモンレールにかかる最良の形態例として、以下、図面に基づいて説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   A method for manufacturing a common rail according to the present invention and a best mode example for the common rail will be described below with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1はコモンレール1の断面の概略を示している。筒壁部2内に形成されるレール穴5がコモンレール1の主なるパイプであり、軽油を蓄圧する役割を有する。レール穴5には、垂直に開口する分岐穴6が複数個配設されている。   FIG. 1 schematically shows a cross section of the common rail 1. A rail hole 5 formed in the cylindrical wall portion 2 is a main pipe of the common rail 1 and has a role of accumulating light oil. The rail hole 5 is provided with a plurality of branch holes 6 that open vertically.

本発明では、コモンレール1の安価な製造方法として、液相拡散接合による溶接を行う。図3に示すように、長手方向に貫通する管路13を有するコモンレール本体11と円筒形のホルダー12とで形成されるリング状の接合面間に、液相拡散接合用の非晶質合金箔15を介在させて、管14に円筒形のホルダー12を連通させるように突合せた後、抵抗溶接等により、合金箔15とコモンレール本体11及びホルダー12とを溶融圧接して、液相拡散接合を行い、継ぎ手部を形成する。なお、図3は、便宜上、1つの支管14のみを示したものであるが、通常は、エンジン燃焼室の複数の噴射ノズルに対応し、複数の支管14を備えている。そして、ホルダー12は、これらの支管14と、エンジン燃焼室の噴射ノズルまで燃料を圧送するための配管とを接続するために、コモンレール本体11の支管14に対応して複数設けられている。このように形成されたコモンレールにおいて、図3の管路13が図1のレール穴5に対応し、図3の支管14の内部が図1の分岐穴6に対応する。液相拡散接合用の合金箔15には、例えば、Bを少なくとも1%以上含有するNi基またはFe基のインサートメタルを用いる。また、コモンレール本体とホルダー12との液相拡散接合は、例えば、接合温度1000〜1300℃で30秒以上の間1MPa以上の応力を負荷して保持することによって行われる。   In the present invention, welding by liquid phase diffusion bonding is performed as an inexpensive method for manufacturing the common rail 1. As shown in FIG. 3, an amorphous alloy foil for liquid phase diffusion bonding between a ring-shaped bonding surface formed by a common rail body 11 having a pipe line 13 penetrating in the longitudinal direction and a cylindrical holder 12. 15 and the pipe 14 to make the cylindrical holder 12 communicate with each other. Then, the alloy foil 15 and the common rail body 11 and the holder 12 are melt-welded by resistance welding or the like to perform liquid phase diffusion bonding. To form a joint. Note that FIG. 3 shows only one branch pipe 14 for convenience, but normally, a plurality of branch pipes 14 are provided corresponding to the plurality of injection nozzles of the engine combustion chamber. A plurality of holders 12 are provided corresponding to the branch pipes 14 of the common rail body 11 in order to connect these branch pipes 14 and a pipe for pumping fuel to the injection nozzle of the engine combustion chamber. In the common rail formed in this way, the pipe line 13 in FIG. 3 corresponds to the rail hole 5 in FIG. 1, and the inside of the branch pipe 14 in FIG. 3 corresponds to the branch hole 6 in FIG. For the alloy foil 15 for liquid phase diffusion bonding, for example, a Ni-based or Fe-based insert metal containing at least 1% of B is used. Further, the liquid phase diffusion bonding between the common rail body and the holder 12 is performed by, for example, applying and holding a stress of 1 MPa or more for 30 seconds or more at a bonding temperature of 1000 to 1300 ° C.

図4は、コモンレール1において強化すべき分岐穴6の開口周辺部の断面の拡大図である。本発明の第一の実施形態では、分岐穴6の貫通加工後、図4中の角egfがほぼ垂直に残っている状態で、同図中線分g1〜gで示した領域(開口周辺部23に位置する分岐穴6の内面)と、同図中線分g〜g3で示した領域(開口周辺部23に位置するレール穴5の内面)とにレーザピーニング処理を施した後に、開口周辺部23付近にある材料を除去することで、疲労強度を高める。   FIG. 4 is an enlarged view of a cross section of the periphery of the opening of the branch hole 6 to be reinforced in the common rail 1. In the first embodiment of the present invention, after penetrating the branch hole 6, the regions (opening peripheral portions) indicated by the line segments g1 to g in FIG. After the laser peening process is performed on the inner surface of the branch hole 6 positioned at 23) and the region (the inner surface of the rail hole 5 positioned at the opening peripheral portion 23) indicated by the line segments g to g3 in FIG. The fatigue strength is increased by removing the material in the vicinity of the portion 23.

本発明では、液相拡散接合後の制御冷却が無くとも十分な低温変態組織、すなわち材料の必要な部位あるいは全体にわたってベイナイトもしくはマルテンサイト変態を誘起させうる焼き入れ性の高い材料を、予め継手設計の段階から選択して、液相拡散接合で形成される等温凝固継手部位においても十分に均質な組織を得られる合金組成の鋼材をコモンレール1の素材として用いる。即ち、上記した例で言えば、コモンレール本体11とホルダー12の素材として、以下に説明する液相拡散接合用鋼を用いる。以下に、本発明に記載の液相拡散接合用鋼の化学成分を限定した理由について述べる。なお、以下に述べる化学成分はいずれも質量%で示される。   In the present invention, a sufficiently low-temperature transformation structure without controlled cooling after liquid phase diffusion bonding, that is, a material having high hardenability capable of inducing bainite or martensite transformation over a necessary part of the material or the entire material is designed in advance. As a material for the common rail 1, a steel material having an alloy composition capable of obtaining a sufficiently homogeneous structure even in an isothermally solidified joint portion formed by liquid phase diffusion bonding is selected. That is, in the above example, the liquid phase diffusion bonding steel described below is used as the material for the common rail body 11 and the holder 12. The reason why the chemical components of the liquid phase diffusion bonding steel described in the present invention are limited will be described below. In addition, all the chemical components described below are shown by mass%.

Cは、鋼の焼き入れ性と強度を制御する最も基本的な元素である。0.01%未満では強度が確保できず、1.0%を超えて添加すると強度は向上するものの、継手に靭性が確保できないことから、0.01〜1.0%に限定した。この範囲であれば、鋼材の組織制御は接合まま材でも可能である。   C is the most basic element that controls the hardenability and strength of steel. If the content is less than 0.01%, the strength cannot be ensured. If the content exceeds 1.0%, the strength is improved, but the toughness cannot be secured in the joint, so the content is limited to 0.01 to 1.0%. If it is this range, the structure control of steel materials is possible also with a material with joining.

Siは、鋼材の脱酸元素であり、通常Mnとともに鋼の酸素濃度を低減する目的で添加される。同時に、粒内強化に必要な元素であって、その不足は強度低下を来す。本発明でも同様に、脱酸と粒内強化を主目的として添加し、0.01%以上で効果を発揮し、1.0%を超えて添加した場合には鋼材の脆化を招く場合があることから、その添加範囲を0.01〜1.0%に限定した。   Si is a deoxidizing element for steel and is usually added together with Mn for the purpose of reducing the oxygen concentration of the steel. At the same time, it is an element necessary for intragranular strengthening, and its lack results in a decrease in strength. Similarly, in the present invention, deoxidation and intragranular strengthening are added as main purposes, and the effect is exhibited at 0.01% or more, and when added over 1.0%, the steel material may be embrittled. Therefore, the addition range was limited to 0.01 to 1.0%.

Mnは、Siとともに脱酸にも効用があるが、鋼中にあって材料の焼き入れ性を高め、強度向上に寄与する。その効果は0.05%より発現し、3.0%を超えると粗大なMnO系酸化物を晶出し、かえって靭性を低下させる場合があることから、その添加範囲を0.05〜3.0%に限った。   Mn has an effect on deoxidation as well as Si, but it is in steel and improves the hardenability of the material and contributes to the improvement of strength. The effect is manifested from 0.05%, and if it exceeds 3.0%, a coarse MnO-based oxide may be crystallized, which may lower the toughness. %.

Tiは、微細な炭化物を析出して結晶粒を微細化し鋼の靭性を高める。この目的のためには0.005%以上の添加が必要であるが、0.1%を超えると炭化物が粗大化して靭性の低下を招く。したがって、Tiの範囲を0.005〜0.1%に限定した。   Ti precipitates fine carbides to refine crystal grains and enhances the toughness of steel. For this purpose, 0.005% or more must be added, but if it exceeds 0.1%, the carbides become coarse and the toughness is reduced. Therefore, the range of Ti is limited to 0.005 to 0.1%.

Alは、Nと結合してAlNとして析出し、液相拡散接合の温度範囲においても溶解せず、γ粒の移動を抑制する効果を有する。多く添加しても炭化物を形成しないことから、根本的にTiやZr等の窒化物形成元素とは挙動が異なり、鋼の靱性低下をきたさない。従って、効果を発揮する最低量として0.01%の添加が必要であり、0.2%を超えて添加した場合にはAlNそのものが粗大化して靱性に影響があることから、接合温度に応じて0.01〜0.2%の範囲で適宜添加することとした。   Al binds to N and precipitates as AlN, does not dissolve in the temperature range of liquid phase diffusion bonding, and has an effect of suppressing the movement of γ grains. Even if a large amount is added, no carbide is formed, so the behavior is fundamentally different from nitride forming elements such as Ti and Zr, and the toughness of the steel is not lowered. Therefore, it is necessary to add 0.01% as the minimum amount to exert the effect, and when adding over 0.2%, AlN itself becomes coarse and affects toughness. Therefore, it was decided to add appropriately in the range of 0.01 to 0.2%.

なお、本鋼のような高強度鋼で靭性を高めるには、粒界への不純物濃化は極力回避する必要があり、PおよびSは、この目的のためにそれぞれ0.03%以下および0.01%以下に制限した。また、鋼を清浄なものとして高い靭性を確保するために、Oは0.01%以下に制限されなければならない。   In order to increase toughness with a high-strength steel such as this steel, it is necessary to avoid impurity concentration at the grain boundaries as much as possible. For this purpose, P and S are 0.03% or less and 0%, respectively. Limited to 0.01% or less. In addition, in order to ensure high toughness with clean steel, O must be limited to 0.01% or less.

以上の基本的な化学成分の制限に加えて、コモンレール用の鋼材として要求される、高圧下での繰り返し疲労強度を得るには、焼割れまたは再熱割れを生じない耐低温変態割れ性に優れた特性を有する鋼材を用いる必要があり、以下の制限を設ける事が、非常に有効である。   In addition to the above basic chemical component restrictions, in order to obtain the repeated fatigue strength under high pressure required as a steel material for common rails, it has excellent low-temperature transformation crack resistance that does not cause fire cracking or reheat cracking. Therefore, it is very effective to use the following restrictions.

As,Sn,Sb,Pb,Znはいずれも本発明においては不純物に分類する。これらは全て液相拡散接合継手の粒界に偏析しやすく、焼き戻し割れの原因となるため、これらを低減する必要があるが、その範囲は各個に0.005%が上限であり、たとえ一元素であってもこれを超えて添加すると焼き戻し割れを誘引する。同時に、これら元素の総和が0.015%を超えることもまた同様に焼き戻し割れを助長する事が、本発明者らの研究で明らかとなった。すなわち質量%で、(As%+Sn%+Sb%+Pb%+Zn%)≦0.015%が接合継手で達成されている必要がある。しかも、これは同様に焼き戻し脆性に有害なSを0.003%以下に制限した鋼材で同時に達成されなければならない。   As, Sn, Sb, Pb, and Zn are all classified as impurities in the present invention. All of these are easily segregated at the grain boundaries of the liquid phase diffusion joint and cause tempering cracks. Therefore, it is necessary to reduce these, but the upper limit is 0.005% for each piece. Even if it is an element, adding more than this will induce tempering cracks. At the same time, it has been clarified by the present inventors that the sum of these elements exceeding 0.015% also promotes tempering cracks. That is, it is necessary that (As% + Sn% + Sb% + Pb% + Zn%) ≦ 0.015% by mass% is achieved in the joint joint. Moreover, this must be achieved simultaneously with a steel material in which S which is also harmful to temper brittleness is limited to 0.003% or less.

これらの不純物元素の制限範囲は以下のような実験によって求めた。
実験室規模真空溶解、あるいは実機鋼板製造設備において100kg,300kg,2ton,10ton,100ton,300tonの真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造した、上記の化学成分範囲鋼材を含む種々の炭素鋼、低合金鋼、合金鋼を、圧延方向と平行な方向から10mmΦあるいは20mm角で長さ50mmの簡易小型試験片に加工した。試験片の端面をRmax<100μmに研削加工して脱脂洗浄し、その端面を2つ突き合わせて接合試験片対となし、150kWの出力を有する高周波誘導加熱装置を備えた引っ張り/圧縮試験機を用い、接合面間には液相拡散接合を1000〜1300℃
において実現可能なNi基−B系、Fe基−B系、Ni基−P系、Fe基−P系の、実質的に体積分率で50%以上が非晶質である厚み20〜50μmのアモルファス箔を介在させ、必要な接合温度まで試験片全体を加熱し、30秒から60分の間、1〜20MPaの応力下で液相拡散接合し、接合後放冷した。
The limiting range of these impurity elements was determined by the following experiment.
100kg, 300kg, 2ton, 10ton, 100ton, 300ton vacuum melting in a laboratory scale vacuum melting facility or a normal steel plate manufacturing facility, or a normal blast furnace-converter-external refining-degassing / trace element addition-continuous casting-heat Various carbon steels, low alloy steels and alloy steels including the above chemical composition range steel materials manufactured by hot rolling were processed into simple small test pieces having a length of 10 mmΦ or 20 mm square and a length of 50 mm from a direction parallel to the rolling direction. . The end face of the test piece is ground to Rmax <100 μm, degreased and cleaned, and two end faces are joined to form a pair of joined test pieces, and a tensile / compression tester equipped with a high-frequency induction heating device having an output of 150 kW is used. Liquid phase diffusion bonding is performed at 1000 to 1300 ° C. between the bonding surfaces.
Ni-B-based, Fe-based-B-based, Ni-based-P-based, Fe-based-P-based material having a volume fraction of 50% or more that is amorphous is substantially 20% to 50 μm. The whole test piece was heated to the required bonding temperature with an amorphous foil interposed, and liquid phase diffusion bonding was performed under a stress of 1 to 20 MPa for 30 seconds to 60 minutes, followed by cooling after bonding.

続いて得られた継手全体を、900〜1000℃(実質的に母材のAc3変態点以上の温度)へ再加熱して10〜200分保持の後、0.1℃/s以上の冷却速度で加速冷却してベイナイト〜マルテンサイトの低温変態組織となし、これを光学顕微鏡にて観察して確認した後に、必要な場合に適宜200〜700℃の各温度で0.1〜500時間の範囲で焼き戻して調質組織とした。得られた丸棒接合試験片対からは直径6mmΦの引張り試験片を採取し、強度評価に供するとともに、角棒試験片対からはJIS4号2mmVノッチつきのシャルピー衝撃試験片を採取して、ノッチ位置を接合部とすることで継手の靱性を評価し、これをもって継手の焼き戻し割れ感受性指標とした。   Subsequently, the entire joint thus obtained was reheated to 900 to 1000 ° C. (substantially the temperature above the Ac3 transformation point of the base material) and held for 10 to 200 minutes, and then a cooling rate of 0.1 ° C./s or more. After accelerating cooling at a low temperature transformation structure of bainite to martensite, and confirming this by observing with an optical microscope, a range of 0.1 to 500 hours at each temperature of 200 to 700 ° C. as necessary And tempered the structure. A tensile test piece having a diameter of 6 mmΦ was taken from the obtained round bar joint test piece pair and used for strength evaluation, and a JIS No. 2 mm V Charpy impact test piece with a notch position was taken from the square bar test piece pair. Was used as a joint, and the toughness of the joint was evaluated, and this was used as a tempering crack sensitivity index of the joint.

不純物成分は、接合前の母材で通常の湿式化学分析にて分析し、析出の有無に拘わらず鋼中含有量で評価した。図5には質量%での(As%+Sn%+Sb%+Pb%+Zn%)の値と焼き戻し割れの一指標としての0℃における継手のシャルピー吸収エネルギーの関係を示した。(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%以下の場合には継手の0℃における継手のシャルピー吸収エネルギーが常に47Jを超えるが、逆に(As%+Sn%+Sb%+Pb%+Zn%)の値が0.015%超の場合には継手の0℃における継手のシャルピー吸収エネルギーが47Jに達しない。   Impurity components were analyzed by ordinary wet chemical analysis on the base material before joining, and evaluated by the content in steel regardless of the presence or absence of precipitation. FIG. 5 shows the relationship between the value of (As% + Sn% + Sb% + Pb% + Zn%) in mass% and the Charpy absorbed energy of the joint at 0 ° C. as an index of temper cracking. When the value of (As% + Sn% + Sb% + Pb% + Zn%) is 0.015% or less, the Charpy absorbed energy of the joint at 0 ° C. always exceeds 47 J, but conversely (As% + Sn% + Sb%) When the value of (+ Pb% + Zn%) exceeds 0.015%, the Charpy absorbed energy of the joint at 0 ° C. does not reach 47 J.

また、各元素が0.005%を超える場合も同様に継手の靱性は0℃において47Jに達しない。さらにSが0.003%を超える場合でも同様に継手靱性が確保できないことも実験的に求めた。これらの値は、BおよびPを拡散元素として使用する液相拡散接合に特徴的であって、通状の溶接継手や合金鋼の熱処理において見られる焼き戻し脆化のパラメータあるいは評価指標とは異なる制限であり、かつ指標である。この指標と制限が満足できないと、完全に焼き戻し脆化を抑制することは困難である。   Similarly, when each element exceeds 0.005%, the toughness of the joint does not reach 47 J at 0 ° C. Furthermore, it was experimentally determined that joint toughness could not be secured in the same manner even when S exceeds 0.003%. These values are characteristic for liquid phase diffusion bonding using B and P as diffusing elements, and are different from temper embrittlement parameters or evaluation indices found in heat treatments of general welded joints and alloy steels. It is a limit and an indicator. If this index and restriction cannot be satisfied, it is difficult to completely suppress temper embrittlement.

本発明における液相拡散接合用鋼は、上記した化学成分を有し、残部が不可避的不純物およびFeからなる。このような鋼材を液相拡散接合した場合には、接合部の近傍に熱影響部が形成されるが、この部分は結晶粒が粗大化して靭性が低い。この靭性の低い熱影響部に熱処理を施せば靭性が回復する。このためには継手をAc3変態点以上に加熱してから冷却速度0.1℃/s以上で加速冷却する。Ac3変態点未満の加熱ではオーステナイトへの変態が不充分で靭性が十分回復しない。また、冷却速度が0.1℃/s未満ではマルテンサイトやベイナイトなどの強度の高い低温変態組織を得ることが困難である。なお、加速冷却は焼入れ、あるいは焼準しによって行う。   The steel for liquid phase diffusion bonding in the present invention has the above-described chemical components, and the balance consists of inevitable impurities and Fe. When such a steel material is subjected to liquid phase diffusion bonding, a heat-affected zone is formed in the vicinity of the bonded portion, but in this portion, crystal grains become coarse and the toughness is low. If heat treatment is applied to the heat-affected zone having low toughness, the toughness is recovered. For this purpose, the joint is heated to the Ac3 transformation point or higher and then accelerated and cooled at a cooling rate of 0.1 ° C./s or higher. Heating below the Ac3 transformation point results in insufficient transformation to austenite and does not sufficiently recover toughness. Moreover, if the cooling rate is less than 0.1 ° C./s, it is difficult to obtain a low-temperature transformation structure having high strength such as martensite and bainite. The accelerated cooling is performed by quenching or normalizing.

加速冷却後は靭性を更に回復させるために必要に応じてAc1変態点以下に焼き戻すことができる。焼戻し温度がAc1変態点を超えると鋼が部分的にオーステナイトに変態することになるので焼戻し温度はAc1変態点以下とする。以上のような熱処理を施した接合部の靭性は、0℃におけるシャルピー吸収エネルギーで47J以上であることが必要である。すなわち、2mmVノッチ付き試験片を用いて0℃にてシャルピー衝撃試験を行った時の吸収エネルギーが47J未満では鋼材は十分な靭性を有していないからである。鋼を以上のような化学成分と靭性を有するものとすることによって、焼割れまたは再熱割れを生じない耐低温変態割れ性に優れた液相拡散接合用鋼材を得ることができる。   After accelerated cooling, it can be tempered below the Ac1 transformation point as necessary to further restore toughness. When the tempering temperature exceeds the Ac1 transformation point, the steel is partially transformed into austenite, and therefore the tempering temperature is set to the Ac1 transformation point or less. The toughness of the joint subjected to the heat treatment as described above needs to be 47 J or more in Charpy absorbed energy at 0 ° C. In other words, the steel material does not have sufficient toughness when the absorbed energy is less than 47 J when a Charpy impact test is performed at 0 ° C. using a test piece with a 2 mmV notch. By making the steel have the above chemical components and toughness, a liquid phase diffusion bonding steel material excellent in low temperature transformation cracking resistance that does not cause firing cracking or reheat cracking can be obtained.

次に、レーザピーニング処理方法について説明する。レーザピーニング処理には、(i)高いピークパワー密度を持つレーザビームと、(ii)照射表面近傍に水等の透明媒体を設置すること、が必要となる。(i)については、照射表面におけるピークパワー密度を1〜100TW/mとする。このピークパワー密度を得るために、レーザ装置は、パルス時間幅が10ps〜100ns程度、パルスエネルギーが0.1mJ〜100J程度で間欠的に発振するパルスレーザを用いる。このようなレーザ装置としては例えばNd:YAGレーザが挙げられるが、上記条件(i)を満たすレーザ装置であれば良い。上記(i)および(ii)の条件が満たされると、高いピークパワー密度をもつパルスレーザビームの照射により発生したプラズマが、照射表面の近傍に存在する水等の透明媒体により膨張が抑えられ、プラズマの圧力が高められる。高圧となったプラズマの反力によって、照射点近傍に塑性変形を与え、残留圧縮応力を付与することができる。 Next, a laser peening processing method will be described. The laser peening process requires (i) a laser beam having a high peak power density and (ii) placing a transparent medium such as water near the irradiated surface. For (i), the peak power density on the irradiated surface is 1-100 TW / m 2 . In order to obtain this peak power density, the laser device uses a pulse laser that oscillates intermittently with a pulse time width of about 10 ps to 100 ns and a pulse energy of about 0.1 mJ to 100 J. An example of such a laser device is an Nd: YAG laser, but any laser device that satisfies the above condition (i) may be used. When the above conditions (i) and (ii) are satisfied, the plasma generated by the irradiation of the pulse laser beam having a high peak power density is suppressed from being expanded by a transparent medium such as water existing in the vicinity of the irradiation surface, Plasma pressure is increased. By the reaction force of the plasma that has become high pressure, plastic deformation can be applied in the vicinity of the irradiation point, and residual compressive stress can be applied.

ここで、本発明の製造方法により疲労強度が向上する理由について説明するために、レーザピーニング処理による応力導入特性について述べておく。図6は、引張強度が1000MPaの鋼材を用いて作製した平板形状の試験片に対してレーザピーニング処理を行ない、X線残留応力測定装置を用いて残留応力の深さ方向分布を測定した結果を示す。深さ方向の応力分布の測定は、電解研磨により逐次鋼材を除去しながら行なった。レーザピーニング処理には、図7(平面図)及び図8(正面図)に示した装置を用い、水槽35中に浸漬した試験片37に、レーザビーム発振装置31からレーザビーム32を照射した。レーザビームは、水中透過性の良いNd:YAGレーザの第二高調波(波長:532nm)を用いた。レーザビーム32は焦点距離100mmの凸レンズからなる集光レンズ33で集光し、光学窓34を介して試験片37に照射される。試験片37上でのビームスポットの形状は0.8mmφの円形とした。レーザのパルスエネルギーは200mJ、ピークパワー密度は40TW/mとした。パルス時間幅は10ns、パルス繰り返し周波数は30Hzであった。試験片37の後方は、支持部38,39を介して、図8に示すように上下方向(b方向)にスライド可能なガイド40に取り付けられている。また、ガイド40は、図7に示すように水平方向(a方向)にスライド可能なガイド42に取り付けられた支持部41に連結されている。試験片37は、走査装置43の制御により、ガイド40,42に沿って、ab両方向に移動可能に設置される。パルスレーザのビームスポットの重畳方法を図9に示す。処理域は5mm×10mmの矩形とした(図9中でg1〜g5=5mm,g1〜g3=10mm)。同一点に対するパルスレーザビームの照射回数の平均値は25回に設定し、同一走査領域Li内の隣接するビームスポットの間隔と、隣接する走査領域(例えば図9中のL1とL2)の中心線間の距離が等しくなるように処理した。また走査領域の形成は、図9において「L1→L2→L3→…」のように連続的に行なった。図6の測定結果を見ると、圧縮応力が深さ約0.6mmまで導入されている。また、図9に示した重畳方法のために、図9中Y方向の圧縮応力が選択的に強化される。 Here, in order to explain the reason why the fatigue strength is improved by the manufacturing method of the present invention, the stress introduction characteristics by the laser peening process will be described. FIG. 6 shows the result of measuring the distribution of residual stress in the depth direction using an X-ray residual stress measurement device after performing a laser peening process on a flat specimen prepared using a steel material having a tensile strength of 1000 MPa. Show. The stress distribution in the depth direction was measured while removing the steel material successively by electrolytic polishing. For the laser peening treatment, the apparatus shown in FIG. 7 (plan view) and FIG. 8 (front view) was used, and the laser beam 32 was irradiated from the laser beam oscillation device 31 onto the test piece 37 immersed in the water tank 35. As the laser beam, a second harmonic (wavelength: 532 nm) of an Nd: YAG laser having good underwater permeability was used. The laser beam 32 is condensed by a condensing lens 33 made of a convex lens having a focal length of 100 mm, and is irradiated onto a test piece 37 through an optical window 34. The shape of the beam spot on the test piece 37 was a circle of 0.8 mmφ. The laser pulse energy was 200 mJ and the peak power density was 40 TW / m 2 . The pulse time width was 10 ns and the pulse repetition frequency was 30 Hz. The back of the test piece 37 is attached to a guide 40 slidable in the vertical direction (b direction) as shown in FIG. Moreover, the guide 40 is connected to the support part 41 attached to the guide 42 which can be slid to a horizontal direction (a direction), as shown in FIG. The test piece 37 is installed to be movable in both directions ab along the guides 40 and 42 under the control of the scanning device 43. FIG. 9 shows a method of superimposing the beam spot of the pulse laser. The treatment area was a rectangle of 5 mm × 10 mm (in FIG. 9, g1 to g5 = 5 mm, g1 to g3 = 10 mm). The average value of the number of times of irradiation with the pulse laser beam for the same point is set to 25 times, the interval between adjacent beam spots in the same scanning region Li, and the center line of adjacent scanning regions (for example, L1 and L2 in FIG. 9). The distance between them was processed to be equal. In addition, the formation of the scanning region was continuously performed as “L1 → L2 → L3 →...” In FIG. When the measurement result of FIG. 6 is seen, the compressive stress is introduced to the depth of about 0.6 mm. Further, because of the superposition method shown in FIG. 9, the compressive stress in the Y direction in FIG. 9 is selectively strengthened.

図6に示すように、Y方向の残留応力は、深さ30μmにおいて−783MPaとなり残留圧縮応力が最大となった。しかし、被加工材表面(深さ0mm)の残留応力は−656MPaにとどまっており、表面の残留応力を十分に強化できているとは言えない。これは、サンプル表面にレーザビームを照射すると、照射スポット部表層近傍が溶融・再凝固するためである。   As shown in FIG. 6, the residual stress in the Y direction was -783 MPa at a depth of 30 μm, and the residual compressive stress was maximized. However, the residual stress on the workpiece surface (depth 0 mm) is only -656 MPa, and it cannot be said that the residual stress on the surface can be sufficiently strengthened. This is because when the surface of the sample is irradiated with a laser beam, the vicinity of the surface area of the irradiated spot is melted and re-solidified.

本発明の製造方法では、以上説明してきたレーザピーニング処理を施した後、その処理面を含む領域の材料の表層を除去する。機械研磨等による材料の除去は、除去後の表面に引張応力を残留させ疲労特性に悪影響を与えることがあるため、除去する方法としては、電解研磨法や流体研磨法が望ましい。電解研磨法では、開口部周辺部23にエッチング液を設置し、多くの場合は球状の突起を押し付けながら通電することで、研磨が進む。また流体研磨では、研磨剤を含む液体をレール穴5および分岐穴6に通すことで研磨が行われる。これらの方法では、いずれも分岐穴6の軸を中心として同心円状に研磨が進む。この除去工程によって、レーザピーニング処理で溶融・再凝固し応力が引張側にシフトしている表層近傍部の除去が可能になると同時に、開口部周辺部23の形状の変化により応力集中係数が緩和され、実際の使用時の最大負荷応力は低減される。本発明者らは、これらの複合的な効果が疲労強度を大きく向上させることを見出した。   In the manufacturing method of the present invention, after performing the laser peening treatment described above, the surface layer of the material in the region including the treated surface is removed. The removal of the material by mechanical polishing or the like may leave a tensile stress on the surface after removal and adversely affect the fatigue characteristics. Therefore, an electrolytic polishing method or a fluid polishing method is desirable as the removal method. In the electrolytic polishing method, an etching solution is installed in the peripheral portion 23 of the opening, and in many cases, polishing is performed by energizing while pressing a spherical protrusion. In fluid polishing, polishing is performed by passing a liquid containing an abrasive through the rail hole 5 and the branch hole 6. In any of these methods, polishing proceeds concentrically around the axis of the branch hole 6. This removal step makes it possible to remove the vicinity of the surface layer where the stress is shifted to the tensile side due to melting and re-solidification by the laser peening process, and at the same time, the stress concentration factor is relaxed by the change in the shape of the opening periphery 23. The maximum load stress during actual use is reduced. The present inventors have found that these combined effects greatly improve fatigue strength.

本発明の好ましい実施形態においては、レーザビームのパルスエネルギーを1mJ〜10Jの範囲とするが、これは以下の理由による。本発明の方法では、レーザピーニング処理した後、材料を表面から除去するため、レーザピーニング処理で圧縮応力が導入される深さが小さすぎると、除去後の新しい表面における残留圧縮応力が小さくなってしまう。圧縮応力が導入される深さはパルスエネルギーが小さくなるほど浅くなる。これは、被加工材表面から投入されたレーザパルスエネルギーの三次元的な拡散が、パルスエネルギーが小さくなるほど大きくなってしまうためである。この制約のため、本発明の方法では1mJ以上のパルスエネルギーで処理することが好ましい。また、パルスエネルギーの上限については、コモンレールのレール管に通すことが可能なレーザビームのビーム断面積と光学素子の耐光強度を勘案し、10J以下とすることが好ましい。本発明の方法におけるレーザビームの照射については、図4中において、レール穴5の内面22からのみ行う形態と、分岐穴6の内面21とレール穴5の内面22の双方から行う形態とがある。以下で説明するように、疲労強度を高めるためには、後者がより効果的である。レーザピーニング処理では、図6に示したように、深さ方向に進むに従って、付与される圧縮応力の絶対値は小さくなっていく。したがって、レール穴5の内面22からのみ処理する場合、レール穴5の内面22から遠ざかる内部、例えば図4中のg2点では、圧縮応力の絶対値は表層よりも小さくなることがある。一方で、開口周辺部23の材料を除去後、実際の使用時の繰り返し負荷応力は、このg2点付近で最大になることが多い。分岐穴6の内面21とレール穴5の内面22の双方からレーザピーニング処理を行っておけば、それぞれの面の処理によって導入される圧縮応力が加算され、g2点の圧縮応力の絶対値を引き上げることが可能となり、より高い疲労強度が実現される。一方、レール穴5の内面22からのみ行う照射方法は、分岐穴6の内面21を処理するために必要なミラーのあおり機構等が不要となるため、装置を簡略化できるという利点を持つ。   In a preferred embodiment of the present invention, the pulse energy of the laser beam is in the range of 1 mJ to 10 J for the following reason. In the method of the present invention, since the material is removed from the surface after the laser peening treatment, if the depth at which the compressive stress is introduced by the laser peening treatment is too small, the residual compressive stress on the new surface after removal becomes small. End up. The depth at which the compressive stress is introduced becomes shallower as the pulse energy becomes smaller. This is because the three-dimensional diffusion of laser pulse energy input from the workpiece surface increases as the pulse energy decreases. Due to this limitation, it is preferable to process with a pulse energy of 1 mJ or more in the method of the present invention. The upper limit of the pulse energy is preferably 10 J or less in consideration of the beam cross-sectional area of the laser beam that can be passed through the rail tube of the common rail and the light resistance strength of the optical element. In FIG. 4, the laser beam irradiation in the method of the present invention includes a mode performed only from the inner surface 22 of the rail hole 5 and a mode performed from both the inner surface 21 of the branch hole 6 and the inner surface 22 of the rail hole 5. . As will be described below, the latter is more effective for increasing the fatigue strength. In the laser peening process, as shown in FIG. 6, the absolute value of the applied compressive stress decreases as the depth advances. Therefore, when processing is performed only from the inner surface 22 of the rail hole 5, the absolute value of the compressive stress may be smaller than that of the surface layer at the interior away from the inner surface 22 of the rail hole 5, for example, at g2 in FIG. On the other hand, after removing the material of the peripheral portion 23 of the opening, the repeated load stress during actual use often becomes maximum in the vicinity of this g2 point. If laser peening is performed from both the inner surface 21 of the branch hole 6 and the inner surface 22 of the rail hole 5, the compressive stress introduced by the processing of each surface is added, and the absolute value of the compressive stress at point g2 is increased. And higher fatigue strength is achieved. On the other hand, the irradiation method performed only from the inner surface 22 of the rail hole 5 has an advantage that the apparatus can be simplified because the mirror tilting mechanism and the like necessary for processing the inner surface 21 of the branch hole 6 are not required.

必要となるレーザピーニング処理領域および材料の除去領域は、内圧変動負荷時の分岐穴開口周辺部の引張応力分布や、応力集中をどの程度緩和するかといった部品の設計思想に依存する。引張応力分布は、鋼材の強度、使用圧力、レール穴5の直径d1、分岐穴6の直径d2、等に依存する。この分布は有限要素法計算等に基づいて見積もることが可能であるが、以下では処理領域の一般的な指針を説明する。   The necessary laser peening treatment area and material removal area depend on the design concept of the parts such as the tensile stress distribution around the opening of the branch hole when the internal pressure fluctuates and how much the stress concentration is relaxed. The tensile stress distribution depends on the strength of the steel material, the working pressure, the diameter d1 of the rail hole 5, the diameter d2 of the branch hole 6, and the like. Although this distribution can be estimated based on finite element method calculation or the like, general guidelines for the processing area will be described below.

まず、レール穴5の内面22のレーザ処理領域については、図10に示すように、分岐穴6の中心からの距離が1.5d2以内となる領域を処理しておけば十分である。また、分岐穴6の内面21にもレーザ処理する場合、処理範囲の深さhは、レール穴内面22と分岐穴内面21とが交わることで形成される円を高さの基準として、レール穴直径d1の20%程度とすれば十分である。ただし、分岐穴内面21の深い部分まで処理するためには、分岐穴内面21に対するレーザビームの入射角度を大きくする必要がある。同じピークパワーを持つレーザビームであっても、入射角度が大きくなるにつれて照射点におけるピークパワー密度は減少する。このため,直径d2が小さい場合は、深さhが適切なピークパワー密度にて照射できる限界に支配されることが多い。   First, as for the laser processing region of the inner surface 22 of the rail hole 5, it is sufficient to process a region whose distance from the center of the branch hole 6 is 1.5d2 or less as shown in FIG. When laser processing is also performed on the inner surface 21 of the branch hole 6, the depth h of the processing range is determined based on the height of a circle formed by the rail hole inner surface 22 and the branch hole inner surface 21 intersecting. It is sufficient if it is about 20% of the diameter d1. However, in order to perform processing up to a deep portion of the inner surface 21 of the branch hole, it is necessary to increase the incident angle of the laser beam with respect to the inner surface 21 of the branch hole. Even for laser beams having the same peak power, the peak power density at the irradiation point decreases as the incident angle increases. For this reason, when the diameter d2 is small, the depth h is often governed by the limit that can be irradiated at an appropriate peak power density.

また、材料を除去する領域については、レーザ照射によって溶融・再凝固し応力が引張側にシフトしている表面を全て無くすように、材料を除去する領域が該レーザピーニング処理領域をその内部に含むようにすることが望ましい。   In addition, for the region where the material is removed, the region where the material is removed includes the laser peening treatment region so that all surfaces where the stress is shifted to the tensile side due to melting and re-solidification by laser irradiation are eliminated. It is desirable to do so.

次に、材料の除去工程において、除去する厚みについて述べる。本願では以下のように、除去後の面上各点に対し除去厚みを定義する。除去後の面上のある点における除去厚みは、考えている除去後の面上の点からの距離が最小となる点を除去前の面上から選び出し、その最小値として定義する。図11の分岐穴断面図を例として説明する。図中、点線で示す曲線ejfが除去前の線、eからk1、k2を経てfに至る曲線が除去後の線である。上述の定義によると、除去後の線k1点における除去厚みはt1で表され、k2点における除去厚みはt2で表される。ここでは2次元的な断面図を例に採って説明したが、実際の除去厚みは、図11で考えた除去前後の線を、それぞれ面として三次元的に捉えることで定義される。   Next, the thickness to be removed in the material removing step will be described. In the present application, the removal thickness is defined for each point on the surface after removal as follows. The removal thickness at a certain point on the surface after removal is defined as the minimum value obtained by selecting the point having the smallest distance from the point on the surface after removal as considered from the surface before removal. The branch hole sectional view of FIG. 11 will be described as an example. In the figure, a curve ejf indicated by a dotted line is a line before removal, and a curve from e through k1, k2 to f is a line after removal. According to the above definition, the removal thickness at the line k1 after removal is represented by t1, and the removal thickness at the k2 point is represented by t2. Here, a two-dimensional cross-sectional view has been described as an example, but the actual removal thickness is defined by three-dimensionally capturing the lines before and after removal considered in FIG. 11 as surfaces.

レーザピーニング処理領域内の除去厚みは以下の範囲にするのが効果的である。まず、レーザ照射によって溶融・再凝固し応力が引張側にシフトしている表面近傍を除去するために、除去後表面の各点における除去厚みは0.01mm以上とする。一方で、図6に示したように、レーザピーニングで導入される圧縮応力は表面からの深さが大きくなるに従って減少する傾向にある。例えば図6のY方向応力の深さ分布からは、表面から深さ0.1mm程度以上まで材料を除去すると、除去後の表面応力が除去前と比較してむしろ小さくなってしまうことが予想される。パルスエネルギー(図6の条件では200mJ)を大きくすることで深さ方向への圧縮応力の減衰は緩和できる。すなわち、パルスエネルギーを大きくすることでより大きな除去厚みを得ることも可能であるが、それでも、除去厚みは0.3mm程度以下としておくのが効果的である。   It is effective to set the removal thickness in the laser peening treatment region in the following range. First, in order to remove the vicinity of the surface where the stress is shifted to the tensile side due to melting and resolidification by laser irradiation, the removal thickness at each point on the surface after removal is set to 0.01 mm or more. On the other hand, as shown in FIG. 6, the compressive stress introduced by laser peening tends to decrease as the depth from the surface increases. For example, from the depth distribution of the stress in the Y direction in FIG. 6, it is expected that when the material is removed from the surface to a depth of about 0.1 mm or more, the surface stress after the removal becomes rather smaller than before the removal. The Decreasing the compressive stress in the depth direction can be reduced by increasing the pulse energy (200 mJ under the conditions of FIG. 6). That is, it is possible to obtain a larger removal thickness by increasing the pulse energy, but it is still effective that the removal thickness is about 0.3 mm or less.

本発明の別の実施形態によると、分岐穴6の貫通加工後、分岐穴6の開口周辺部23を研磨または機械加工により所定量だけ面取り加工した後、該開口周辺部23にレーザピーニング処理を施し、さらに該開口周辺部23にある材料を除去することで、開口周辺部23の疲労強度が高められたコモンレールを得る。これは、主に応力集中係数を大きく緩和する目的で、分岐穴6の貫通加工時点から最終加工形状に至るまでの除去厚みを大きくする部品設計を採る場合に特に有効である。図12は本実施形態の一例を示す模式図である。図中に点線で示す角egfが貫通加工時点の断面、一点鎖線が面取り加工後の断面、そしてeからk3,k4を経てfに至る曲線がレーザピーニング処理後、さらに材料の除去を施した後に得られる最終加工形状である。同図中、t1やt2で示される貫通加工時点から最終加工形状に至るまでの除去厚みが0.3mmを越えるような場合に対して、上述した第一の実施形態を適用すると、図中に点線で示す角egfの表面からレーザピーニング処理を施し、その後、材料の除去によって最終加工形状(図12中曲線e〜k3〜k4〜f)を得ることになる。この場合、材料の除去厚みが0.3mmを越えるため、上述したように、材料を除去した後に得られる最終加工形状の表面における残留圧縮応力が小さくなってしまう。一方、ここで説明した実施形態によると、図12中一点鎖線で示される断面まで面取り加工した後にレーザピーニング処理を施すため、レーザピーニング処理後の材料の除去厚みを小さく抑えることができる。したがって、最終加工形状(図12中曲線e〜k3〜k4〜f)の表面においても大きな圧縮応力を得られるという利点がある。   According to another embodiment of the present invention, after penetrating the branch hole 6, the opening peripheral part 23 of the branch hole 6 is chamfered by a predetermined amount by polishing or machining, and then laser peening is performed on the peripheral part 23 of the opening. Then, by removing the material in the opening peripheral portion 23, a common rail in which the fatigue strength of the opening peripheral portion 23 is increased is obtained. This is particularly effective in the case of adopting a part design in which the removal thickness is increased from the time of penetrating the branch hole 6 to the final machined shape mainly for the purpose of largely relaxing the stress concentration factor. FIG. 12 is a schematic diagram showing an example of this embodiment. In the figure, the angle egf indicated by a dotted line is a cross-section at the time of penetration processing, a dashed-dotted line is a cross-section after chamfering, and a curve from e to k3, k4 to f is after laser peening treatment and further material removal This is the final processed shape to be obtained. In the figure, when the first embodiment described above is applied to the case where the removal thickness from the point of penetration processing indicated by t1 or t2 to the final machining shape exceeds 0.3 mm, Laser peening is performed from the surface of the corner egf indicated by the dotted line, and then the final processed shape (curves e to k3 to k4 to f in FIG. 12) is obtained by removing the material. In this case, since the removal thickness of the material exceeds 0.3 mm, as described above, the residual compressive stress on the surface of the final processed shape obtained after the material is removed becomes small. On the other hand, according to the embodiment described here, since the laser peening process is performed after the chamfering process is performed up to the cross section indicated by the alternate long and short dash line in FIG. 12, the removal thickness of the material after the laser peening process can be reduced. Therefore, there is an advantage that a large compressive stress can be obtained even on the surface of the final processed shape (curves e to k3 to k4 to f in FIG. 12).

レーザピーニング処理前に実施する面取り加工の領域の大きさは、上述したように、内圧変動負荷時の分岐穴開口周辺部の引張応力分布や、応力集中をどの程度緩和するかといった部品の設計思想に依存するが、以下では処理領域の一般的な指針を説明する。ここで考えているような除去厚みが大きい場合には、面取り加工で面取りされる領域とされない領域の境界が、レール穴5の内面22においては、分岐穴6の中心からの距離が0.5d2以上2.5d2以内(d2:分岐穴6の径)となる領域に含まれるものであって、分岐穴6の内面21においては、レール穴内面22の開口部からレール穴5の直径d1の30%の距離までの領域に含まれることが効果的である。面取り加工後、分岐穴6の開口周辺部23の応力集中は緩和されるが、応力分布の最大値は依然として面取り加工した領域に生ずる。レーザピーニング処理はこのような応力集中を緩和する目的で施される。その処理領域は、面取り加工が施される領域の内部としておけば十分であることが多いが、面取りされない領域に跨っていてもよい。また、レーザピーニング処理に溶融・最凝固の影響が出た部分を除去する等の目的で行われる最後の材料除去工程において除去する領域は、レーザピーニング処理を施す領域を包含するものであり、除去する厚みは、レーザ処理領域において0.01mm以上0.3mm以下とすることが好ましい。材料の除去による除去後表面の圧縮応力の低下を抑えるという観点からは、レーザピーニング処理前に行う面取り加工で最終加工形状の近くまで加工しておくことにより、レーザピーニング処理後の除去厚みを0.1mm以下に小さく抑えるのが特に好ましい範囲である。   As described above, the size of the chamfering area to be implemented before laser peening is determined by the design concept of the parts, such as the tensile stress distribution around the branch hole opening when the internal pressure fluctuates and how much stress concentration is relaxed. The general guidelines for the processing area will be described below. When the removal thickness as considered here is large, the boundary between the region that is not chamfered by chamfering and the inner surface 22 of the rail hole 5 has a distance from the center of the branch hole 6 of 0.5d2. It is included in the region within 2.5d2 (d2: the diameter of the branch hole 6). In the inner surface 21 of the branch hole 6, the diameter d1 of the rail hole 5 is 30 from the opening of the rail hole inner surface 22. It is effective to be included in the region up to a distance of%. After chamfering, the stress concentration in the peripheral portion 23 of the branch hole 6 is relaxed, but the maximum value of the stress distribution still occurs in the chamfered region. The laser peening process is performed for the purpose of relaxing such stress concentration. In many cases, it is sufficient for the processing region to be inside the region to be chamfered, but it may extend over a region that is not chamfered. In addition, the area to be removed in the final material removal step, which is performed for the purpose of removing the part that has been affected by melting and most solidification in the laser peening process, includes the area to be subjected to the laser peening process. The thickness to be adjusted is preferably 0.01 mm or more and 0.3 mm or less in the laser processing region. From the viewpoint of suppressing the reduction of the compressive stress on the surface after removal due to the removal of the material, the removal thickness after the laser peening treatment is reduced to 0 by performing chamfering before the laser peening treatment to near the final processed shape. A particularly preferable range is to keep it small to 1 mm or less.

ところで、本発明におけるレーザピーニング処理の領域については、必ずしも分岐穴6の軸を中心として同心円状に設定する必要はない。レーザ処理後に除去工程を経た後、実際の使用時の内圧変動負荷に伴う分岐穴開口周辺部23の引張応力の最大値は、分岐穴6の中心軸を含みレール穴5の長手方向に沿った断面上において生じ、その主応力方向はレール穴5の周方向である。したがって、レーザビーム照射領域の分岐穴周方向の角度範囲は、図13に示すように、分岐穴6の内面21とレール穴の内面22のいずれについても、レール穴5の長手方向を基準として±45°の範囲としておけば十分であることが多い。   By the way, the region of the laser peening process in the present invention is not necessarily set concentrically around the axis of the branch hole 6. After passing through the removal step after the laser treatment, the maximum value of the tensile stress in the branch hole opening peripheral portion 23 due to the internal pressure fluctuation load during actual use is along the longitudinal direction of the rail hole 5 including the central axis of the branch hole 6. It occurs on the cross section, and the principal stress direction is the circumferential direction of the rail hole 5. Accordingly, as shown in FIG. 13, the angular range of the laser beam irradiation region in the circumferential direction of the branch hole is ± with respect to the longitudinal direction of the rail hole 5 for both the inner surface 21 of the branch hole 6 and the inner surface 22 of the rail hole. A 45 ° range is often sufficient.

また、疲労強度を最大化するためには、使用時の繰り返し負荷応力が最大となる部分の主応力方向であるレール穴5の周方向の圧縮応力を最大化することが求められる。このために効果的なビームスポットの重畳照射方法を図14に示す。このように、分岐穴6の中心軸を含む平面内でビームスポットを走査し、該ビームスポットの走査を分岐穴6の周方向に位置をずらしながら複数回行う。これは、図9に示した方法で処理すれば、図6に示すように、図9中のY方向の応力が選択的に強化される事実を応用したものである。なお、走査方向は、分岐穴6の中心軸を含む平面内に限らずとも良い。例えば、図15に示すように、レール穴5の長手方向と分岐穴6の長手方向を含む平面内でビームスポットを走査し、該ビームスポットの走査をレール穴5の周方向に位置をずらしながら複数回行う方法でも、同じ効果を得られる。   Further, in order to maximize the fatigue strength, it is required to maximize the circumferential compressive stress of the rail hole 5, which is the main stress direction of the portion where the repeated load stress during use is maximized. FIG. 14 shows an effective beam spot superimposing method for this purpose. In this way, the beam spot is scanned in a plane including the central axis of the branch hole 6, and the beam spot is scanned a plurality of times while shifting the position in the circumferential direction of the branch hole 6. This is an application of the fact that the stress in the Y direction in FIG. 9 is selectively strengthened as shown in FIG. 6 if processing is performed by the method shown in FIG. Note that the scanning direction is not limited to the plane including the central axis of the branch hole 6. For example, as shown in FIG. 15, the beam spot is scanned in a plane including the longitudinal direction of the rail hole 5 and the longitudinal direction of the branch hole 6, and the scanning of the beam spot is shifted in the circumferential direction of the rail hole 5. The same effect can be obtained by performing the method multiple times.

コモンレールは、多くの場合、高強度の鋼で作られる。そこで、レーザビーム照射表面に設置する透明液体は、アルコール等、鋼を錆びさせる性質を持たない液体、もしくは、水に防錆剤が入っている液体とし、コモンレールが錆びないようにする実施形態が好ましい。   Common rails are often made of high strength steel. Therefore, the transparent liquid installed on the laser beam irradiation surface is a liquid that does not rust steel, such as alcohol, or a liquid that contains a rust preventive agent in water, so that the common rail does not rust. preferable.

なお、本発明では、上記の化学成分に加えて、更に、B:0.0003〜0.005%,N:0.01%以下、またはCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%のうち少なくとも1種以上、または、Ni:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W:0.01〜5.0%のうち少なくとも1種以上、あるいは、さらにNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%のうち少なくとも1種以上を含有しても良い。   In the present invention, in addition to the above chemical components, B: 0.0003 to 0.005%, N: 0.01% or less, or Ca: 0.0005 to 0.01%, Mg: 0 .0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0.0005 to 0.02%, La: 0.0005 to 0.02%, Zr: 0.001 to 0.02 %: At least one or more of Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Cr: 0.01 to 13 0.0%, Mo: 0.01-5.0%, W: 0.01-5.0% or more, or Nb: 0.005-0.5%, V: 0.0. 005-1.0%, Ta: 0.005-0.5%, Hf: 0.005-0.5%, Re: 0.005-0.5% Even without it may contain one or more.

これらの合金成分は、以下の理由から添加範囲を制限してある。Bは微量で鋼の焼き入れ性を大きく高めるが、0.0003%未満の添加量では焼き入れ性向上効果が小さい。一方、0.005%を超えて添加すると炭硼化物を形成して、かえって焼き入れ性を低下させることになる。したがって、Bの添加範囲を0.0003〜0.005%とするのが望ましい。
NはAlと結合して微細なAlNを析出して結晶粒を微細化する。しかしながら、NはBと結合して焼入れ性に有効な固溶B
の量を低減させる。Nが0.01%を超えると、固溶B の確保が困難となりNの固定のために多量のTiを必要となってコスト高を招くので、Nは0.01%以下とするのが望ましい。
The range of addition of these alloy components is limited for the following reasons. A small amount of B greatly increases the hardenability of the steel, but the effect of improving the hardenability is small with an addition amount of less than 0.0003%. On the other hand, if added over 0.005%, a carbonized boride is formed and the hardenability is lowered. Therefore, it is desirable that the addition range of B is 0.0003 to 0.005%.
N combines with Al to precipitate fine AlN to refine crystal grains. However, N is a solid solution B that combines with B and is effective for hardenability.
Reduce the amount of If N exceeds 0.01%, it is difficult to secure solid solution B 2, and a large amount of Ti is required to fix N, resulting in high costs. Therefore, N is preferably 0.01% or less. .

Ca,Mg,Y,Ce,La,Zrは何れも硫化物形態制御能を有する元素であって、この効果を発揮させるためには、Ca:0.0005%
以上、Mg:0.0005%以上、Y:0.0005% 以上、Ce:0.0005%以上、La:0.0005%以上、Zr:0.001%以上添加する必要がある。しかしながら、Ca:0.01%、Mg:0.005%、Y:0.02%、Ce:0.02%、La:0.02%、Zr:0.02%を超えると粗大酸化物が生成されて鋼の靱性が低下する。したがって、Ca:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の範囲とするのが望ましい。
Ca, Mg, Y, Ce, La, and Zr are all elements having sulfide form control ability, and in order to exert this effect, Ca: 0.0005%
Thus, Mg: 0.0005% or more, Y: 0.0005% or more, Ce: 0.0005% or more, La: 0.0005% or more, Zr: 0.001% or more must be added. However, when Ca: 0.01%, Mg: 0.005%, Y: 0.02%, Ce: 0.02%, La: 0.02%, and Zr: 0.02%, coarse oxides are formed. As a result, the toughness of the steel decreases. Therefore, Ca: 0.0005-0.01%, Mg: 0.0005-0.005%, Y: 0.0005-0.02%, Ce: 0.0005-0.02%, La: 0.00. It is desirable to set the range of 0005 to 0.02% and Zr: 0.001 to 0.02%.

Ni、Co、Cuはいずれもγ安定化元素であって、鋼材の変態点を下げて低温変態を促すことで焼き入れ性を向上させる元素であり、それぞれ0.01%以上の添加で効果が得られる。一方、5.0%を超えて添加すると残留γが増加して鋼材の靱性に影響を及ぼすことから、その添加範囲をNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0とするのが望ましい。   Ni, Co, and Cu are all γ-stabilizing elements, and are elements that improve the hardenability by lowering the transformation point of the steel material and promoting low-temperature transformation. can get. On the other hand, if adding over 5.0%, the residual γ increases and affects the toughness of the steel material, so the addition ranges are Ni: 0.01 to 5.0%, Co: 0.01 to 5. It is desirable that 0%, Cu: 0.01 to 5.0.

Cr、Mo、Wは何れもα安定化元素であるが、Crは同時に耐食性の向上に有用である。何れも0.01%添加で効果が認められ、Crは13.0%を超えるとδフェライトを生成して低温変態組織を生成し難くなり、かえって強度靱性を低下させる場合があるため、上限をに13.0%制限した。MoとWは著しい固溶強化を発揮するが、何れもを5.0%超えて添加すると、液相拡散接合の拡散原子であるBおよびPと硼化物あるいは燐化物を生成し、継手の靱性を劣化させる場合があることから、それぞれの添加量をCr:0.01〜13.0%,Mo:0.01〜5.0%,W:0.01〜5.0%とするのが望ましい。   Cr, Mo, and W are all α-stabilizing elements, but Cr is useful for improving corrosion resistance at the same time. In any case, the effect is observed when 0.01% is added, and when Cr exceeds 13.0%, it becomes difficult to generate a low temperature transformation structure by forming δ ferrite, and the strength toughness may be lowered. To 13.0%. Mo and W exhibit remarkable solid solution strengthening, but if both are added in excess of 5.0%, B and P, which are diffusion atoms of liquid phase diffusion bonding, and boride or phosphide are formed, and the toughness of the joint In some cases, the additive amounts of Cr are 0.01 to 13.0%, Mo is 0.01 to 5.0%, and W is 0.01 to 5.0%. desirable.

また、Nb、V、Ta、Hf、Reは微細な炭化物を析出して鋼の強度を高める。何れも0.005%以上の添加で効果がある。しかし、Nb、Ta、Hf、Reは0.5%で、またVは1.0%を超える添加で炭化物が粗大化して靱性の低下を来すので、Nb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0005〜0.5%,Re:0.005〜0.5%とするのが望ましい。   Nb, V, Ta, Hf, and Re precipitate fine carbides to increase the strength of the steel. In any case, the addition of 0.005% or more is effective. However, Nb, Ta, Hf, Re is 0.5%, and V is added in excess of 1.0%, so that the carbide is coarsened and the toughness is reduced, so Nb: 0.005 to 0.5% , V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0005 to 0.5%, Re: 0.005 to 0.5%.

各群は、適宜組み合わせて複合添加しても、また各元素を単独で添加しても良く、本発明の効果を妨げることなく、鋼材に各種特性を付与する。   Each group may be combined and combined as appropriate, or each element may be added alone, and imparts various properties to the steel material without impeding the effects of the present invention.

なお、本発明の鋼材の製造工程は、通常の高炉−転炉による銑鋼一貫プロセスを適用するだけでなく、冷鉄源を使用した電炉製法、転炉製法も適用できる。さらに、連続鋳造工程を経ない場合でも、通常の鋳造、鍛造工程を経て製造することも可能であり、本発明に規定する化学成分範囲と式の制限を満足していれば良く、本発明技術に対する製造方法の拡大適用が可能である。また、製造する鋼材の形状は任意であって、適用する部材の形状に必要な成型技術において実施可能である。すなわち、鋼板、鋼管、棒鋼、線材、形鋼など、本発明技術の効果を広範囲に適用することが可能である。また、本鋼は溶接性にも優れており、液相拡散接合に適していることから、液相拡散接合継手を含む構造体であれば、一部に溶接を適用して、あるいは併用した構造体の製造は可能であり、本発明の効果を何ら妨げるものではない。   In addition, the manufacturing process of the steel material of this invention can apply the electric furnace manufacturing method using a cold iron source, and a converter manufacturing method not only to apply the integrated process of the iron and steel by a normal blast furnace-converter. Furthermore, even if it does not go through a continuous casting process, it can also be produced through a normal casting and forging process, as long as it satisfies the chemical component range and the formula restrictions prescribed in the present invention, The manufacturing method can be expanded. Moreover, the shape of the steel material to be manufactured is arbitrary, and can be implemented by a molding technique necessary for the shape of the member to be applied. That is, it is possible to apply the effects of the technology of the present invention over a wide range, such as steel plates, steel pipes, steel bars, wire rods, and shaped steels. In addition, since this steel is also excellent in weldability and suitable for liquid phase diffusion bonding, if it is a structure including a liquid phase diffusion bonding joint, a structure in which welding is applied in part or in combination Manufacture of the body is possible and does not interfere with the effects of the present invention.

以下に、コモンレールの分岐穴開口周辺部にかかる繰り返し負荷を模擬した疲労試験を行ない、本発明の効果を検証した結果について説明する。試験では、図16に示すように、直径6mmのくびれ部の中央に直径1mmの貫通穴52を開けた試験片51を用いて、小野式回転曲げ疲労試験を実施した。試験片51は、440MPa級炭素鋼を用いて作成した。試験片は、本発明に規定する化学成分範囲の鋼材を、実験室規模真空溶解、あるいは実機鋼板製造設備において、100kg〜300tonの真空溶解、あるいは通常の高炉−転炉−炉外精錬−脱ガス/微量元素添加−連続鋳造−熱間圧延によって製造し、図16に示す形状に加工、成型した。このような試験片51では、貫通穴52付近に応力集中が生じ、図16中のm1点およびm2点において応力は最大となり、その最大主応力方向は試験片51の長手方向となる。このように、本試験は、図2に示すコモンレールの分岐穴6開口周辺部にかかる変動負荷を模擬している。なお、試験片51の貫通穴52開口端部のエッジを取る面取り加工は施さなかった。   Below, the fatigue test which simulated the repeated load concerning the branch hole opening peripheral part of a common rail is performed, and the result of having verified the effect of this invention is demonstrated. In the test, as shown in FIG. 16, an Ono type rotating bending fatigue test was performed using a test piece 51 having a through hole 52 having a diameter of 1 mm in the center of a constricted portion having a diameter of 6 mm. The test piece 51 was made using 440 MPa class carbon steel. The test piece is a steel material in the chemical composition range specified in the present invention, vacuum-melted at a laboratory scale, or 100 kg to 300 tons in an actual steel plate manufacturing facility, or a normal blast furnace-converter-external refining-degassing. / Trace element addition-continuous casting-manufactured by hot rolling, processed and molded into the shape shown in FIG. In such a test piece 51, stress concentration occurs in the vicinity of the through hole 52, the stress becomes maximum at points m 1 and m 2 in FIG. 16, and the maximum principal stress direction is the longitudinal direction of the test piece 51. As described above, this test simulates the variable load applied to the periphery of the opening of the branch hole 6 of the common rail shown in FIG. In addition, the chamfering process which takes the edge of the opening end part of the through-hole 52 of the test piece 51 was not performed.

レーザピーニング処理は、貫通穴52の両側の開口周辺部に対して行なった。レーザビームは水中透過性の良いNd:YAGレーザの第二高調波(波長532nm)を用いた。パルスレーザビームの時間幅は10nsであった。試験片51上でのスポットの形はほぼ円形であり、その照射痕のスポット直径は約0.3mmであった。ピークパワー密度は50TW/mとした。 The laser peening process was performed on the periphery of the opening on both sides of the through hole 52. The laser beam used was a second harmonic (wavelength 532 nm) of an Nd: YAG laser having good underwater permeability. The time width of the pulse laser beam was 10 ns. The spot shape on the test piece 51 was almost circular, and the spot diameter of the irradiation mark was about 0.3 mm. Peak power density was 50TW / m 2.

試験片51のくびれ部のm1点、m2点における試験片51長手方向の圧縮応力を高めるため、図17に示すように、試験片51の長手方向に垂直な平面内でビームスポットを走査し、該ビームスポットの走査を長手方向に位置をずらしながら複数回行なう方法で、パルスレーザビームを照射した。レーザ処理した領域は、図17中に斜線で示した部分である(図にはm1点側の照射域のみを示す)。長手方向は0.5mm幅、φ6mmの外面は貫通穴52の軸より1.5mm以内、貫通穴52の内面は開口部から深さ0.5mmまでの範囲を処理した。同一点に対するパルスレーザビームの照射回数の平均値は6.9回に設定した。   In order to increase the compressive stress in the longitudinal direction of the test piece 51 at points m1 and m2 of the constricted portion of the test piece 51, as shown in FIG. 17, the beam spot is scanned in a plane perpendicular to the longitudinal direction of the test piece 51, A pulse laser beam was irradiated by a method of scanning the beam spot a plurality of times while shifting the position in the longitudinal direction. The laser-processed area is a hatched portion in FIG. 17 (only the irradiation area on the m1 point side is shown in the figure). The longitudinal direction was 0.5 mm wide, the outer surface of φ6 mm was within 1.5 mm from the axis of the through hole 52, and the inner surface of the through hole 52 was processed from the opening to a depth of 0.5 mm. The average value of the number of times of irradiation with the pulse laser beam for the same point was set to 6.9 times.

レーザピーニング処理後、電解研磨により材料の除去を行った。球状の突起を押し付けながら通電しながら、貫通穴52の軸を中心として同心円状に研磨した。φ6mmの外面の研磨領域は貫通穴52の軸より半径1.7mm以内、貫通穴52の内面の研磨領域は開口部から深さ0.5mmまでであり、それぞれの面から電解研磨した深さは約50μmであった。   After the laser peening treatment, the material was removed by electropolishing. While energizing while pressing the spherical protrusions, concentric polishing was performed around the axis of the through hole 52. The polished area of the outer surface of φ6 mm is within a radius of 1.7 mm from the axis of the through hole 52, and the polished area of the inner surface of the through hole 52 is from the opening to a depth of 0.5 mm, and the depth of electrolytic polishing from each surface is It was about 50 μm.

表1に疲労試験結果を示す。表には、m1点(φ6mmの外面で貫通穴開口部近傍)における試験片51長手方向の残留応力σAを測定した結果も示す。尚、残留応力σAは、X線残留応力測定装置を用いて測定した。条件1は比較例であり、レーザピーニング処理を施さなかった試験片に対する結果である。条件2は、レーザピーニング処理のみを施した比較例であり、条件1に対して25%の疲労強度向上が得られた。条件3は、レーザピーニング処理後に電解研磨を行った本発明の実施例であり、さらに大きな疲労強度向上が得られた。このように、本発明によると、表面の圧縮応力が大きくなる効果とともに、形状変化による応力集中係数の緩和効果が複合的に作用し、従来技術に対して大きな疲労強度の向上が得られることが判った。   Table 1 shows the fatigue test results. The table also shows the result of measuring the residual stress σA in the longitudinal direction of the test piece 51 at the point m1 (in the vicinity of the through-hole opening at the outer surface of φ6 mm). The residual stress σA was measured using an X-ray residual stress measuring device. Condition 1 is a comparative example, and is a result for a test piece that was not subjected to laser peening. Condition 2 is a comparative example in which only laser peening treatment was performed, and a 25% improvement in fatigue strength was obtained with respect to condition 1. Condition 3 is an example of the present invention in which the electropolishing was performed after the laser peening treatment, and a greater improvement in fatigue strength was obtained. As described above, according to the present invention, the effect of increasing the compressive stress on the surface and the relaxation effect of the stress concentration factor due to the shape change act in combination, and a large improvement in fatigue strength can be obtained compared to the conventional technology. understood.

Figure 2009221910
Figure 2009221910

本発明は、コモンレール等の鋼材において、流体が通過する機械部品において径が極端に変化する部位や、管の端など、応力集中が発生しやすい部分の疲労強度を向上させるための製造方法として適用できる。   The present invention is applied to a steel material such as a common rail as a manufacturing method for improving the fatigue strength of a portion where the diameter is extremely changed in a machine part through which a fluid passes or a portion where a stress concentration is likely to occur such as a pipe end. it can.

コモンレールのレール穴長手方向の断面図。Sectional drawing of the rail hole longitudinal direction of a common rail. コモンレールの分岐穴開口周辺部の平面図。The top view of the branch hole opening periphery part of a common rail. コモンレールの製造過程を示す斜視図。The perspective view which shows the manufacturing process of a common rail. コモンレールの分岐穴開口周辺部を示す断面図。Sectional drawing which shows the branch hole opening periphery part of a common rail. 焼き戻し割れ感受性を高める不純物元素の総和(As%+Sn%+Sb%+Pb%+Zn%)と液相拡散接合継手の0℃における靱性、すなわち焼き戻し割れ感受性指標との関係を示す図である。It is a figure which shows the relationship between the sum total of the impurity element which raises a tempering crack sensitivity (As% + Sn% + Sb% + Pb% + Zn%), and the toughness at 0 degreeC of a liquid phase diffusion joining joint, ie, a tempering crack sensitivity parameter | index. レーザピーニング処理した試験片の残留応力を示すグラフ。The graph which shows the residual stress of the test piece which carried out the laser peening process. レーザビーム照射装置を示す平面図。The top view which shows a laser beam irradiation apparatus. 図7の正面図。The front view of FIG. レーザビーム照射方法を示す平面図。The top view which shows the laser beam irradiation method. 分岐穴開口周辺部のレーザ処理領域を示す斜視図。The perspective view which shows the laser processing area | region of a branch hole opening periphery part. 分岐穴開口周辺部の材料除去前後の状態を示す断面図。Sectional drawing which shows the state before and behind material removal of a branch hole opening periphery part. 分岐穴開口周辺部の面取り加工を行った場合の材料除去後の状態を示す断面図。Sectional drawing which shows the state after material removal at the time of chamfering the branch hole opening peripheral part. 分岐穴開口周辺部のレーザ照射領域の角度範囲を示す説明図。Explanatory drawing which shows the angle range of the laser irradiation area | region of a branch hole opening periphery part. 分岐穴開口周辺部のレーザ照射方法を示す説明図。Explanatory drawing which shows the laser irradiation method of branch hole opening periphery part. 分岐穴開口周辺部の異なるレーザ照射方法を示す説明図。Explanatory drawing which shows the laser irradiation method from which a branch hole opening periphery part differs. 試験片を示す平面図。The top view which shows a test piece. 図16の試験片へのレーザ照射方法を示す説明図。Explanatory drawing which shows the laser irradiation method to the test piece of FIG.

符号の説明Explanation of symbols

1 コモンレール
2 筒壁部
5 レール穴
6 分岐穴
7 レール穴の長手方向に平行となる直径の両端近傍
11 コモンレール本体
12 ホルダー
13 管路
14 支管
15 合金箔
21 内面(分岐穴)
22 内面(レール穴)
23 開口周辺部
31 レーザビーム発振装置
32 レーザビーム
33 集光レンズ
34 光学窓
35 水槽
37 試験片
38,39,41 支持部
40,42 ガイド
43 走査装置
51 試験片
52 貫通穴
DESCRIPTION OF SYMBOLS 1 Common rail 2 Cylinder wall part 5 Rail hole 6 Branch hole 7 Near both ends of the diameter parallel to the longitudinal direction of the rail hole 11 Common rail main body 12 Holder 13 Pipe 14 Branch pipe 15 Alloy foil 21 Inner surface (branch hole)
22 Inner surface (rail hole)
23 Opening peripheral portion 31 Laser beam oscillation device 32 Laser beam 33 Condensing lens 34 Optical window 35 Water tank 37 Test piece 38, 39, 41 Support portion 40, 42 Guide 43 Scanning device 51 Test piece 52 Through hole

Claims (13)

中心部にレール穴が形成され、前記レール穴を取り囲む筒壁部に前記レール穴に開口する複数の分岐穴が形成されたコモンレールの製造方法であって、
前記コモンレールの素材として、質量%で、C:0.01〜1.0%,Si:0.01〜1.0%,Mn:0.05〜3.0%,Ti:0.005〜0.1%,Al:0.01〜0.2%を含有し、かつP:0.03%以下,S:0.01%以下,O:0.01%以下に制限され、加えてAs,Sn,Sb,Pb,Znの何れも0.005%以下に制限され、(As%+Sn%+Sb%+Pb%+Zn%)≦0.015%であり、残部が不可避的不純物およびFeからなる液相拡散接合用鋼を用い、
液相拡散接合した継手をAc3変態点以上に再加熱してから冷却速度0.1℃/s以上で加速冷却し、
前記分岐穴の開口周辺部に位置する前記分岐穴の内面と前記レール穴の内面とに、透明液体を存在させてパルスレーザビームを照射するレーザピーニング処理を施した後に、前記開口周辺部の材料の表層を除去することにより、前記開口周辺部の疲労強度を高めることを特徴とする、コモンレールの製造方法。
A rail manufacturing method for a common rail in which a rail hole is formed in a central portion, and a plurality of branch holes opening in the rail hole are formed in a cylindrical wall portion surrounding the rail hole,
As a material of the common rail, by mass%, C: 0.01 to 1.0%, Si: 0.01 to 1.0%, Mn: 0.05 to 3.0%, Ti: 0.005 to 0 0.1%, Al: 0.01 to 0.2%, P: 0.03% or less, S: 0.01% or less, O: 0.01% or less, in addition, As, Any of Sn, Sb, Pb, and Zn is limited to 0.005% or less, (As% + Sn% + Sb% + Pb% + Zn%) ≦ 0.015%, and the balance is an inevitable impurity and Fe liquid phase Use diffusion bonding steel
The liquid phase diffusion bonded joint is reheated to the Ac3 transformation point or higher, and then accelerated and cooled at a cooling rate of 0.1 ° C / s or higher.
The material of the peripheral part of the opening is subjected to a laser peening process in which a transparent liquid is present and irradiated with a pulsed laser beam on the inner surface of the branch hole and the inner surface of the rail hole located in the peripheral part of the opening of the branch hole. A method of manufacturing a common rail, wherein the fatigue strength of the peripheral portion of the opening is increased by removing the surface layer.
前記素材として、更にB:0.0003〜0.005%,N:0.01%以下を含有する液相拡散接合用鋼を用いることを特徴とする、請求項1に記載のコモンレールの製造方法。   The method for producing a common rail according to claim 1, wherein a liquid phase diffusion bonding steel further containing B: 0.0003 to 0.005% and N: 0.01% or less is used as the material. . 前記素材として、更にCa:0.0005〜0.01%,Mg:0.0005〜0.005%,Y:0.0005〜0.02%,Ce:0.0005〜0.02%,La:0.0005〜0.02%,Zr:0.001〜0.02%の一種または2種以上を含有する液相拡散接合用鋼を用いることを特徴とする、請求項1または2に記載のコモンレールの製造方法。   As the material, Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.005%, Y: 0.0005 to 0.02%, Ce: 0.0005 to 0.02%, La A liquid phase diffusion bonding steel containing one or more of 0.0005 to 0.02% and Zr of 0.001 to 0.02% is used. Common rail manufacturing method. 前記素材として、更にNi:0.01〜5.0%,Co:0.01〜5.0%,Cu:0.01〜5.0%,Cr:0.01〜13.0%,Mo:0.01〜5.0%,W:0.01〜5.0%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上である液相拡散接合用鋼を用いることを特徴とする、請求項1〜3のいずれかに記載のコモンレールの製造方法。   As the material, Ni: 0.01 to 5.0%, Co: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Cr: 0.01 to 13.0%, Mo : 0.01-5.0%, W: 0.01-5.0% of one or two or more types, the strength of the joint after accelerated cooling or after accelerated cooling and tempering is 1000 MPa or more The method for manufacturing a common rail according to any one of claims 1 to 3, wherein a steel for liquid phase diffusion bonding is used. 前記素材として、更にNb:0.005〜0.5%,V:0.005〜1.0%,Ta:0.005〜0.5%,Hf:0.005〜0.5%,Re:0.005〜0.5%の一種または二種以上を含有し、加速冷却後または加速冷却して焼き戻し後の継手の強度が1000MPa以上であることを特徴とする液相拡散接合用鋼を用いる事を特徴とする、請求項1〜4のいずれかに記載のコモンレールの製造方法。   As the material, Nb: 0.005 to 0.5%, V: 0.005 to 1.0%, Ta: 0.005 to 0.5%, Hf: 0.005 to 0.5%, Re : 0.005 to 0.5% of one or two or more types, and the strength of the joint after accelerated cooling or after accelerated cooling and tempering is 1000 MPa or more. The method for manufacturing a common rail according to claim 1, wherein: 前記開口周辺部の材料の表層の除去は、電解研磨もしくは流体研磨によって行うことを特徴とする、請求項1〜5のいずれかに記載のコモンレールの製造方法。   The method for manufacturing a common rail according to claim 1, wherein the removal of the surface layer of the material around the opening is performed by electrolytic polishing or fluid polishing. 前記パルスレーザビームのパルスエネルギーが1mJ〜10Jであることを特徴とする、請求項1〜6のいずれかに記載のコモンレールの製造方法。   The method of manufacturing a common rail according to claim 1, wherein the pulse laser beam has a pulse energy of 1 mJ to 10 J. 前記レーザピーニング処理を施す領域が、前記レール穴の内面において(1)式を満足する領域に含まれ、前記表層を除去する領域は、前記レーザピーニング処理を施す領域を包含するものであって、除去する表層の厚みが前記レーザピーニング処理を施す領域において0.01mm〜0.3mmであることを特徴とする、請求項1〜7のいずれかに記載のコモンレールの製造方法。
分岐穴の中心からの距離≦分岐穴の直径×1.5 (1)
The region where the laser peening treatment is performed is included in the region satisfying the expression (1) on the inner surface of the rail hole, and the region where the surface layer is removed includes the region where the laser peening treatment is performed, The method for manufacturing a common rail according to any one of claims 1 to 7, wherein a thickness of a surface layer to be removed is 0.01 mm to 0.3 mm in a region where the laser peening treatment is performed.
Distance from the center of the branch hole ≦ Diameter of the branch hole × 1.5 (1)
前記レーザピーニング処理を施す領域が、前記分岐穴の内面から前記レール穴の直径の20%の距離までの領域に含まれることを特徴とする、請求項8に記載のコモンレールの製造方法。   The method for manufacturing a common rail according to claim 8, wherein the region to which the laser peening treatment is performed is included in a region from an inner surface of the branch hole to a distance of 20% of a diameter of the rail hole. 前記レーザピーニング処理を施す前に、前記開口周辺部を面取り加工することを特徴とする、請求項1〜7のいずれかに記載のコモンレールの製造方法。   The common rail manufacturing method according to claim 1, wherein the peripheral portion of the opening is chamfered before the laser peening treatment. 前記面取り加工で面取りされる領域とされない領域との境界が、前記レール穴の内面において(2)式を満足し、前記分岐穴の内面において前記レール穴の内面から前記レール穴の直径の30%の距離までの領域に含まれ、前記レーザピーニング処理を施す領域が、前記面取り加工された面に包含されるものであり、かつ、前記表層を除去する領域が前記レーザピーニング処理領域を包含するものであって、除去する表層の厚みが前記レーザピーニング処理を施す領域において0.01mm〜0.3mmであることを特徴とする、請求項10に記載のコモンレールの製造方法。
分岐穴の直径×0.5≦分岐穴の中心から境界までの距離≦分岐穴の直径×2.5 (2)
The boundary between the region chamfered and the region not chamfered by the chamfering process satisfies the expression (2) on the inner surface of the rail hole, and 30% of the diameter of the rail hole from the inner surface of the rail hole on the inner surface of the branch hole. A region to be subjected to the laser peening treatment is included in the chamfered surface, and a region from which the surface layer is removed includes the laser peening processing region The method for manufacturing a common rail according to claim 10, wherein a thickness of a surface layer to be removed is 0.01 mm to 0.3 mm in the region where the laser peening treatment is performed.
Branch hole diameter × 0.5 ≦ Distance from the center of the branch hole to the boundary ≦ Branch hole diameter × 2.5 (2)
前記レーザピーニング処理に用いる透明液体がアルコールもしくは防錆剤の入った水であることを特徴とする、請求項1〜11のいずれかに記載のコモンレールの製造方法。   The method for producing a common rail according to any one of claims 1 to 11, wherein the transparent liquid used for the laser peening treatment is water containing alcohol or a rust inhibitor. 請求項1〜12のいずれかに記載の製造方法により製造されたことを特徴とする、部分強化されたコモンレール。   A partially strengthened common rail manufactured by the manufacturing method according to claim 1.
JP2008065437A 2008-03-14 2008-03-14 Common rail manufacturing method and partially reinforced common rail Expired - Fee Related JP4740275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065437A JP4740275B2 (en) 2008-03-14 2008-03-14 Common rail manufacturing method and partially reinforced common rail

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065437A JP4740275B2 (en) 2008-03-14 2008-03-14 Common rail manufacturing method and partially reinforced common rail

Publications (2)

Publication Number Publication Date
JP2009221910A true JP2009221910A (en) 2009-10-01
JP4740275B2 JP4740275B2 (en) 2011-08-03

Family

ID=41238956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065437A Expired - Fee Related JP4740275B2 (en) 2008-03-14 2008-03-14 Common rail manufacturing method and partially reinforced common rail

Country Status (1)

Country Link
JP (1) JP4740275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132319A (en) * 2010-12-20 2012-07-12 Denso Corp Fuel supply pump
CN105171436A (en) * 2015-09-06 2015-12-23 苏州市宝玛数控设备有限公司 Cutter steel rail
EP2305995A4 (en) * 2009-03-12 2017-01-18 Nippon Steel & Sumitomo Metal Corporation Process for producing common rail, and common rail

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214291A (en) * 2002-01-21 2003-07-30 Fukuju Kogyo Kk Common rail and manufacturing method
JP2004100027A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack
JP2006322446A (en) * 2005-04-19 2006-11-30 Nippon Steel Corp Common rail and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003214291A (en) * 2002-01-21 2003-07-30 Fukuju Kogyo Kk Common rail and manufacturing method
JP2004100027A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Steel for liquid-phase diffusion bonding having excellent resistance to low-temperature transformation crack
JP2006322446A (en) * 2005-04-19 2006-11-30 Nippon Steel Corp Common rail and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305995A4 (en) * 2009-03-12 2017-01-18 Nippon Steel & Sumitomo Metal Corporation Process for producing common rail, and common rail
JP2012132319A (en) * 2010-12-20 2012-07-12 Denso Corp Fuel supply pump
US9151290B2 (en) 2010-12-20 2015-10-06 Denso Corporation Fuel supply pump and manufacturing method of housing of the same
CN105171436A (en) * 2015-09-06 2015-12-23 苏州市宝玛数控设备有限公司 Cutter steel rail

Also Published As

Publication number Publication date
JP4740275B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4790844B2 (en) Common rail manufacturing method and partially reinforced common rail
JP4772923B2 (en) Common rail manufacturing method and common rail
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
CN108025401B (en) Arc fillet weld and method for manufacturing same
JP6435122B2 (en) Thick steel plate for cold-pressed square steel pipe, cold-pressed square steel pipe, and welding method
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
US20150247214A1 (en) STEEL PLATE HAVING YIELD STRENGTH OF 670 to 870 N/mm2 AND TENSILE STRENGTH OF 780 to 940 N/mm2
EP2764946A1 (en) Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same
CN1078910C (en) Welded joint of high fatigue strength
WO2013161026A1 (en) Pearlite rail, flash butt welding method for pearlite rail, and method for manufacturing pearlite rail
KR102165755B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
JP2005232513A (en) High strength steel sheet and manufacturing method
JP4740275B2 (en) Common rail manufacturing method and partially reinforced common rail
JP4325503B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP4740274B2 (en) Common rail manufacturing method and partially reinforced common rail
KR102165756B1 (en) Ferritic heat-resistant steel welded structure manufacturing method and ferritic heat-resistant steel welded structure
JP6885523B2 (en) Manufacturing method of spot welded joints and spot welded joints
JP4857855B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP5044928B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R151 Written notification of patent or utility model registration

Ref document number: 4740275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees