JP2009221519A - Steel sheet and method for manufacturing the same - Google Patents

Steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2009221519A
JP2009221519A JP2008066089A JP2008066089A JP2009221519A JP 2009221519 A JP2009221519 A JP 2009221519A JP 2008066089 A JP2008066089 A JP 2008066089A JP 2008066089 A JP2008066089 A JP 2008066089A JP 2009221519 A JP2009221519 A JP 2009221519A
Authority
JP
Japan
Prior art keywords
less
steel sheet
rolling
chemical composition
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008066089A
Other languages
Japanese (ja)
Other versions
JP5245475B2 (en
Inventor
Kotaro Hayashi
宏太郎 林
Hideo Mizukami
英夫 水上
Akihiro Yamanaka
章裕 山中
Futoshi Katsuki
太 香月
Hideki Matsuda
英樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008066089A priority Critical patent/JP5245475B2/en
Publication of JP2009221519A publication Critical patent/JP2009221519A/en
Application granted granted Critical
Publication of JP5245475B2 publication Critical patent/JP5245475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel sheet having tensile strength of ≥780 MPa and excellent bendability. <P>SOLUTION: The steel sheet has a chemical composition containing 0.03 to 0.20% C. 0.005 to 2.0% Si, 1.5 to 4.0% Mn, ≤0.1% P, ≤0.01% S, 0.01 to 1.0% sol. Al, and ≤0.01% N, and the balance Fe and inevitable impurities, wherein in the depth position of 1/20t from the surface (t:thickness of steel sheet), the average interval in the sheet-width direction of the Mn thickening part extended in the rolling direction is 250 μm, the Mn segregation ratio (=Mn<SB>co</SB>/Mn<SB>st</SB>) calculated from the Mn concentration (Mn<SB>co</SB>) of the Mn thickening part is ≤1.20, the tensile strength is ≥780 MPa and the limited minimum bending radius of a 180 bending test is ≤1.0t. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼板およびその製造方法に関し、具体的には、自動車補強部材や自動車シート部材などの素材として好適な高強度鋼板およびその製造方法に関する。   The present invention relates to a steel plate and a method for producing the same, and more specifically to a high-strength steel plate suitable as a material for an automobile reinforcing member, an automobile seat member, and the like, and a method for producing the same.

自動車産業においては、安全性向上と燃費節減につながる軽量化を達成するため、加工性に優れる高強度鋼板がますます注目されるようになってきた。近年では、高強度鋼板の適用部位が拡大し、780MPa以上の引張強度を有する高強度鋼板に対しても、極めて高いレベルの曲げ性が要求される場合が多い。特に、自動車のシートレール部品のように曲げ半径の小さい加工部を備える部材に対しては、従来以上の厳しい曲げ性が要求される。   In the automotive industry, high-strength steel sheets with excellent workability have received increasing attention in order to achieve lighter weight that leads to improved safety and fuel economy. In recent years, the application site of high-strength steel sheets has been expanded, and extremely high levels of bendability are often required even for high-strength steel sheets having a tensile strength of 780 MPa or more. In particular, a member having a processed portion with a small bending radius such as a seat rail part of an automobile is required to have a severer bendability than ever before.

高強度鋼板の曲げ性の改善については、従来、鋼組織の制御というアプローチがとられ、特許文献1に記載されているように、低温変態生成相の硬さを低下させ、フェライト相との硬度差を小さくすることが良いとされている。一方、特許文献2や特許文献3に記載されているように、フェライトの結晶粒を超微細化させると、曲げ性と同様に局部変形能が必要な伸びフランジ性と高強度化が両立できるとされている。   For improving the bendability of a high-strength steel sheet, conventionally, the approach of controlling the steel structure has been taken, and as described in Patent Document 1, the hardness of the low-temperature transformation generation phase is reduced and the hardness with the ferrite phase is reduced. It is considered good to reduce the difference. On the other hand, as described in Patent Document 2 and Patent Document 3, if the ferrite crystal grains are made ultrafine, it is possible to achieve both stretch flangeability and high strength that require local deformability as well as bendability. Has been.

しかしながら、高強度化を目的として、Mnを多量に含有する高強度鋼板の場合、図1に示すように、凝固偏析によって局所的な化学組成の変動が生じ、図2に示すように、その変動に対応した不均一組織が形成される。   However, in the case of a high-strength steel sheet containing a large amount of Mn for the purpose of increasing the strength, as shown in FIG. 1, a local chemical composition change occurs due to solidification segregation, and as shown in FIG. A heterogeneous structure corresponding to is formed.

したがって、特許文献1に開示された技術では、鋼板全体でフェライト相、低温変態相の硬さそのものを精緻に制御することは極めて困難であるだけでなく、局所的な化学組成の変動に対応した不均一組織によって、図3に示すように、加工部の表面に目視でも観察されるような顕著な凹凸が出現し、その凹凸が不均一変形を助長して割れを誘発し、曲げ性そのものを劣化させる。また、割れに至らない場合であっても、加工部に凹凸が存在すると、部品としての衝突特性が劣化する。   Therefore, in the technique disclosed in Patent Document 1, it is extremely difficult to precisely control the hardness of the ferrite phase and the low temperature transformation phase in the entire steel sheet, and it corresponds to local chemical composition fluctuations. Due to the non-uniform structure, as shown in FIG. 3, noticeable irregularities appear on the surface of the processed part, which are visually observed, the irregularities promote the non-uniform deformation and induce cracks, and the bendability itself is improved. Deteriorate. Moreover, even if it does not lead to a crack, if unevenness exists in the processed part, the collision characteristics as a component deteriorate.

また、凝固偏析によって、変態現象が局所的に変化し、結晶粒径も不均一となるので、特許文献2や特許文献3に開示された技術でも、曲げ性を改善することができない。とりわけ、これらの文献に記載の技術では、780MPa以上の引張強度を確保するために、鋼中に凝固偏析しやすいMn、Niを多量に含有させているので、上述のように曲げ性や部品としての衝突性に劣ることが容易に予想される。   Further, the transformation phenomenon locally changes due to solidification segregation, and the crystal grain size becomes non-uniform, so even the techniques disclosed in Patent Document 2 and Patent Document 3 cannot improve the bendability. In particular, in the techniques described in these documents, in order to ensure a tensile strength of 780 MPa or more, Mn and Ni that are prone to solidification and segregation are contained in the steel in a large amount. It is easily expected to be inferior to the collision property.

また、組織均一化の点から、単相組織という究極的なアプローチがあり、特許文献4に記載されているように、究極の均一組織であるマルテンサイト単相組織にすることによって、曲げ性も向上させることができるとされている。しかしながら、特許文献4に開示された技術のように、鋼組織をマルテンサイト単相にしたのでは、鋼板の平坦性が損なわれ、部品精度が必要な自動車部品として適用が困難となる。また、特許文献5に記載されているように、フェライト単相組織にすることによって、曲げ性と同様に局部変形能が必要な穴拡げ性と高強度化が両立できるとされている。しかしながら、特許文献5に開示された技術では、表面粗度と板厚制度を向上させる冷間圧延の工程が必要な高強度冷延鋼板や高強度溶融亜鉛めっき鋼板への適用を考慮して、冷間圧延が必要なプロセスに適用した場合、多量の炭窒化物形成元素を添加することにより、再結晶温度の上昇が起こり、Ac以上の高温焼鈍が必要となり、析出物の粗大化が進み、高強度化できない問題がある。 In addition, there is an ultimate approach of single-phase structure from the viewpoint of homogenization of the structure, and as described in Patent Document 4, by making a martensite single-phase structure that is the ultimate uniform structure, bendability is also achieved. It is said that it can be improved. However, if the steel structure is a martensite single phase as in the technique disclosed in Patent Document 4, the flatness of the steel sheet is impaired, making it difficult to apply as an automobile part that requires parts accuracy. Further, as described in Patent Document 5, it is said that by making a ferrite single-phase structure, it is possible to achieve both hole expandability and high strength that require local deformability as well as bendability. However, in the technique disclosed in Patent Document 5, in consideration of application to a high-strength cold-rolled steel sheet and a high-strength hot-dip galvanized steel sheet that require a cold rolling process that improves the surface roughness and thickness system, When applied to processes that require cold rolling, the addition of a large amount of carbonitride-forming elements raises the recrystallization temperature, necessitates high-temperature annealing of Ac 3 or higher, and the precipitation becomes coarser. There is a problem that the strength cannot be increased.

したがって、曲げ性と高強度化を両立させるためには、高強度化のためにMnを多量に含有しても均一組織が得られるような、一見相反することを両立させなければならない。   Therefore, in order to achieve both bendability and high strength, it is necessary to satisfy both seemingly contradictory conditions so that a uniform structure can be obtained even if a large amount of Mn is contained for high strength.

不均一組織の起源である凝固偏析そのものを拡散によって解消するアプローチがある。特許文献6に記載されているように、鋼材を1250℃以上の高温に10時間以上の長時間保持する溶質化処理によって、偏析が低減され、鋼材が均質化されるとされている。しかしながら、特許文献6に開示された技術だけでは、凝固偏析が完全に消滅することはないので、残存した偏析によって、不均一組織が形成され、加工部に凹凸を除去できず、曲げ性が十分でない。
特開昭62−13533号公報 特開2004−211126号公報 特開2004−250774号公報 特開2002−161336号公報 特開2002−322539号公報 特開平4−191322号公報
There is an approach to resolve the solidification segregation itself, which is the origin of the heterogeneous structure, by diffusion. As described in Patent Document 6, it is said that the segregation is reduced and the steel material is homogenized by a solute treatment in which the steel material is held at a high temperature of 1250 ° C. or higher for a long time of 10 hours or longer. However, since the solidification segregation does not disappear completely only by the technique disclosed in Patent Document 6, a non-uniform structure is formed due to the remaining segregation, and unevenness cannot be removed from the processed part, and the bendability is sufficient. Not.
Japanese Patent Laid-Open No. 62-13533 Japanese Patent Laid-Open No. 2004-211126 JP 2004-250774 A JP 2002-161336 A JP 2002-322539 A JP-A-4-191322

本発明は、上述したように従来の技術では製造することが困難であった、引張強度が780MPa以上で曲げ性に優れる高強度の鋼板及びその製造方法を提供することを目的とする。本発明において「曲げ性に優れる」とは、180゜曲げ試験の最小曲げ半径が1.0t以下であって、目視レベルで加工後の表面に凹凸が出現しないことを意味する。したがって、特に断りがない限り、本明細書における曲げ性はそのような物性、実部材の観察によって評価される。なお、シートフレーム、クロスメンバーやピラーといった高強度かつ複雑な形状の部品に対応するためには、曲げ性のみならず、延性も必要であり、所望の引張強度と曲げ性を達成しつつ、TS×EL値が14000MPa・%以上であることが好ましい。なお、部材の薄肉化に貢献するためには、所望の曲げ性を達成しつつ、引張強度が980MPa以上、TS×EL値が14000MPa・%以上であることがさらに好ましい。   An object of the present invention is to provide a high-strength steel sheet having a tensile strength of 780 MPa or more and excellent bendability, and a method for manufacturing the same, which have been difficult to manufacture with the conventional technology as described above. In the present invention, “excellent bendability” means that the minimum bend radius of the 180 ° bend test is 1.0 t or less, and no irregularities appear on the surface after processing at the visual level. Therefore, unless otherwise specified, the bendability in this specification is evaluated by observing such physical properties and actual members. Note that not only bendability but also ductility is necessary to accommodate parts with high strength and complex shapes such as seat frames, cross members, and pillars, while achieving the desired tensile strength and bendability. * It is preferable that EL value is 14000 Mpa *% or more. In order to contribute to the thinning of the member, it is more preferable that the tensile strength is 980 MPa or more and the TS × EL value is 14000 MPa ·% or more while achieving desired bendability.

本発明は、高強度鋼板において、従来の技術では困難であった、凝固偏析に起因する不均一組織の生成を、抑制できるように、化学組成および製造条件を見直して最適化することによって所望のMn濃度分布とすることができ、これにより、引張強度が780MPa以上の曲げ性に優れる高強度鋼板を得られるという知見に基づくものである。   In the present invention, a high-strength steel sheet is obtained by reviewing and optimizing the chemical composition and manufacturing conditions so as to suppress the formation of a heterogeneous structure due to solidification segregation, which was difficult with conventional techniques. Based on the knowledge that a high-strength steel sheet excellent in bendability with a tensile strength of 780 MPa or more can be obtained.

本発明は、C:0.03%以上0.20%以下(本明細書においては特に断りがない限り化学組成に関する「%」は「質量%」を意味するものとする)、Si:0.005%以上2.0%以下、Mn:1.5%以上4.0%以下、P:0.1%以下、S:0.01%以下、sol.Al:0.01%以上1.0%以下およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、表面において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下であり、定常部のMn濃度(Mnst)と、Mn濃化部のMn濃度(Mnco)から算出されるMn偏析比(=Mnco/Mnst)が1.20以下であり、引張強度が780MPa以上で180°曲げ試験の限界最小曲げ半径が1.0t以下であることを特徴とする鋼板である。 In the present invention, C: 0.03% or more and 0.20% or less (in this specification, “%” relating to the chemical composition means “mass%” unless otherwise specified), Si: 0.004. 005% to 2.0%, Mn: 1.5% to 4.0%, P: 0.1% or less, S: 0.01% or less, sol. Al: 0.01% or more and 1.0% or less and N: 0.01% or less, with the balance being a chemical composition consisting of Fe and impurities, Mn-concentrated portion extending in the rolling direction on the surface Mn segregation ratio (= Mn co / Mn st ) calculated from the Mn concentration (Mn st ) of the Mn concentration part and the Mn concentration (Mn co ) of the Mn concentration part. Is a steel sheet characterized by a tensile strength of 780 MPa or more and a minimum bending radius of 180 ° bending test of 1.0 t or less.

この本発明に係る鋼板では、化学組成が、Feの一部に代えて、(i)Ti:0.2%以下、Nb:0.2%以下およびV:0.2%以下からなる群から選ばれた1種または2種以上を含有すること、(ii)Cr:1%以下、Mo:1%以下、Cu:1%以下およびNi:1%以下からなる群から選ばれた1種または2種以上を含有すること、(iii)Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下およびZr:0.01%以下からなる群から選ばれた1種または2種以上を含有すること、及び(iv)B:0.01%以下を含有することのうちの少なくとも一を満足することが望ましい。   In this steel sheet according to the present invention, instead of a part of Fe, the chemical composition is selected from the group consisting of (i) Ti: 0.2% or less, Nb: 0.2% or less, and V: 0.2% or less. One or two or more selected, (ii) Cr: 1% or less, Mo: 1% or less, Cu: 1% or less, and Ni: 1% or less 1 or more selected from the group consisting of Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, and Zr: 0.01% or less. It is desirable to satisfy at least one of containing seeds or two or more, and (iv) B: containing 0.01% or less.

別の観点からは、本発明は、下記(A)〜(C)の工程を備えることを特徴とする、上述した本発明に係る鋼板の製造方法である。   From another viewpoint, the present invention is a method for manufacturing a steel sheet according to the present invention described above, comprising the following steps (A) to (C).

(A)上述した化学組成を備える鋼材を1200℃以上1350℃以下の温度域に5時間以上30時間以下保持する均質化工程; (A) A homogenization step of holding a steel material having the above-described chemical composition in a temperature range of 1200 ° C. to 1350 ° C. for 5 hours to 30 hours;

(B)均質化工程により得られた鋼材に仕上温度:800℃以上950℃以下、巻取温度:400℃以上700℃以下の熱間圧延を施して熱延鋼板とし、この熱延鋼板に冷間圧延を施して冷延鋼板とする熱間圧延工程および冷間圧延工程であって、熱間圧延と冷間圧延との総圧下率が95%以上である熱間圧延工程および冷間圧延工程;ならびに (B) The steel material obtained by the homogenization process is hot rolled at a finishing temperature of 800 ° C. or higher and 950 ° C. or lower and a winding temperature of 400 ° C. or higher and 700 ° C. or lower to obtain a hot rolled steel plate. A hot rolling process and a cold rolling process in which cold rolling is performed to form a cold rolled steel sheet, wherein the total rolling reduction ratio between the hot rolling and the cold rolling is 95% or more. And

(C)この冷延鋼板に750℃以上950℃以下の温度域で焼鈍を施す連続焼鈍工程。 (C) The continuous annealing process which anneals this cold-rolled steel plate in the temperature range of 750 degreeC or more and 950 degrees C or less.

この本発明にかかる鋼板の製造方法では、(A)の工程の前に、下記工程(D)を備えるが望ましい。   In the method for manufacturing a steel sheet according to the present invention, it is desirable to include the following step (D) before the step (A).

(D)鋼材の素材である連続鋳造スラブの連続鋳造時における表面の凝固速度が100℃/min以上である連続鋳造工程。 (D) A continuous casting process in which the solidification rate of the surface at the time of continuous casting of the continuous casting slab, which is a material of the steel material, is 100 ° C./min or more.

本発明により、780MPa以上の強度を有し、曲げ性に優れる高強度鋼板を得ることができる。本発明にかかる鋼板は、産業上、特に、自動車分野において、広範に使用可能である。   According to the present invention, a high-strength steel sheet having a strength of 780 MPa or more and excellent bendability can be obtained. The steel sheet according to the present invention can be widely used in industry, particularly in the automobile field.

以下、本発明を実施するための最良の形態を説明する。
はじめに、本発明にかかる鋼板の化学組成を上述のように規定した理由を説明する。
Hereinafter, the best mode for carrying out the present invention will be described.
First, the reason why the chemical composition of the steel sheet according to the present invention is defined as described above will be described.

(C:0.03%以上0.20%以下)
Cは、強度向上に寄与する元素であり、鋼板の引張強度を780MPa以上にするために、少なくとも0.03%以上含有する。しかし、0.20%を超えてCを含有すると溶接性が劣化する。このため、C含有量は0.03%以上0.20%以下とする。なお、引張強度を980MPa以上にするためにはCを少なくとも0.05%以上含有するため、C含有量は好ましくは0.05%以上0.20%以下である。
(C: 0.03% to 0.20%)
C is an element contributing to strength improvement, and is contained at least 0.03% or more in order to make the tensile strength of the steel plate 780 MPa or more. However, when C is contained exceeding 0.20%, the weldability deteriorates. For this reason, C content shall be 0.03% or more and 0.20% or less. In addition, in order to make tensile strength 980 Mpa or more, since C is contained at least 0.05% or more, C content is preferably 0.05% or more and 0.20% or less.

(Si:0.005%以上2.0%以下)
Siは、曲げ性をさほど劣化させることなく強度向上に寄与する元素であり、本発明では0.005%以上含有する。ただし、2.0%を超えてSiを含有すると、化成処理性が劣化する。このため、Si含有量は、0.005%以上2.0%以下とする。なお、0.2%を超えてSiを含有すると、めっきの濡れ性、合金化処理性及び密着性を劣化させるため、溶融亜鉛めっき鋼板の場合にはSi含有量は0.005%以上0.2%以下とする。
(Si: 0.005% to 2.0%)
Si is an element that contributes to strength improvement without significantly degrading bendability, and is contained in an amount of 0.005% or more in the present invention. However, when Si is contained exceeding 2.0%, chemical conversion property deteriorates. For this reason, Si content shall be 0.005% or more and 2.0% or less. If Si is contained in an amount exceeding 0.2%, the wettability, alloying property and adhesion of the plating are deteriorated. In the case of a hot-dip galvanized steel sheet, the Si content is 0.005% or more and 0.00. 2% or less.

(Mn:1.5%以上4.0%以下)
Mnは、強度向上に寄与する元素であり、鋼板の引張強度を780MPa以上にするために少なくとも1.5%以上含有する。ただし、4.0%を超えてMnを含有すると、転炉における鋼の溶解や精錬が困難になるだけでなく、溶接性が劣化する。このため、Mn含有量は1.5%以上4.0%以下とする。なお、引張強度を980MPa以上にするためには少なくとも1.8%以上Mnを含有する。一方、3.0%を超えてMnを含有すると、フェライト生成が抑制されて延性が劣化する。このため、Mn含有量は好ましくは1.8%以上3.0%以下とする。
(Mn: 1.5% to 4.0%)
Mn is an element contributing to strength improvement, and is contained at least 1.5% in order to make the tensile strength of the steel plate 780 MPa or more. However, when Mn is contained exceeding 4.0%, not only the melting and refining of the steel in the converter becomes difficult, but also the weldability deteriorates. For this reason, Mn content shall be 1.5% or more and 4.0% or less. In order to make the tensile strength 980 MPa or more, at least 1.8% or more of Mn is contained. On the other hand, when Mn is contained exceeding 3.0%, ferrite formation is suppressed and ductility deteriorates. For this reason, the Mn content is preferably 1.8% to 3.0%.

(P:0.1%以下)
Pは、一般には不可避的に含有される不純物であり、P含有量が0.1%超となると溶接性が劣化する。このため、P含有量は0.1%以下とする。一方、Pは固溶強化元素でもあり、鋼板の強化に有効であるので、その含有量は0.005%以上とすることが好ましい。
(P: 0.1% or less)
Generally, P is an unavoidable impurity, and when the P content exceeds 0.1%, weldability deteriorates. Therefore, the P content is 0.1% or less. On the other hand, since P is also a solid solution strengthening element and is effective for strengthening the steel sheet, its content is preferably 0.005% or more.

(S:0.01%以下)
Sは、鋼に不可避的に含有される不純物であり、曲げ性及び溶接性の観点からは低いほど望ましい。このため、S含有量は0.01%以下とする。好ましくは0.005%以下である。
(S: 0.01% or less)
S is an impurity inevitably contained in the steel, and is preferably as low as possible from the viewpoints of bendability and weldability. For this reason, S content shall be 0.01% or less. Preferably it is 0.005% or less.

(Al:0.01%以上1.0%以下)
Alは、鋼を脱酸させるために添加される元素であり、Ti等の炭窒化物形成元素の歩留まりを向上させるのに有効に作用する元素でもあるので、Al含有量は0.01%以上とする。ただし、1.0%を超えてAlを含有させると、溶接性が劣化するとともに、酸化物系介在物が増加するために表面性状が劣化する。このため、Al含有量は0.01%以上1.0%以下とする。なお、好ましくは0.02%以上0.2%以下である。
(Al: 0.01% to 1.0%)
Al is an element added to deoxidize steel, and is an element that effectively acts to improve the yield of carbonitride-forming elements such as Ti. Therefore, the Al content is 0.01% or more. And However, when Al is contained exceeding 1.0%, the weldability deteriorates and the oxide inclusions increase, so that the surface properties deteriorate. For this reason, Al content shall be 0.01% or more and 1.0% or less. In addition, Preferably it is 0.02% or more and 0.2% or less.

(N:0.01%以下)
Nは、鋼に不可避的に含有される不純物であり、曲げ性の観点からは低いほど望ましい。そのため、N含有量は0.01%以下とする。好ましくは0.006%以下である。
(N: 0.01% or less)
N is an impurity inevitably contained in the steel, and is preferably as low as possible from the viewpoint of bendability. Therefore, the N content is 0.01% or less. Preferably it is 0.006% or less.

(Ti:0.2%以下、Nb:0.2%以下、V:0.2%以下)
Ti、NbおよびVは、いずれも、必要に応じて含有する元素である。延性を確保しつつ、引張強度980MPa以上を確保するには、Ti、NbおよびVの1種または2種以上を含有することが有効である。この効果を確実に得るには、Ti、NbおよびVの何れかの元素を0.003%以上含有することが好ましい。ただし、0.2%を超えてTi、NbまたはVを含有すると、後述する均質化工程中に、Ti、NbまたはVの炭窒化物が粗大化して曲げ性が劣化する。このため、Ti、NbおよびVの含有量はそれぞれ0.2%以下とすることが好ましい。また、0.03%以上のTi、NbまたはVを含有する場合において、曲げ性を劣化させないためには、後述するように、連続焼鈍中に一旦、Ac点以上に加熱しなければならない。また、溶融亜鉛めっき鋼板とする場合、引張強度を780MPa以上にするために、Ti、NbおよびVの1種または2種以上を含有することが好ましい。
(Ti: 0.2% or less, Nb: 0.2% or less, V: 0.2% or less)
Ti, Nb, and V are all elements contained as necessary. In order to ensure a tensile strength of 980 MPa or more while ensuring ductility, it is effective to contain one or more of Ti, Nb and V. In order to reliably obtain this effect, it is preferable to contain 0.003% or more of any element of Ti, Nb, and V. However, if Ti, Nb, or V is contained in excess of 0.2%, Ti, Nb, or V carbonitrides become coarse during the homogenization step described later, and the bendability deteriorates. For this reason, it is preferable that the contents of Ti, Nb, and V are each 0.2% or less. Further, in the case of containing 0.03% or more of Ti, Nb or V, in order not to deteriorate the bendability, as described later, it is necessary to heat once to the Ac 3 point or more during the continuous annealing. Moreover, when setting it as a hot dip galvanized steel plate, in order to make tensile strength 780 Mpa or more, it is preferable to contain 1 type, or 2 or more types of Ti, Nb, and V.

(Cr:1%以下、Mo:1%以下、Cu:1%以下、Ni:1%以下)
Cr、Mo、CuおよびNiは、必要に応じて含有する元素である。連続焼鈍の冷却停止温度を300℃以上にして本発明にかかる鋼板を製造する場合において、引張強度980MPa以上を確保するには、Cr、Mo、CuおよびNiの1種または2種以上含有することが有効である。上記効果を確実に得るには、Cr、Mo、CuおよびNiのいずれかを0.01%以上含有することが好ましい。ただし、それぞれ1%を超えてCr、Mo、CおよびNiを含有しても上記効果が飽和してしまい、経済的に無駄であるだけでなく、熱延板が硬質となって冷間圧延が困難となる。このため、Cr、Mo、CuおよびNiの1種または2種以上を上記の量で含有することが好ましい。
(Cr: 1% or less, Mo: 1% or less, Cu: 1% or less, Ni: 1% or less)
Cr, Mo, Cu and Ni are elements contained as necessary. In the case of producing a steel sheet according to the present invention with a cooling stop temperature of continuous annealing at 300 ° C. or higher, to ensure a tensile strength of 980 MPa or more, it should contain one or more of Cr, Mo, Cu and Ni. Is effective. In order to reliably obtain the above effects, it is preferable to contain at least 0.01% of Cr, Mo, Cu and Ni. However, even if it contains Cr, Mo, C and Ni in excess of 1%, the above effect is saturated and not only economically wasteful, but the hot-rolled sheet becomes hard and cold rolling is not possible. It becomes difficult. For this reason, it is preferable to contain 1 type (s) or 2 or more types of Cr, Mo, Cu, and Ni by said quantity.

(Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下、Zr:0.01%以下)
Ca、Mg、REMおよびZrは、必要に応じて含有する元素であって、介在物制御、特に微細分散化に寄与し、曲げ性をさらに向上させる元素であるので、いずれかの元素を0.001%以上含有することが好ましい。しかし、過剰に含有させると表面性状を劣化させるため、それぞれの元素の含有量を0.01%以下とすることが好ましい。
(Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, Zr: 0.01% or less)
Ca, Mg, REM, and Zr are elements that are contained as necessary, and contribute to inclusion control, particularly fine dispersion, and further improve bendability. It is preferable to contain 001% or more. However, since the surface properties are deteriorated if excessively contained, the content of each element is preferably 0.01% or less.

(B:0.01%以下)
Bは、必要に応じて含有する元素であって、組織を均一微細にする効果だけでなく、粒界や異相界面の強度を上げる効果によって、微小亀裂の発生を抑制し、曲げ性向上に寄与する元素であるので、0.0005%以上含有することが好ましい。ただし、0.01%を超えてBを含有すると、粒界にホウ化物が形成され、曲げ性が劣化する。このため、B含有量は0.01%以下とすることが好ましい。
(B: 0.01% or less)
B is an element contained as necessary, and not only has the effect of making the structure uniform and fine, but also has the effect of increasing the strength of the grain boundaries and heterogeneous interfaces, thereby suppressing the occurrence of microcracks and contributing to improved bendability. Therefore, it is preferable to contain 0.0005% or more. However, when B is contained exceeding 0.01%, a boride is formed at the grain boundary, and the bendability deteriorates. For this reason, it is preferable that B content shall be 0.01% or less.

なお、上記した成分以外の残部はFeおよび不純物である。
次に、本発明の鋼板のMn分布の限定理由について説明する。
上記した組成を有する本発明の鋼板は、鋼板表面において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下であり、Mn偏析比が1.20以下である。
The balance other than the components described above is Fe and impurities.
Next, the reason for limiting the Mn distribution of the steel sheet of the present invention will be described.
In the steel sheet of the present invention having the above-described composition, the average interval in the sheet width direction of the Mn-concentrated portion extended in the rolling direction on the steel sheet surface is 250 μm or less, and the Mn segregation ratio is 1.20 or less.

(Mn濃化部の板幅方向の平均間隔:250μm以下)
本発明にかかる鋼板のMn分布は、表面から1/20t深さ位置(t:鋼板の板厚)において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下である。Mn濃化部の板幅方向の平均間隔が250μm以下であることにより、加工部に凹凸が発生しにくくなり、曲げ性の向上に寄与する。また、Mn濃化部が250μm以下であることは、換言すると、熱間圧延に供する鋼材において不均一組織のもととなる最表層のデンドライト一次アーム間隔が250μm以下である。鍛造せずに一次アーム間隔を250μm以下とするためには、スラブ鋳片の表面における凝固速度を100℃/min以上とすることが有効である。後述するように、デンドライト一次アーム間隔が250μm以下になることによって、Mn偏析を解消させるために必要な均質化工程の時間を大幅に短縮でき、曲げ性を向上できる。
(Average distance in the plate width direction of Mn enriched part: 250 μm or less)
The Mn distribution of the steel sheet according to the present invention is such that the average interval in the sheet width direction of the Mn-concentrated portion extended in the rolling direction is 250 μm or less at a 1/20 ton depth position (t: sheet thickness of the steel sheet) from the surface. . When the average interval in the plate width direction of the Mn-concentrated portion is 250 μm or less, unevenness is hardly generated in the processed portion, which contributes to improvement in bendability. In addition, the fact that the Mn-concentrated portion is 250 μm or less means that the outermost dendrite primary arm spacing that is the basis of the non-uniform structure in the steel material subjected to hot rolling is 250 μm or less. In order to set the primary arm interval to 250 μm or less without forging, it is effective to set the solidification rate on the surface of the slab slab to 100 ° C./min or more. As will be described later, when the dendrite primary arm interval is 250 μm or less, the time of the homogenization step required to eliminate Mn segregation can be greatly shortened, and the bendability can be improved.

(Mn偏析比:1.20以下)
表面において、Mn偏析比が1.20以下とする。Mn偏析比が1.20以下であることにより、均一組織となり、加工部に凹凸が発生しにくくなり、曲げ性向上に寄与する。また、Mn偏析比が1.20以下とするには、後述するように、均質化処理する必要がある。
(Mn segregation ratio: 1.20 or less)
On the surface, the Mn segregation ratio is 1.20 or less. When the Mn segregation ratio is 1.20 or less, a uniform structure is obtained, and unevenness is less likely to occur in the processed portion, which contributes to improvement in bendability. Moreover, in order to make Mn segregation ratio 1.20 or less, it is necessary to perform a homogenization treatment as described later.

次に、本発明の鋼板の製造方法の限定理由について説明する。
上記した化学組成の溶鋼を転炉、電気炉等の通常公知の溶製方法で溶製し、連続鋳造法でスラブ等の鋼材とするのが望ましい。なお、連続鋳造法に代えて、造塊法、薄スラブ鋳造法などを採用してもよい。
Next, the reason for limitation of the manufacturing method of the steel plate of this invention is demonstrated.
It is desirable to melt the molten steel having the above-described chemical composition by a generally known melting method such as a converter or an electric furnace and to produce a steel material such as a slab by a continuous casting method. In place of the continuous casting method, an ingot casting method, a thin slab casting method, or the like may be employed.

これら溶製した鋼材を鍛造せずに均質化処理する場合には、上述した一次アーム間隔を250μm以下にするために、スラブ鋳片の表面から10mm深さ位置における凝固速度を100℃/min以上とすることが望ましい。この鋳造された鋼材に均質化処理を施す。   When homogenizing these molten steel materials without forging, the solidification rate at a depth of 10 mm from the surface of the slab slab is set to 100 ° C./min or more in order to reduce the primary arm interval to 250 μm or less. Is desirable. The cast steel is subjected to a homogenization process.

(均質化温度:1200℃以上1350℃以下)
本発明では、均質化温度を1200℃以上1350℃以下とする。均質化温度が1200℃未満では、Mn偏析による不均一組織が解消されず、曲げ性を改善することが出来ない。一方、1350℃を超えると、スケールロスが増加するだけでなく、加熱炉の損傷が著しく、量産できない。
(Homogenization temperature: 1200 ° C to 1350 ° C)
In the present invention, the homogenization temperature is set to 1200 ° C. or higher and 1350 ° C. or lower. If the homogenization temperature is less than 1200 ° C., the non-uniform structure due to Mn segregation is not eliminated and the bendability cannot be improved. On the other hand, when the temperature exceeds 1350 ° C., not only the scale loss increases but also the heating furnace is remarkably damaged and cannot be mass-produced.

(均質化時間:5時間以上30時間以下)
本発明では、均質化時間を5時間以上30時間以下とする。均質化時間が5時間未満では、Mn偏析による不均一組織が解消されず、曲げ性を改善することが出来ない。一方、30時間を超えると、スケールロスが増加するだけでなく、生産性が劣り、コスト高に繋がる。
(Homogenization time: 5 hours to 30 hours)
In the present invention, the homogenization time is 5 hours or more and 30 hours or less. If the homogenization time is less than 5 hours, the non-uniform structure due to Mn segregation is not eliminated and the bendability cannot be improved. On the other hand, when it exceeds 30 hours, not only the scale loss increases, but also the productivity is inferior and the cost is increased.

この鋼材に熱間圧延と冷間圧延とを施し、熱間圧延と冷間圧延との総圧下率を95%以上として冷延鋼板とする。このとき、熱間圧延工程において、粗圧延後仕上圧延前の粗バーに対して、誘導加熱等により全長の温度均一化を図ると、特性変動を抑制することができるので好ましい。   The steel material is subjected to hot rolling and cold rolling to obtain a cold rolled steel sheet with a total rolling reduction ratio between hot rolling and cold rolling of 95% or more. At this time, in the hot rolling process, it is preferable to equalize the temperature of the full length of the rough bar after rough rolling and before finish rolling by induction heating or the like because characteristic fluctuations can be suppressed.

(仕上温度:800℃以上950℃以下)
本発明では、仕上温度を800℃以上950℃以下とする。仕上温度が800℃未満では、圧延時の変形抵抗が大きく、操業できない。一方、950℃を超えると、スケールによる疵が発生し、表面性状が劣化する。
(Finish temperature: 800 ° C or higher and 950 ° C or lower)
In the present invention, the finishing temperature is 800 ° C. or higher and 950 ° C. or lower. When the finishing temperature is less than 800 ° C., the deformation resistance during rolling is large and the operation is impossible. On the other hand, if it exceeds 950 ° C., wrinkles due to scale occur and the surface properties deteriorate.

(巻取温度:400℃以上750℃以下)
本発明では、巻取温度を400℃以上750℃以下とする。巻取温度が400℃未満では、硬質なベイナイトやマルテンサイトが生成し、その後の冷間圧延が困難となる。また、巻取温度が750℃を超えると、鋼板表面の酸化が促進され、表面性状が劣化する。
(Winding temperature: 400 ° C or higher and 750 ° C or lower)
In this invention, coiling temperature shall be 400 degreeC or more and 750 degrees C or less. When the coiling temperature is less than 400 ° C., hard bainite and martensite are generated, and subsequent cold rolling becomes difficult. Moreover, when coiling temperature exceeds 750 degreeC, the oxidation of the steel plate surface will be accelerated | stimulated and surface properties will deteriorate.

熱延鋼板は、通常の方法で酸洗を施された後に冷間圧延が行われ、冷延鋼板とされる。   The hot-rolled steel sheet is pickled by a normal method and then cold-rolled to obtain a cold-rolled steel sheet.

(熱間圧延と冷間圧延を併せての総圧下率:95%以上)
本発明では、熱間圧延と冷間圧延を併せての総圧下率を95%以上とする。熱延板を酸洗する場合、総圧下率は次式で算出される。
(Total rolling reduction combined with hot rolling and cold rolling: 95% or more)
In the present invention, the total rolling reduction by combining hot rolling and cold rolling is 95% or more. When pickling hot-rolled sheets, the total rolling reduction is calculated by the following equation.

総圧下率(%)=(1−冷延板の板厚/均質化処理する鋼材の板厚)×100
前述したように、凝固偏析を均質化処理だけで完全に解消することは難しい。加工後に発生する表面凹凸は、圧延面内に存在する圧延方向に展伸したMn濃度の板幅方向の変動だけでなく、Mn濃化帯が板厚方向に厚みを持つことにも由来する。したがって、Mn濃化帯の厚みを減ずることによって、加工後の表面凹凸の抑制が促進され、曲げ性が改善される。その効果を発現させるためには、前述した均質化処理を施したうえで、上記総圧下率を95%以上とすることが有効である。なお、連続焼鈍後の鋼板の組織を均一にするためには、冷間圧延の圧下率は30%以上とするのが好ましい。なお、酸洗の前もしくは後に、圧下率5%以下程度の軽度の圧延を行い、形状を修正すると平坦確保の点で有利となる。また、この軽度の圧延により、酸洗性が向上し、表面濃化元素の除去が促進され、溶融めっき亜鉛鋼板のめっき密着性、冷延鋼板の表面性状を向上させる効果がある。
Total rolling reduction (%) = (1-thickness of cold-rolled sheet / thickness of steel material to be homogenized) × 100
As described above, it is difficult to completely eliminate solidification segregation only by homogenization. The surface unevenness generated after the processing is derived not only from the fluctuation of the Mn concentration expanded in the rolling direction existing in the rolling surface in the plate width direction but also from the fact that the Mn concentration band has a thickness in the plate thickness direction. Therefore, by reducing the thickness of the Mn-concentrated band, suppression of surface irregularities after processing is promoted, and bendability is improved. In order to express the effect, it is effective to set the total rolling reduction to 95% or more after performing the homogenization treatment described above. In order to make the structure of the steel sheet after continuous annealing uniform, it is preferable that the rolling reduction of cold rolling is 30% or more. In addition, before or after pickling, it is advantageous in terms of ensuring flatness by performing mild rolling with a rolling reduction of about 5% or less and correcting the shape. Further, this mild rolling improves pickling properties, promotes removal of surface enriching elements, and has the effect of improving the plating adhesion of hot-dip galvanized steel sheets and the surface properties of cold-rolled steel sheets.

このようにして得られた冷延鋼板は、本発明によれば、750℃以上950℃以下の温度域で焼鈍を施す。その際、引張強度、曲げ性は焼鈍温度までの昇温速度の影響を受けないが、生産性の点から、昇温速度を1℃/s以上とすることが好ましい。   The cold-rolled steel sheet thus obtained is annealed in the temperature range of 750 ° C. or more and 950 ° C. or less according to the present invention. At that time, the tensile strength and bendability are not affected by the rate of temperature rise up to the annealing temperature, but from the viewpoint of productivity, the rate of temperature rise is preferably 1 ° C./s or more.

(焼鈍温度:750℃以上950℃以下)
本発明では、750℃以上950℃以下の温度域で焼鈍を施す。焼鈍温度が750℃未満では、未再結晶が残存し、均一な組織が得られなくなり、曲げ性とともに延性が低下する。一方、950℃を超えると、焼鈍炉の損傷が著しく、量産できない。なお、Ti、NbまたはVを含有する場合、再結晶が抑制されるので、均一組織として曲げ性を劣化させないためには、連続焼鈍中に一旦、Ac点以上に加熱することが有効である。
(Annealing temperature: 750 ° C or higher and 950 ° C or lower)
In the present invention, annealing is performed in a temperature range of 750 ° C. or more and 950 ° C. or less. When the annealing temperature is less than 750 ° C., unrecrystallized remains, a uniform structure cannot be obtained, and ductility is lowered along with bendability. On the other hand, when the temperature exceeds 950 ° C., the annealing furnace is significantly damaged and cannot be mass-produced. In the case where Ti, Nb or V is contained, recrystallization is suppressed. Therefore, in order not to deteriorate the bendability as a uniform structure, it is effective to heat to Ac 3 points or more once during continuous annealing. .

なお、未再結晶を完全に除去し、曲げ性を安定確保するためには、均熱時間は5s以上とすることが好ましい。一方、生産性の観点からは、200s以内とすることが好ましい。   In order to completely remove unrecrystallized crystals and to ensure stable bendability, the soaking time is preferably 5 s or longer. On the other hand, from the viewpoint of productivity, it is preferably within 200 s.

焼鈍後の冷却については、引張強度980MPa以上を確保するために、650℃から550℃までの平均冷却速度を5℃/s以上とする。平均冷却速度を650℃から550℃までの温度域で規定する理由は、その温度域にて、軟質なフェライトと曲げ性劣化に作用するセメンタイトが生成しやすいので、冷却中のフェライト、セメンタイトの生成を抑制することにより、強度と曲げ性の両立を図るためである。   About cooling after annealing, in order to secure a tensile strength of 980 MPa or more, an average cooling rate from 650 ° C. to 550 ° C. is set to 5 ° C./s or more. The reason why the average cooling rate is defined in the temperature range from 650 ° C. to 550 ° C. is that soft ferrite and cementite acting on bendability deterioration are likely to be generated in that temperature range, so the formation of ferrite and cementite during cooling This is to suppress both the strength and the bendability.

曲げ性は、冷却停止温度の影響を受けない。ただし、焼鈍後の鋼板の平坦性を高めるためには、冷却停止温度を300℃以上とし、300℃以上550℃以下で150s以上保持することが好ましい。しかし、冷却停止温度を300℃以上とし、300℃以上550℃以下で150s以上保持すると、鋼板の引張強度を980MPa以上にすることが困難となる。このため、冷却停止温度が300℃以上で、引張強度を980MPa以上にするために、Cr、Mo、CuおよびNiの1種または2種以上を含有することが望ましい。   The bendability is not affected by the cooling stop temperature. However, in order to improve the flatness of the steel sheet after annealing, it is preferable to set the cooling stop temperature to 300 ° C. or higher and hold it at 300 ° C. or higher and 550 ° C. or lower for 150 seconds or longer. However, if the cooling stop temperature is set to 300 ° C. or higher and held at 300 ° C. or higher and 550 ° C. or lower for 150 seconds or longer, it becomes difficult to make the tensile strength of the steel plate 980 MPa or higher. For this reason, in order to make cooling stop temperature 300 degreeC or more and to make tensile strength 980 Mpa or more, it is desirable to contain 1 type, or 2 or more types of Cr, Mo, Cu, and Ni.

また、溶融亜鉛めっき鋼板の場合は、比較的高温のめっき浴へ浸漬し、浸漬後に、合金化処理による再加熱を施すことがあるので、鋼板の引張強度を780MPa以上にすることが困難となる。このため、溶融亜鉛めっき鋼板の場合で、かつ引張強度を780MPa以上にするために、Ti、NbおよびVの1種または2種以上の含有、または、Cr、Mo、CuおよびNiの1種または2種以上の含有が有効である。溶融亜鉛めっき鋼板の場合、冷却停止温度は460℃以上600℃以下とするのが好ましい。冷却停止温度が460℃未満では、めっき浴浸入時の抜熱が大きく、操業できない。一方、600℃超では、操業が難しい。なお、溶融亜鉛めっきに関しては、常法に従い、410℃以上490℃以下の溶融亜鉛めっき浴中に浸漬する。浸漬後、合金化処理してもよい。合金化処理する場合、合金化処理を460℃以上600℃以下とすることが望ましい。合金化処理温度が460℃未満では、合金化未処理が発生し、鋼板の表面性状が劣化する。一方、合金化処理温度が600℃を超えると、パウダリングが発生する。   Moreover, in the case of a hot dip galvanized steel sheet, since it may be immersed in a relatively high temperature plating bath and reheated by alloying treatment after immersion, it becomes difficult to make the tensile strength of the steel sheet 780 MPa or more. . For this reason, in the case of a hot dip galvanized steel sheet and to make the tensile strength 780 MPa or more, the content of one or more of Ti, Nb and V, or one of Cr, Mo, Cu and Ni or Containing two or more is effective. In the case of a hot dip galvanized steel sheet, the cooling stop temperature is preferably 460 ° C. or more and 600 ° C. or less. When the cooling stop temperature is less than 460 ° C., the heat removal at the time of entering the plating bath is large and the operation cannot be performed. On the other hand, if it exceeds 600 ° C., the operation is difficult. In addition, regarding hot dip galvanization, it is immersed in the hot dip galvanization bath of 410 degreeC or more and 490 degrees C or less according to a conventional method. An alloying treatment may be performed after the immersion. In the case of alloying treatment, it is desirable that the alloying treatment be 460 ° C. or higher and 600 ° C. or lower. When the alloying treatment temperature is less than 460 ° C., unalloyed treatment occurs, and the surface properties of the steel sheet deteriorate. On the other hand, when the alloying temperature exceeds 600 ° C., powdering occurs.

さらに、焼鈍後に調質圧延を伸び率0.05%以上1%以下で行うことが好ましい。調質圧延によって降伏点伸びを抑制するとともにプレス時の焼付け、かじりを防止することができる。   Furthermore, it is preferable to perform temper rolling after annealing at an elongation of 0.05% to 1%. By temper rolling, yield point elongation can be suppressed and seizure and galling during pressing can be prevented.

このように、本発明により、表面において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下であり、Mn偏析比が1.2以下であり、引張強度が780MPa以上である、曲げ性に優れた高強度鋼板が得られる。   Thus, according to the present invention, on the surface, the average interval in the plate width direction of the Mn-concentrated portion expanded in the rolling direction is 250 μm or less, the Mn segregation ratio is 1.2 or less, and the tensile strength is 780 MPa or more. A high-strength steel sheet having excellent bendability is obtained.

表1に示す化学組成を有する鋼を転炉で溶製し、スラブ鋳片の表面から10mm深さ位置における凝固速度が表2に示す条件となるようにして連続鋳造することにより、245mm厚のスラブを作製した。   A steel having the chemical composition shown in Table 1 is melted in a converter and continuously cast so that the solidification rate at a depth position of 10 mm from the surface of the slab slab becomes the condition shown in Table 2 to obtain a thickness of 245 mm. A slab was made.

Figure 2009221519
Figure 2009221519

連続鋳造スラブの表面より、幅160mm×長さ200mm×厚さ30mmの鋼材を切り出し、表2に示す条件にて熱間圧延、酸洗、冷間圧延を施し冷延鋼板とした。ただし、Mn濃化部の板幅方向の平均間隔を変化させるために、供試材No.7だけは、スラブ表面より60mm内側の位置より、幅160mm×長さ200mm×厚さ30mmの鋼材を切り出した。   A steel material having a width of 160 mm, a length of 200 mm, and a thickness of 30 mm was cut out from the surface of the continuously cast slab, and subjected to hot rolling, pickling, and cold rolling under the conditions shown in Table 2 to obtain a cold rolled steel sheet. However, in order to change the average interval in the plate width direction of the Mn enriched portion, the test material No. For No. 7, a steel material having a width of 160 mm, a length of 200 mm, and a thickness of 30 mm was cut out from a position 60 mm inside the slab surface.

Figure 2009221519
Figure 2009221519

得られた冷延鋼板に対し、10℃/sの昇温速度で加熱し、表3に示す連続焼鈍条件に基づき、加熱し、焼鈍した。焼鈍温度から冷却停止温度まで表3に示す条件で冷却し、それ以降、冷延鋼板製造時、溶融亜鉛めっき鋼板製造時の熱処理を模擬するように、表3に示す条件で焼鈍板を作製した。各種冷延板を用いて、Ac点を測定するとともに、各種製造条件で得られた焼鈍板に対して、EPMA分析によりMn分布を調査した。また、引張試験、曲げ稜線が圧延方向となるような曲げ試験を実施し、機械特性を評価した。また、曲げ変形後の外観は、曲げ半径が1.0t(=1.2mm)となるような成形後に、目視にて凹凸の有無を確認した。 The obtained cold-rolled steel sheet was heated at a heating rate of 10 ° C./s, and heated and annealed based on the continuous annealing conditions shown in Table 3. Cooling was performed under the conditions shown in Table 3 from the annealing temperature to the cooling stop temperature, and thereafter, annealing plates were produced under the conditions shown in Table 3 so as to simulate the heat treatment during cold-rolled steel sheet manufacturing and hot-dip galvanized steel sheet manufacturing. . Ac 3 points were measured using various cold-rolled sheets, and Mn distribution was investigated by EPMA analysis on the annealed sheets obtained under various production conditions. In addition, a tensile test and a bending test in which the bending ridge line is in the rolling direction were performed to evaluate mechanical properties. In addition, the appearance after bending deformation was visually checked for irregularities after molding such that the bending radius was 1.0 t (= 1.2 mm).

Figure 2009221519
Figure 2009221519

(実験方法)
(平均凝固速度)
得られたスラブの断面をピクリン酸にてエッチングし、鋳片の表面から10mm深さ位置にて、5箇所のデンドライト2次アーム間隔λ(μm)を測定し、下記式に基づいて、その値からスラブの液相線温度〜固相線温度内の冷却速度A(℃/分)を算出した。
(experimental method)
(Average solidification rate)
The cross section of the obtained slab was etched with picric acid, and the five dendritic secondary arm intervals λ (μm) were measured at a depth of 10 mm from the surface of the cast slab. The cooling rate A (° C./min) within the liquidus temperature to the solidus temperature of the slab was calculated.

λ=710×A−0.39 λ = 710 × A −0.39

(Ac点の測定)
表1に示す化学組成の鋼の冷延板を用い、10℃/sの昇温速度で加熱した際の膨張率変化を解析することによって、各供試鋼のAc点を測定した。
(Ac 3 point measurement)
By using a cold-rolled steel plate having the chemical composition shown in Table 1, the change in the expansion coefficient when heated at a rate of temperature increase of 10 ° C./s was measured to measure Ac 3 points of each test steel.

(EPMA分析)
各種焼鈍板の圧延面を研削して表面から1/20t深さ位置(t:鋼板の板厚)をバフ研磨し、分析用サンプルを作製し、EPMAでMn分布を調査した。ビーム系10μmにて、圧延方向に500μm、圧延方向に直角方向に総計8mmの領域を測定し、500μm幅で平均された圧延方向に直角方向のMn濃度分布を解析した。得られたMn濃度分布より、極大値をMn濃化部とし、極小値を定常部とし、Mn偏析比とMn濃化部の平均間隔を算出した。
(EPMA analysis)
The rolled surface of various annealed plates was ground and buffed at a 1/20 ton depth position (t: plate thickness of the steel plate) from the surface to prepare an analytical sample, and the Mn distribution was examined by EPMA. With a beam system of 10 μm, an area of 500 μm in the rolling direction and a total of 8 mm in the direction perpendicular to the rolling direction was measured, and the Mn concentration distribution in the direction perpendicular to the rolling direction averaged over a width of 500 μm was analyzed. From the obtained Mn concentration distribution, the maximum value was defined as the Mn concentrated portion, the minimum value was defined as the stationary portion, and the Mn segregation ratio and the average interval between the Mn concentrated portions were calculated.

(引張試験)
圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度(TS)、伸び(El)を測定した。
(Tensile test)
A JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction, and the tensile strength (TS) and elongation (El) were measured.

(曲げ試験)
各種焼鈍板から、曲げ稜線が圧延方向となるように、圧延方向に直角方向を長手方向とする曲げ試験片(幅40mm×長さ100mm×板厚1.2mm)を採取した。その際、板厚が1.2mm以上の焼鈍板は曲げ内側となる面を研削し、板厚1.2mmの試験片とした。なお、曲げ外側となる面は、実際の鋼板最表面を再現するために、スラブの表面側とした。2.4mmの鋼板を挟んだ180゜曲げ試験を実施し、割れの有無を目視にて確認した。割れが無い試験片に対して、前回より1.2mmだけ薄い1.2mmの鋼板を挟んだ180゜曲げ試験を実施し、同様に割れの有無を確認した。割れが無い場合、さらに、鋼板を挟まない密着曲げを行い、同様に割れの有無を確認した。
(Bending test)
Bending test pieces (width 40 mm × length 100 mm × sheet thickness 1.2 mm) having a longitudinal direction perpendicular to the rolling direction were collected from various annealed plates so that the bending ridge line was in the rolling direction. At that time, the surface of the annealed plate having a thickness of 1.2 mm or more was ground on the inner side of the bend to obtain a test piece having a thickness of 1.2 mm. In addition, in order to reproduce an actual steel plate outermost surface, the surface which becomes a bending outer side was the surface side of the slab. A 180 ° bending test with a 2.4 mm steel plate sandwiched was performed, and the presence or absence of cracks was confirmed visually. A 180 ° bending test with a 1.2 mm steel plate thinner by 1.2 mm than the previous test was performed on the test piece having no crack, and the presence or absence of a crack was similarly confirmed. When there was no crack, the contact bending which did not pinch | interpose a steel plate was performed, and the presence or absence of the crack was confirmed similarly.

試験後に割れが認められない鋼板の板厚を曲げ試験片の板厚の2倍(2.4mm)で割ることにより、板厚(t)で規格した最小曲げ半径(表4にRminと表示)を算出した。   The minimum bend radius standardized by the plate thickness (t) by dividing the plate thickness of the steel plate that is not cracked after the test by twice the plate thickness of the bent specimen (2.4 mm) (indicated as Rmin in Table 4) Was calculated.

(曲げ変形後の表面性状)
各種焼鈍板から、曲げ稜線が圧延方向となるように、圧延方向に直角方向を長手方向とする曲げ試験片(幅40mm×長さ60mm×板厚1.2mm)を採取した。その際、板厚が1.2mm以上の焼鈍板は曲げ内側となる面を研削し、板厚1.2mmの試験片とした。なお、曲げ外側となる面は、実際の鋼板最表面を再現するために、スラブの表面側とした。先端に1.2mmの半径を持つ90゜のポンチで押し込み、曲げ試験を実施し、表面の凹凸の有無を目視にて確認した。凹凸が有るものを不良、無いものを良好とした。
(Surface properties after bending deformation)
Bending specimens (width 40 mm × length 60 mm × sheet thickness 1.2 mm) having a longitudinal direction perpendicular to the rolling direction were collected from various annealed plates so that the bending ridge line was in the rolling direction. At that time, the surface of the annealed plate having a thickness of 1.2 mm or more was ground on the inner side of the bend to obtain a test piece having a thickness of 1.2 mm. In addition, in order to reproduce an actual steel plate outermost surface, the surface which becomes a bending outer side was the surface side of the slab. The tip was pushed with a 90 ° punch having a radius of 1.2 mm, a bending test was performed, and the presence or absence of surface irregularities was visually confirmed. Those with irregularities were judged as bad and those with no irregularities as good.

(試験結果の説明)
これらの結果を表4に示す。
(Explanation of test results)
These results are shown in Table 4.

Figure 2009221519
Figure 2009221519

本発明例の鋼板は、表面において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下であり、Mn偏析比が1.2以下であり、引張強度が780MPa以上の曲げ性に優れた高強度鋼板が得られる。   In the steel sheet of the present invention, the average interval in the plate width direction of the Mn-concentrated portion extended in the rolling direction on the surface is 250 μm or less, the Mn segregation ratio is 1.2 or less, and the tensile strength is 780 MPa or more. A high-strength steel sheet with excellent bendability can be obtained.

これに対し、比較例の供試材No.1、2、5、6、9は製造条件が本発明の範囲から外れており、曲げ性が悪く、曲げ変形後の表面性状が不良となる。また、供試材No.7は所望のMn分布が満足しておらず、曲げ性が悪く、曲げ変形後の表面性状が不良となる。また、比較例の供試材No.11は製造条件が本発明の範囲から外れており、曲げ性が悪い。また、比較例の供試材No.16は化学組成と製造条件の組み合わせが好適条件から外れており、所望の強度が得られない。   On the other hand, the test sample No. The manufacturing conditions of 1, 2, 5, 6, and 9 are out of the scope of the present invention, the bendability is poor, and the surface properties after bending deformation are poor. In addition, specimen No. No. 7 does not satisfy the desired Mn distribution, the bendability is poor, and the surface properties after bending deformation are poor. In addition, the test sample No. No. 11 has a manufacturing condition outside the scope of the present invention, and the bendability is poor. In addition, the test sample No. In No. 16, the combination of chemical composition and manufacturing conditions is out of the preferred conditions, and the desired strength cannot be obtained.

本発明例のうち、Ti、NbまたはVの含有量が上述した好ましい範囲にある鋼板No.8、10、15、18は引張強度が980MPa以上であって、(TS×El)値が14000MPa・%以上であり、曲げ性に優れたさらに好ましい高強度鋼板である。   Among the examples of the present invention, the steel plate No. in which the content of Ti, Nb or V is in the above-described preferred range. Nos. 8, 10, 15, and 18 are more preferable high-strength steel sheets having a tensile strength of 980 MPa or more and a (TS × El) value of 14000 MPa ·% or more and excellent bendability.

Mn濃度分布の一例を示す説明図である。It is explanatory drawing which shows an example of Mn density | concentration distribution. 高強度鋼板の不均一組織を示す説明図である。It is explanatory drawing which shows the nonuniform structure of a high strength steel plate. 曲げ変形後の表面性状を示す説明図である。It is explanatory drawing which shows the surface property after bending deformation.

Claims (7)

質量%で、C:0.03〜0.20%、Si:0.005〜2.0%、Mn:1.5〜4.0%、P:0.1%以下、S:0.01%以下、sol.Al:0.01〜1.0%およびN:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、表面から1/20t深さ位置(t:鋼板の板厚)において、圧延方向に展伸したMn濃化部の板幅方向の平均間隔が250μm以下であり、定常部のMn濃度(Mnst)とMn濃化部のMn濃度(Mnco)から算出されるMn偏析比(Mnco/Mnst)が1.20以下であり、引張強度が780MPa以上であるとともに、180°曲げ試験の限界最小曲げ半径が1.0t以下であることを特徴とする鋼板。 In mass%, C: 0.03 to 0.20%, Si: 0.005 to 2.0%, Mn: 1.5 to 4.0%, P: 0.1% or less, S: 0.01 % Or less, sol. Al: 0.01 to 1.0% and N: 0.01% or less, with the balance being a chemical composition consisting of Fe and impurities, 1 / 20t depth position from the surface (t: plate thickness of the steel plate ), The average interval in the plate width direction of the Mn-concentrated portion expanded in the rolling direction is 250 μm or less, and is calculated from the Mn concentration (Mn st ) in the stationary part and the Mn concentration (Mn co ) in the Mn-concentrated part. steel sheet that Mn segregation ratio (Mn co / Mn st) is 1.20 or less, a tensile strength with at least 780 MPa, 180 ° bend bending limit the minimum test radius equal to or less than 1.0t . 前記化学組成が、前記Feの一部に代えて、質量%で、Ti:0.2%以下、Nb:0.2%以下およびV:0.2%以下からなる群から選ばれた1種または2種以上を含有する、請求項1記載の鋼板。   The chemical composition is one type selected from the group consisting of Ti: 0.2% or less, Nb: 0.2% or less, and V: 0.2% or less in mass% instead of a part of the Fe. Or the steel plate of Claim 1 containing 2 or more types. 前記化学組成が、前記Feの一部に代えて、質量%で、Cr:1%以下、Mo:1%以下、Cu:1%以下およびNi:1%以下からなる群から選ばれた1種または2種以上を含有する、請求項1または請求項2記載の鋼板。   The chemical composition is one selected from the group consisting of Cr: 1% or less, Mo: 1% or less, Cu: 1% or less, and Ni: 1% or less in mass% instead of part of the Fe. Or the steel plate of Claim 1 or Claim 2 containing 2 or more types. 前記化学組成が、前記Feの一部に代えて、質量%で、Ca:0.01%以下、Mg:0.01%以下、REM:0.01%以下およびZr:0.01%以下からなる群から選ばれた1種または2種以上を含有する、請求項1から請求項3までのいずれか1項に記載の鋼板。   Instead of a part of the Fe, the chemical composition is, in mass%, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.01% or less, and Zr: 0.01% or less. The steel plate according to any one of claims 1 to 3, comprising one or more selected from the group consisting of: 前記化学組成が、前記Feの一部に代えて、質量%で、B:0.01%以下を含有する、請求項1から請求項4までのいずれか1項に記載の鋼板。   The steel sheet according to any one of claims 1 to 4, wherein the chemical composition contains B: 0.01% or less in mass% instead of a part of the Fe. 下記(A)〜(C)の工程を備えることを特徴とする請求項1から請求項5までのいずれか1項に記載の鋼板の製造方法:
(A)請求項1から請求項5までのいずれか1項に記載の化学組成を備える鋼材を1200〜1350℃の温度域に5〜30時間保持する均質化工程;
(B)前記均質化工程により得られた前記鋼材に仕上温度:800℃〜950℃、巻取温度:400〜700℃の熱間圧延を施して熱延鋼板とし、該熱延鋼板に冷間圧延を施して冷延鋼板とする熱間圧延工程および冷間圧延工程であって、前記熱間圧延と前記冷間圧延との総圧下率が95%以上である熱間圧延工程および冷間圧延工程;ならびに
(C)前記冷延鋼板に750〜950℃の温度域で焼鈍を施す連続焼鈍工程。
The method for producing a steel sheet according to any one of claims 1 to 5, comprising the following steps (A) to (C):
(A) A homogenization step of holding a steel material having the chemical composition according to any one of claims 1 to 5 in a temperature range of 1200 to 1350 ° C for 5 to 30 hours;
(B) The steel material obtained by the homogenization step is subjected to hot rolling at a finishing temperature of 800 ° C. to 950 ° C. and a winding temperature of 400 to 700 ° C. to obtain a hot rolled steel plate, and the hot rolled steel plate is cold-worked. A hot rolling process and a cold rolling process, in which rolling is performed to form a cold rolled steel sheet, the total rolling reduction of the hot rolling and the cold rolling being 95% or more and the cold rolling process Step; and (C) a continuous annealing step in which the cold-rolled steel sheet is annealed in a temperature range of 750 to 950 ° C.
前記(A)の工程の前に、下記工程(D)を備えることを特徴とする請求項6に記載の鋼板の製造方法。
(D)前記鋼材の素材である連続鋳造スラブの連続鋳造時における表面から10mm深さ位置の凝固速度が100℃/min以上である連続鋳造工程。
The method for manufacturing a steel sheet according to claim 6, comprising the following step (D) before the step (A).
(D) A continuous casting process in which a solidification rate at a position 10 mm deep from the surface at the time of continuous casting of the continuous casting slab, which is a material of the steel material, is 100 ° C./min or more.
JP2008066089A 2008-03-14 2008-03-14 Steel sheet and manufacturing method thereof Active JP5245475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008066089A JP5245475B2 (en) 2008-03-14 2008-03-14 Steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008066089A JP5245475B2 (en) 2008-03-14 2008-03-14 Steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009221519A true JP2009221519A (en) 2009-10-01
JP5245475B2 JP5245475B2 (en) 2013-07-24

Family

ID=41238598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008066089A Active JP5245475B2 (en) 2008-03-14 2008-03-14 Steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5245475B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263685A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same
JP2011236483A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Steel sheet for heat treatment, and method for producing the same
JP2013221198A (en) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp Cold rolled steel sheet and method for producing the same
JP2014025133A (en) * 2012-07-30 2014-02-06 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method for producing the same
JP2014051683A (en) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
WO2022202020A1 (en) * 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063604A (en) * 2005-08-30 2007-03-15 Nippon Steel Corp Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063604A (en) * 2005-08-30 2007-03-15 Nippon Steel Corp Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009263685A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same
JP2011236483A (en) * 2010-05-12 2011-11-24 Sumitomo Metal Ind Ltd Steel sheet for heat treatment, and method for producing the same
JP2013221198A (en) * 2012-04-18 2013-10-28 Nippon Steel & Sumitomo Metal Corp Cold rolled steel sheet and method for producing the same
JP2014025133A (en) * 2012-07-30 2014-02-06 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and method for producing the same
JP2014051683A (en) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
WO2022202020A1 (en) * 2021-03-25 2022-09-29 日本製鉄株式会社 Steel sheet and welded joint
EP4265752A4 (en) * 2021-03-25 2024-05-22 Nippon Steel Corporation Steel sheet and welded joint

Also Published As

Publication number Publication date
JP5245475B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
CN110177896B (en) Steel sheet and method for producing same
JP5636727B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5949253B2 (en) Hot dip galvanized steel sheet and its manufacturing method
WO2010058762A1 (en) Steel sheet, surface-treated steel sheet, and method for producing the same
JP4925611B2 (en) High strength steel plate and manufacturing method thereof
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP5071173B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2016194272A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and method for producing same
JP5516057B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
EP3919645A1 (en) Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and methods respectively for producing these products
JP5206350B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5245475B2 (en) Steel sheet and manufacturing method thereof
JP5309528B2 (en) High strength steel plate and manufacturing method thereof
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
JP6443555B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5206349B2 (en) Steel sheet, surface-treated steel sheet, and production method thereof
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
CN111868282A (en) Steel plate
JP5206352B2 (en) Steel sheet and manufacturing method thereof
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP5206351B2 (en) Steel sheet and manufacturing method thereof
JPWO2020017607A1 (en) Steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R151 Written notification of patent or utility model registration

Ref document number: 5245475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350