JP2009220168A - Electrode for resistance welding - Google Patents

Electrode for resistance welding Download PDF

Info

Publication number
JP2009220168A
JP2009220168A JP2008069806A JP2008069806A JP2009220168A JP 2009220168 A JP2009220168 A JP 2009220168A JP 2008069806 A JP2008069806 A JP 2008069806A JP 2008069806 A JP2008069806 A JP 2008069806A JP 2009220168 A JP2009220168 A JP 2009220168A
Authority
JP
Japan
Prior art keywords
electrode
heat transfer
transfer interference
interference part
resistance welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008069806A
Other languages
Japanese (ja)
Inventor
Satoshi Usui
聡志 臼井
Shuhei Yamaguchi
修平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008069806A priority Critical patent/JP2009220168A/en
Publication of JP2009220168A publication Critical patent/JP2009220168A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for resistance welding, the electrode capable of stabilizing welding quality even in the occurrence of shift of an object to be welded. <P>SOLUTION: The electrode X for resistance welding is for welding a workpiece 20 by causing electricity to flow between opposing electrodes 10a, 10b while the workpiece 20 having a contact area smaller than the energizing area of the electrode 10 is held between the electrodes 10a and 10b. In the center region of the clamping face of the electrode 10, there is installed a heat-transfer interference part 11 having a smaller heat conductivity than that of the surrounding region of the center region. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、対向する電極の間に当該電極の面積よりも小さい当接面積を有する被溶接体を挟持した状態でこれら電極間に通電し、前記被溶接体を溶接する抵抗溶接用電極に関する。   The present invention relates to an electrode for resistance welding in which a welded body having a contact area smaller than the area of the electrode is sandwiched between opposing electrodes, and a current is passed between the electrodes to weld the welded body.

抵抗溶接は、被溶接体である鋼やアルミニウム合金等の板材を二枚重ね、一対の電極で当該被溶接体を挟持して加圧した状態で短時間に大電流を流し、両板材の接触抵抗及び体積抵抗の抵抗発熱を利用して昇温させ、接触界面を溶融させて両板材を溶接する。   In resistance welding, two plate materials such as steel and aluminum alloy that are welded bodies are stacked, a large current is passed in a short time in a state where the welded body is sandwiched and pressed by a pair of electrodes, and the contact resistance of both plate materials and The temperature is raised using resistance heating of volume resistance, the contact interface is melted, and both plate materials are welded.

一対の電極間には大電流が流れるため、電極は導電性がよく、耐熱性に優れ、熱伝導性の高い材質であることが要求される。しかし、抵抗溶接では、継続的に高温かつ高圧条件下で電極が使用されるために、当初の素材特性が経時的に劣化することがある。   Since a large current flows between the pair of electrodes, the electrode is required to be a material having good conductivity, excellent heat resistance, and high thermal conductivity. However, in resistance welding, since the electrodes are continuously used under high temperature and high pressure conditions, the initial material characteristics may deteriorate over time.

従来、部分的に異なる複数の素材を電極の材料として組み合わせた複合電極(例えば特許文献1〜4)が公知である。   Conventionally, composite electrodes (for example, Patent Documents 1 to 4) in which a plurality of partially different materials are combined as electrode materials are known.

特許文献1には、電極本体中央部を銅製材料で形成するとともに、その周囲を前記電極本体よりも高剛性の材料で囲繞した抵抗溶接用電極が記載してある。
特許文献2には、炭素繊維と、その周りに周方向に配向されたアルミナ繊維とにより複合強化された銅又は銅合金よりなるスポット溶接用複合材料製電極が記載してある。
特許文献3には、電極中心軸から外側に向かって順に、芯材、内包材、外皮材からなる三重構造とした抵抗溶接用複合電極が記載してある。
特許文献4には、銅又は銅合金からなる電極本体の被溶接体に当接する当接面に、タングステン(W)又はモリブデン(Mo)若しくはそれらを基材とする合金からなる芯材を埋設した二重構造の電極が記載してある。
Patent Document 1 describes a resistance welding electrode in which a central portion of an electrode body is formed of a copper material and a periphery thereof is surrounded by a material having higher rigidity than the electrode body.
Patent Document 2 describes an electrode made of a composite material for spot welding made of copper or a copper alloy composite-reinforced with carbon fibers and alumina fibers oriented in the circumferential direction around the carbon fibers.
Patent Document 3 describes a composite electrode for resistance welding having a triple structure including a core material, an inner packaging material, and an outer skin material in order from the electrode central axis toward the outside.
In Patent Document 4, a core material made of tungsten (W) or molybdenum (Mo) or an alloy based on them is embedded in the contact surface of the electrode main body made of copper or copper alloy that comes into contact with the welded body. A dual structure electrode is described.

このように、異種の素材を組み合わせることにより抵抗溶接用電極の耐久性を向上させることができる。   Thus, the durability of the resistance welding electrode can be improved by combining different materials.

特開2002−160073号公報JP 2002-160073 A 特開平4−284982号公報JP-A-4-284882 特開平1−258875号公報JP-A-1-258875 特開2007−237209号公報JP 2007-237209 A

例えば電子部品のような小さい部品を被溶接体とする場合、電極と被溶接体との相対位置によって溶接状態が大きく変化することがある。例えば図8に示したように、被溶接体20の中心軸が電極10の中心軸Zに対して側方に位置ズレした場合、当該位置ズレが大きいほど、被溶接体から電極への熱伝導量は小さくなる。
被溶接体の中心軸が電極の中心軸に一致した正常状態では、電極における被溶接体との当接位置を中心にしてその周囲に均一に広がるように熱が伝わる。一方、例えば被溶接体が電極の端部付近に位置ズレした状態にある場合、電極への伝熱の殆どは、当該当接位置から電極の中心軸の側(内方側)に向かう。このとき、当該当接位置から電極の外方側に伝熱する熱量は少ない。そのため、前記位置ズレした状態では前記正常状態と比べて被溶接体の熱放散が適切に行われなくなって被溶接体の温度が過剰に上昇する。このとき、溶接時に電極の挟持圧によって、被溶接体の溶接品質に悪影響を及ぼすほどの過剰な「つぶれ」が発生することがある。
For example, when a small part such as an electronic part is used as the welded body, the welding state may greatly change depending on the relative position between the electrode and the welded body. For example, as shown in FIG. 8, when the central axis of the welded body 20 is displaced laterally with respect to the central axis Z of the electrode 10, the larger the positional deviation is, the greater the heat conduction from the welded body to the electrode. The amount is smaller.
In a normal state where the center axis of the welded body coincides with the center axis of the electrode, heat is transmitted so as to spread uniformly around the contact position of the electrode with the welded body. On the other hand, for example, when the object to be welded is in a position shifted near the end of the electrode, most of the heat transfer to the electrode is directed from the contact position toward the center axis side (inward side) of the electrode. At this time, the amount of heat transferred from the contact position to the outer side of the electrode is small. For this reason, in the misaligned state, compared to the normal state, the heat dissipation of the welded body is not appropriately performed, and the temperature of the welded body is excessively increased. At this time, excessive “collapse” may occur due to the clamping pressure of the electrodes during welding, which may adversely affect the weld quality of the welded body.

一つの被溶接体に溶接箇所が複数ある場合、複数の溶接箇所の位置ズレの程度が異なることによって、上記「つぶれ」の程度が異なる箇所が混在する虞がある。「つぶれ」が発生した場合は、所望の溶接状態が得られないため引張強度が低下するなど、溶接品質にばらつきが生じる。
例えば溶接箇所が複数ある場合において二箇所連続で溶接するとき、第一箇所目では電極の中心軸と被溶接体との中心軸とが一致するが、第二箇所目にこれら中心軸の位置ズレが生じた場合、当該中心軸の位置ズレが生じた第二箇所目で溶接時の「つぶれ」が大きくなる場合がある。仮に第一箇所目と第二箇所目の溶接順序を入れ替えた場合であっても「つぶれ」の程度は変化しないため、電極の初期温度の影響は小さく、当該位置ズレの影響が大きいと考えられる。
When there are a plurality of welding locations on one welded body, there is a possibility that locations having different degrees of “crushing” may be mixed due to different degrees of misalignment of the plurality of welding locations. When “crushing” occurs, a desired welded state cannot be obtained, resulting in variations in welding quality such as a decrease in tensile strength.
For example, when there are a plurality of weld locations and welding is performed continuously at two locations, the center axis of the electrode and the center axis of the workpiece to be welded coincide with each other at the first location. When this occurs, there is a case where the “crushing” at the time of welding becomes large at the second position where the displacement of the central axis has occurred. Even if the welding order of the first part and the second part is switched, the degree of “crushing” does not change, so the influence of the initial temperature of the electrode is small and the influence of the positional deviation is considered to be large. .

上記特許文献1〜4では、電極の耐久性を向上させるため、異種の素材を組み合わせて電極を形成している。しかし、被溶接体に接触する電極の挟持面は単一の金属材料で構成されるため、前記位置ズレが発生したとき、上述したように被溶接体の熱放散が適切に行われない虞があり、溶接品質は安定しないという問題点がある。   In Patent Documents 1 to 4, the electrodes are formed by combining different materials in order to improve the durability of the electrodes. However, since the holding surface of the electrode that contacts the welded body is made of a single metal material, when the positional deviation occurs, there is a possibility that the heat dissipation of the welded body is not appropriately performed as described above. There is a problem that the welding quality is not stable.

特に被溶接体が上述した電子部品のような小さい部品であって、当該小さい部品が位置ズレした場合、ズレた位置を正規の位置に配置するのは困難である。また、位置ズレのズレ量は一定ではないため、「つぶれ」を未然に防止して溶接品質を安定化するためには印加する電流の大きさや時間等の溶接条件を見直す必要がある。しかし、位置ズレが発生した場合に、その都度溶接条件等を見直すのは現実的ではない。   In particular, when the object to be welded is a small component such as the electronic component described above, and the small component is misaligned, it is difficult to place the misaligned position at a regular position. In addition, since the amount of positional deviation is not constant, it is necessary to review the welding conditions such as the magnitude and time of the applied current in order to prevent “crushing” and stabilize the welding quality. However, it is not realistic to review the welding conditions and the like each time a displacement occurs.

従って、本発明の目的は、被溶接体が位置ズレした場合でも溶接品質を安定化し得る抵抗溶接用電極を提供することにある。   Accordingly, an object of the present invention is to provide an electrode for resistance welding that can stabilize the welding quality even when the object to be welded is displaced.

上記目的を達成するための本発明に係る抵抗溶接用電極は、対向する電極の間に当該電極の印加面積よりも小さい当接面積を有する被溶接体を挟持した状態でこれら電極間に通電し、前記被溶接体を溶接する抵抗溶接用電極であって、その第一特徴構成は、前記電極の挟持面の中央領域に、その周囲の領域の熱伝導率よりも小さい熱伝導率を有する伝熱干渉部を設けた点にある。   In order to achieve the above object, the resistance welding electrode according to the present invention energizes between these electrodes in a state where a welded body having a contact area smaller than the application area of the electrode is sandwiched between opposing electrodes. The electrode for resistance welding for welding the object to be welded has a first characteristic configuration in which a thermal conductivity lower than a thermal conductivity of a surrounding region is provided in a central region of the clamping surface of the electrode. The heat interference part is provided.

本構成によれば、電極の挟持面の中央領域では前記被溶接体からの熱は電極に伝わり難くなる。そのため、溶接時に被溶接体を一対の電極によって挟持したとき、被溶接体からの熱は、電極の挟持面の中央領域より周囲の領域の方に伝わり易くなる。
仮に被溶接体が電極の挟持面の周囲の領域に位置ズレする場合であっても、被溶接体が電極の挟持面の中央領域に位置する場合と同程度に熱放散させることができる。このように挟持面の中央領域および周囲の領域が同じ熱伝導率を有する電極と比べて、溶接時の被溶接体の熱放散を良好に行うことができる。
According to this configuration, heat from the welded body is hardly transmitted to the electrode in the central region of the electrode clamping surface. For this reason, when the welding target is sandwiched between the pair of electrodes during welding, the heat from the welding target is more easily transferred to the surrounding region than the central region of the clamping surface of the electrode.
Even if the object to be welded is displaced in the area around the clamping surface of the electrode, heat can be dissipated to the same extent as when the object to be welded is located in the central area of the clamping surface of the electrode. Thus, compared to an electrode having the same thermal conductivity in the central region and the peripheral region of the clamping surface, heat dissipation of the welded body during welding can be performed well.

従って、本発明の抵抗溶接用電極では、上記位置ズレが発生した場合においても被溶接体の温度が過剰に上昇し難くなり、被溶接体の「つぶれ」が発生するのを未然に防止することができる。そのため、特に被溶接体が電子部品のような小さい部品であっても、溶接時の被溶接体の品質を安定化することができる。   Therefore, in the resistance welding electrode of the present invention, even when the above-mentioned positional deviation occurs, it becomes difficult for the temperature of the welded body to rise excessively and to prevent the occurrence of “collapse” of the welded body. Can do. Therefore, even when the welded body is a small part such as an electronic part, the quality of the welded body during welding can be stabilized.

本発明に係る抵抗溶接用電極の第二特徴構成は、前記伝熱干渉部を、前記電極の中央を中心とした半径の異なる少なくとも二つの環状領域で構成し、中央側の伝熱干渉部ほど熱伝導率を小さく設定した点にある。   According to the second characteristic configuration of the resistance welding electrode according to the present invention, the heat transfer interference portion is constituted by at least two annular regions having different radii centered on the center of the electrode, The heat conductivity is set to a small value.

本構成のように、複数の環状領域を備えることで、伝熱干渉部を熱伝導率が異なる複数の部材で構成することができる。さらに、本構成では伝熱干渉部の中央側から周辺側に向けて、熱伝導率を序々に大きくするように構成することができる。
通常、電極の印加面においては、熱伝導率の変化は緩やかな方が溶接品質は安定する。そのため本構成の抵抗溶接用電極では、より安定した溶接品質を有する被溶接体を得ることができる。
By providing a plurality of annular regions as in this configuration, the heat transfer interference portion can be configured by a plurality of members having different thermal conductivities. Furthermore, in this structure, it can comprise so that heat conductivity may become large gradually toward the peripheral side from the center side of a heat-transfer interference part.
Normally, on the electrode application surface, the gradual change in thermal conductivity stabilizes the welding quality. Therefore, with the resistance welding electrode of this configuration, a welded body having more stable welding quality can be obtained.

本発明に係る抵抗溶接用電極の第三特徴構成は、前記伝熱干渉部が、中央側の第1伝熱干渉部と、その周囲の第2伝熱干渉部とを有しており、前記第1伝熱干渉部が、タングステン、タングステンを基材とする合金、モリブデン、モリブデンを基材とする合金のうちの何れか一つで構成され、前記第2伝熱干渉部が、銅-タングステン系合金で構成され、前記電極本体が、銅または銅合金で構成された点にある。   According to a third characteristic configuration of the resistance welding electrode according to the present invention, the heat transfer interference portion includes a first heat transfer interference portion on the center side and a second heat transfer interference portion around the center, The first heat transfer interference part is composed of any one of tungsten, an alloy based on tungsten, molybdenum, and an alloy based on molybdenum, and the second heat transfer interference part is copper-tungsten. The electrode body is made of copper or a copper alloy.

本構成のように伝熱干渉部をタングステンまたはモリブデンを含有するように構成することで、硬質な伝熱干渉部を形成することができるため、電極の耐熱性が向上する。
また、タングステンの熱伝導率は174 W/(m・K)、モリブデンの熱伝導率は138 W/(m・K)、銅の熱伝導率は401 W/(m・K)である。従って、電極の熱伝導率は、電極の挟持面の中央領域から離間するに従い大きくなるように構成することができるため、電極の周辺の領域において、優れた熱放散性を有する。
このように、本構成では、耐熱性および熱放散に優れた抵抗溶接用電極となる。
By configuring the heat transfer interference portion to contain tungsten or molybdenum as in this configuration, a hard heat transfer interference portion can be formed, so that the heat resistance of the electrode is improved.
In addition, the thermal conductivity of tungsten is 174 W / (m · K), the thermal conductivity of molybdenum is 138 W / (m · K), and the thermal conductivity of copper is 401 W / (m · K). Therefore, since the thermal conductivity of the electrode can be configured to increase as the distance from the central region of the sandwiching surface of the electrode increases, the electrode has excellent heat dissipation in the peripheral region of the electrode.
Thus, in this structure, it becomes an electrode for resistance welding excellent in heat resistance and heat dissipation.

本発明に係る抵抗溶接用電極の第四特徴構成は、前記伝熱干渉部を、前記電極の電極本体を構成する部材とは異なる部材を前記電極本体に保持して形成した点にある。   A fourth characteristic configuration of the resistance welding electrode according to the present invention is that the heat transfer interference portion is formed by holding a member different from a member constituting the electrode body of the electrode on the electrode body.

本構成のように伝熱干渉部と電極本体とを別部材で形成すれば、例えば伝熱干渉部を電極本体に嵌入させることで抵抗溶接用電極を形成できるため、当該抵抗溶接用電極の製造が容易となる。   If the heat transfer interference part and the electrode body are formed as separate members as in this configuration, for example, the resistance welding electrode can be formed by fitting the heat transfer interference part into the electrode body. Becomes easy.

本発明に係る抵抗溶接用電極の第五特徴構成は、前記電極の電極本体および前記伝熱干渉部を焼結により形成した点にある。   A fifth characteristic configuration of the resistance welding electrode according to the present invention is that the electrode body of the electrode and the heat transfer interference portion are formed by sintering.

本構成によれば、電極において、伝熱干渉部および電極本体を焼結により形成することで、伝熱干渉部および電極本体の境界付近ではこれらを構成する材料を混在させることができる。その結果、伝熱干渉部および電極本体の間の密度の変化は緩やかとなる。従って、伝熱干渉部および電極本体の熱伝導率の変化は緩やかとなり、より安定した溶接品質を有する被溶接体を得ることができる。   According to this configuration, in the electrode, the heat transfer interference part and the electrode body are formed by sintering, so that the materials constituting them can be mixed in the vicinity of the boundary between the heat transfer interference part and the electrode body. As a result, the change in density between the heat transfer interference part and the electrode body becomes gradual. Therefore, changes in the thermal conductivity of the heat transfer interference part and the electrode main body are moderate, and a welded body having more stable welding quality can be obtained.

本発明に係る抵抗溶接用電極の第六特徴構成は、前記伝熱干渉部を、前記電極本体の当接方向に対する直角方向断面視において、前記挟持面の側ほど外径寸法を大きく構成した点にある。   A sixth characteristic configuration of the resistance welding electrode according to the present invention is that the heat transfer interference portion is configured such that an outer diameter dimension is increased toward a side of the clamping surface in a cross-sectional view perpendicular to the contact direction of the electrode body. It is in.

本構成では、直角方向断面視において、当該挟持面の側から離間するほど伝熱干渉部の寸法を小さくなるように構成できる。
仮に被溶接体が電極の挟持面の周囲の側領域に位置ズレした場合、電極における被溶接体との当接位置から電極の中心軸の側(内方側)に伝熱し易くなる。そのため、上記位置ズレが発生した場合においても被溶接体の温度が過剰に上昇し難くなり、溶接時の被溶接体の品質をより安定化することができる。
In this configuration, the size of the heat transfer interference portion can be reduced as the distance from the clamping surface side increases in a cross-sectional view in the perpendicular direction.
If the object to be welded is displaced in a side region around the clamping surface of the electrode, heat transfer from the contact position of the electrode with the object to be welded to the center axis side (inward side) of the electrode is facilitated. For this reason, even when the positional deviation occurs, the temperature of the welded body does not easily rise excessively, and the quality of the welded body during welding can be further stabilized.

以下、本発明の実施例を図面に基づいて説明する。
本発明の抵抗溶接用電極は、被溶接体である鋼やアルミニウム合金等の板材を2枚重ね、一対の電極で被溶接体を挟持して加圧した状態で短時間に大電流を流し、両板材の接触抵抗及び体積抵抗の抵抗発熱を利用して昇温させ、接触界面を溶融させて両板材を溶接する。但し、本実施形態で説明する被溶接体は例示であり、これに限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings.
The electrode for resistance welding according to the present invention is a stack of two sheets of steel or aluminum alloy, which is a body to be welded, and a large current is passed in a short time in a state where the body to be welded is sandwiched between a pair of electrodes and pressed. The temperature is raised by using the resistance heat generated by the contact resistance and volume resistance of both plate materials, the contact interface is melted, and both plate materials are welded. However, the to-be-welded body demonstrated by this embodiment is an illustration, and is not limited to this.

図1〜2に、本発明の抵抗溶接用電極Xを示す。
抵抗溶接用電極Xは、対向する電極10(第一電極10a、第二電極10b)の間に当該電極10の印加面積よりも小さい当接面積を有する被溶接体20を挟持した状態でこれら電極10a、10b間に通電し、被溶接体20を溶接する。
本発明の電極10では、電極10の挟持面13の中央領域14に、その周囲の領域15の熱伝導率よりも小さい熱伝導率を有する伝熱干渉部11を設ける。
尚、本明細書における「印加面積」とは、電極10において被溶接体20に対して電流を印加できる側の電流10の表面積をいう。
1 and 2 show an electrode X for resistance welding according to the present invention.
The resistance welding electrode X is formed by sandwiching a body to be welded 20 having a contact area smaller than an application area of the electrode 10 between opposing electrodes 10 (first electrode 10a, second electrode 10b). 10a and 10b are energized to weld the body 20 to be welded.
In the electrode 10 of the present invention, the heat transfer interference part 11 having a thermal conductivity smaller than the thermal conductivity of the surrounding region 15 is provided in the central region 14 of the clamping surface 13 of the electrode 10.
In the present specification, the “application area” refers to the surface area of the current 10 on the side where the current can be applied to the welded body 20 in the electrode 10.

伝熱干渉部11は、電極10の電極本体12を構成する部材とは異なる部材を電極本体12に保持して形成してある。伝熱干渉部11は、圧入等の手段により電極本体12に取り付ける。取り付けた後の電極10の先端は、伝熱干渉部11を露出させ、平坦な挟持面13が形成されるようにする。
伝熱干渉部11と電極本体12とを別部材で形成すれば、伝熱干渉部11は電極本体12に嵌入させることで電極10を形成できるため、抵抗溶接用電極Xの製造が容易となる。
The heat transfer interference part 11 is formed by holding the electrode body 12 with a member different from the member constituting the electrode body 12 of the electrode 10. The heat transfer interference part 11 is attached to the electrode body 12 by means such as press fitting. The tip of the electrode 10 after being attached exposes the heat transfer interference part 11 so that a flat clamping surface 13 is formed.
If the heat transfer interference part 11 and the electrode main body 12 are formed as separate members, the electrode 10 can be formed by fitting the heat transfer interference part 11 into the electrode main body 12, so that the resistance welding electrode X can be easily manufactured. .

伝熱干渉部11は、その周囲の領域15を構成する電極本体12の熱伝導率よりも小さい熱伝導率を有するようにしてある。
このように構成すると、電極10の挟持面13の中央領域14では被溶接体20からの熱は電極10に伝わり難くなる。そのため、溶接時に被溶接体20を一対の電極10によって挟持したとき、被溶接体20からの熱は、電極の挟持面の中央領域14より周囲の領域15の方に伝わり易くなる。仮に被溶接体20が電極10の挟持面の周囲の側領域に位置ズレする場合であっても、被溶接体20が電極10の挟持面13の中央領域14に位置する場合と同程度に熱放散させることができる。
従って、本発明の抵抗溶接用電極Xでは、上記位置ズレが発生した場合においても被溶接体20の温度が過剰に上昇し難くなり、被溶接体20の「つぶれ」が発生するのを未然に防止することができる。そのため、特に被溶接体20が電子部品のような小さい部品であっても、溶接時の被溶接体20の品質を安定化することができる。
The heat transfer interference part 11 has a thermal conductivity smaller than that of the electrode body 12 constituting the surrounding area 15.
If comprised in this way, it will become difficult to transmit the heat | fever from the to-be-welded body 20 to the electrode 10 in the center area | region 14 of the clamping surface 13 of the electrode 10. FIG. Therefore, when the welded body 20 is sandwiched between the pair of electrodes 10 during welding, the heat from the welded body 20 is more easily transmitted to the surrounding region 15 than the central region 14 of the sandwiched surface of the electrodes. Even if the welded body 20 is misaligned in the side region around the clamping surface of the electrode 10, it is as hot as when the welded body 20 is located in the central region 14 of the clamping surface 13 of the electrode 10. Can be dissipated.
Therefore, in the resistance welding electrode X of the present invention, even when the positional deviation occurs, it is difficult for the temperature of the welded body 20 to rise excessively, and “collapse” of the welded body 20 occurs. Can be prevented. Therefore, even if the welded body 20 is a small part such as an electronic part, the quality of the welded body 20 during welding can be stabilized.

例えば伝熱干渉部11は、タングステン(W)やモリブデン(Mo)、若しくはそれらを基材とする合金からなる金属材が例示されるが、これに限られるものではない。タングステンやモリブデンは、それ自身が硬質であるため、硬質な伝熱干渉部11を形成することができ、電極10の耐熱性が向上する。
尚、タングステンの熱伝導率は174 W/(m・K)、モリブデンの熱伝導率は138 W/(m・K)である。
尚、本明細書において、例えば「タングステン合金」とは、タングステンを主成分として含む合金のことを指し、他の成分については特に限定されるものではない。
For example, the heat transfer interference part 11 is exemplified by a metal material made of tungsten (W), molybdenum (Mo), or an alloy based on them, but is not limited thereto. Since tungsten and molybdenum themselves are hard, the hard heat transfer interference part 11 can be formed, and the heat resistance of the electrode 10 is improved.
The thermal conductivity of tungsten is 174 W / (m · K), and the thermal conductivity of molybdenum is 138 W / (m · K).
In this specification, for example, “tungsten alloy” refers to an alloy containing tungsten as a main component, and the other components are not particularly limited.

伝熱干渉部11は、電極本体12の当接方向に対する直角方向断面視において、挟持面13の側ほど外径寸法を大きく構成してある(図2)。
このとき、電極10の下面方向視における伝熱干渉部11の形状は、円形状或いは矩形状とすることができる。
本構成では、直角方向断面視において、当該挟持面13の側から離間するほど伝熱干渉部11の寸法を小さくなるように構成できる。
仮に被溶接体20が電極10の挟持面の周囲の側領域に位置ズレした場合、電極における被溶接体との当接位置から電極の中心軸の側(内方側)に伝熱し易くなる。そのため、上記位置ズレが発生した場合においても被溶接体20の温度が過剰に上昇し難くなり、溶接時の被溶接体20の品質をより安定化することができる。
The heat transfer interference part 11 is configured to have a larger outer diameter dimension toward the clamping surface 13 in a cross-sectional view perpendicular to the contact direction of the electrode body 12 (FIG. 2).
At this time, the shape of the heat transfer interference part 11 in the lower surface direction view of the electrode 10 can be circular or rectangular.
In this configuration, the size of the heat transfer interference portion 11 can be reduced as the distance from the clamping surface 13 side increases in a cross-sectional view in the perpendicular direction.
If the welded body 20 is displaced in a side region around the clamping surface of the electrode 10, heat transfer from the contact position of the electrode with the welded body to the center axis side (inward side) of the electrode is facilitated. Therefore, even when the positional deviation occurs, the temperature of the welded body 20 is unlikely to rise excessively, and the quality of the welded body 20 during welding can be further stabilized.

電極本体12は電極ホルダ(図外)に取り付けられる。電極本体12は、導電性がよく、耐熱性に優れ、熱伝導性の高い材質であれば使用できる。例えば電極本体12は銅又は銅合金で形成する。尚、銅の熱伝導率は401 W/(m・K)である。
上述の周囲の領域15は、電極本体12の挟持面13の側に領域である。
電極ホルダは電源と接続され、溶接時に、被溶接体20を加圧した状態で大電流を電極10に供することができるように構成する。
The electrode body 12 is attached to an electrode holder (not shown). The electrode body 12 can be used as long as it has good conductivity, excellent heat resistance, and high thermal conductivity. For example, the electrode body 12 is made of copper or a copper alloy. Note that the thermal conductivity of copper is 401 W / (m · K).
The surrounding region 15 described above is a region on the clamping surface 13 side of the electrode body 12.
The electrode holder is connected to a power source, and is configured so that a large current can be supplied to the electrode 10 in a state where the welded body 20 is pressurized during welding.

被溶接体20は、鋼やアルミニウム合金等、通電することによって抵抗発熱が発生し、溶融するものであれば使用できる。例えばリード線および端子等の電子部品であって、これら二つの部材を重ねて被溶接体20とする。
被溶接体20の大きさは、電極10との当接面積が電極10の印加面積より小さいものであればよい。このとき、当該電極10と当接しない被溶接体20の部分を含めた場合、被溶接体20は電極10の印加面積より大きくなってもかまわない。
The welded body 20 can be used as long as it generates resistance heat and melts when energized, such as steel or an aluminum alloy. For example, electronic parts such as lead wires and terminals, and these two members are overlapped to form the welded body 20.
The size of the to-be-welded body 20 should just be a thing with the contact area with the electrode 10 smaller than the application area of the electrode 10. FIG. At this time, when the portion of the welded body 20 that does not contact the electrode 10 is included, the welded body 20 may be larger than the application area of the electrode 10.

伝熱干渉部11をタングステン(又はモリブデン)からなる合金で形成し、電極本体12を銅で形成した場合において、電極10の先端付近での金属材の分布(含有率)を図3に示す。
電極10の中央領域ではタングステン(又はモリブデン)からなる合金の含有率は100%であるが、当該中央領域からその周縁領域に向けて、タングステン(又はモリブデン)からなる合金の含有率が減少し、銅の含有率が増加する傾向となっている。
上述したように、タングステンおよびモリブデンの熱伝導率は、銅の熱伝導率より小さいことから、電極10において伝熱干渉部11は、その周囲の領域15の熱伝導率よりも小さい熱伝導率を有することが判る。
FIG. 3 shows the distribution (content ratio) of the metal material in the vicinity of the tip of the electrode 10 when the heat transfer interference part 11 is formed of an alloy made of tungsten (or molybdenum) and the electrode body 12 is formed of copper.
In the central region of the electrode 10, the alloy content of tungsten (or molybdenum) is 100%, but the alloy content of tungsten (or molybdenum) decreases from the central region toward the peripheral region, The copper content tends to increase.
As described above, since the thermal conductivity of tungsten and molybdenum is smaller than the thermal conductivity of copper, the heat transfer interference part 11 in the electrode 10 has a thermal conductivity smaller than the thermal conductivity of the surrounding region 15. It turns out that it has.

本発明の抵抗溶接用電極Xでは、溶接時に大電流が対向する一対の電極10a、10b間に流れ、例えば電極10a、10b間に挟持された被溶接体20であるリード線および端子の溶接部位に電流が集中し、ジュール熱が発生して被溶接体が溶接される。このとき、被溶接体20の位置ズレが発生した場合であっても、電極に移行する熱量が当該位置ズレが無い場合と殆ど変わらないため、溶接品質の安定した引張強度の強い溶接製品が得られる。   In the resistance welding electrode X of the present invention, a large current flows during the welding between a pair of electrodes 10a and 10b. For example, a welding portion of a lead wire and a terminal that is the welded body 20 sandwiched between the electrodes 10a and 10b. The current concentrates on the surface, Joule heat is generated, and the welded body is welded. At this time, even if a positional deviation of the welded body 20 occurs, the amount of heat transferred to the electrode is almost the same as when there is no positional deviation, so that a welded product with stable welding quality and strong tensile strength is obtained. It is done.

〔別実施の形態1〕
上述した実施形態では、電極本体12に、単一の伝熱干渉部11を取り付けた場合について説明した。しかし、このような態様に限られるものではない。
例えば伝熱干渉部11は、電極10の中央を中心とした半径の異なる少なくとも二つの環状領域で構成する(図4)。このように、複数の環状領域を備えることで、伝熱干渉部11を熱伝導率が異なる複数の部材で構成することができる。
[Another embodiment 1]
In the above-described embodiment, the case where the single heat transfer interference unit 11 is attached to the electrode body 12 has been described. However, it is not limited to such an embodiment.
For example, the heat transfer interference part 11 is composed of at least two annular regions having different radii centered on the center of the electrode 10 (FIG. 4). Thus, by providing a some cyclic | annular area | region, the heat-transfer interference part 11 can be comprised with the some member from which heat conductivity differs.

このとき、中央側の伝熱干渉部11aほど熱伝導率を小さく設定すれば、伝熱干渉部11の中央側から周辺側に向けて、熱伝導率を序々に大きくするように構成することができる。通常、被測定物20に対して印加する挟持面13においては、熱伝導率の変化は緩やかな方が位置ズレに対して溶接品質は安定する。そのため本構成の抵抗溶接用電極Xでは、より安定した溶接品質を有する被溶接体20を得ることができる。   At this time, if the heat conductivity is set to be smaller for the heat transfer interference part 11a on the center side, the heat conductivity may be gradually increased from the center side to the peripheral side of the heat transfer interference part 11. it can. Usually, on the clamping surface 13 applied to the object 20 to be measured, the gradual change of the thermal conductivity stabilizes the welding quality against the positional deviation. Therefore, with the resistance welding electrode X of this configuration, it is possible to obtain the welded body 20 having more stable welding quality.

また、本構成では二つの環状領域として、中央側の第1伝熱干渉部11aと、その周囲の第2伝熱干渉部11bとを有する。第1伝熱干渉部11aは、タングステン、タングステンを基材とする合金、モリブデン、モリブデンを基材とする合金のうちの何れか一つで構成することが可能であり、第2伝熱干渉部11bは、銅-タングステン系合金(Cu-W系合金)で構成される。電極本体12は、銅または銅合金で構成することが可能である。   Moreover, in this structure, it has the 1st heat-transfer interference part 11a of the center side, and the 2nd heat-transfer interference part 11b of the circumference | surroundings as two cyclic | annular area | regions. The first heat transfer interference unit 11a can be composed of any one of tungsten, an alloy based on tungsten, molybdenum, an alloy based on molybdenum, and the second heat transfer interference unit. 11b is made of a copper-tungsten alloy (Cu—W alloy). The electrode body 12 can be made of copper or a copper alloy.

伝熱干渉部11をタングステンまたはモリブデンを含有するように構成することで、硬質な伝熱干渉部11を形成することができるため、電極10の耐熱性が向上する。
上述したように、タングステンの熱伝導率は174 W/(m・K)、モリブデンの熱伝導率は138 W/(m・K)、銅の熱伝導率は401 W/(m・K)である。従って、電極10の熱伝導率は、電極10の挟持面13の中央領域14から離間するに従い大きくなるように構成することができるため、電極10の周辺の領域15において、優れた熱放散性を有する。このように、本構成では、耐熱性および熱放散に優れた抵抗溶接用電極Xとなる。
By configuring the heat transfer interference part 11 to contain tungsten or molybdenum, the hard heat transfer interference part 11 can be formed, so that the heat resistance of the electrode 10 is improved.
As mentioned above, tungsten has a thermal conductivity of 174 W / (m ・ K), molybdenum has a thermal conductivity of 138 W / (m ・ K), and copper has a thermal conductivity of 401 W / (m ・ K). is there. Therefore, since the thermal conductivity of the electrode 10 can be configured to increase as the distance from the central region 14 of the clamping surface 13 of the electrode 10 increases, excellent heat dissipation can be achieved in the region 15 around the electrode 10. Have. Thus, with this configuration, the resistance welding electrode X is excellent in heat resistance and heat dissipation.

当該第1伝熱干渉部11aは略円柱状に形成し、その外側に環状の第2伝熱干渉部11bを保持する(図4)。
第1伝熱干渉部11aをタングステン(又はモリブデン)からなる合金で形成し、第2伝熱干渉部11bを銅-タングステン系合金で形成し、電極本体12を銅で形成した場合において、電極10の先端付近での金属材の分布(含有率)を図5に示す。
電極10の中央領域ではタングステン(又はモリブデン)からなる合金の含有率は100%であるが、当該中央領域からその周縁領域に向けてタングステン(又はモリブデン)からなる合金の含有率が減少し、当該合金の含有率は0となる。次に銅およびタングステンからなる合金の含有率は100%となり、やがて周縁領域に向けて当該合金の含有率は0となる。周縁領域では銅の含有率が増加する傾向となっている。そのため、電極10において、伝熱干渉部11は、その周囲の領域15の熱伝導率よりも小さい熱伝導率を有することが判る。
The first heat transfer interference portion 11a is formed in a substantially cylindrical shape, and holds the annular second heat transfer interference portion 11b on the outside thereof (FIG. 4).
When the first heat transfer interference portion 11a is formed of an alloy made of tungsten (or molybdenum), the second heat transfer interference portion 11b is formed of a copper-tungsten alloy, and the electrode body 12 is formed of copper, the electrode 10 FIG. 5 shows the distribution (content ratio) of the metal material in the vicinity of the tip.
In the central region of the electrode 10, the alloy content of tungsten (or molybdenum) is 100%, but the alloy content of tungsten (or molybdenum) decreases from the central region toward the peripheral region, The alloy content is zero. Next, the content rate of the alloy which consists of copper and tungsten will be 100%, and the content rate of the said alloy will become 0 toward a peripheral region soon. In the peripheral region, the copper content tends to increase. Therefore, in the electrode 10, it turns out that the heat-transfer interference part 11 has a heat conductivity smaller than the heat conductivity of the area | region 15 of the circumference | surroundings.

〔別実施の形態2〕
上述した実施形態では、抵抗溶接用電極Xは、電極本体12と別部材である伝熱干渉部11を保持した場合について説明した。しかし、このような態様に限られるものではない。当該電極10は、伝熱干渉部11および電極本体12を焼結により形成してもよい。
[Another embodiment 2]
In the embodiment described above, the resistance welding electrode X has been described with respect to the case where the electrode body 12 and the heat transfer interference part 11 which is a separate member are held. However, it is not limited to such an embodiment. The electrode 10 may be formed by sintering the heat transfer interference part 11 and the electrode body 12.

本実施形態では、電極本体12の金属材料(第一金属材料)、および、当該第一金属材料の熱伝導率と異なる熱伝導率を有する伝熱干渉部11の第二金属材料が、電極10の所望の領域で所望の密度を有するように混在するように構成してある(図6)。   In the present embodiment, the metal material (first metal material) of the electrode body 12 and the second metal material of the heat transfer interference unit 11 having a thermal conductivity different from the thermal conductivity of the first metal material are the electrode 10. The desired areas are mixed so as to have a desired density (FIG. 6).

当該伝熱干渉部11の第二金属材料をタングステン(又はモリブデン)を基材とする合金で形成し、電極本体12の第一金属材料を銅で形成した場合において、電極10の先端付近での金属材の分布(含有率)を図7に示す。
この場合、電極10の挟持面13の中央領域14において当該第二金属材料であるタングステン(又はモリブデン)を基材とする合金の密度が高く、周辺部ほど当該第二金属材料の密度が低くなる(図6,7)。そのため、伝熱干渉部11は、第一金属材料である銅で形成される周囲の領域15の熱伝導率よりも小さい熱伝導率を有することが判る。
In the case where the second metal material of the heat transfer interference part 11 is formed of an alloy based on tungsten (or molybdenum) and the first metal material of the electrode body 12 is formed of copper, The distribution (content ratio) of the metal material is shown in FIG.
In this case, the density of the alloy based on tungsten (or molybdenum), which is the second metal material, is higher in the central region 14 of the clamping surface 13 of the electrode 10, and the density of the second metal material is lower in the peripheral part. (FIGS. 6 and 7). Therefore, it turns out that the heat-transfer interference part 11 has a thermal conductivity smaller than the thermal conductivity of the surrounding area | region 15 formed with copper which is a 1st metal material.

当該電極10において、伝熱干渉部11および電極本体12を焼結により形成することで、伝熱干渉部11および電極本体12の境界付近ではこれらを構成する材料を混在させることができる。その結果、伝熱干渉部11および電極本体12の間の密度の変化は緩やかとなる。従って、伝熱干渉部11および電極本体12の熱伝導率の変化は緩やかとなり、より安定した溶接品質を有する被溶接体20を得ることができる。   In the electrode 10, by forming the heat transfer interference part 11 and the electrode main body 12 by sintering, materials constituting them can be mixed in the vicinity of the boundary between the heat transfer interference part 11 and the electrode main body 12. As a result, the density change between the heat transfer interference part 11 and the electrode body 12 becomes gradual. Therefore, the change in the thermal conductivity of the heat transfer interference part 11 and the electrode body 12 becomes gradual, and the welded body 20 having more stable welding quality can be obtained.

〔別実施の形態3〕
上述した実施形態において、伝熱干渉部11を、電極10の電極本体12を構成する部材とは異なる部材で形成し、伝熱干渉部11が露出するように電極本体12に保持する場合について説明した。しかし、このような態様に限られるものではなく、伝熱干渉部11は露出せず、電極本体12における先端の表面付近に埋設するように構成してもよい。
本構成では、電極10の挟持面13は単一の材料で形成できるため、優れた平面性を有する挟持面13を備えた電極10とすることができる。
[Another embodiment 3]
In the embodiment described above, the case where the heat transfer interference part 11 is formed of a member different from the member constituting the electrode body 12 of the electrode 10 and is held on the electrode body 12 so that the heat transfer interference part 11 is exposed will be described. did. However, the present invention is not limited to this mode, and the heat transfer interference portion 11 may not be exposed and may be embedded in the vicinity of the surface of the tip of the electrode body 12.
In this configuration, since the sandwiching surface 13 of the electrode 10 can be formed of a single material, the electrode 10 having the sandwiching surface 13 having excellent planarity can be obtained.

本発明の抵抗溶接用電極の概略図Schematic of the resistance welding electrode of the present invention 本発明の抵抗溶接用電極の要部断面Cross section of main part of resistance welding electrode of the present invention 抵抗溶接用電極の金属材料の密度分布を模式的に示した図Diagram showing density distribution of metal material for resistance welding electrode 別実施形態1の抵抗溶接用電極の要部断面斜視図Cross-sectional perspective view of the main part of the electrode for resistance welding according to another embodiment 1 別実施形態1の抵抗溶接用電極の金属材料の密度分布を模式的に示した図The figure which showed typically the density distribution of the metal material of the electrode for resistance welding of another Embodiment 1. 別実施形態2の抵抗溶接用電極の要部断面図Sectional drawing of the principal part of the electrode for resistance welding of another embodiment 2. 別実施形態2の抵抗溶接用電極の金属材料の密度分布を模式的に示した図The figure which showed typically the density distribution of the metal material of the electrode for resistance welding of another Embodiment 2. 被溶接体と抵抗溶接用電極との相対位置関係を示した概略図Schematic showing the relative positional relationship between the workpiece and resistance welding electrode

符号の説明Explanation of symbols

X 電極
10a,10b 電極
11 伝熱干渉部
13 挟持面
14 中央領域
15 周囲の領域
20 被溶接体
X electrode 10a, 10b electrode 11 heat transfer interference part 13 clamping surface 14 central region 15 peripheral region 20 to-be-welded body

Claims (6)

対向する電極の間に当該電極の印加面積よりも小さい当接面積を有する被溶接体を挟持した状態でこれら電極間に通電し、前記被溶接体を溶接する抵抗溶接用電極であって、
前記電極の挟持面の中央領域に、その周囲の領域の熱伝導率よりも小さい熱伝導率を有する伝熱干渉部を設けた抵抗溶接用電極。
A resistance welding electrode for welding the welded body by energizing between the electrodes in a state where a welded body having a contact area smaller than the application area of the electrode is sandwiched between opposing electrodes,
An electrode for resistance welding in which a heat transfer interference portion having a thermal conductivity smaller than that of a surrounding region is provided in a central region of the sandwiching surface of the electrode.
前記伝熱干渉部が、前記電極の中央を中心とした半径の異なる少なくとも二つの環状領域で構成してあり、中央側の伝熱干渉部ほど熱伝導率を小さく設定してある請求項1に記載の抵抗溶接用電極。   2. The heat transfer interference part is composed of at least two annular regions having different radii centered on the center of the electrode, and the heat conductivity is set smaller in the heat transfer interference part on the center side. The electrode for resistance welding as described. 前記伝熱干渉部が、中央側の第1伝熱干渉部と、その周囲の第2伝熱干渉部とを有しており、
前記第1伝熱干渉部が、タングステン、タングステンを基材とする合金、モリブデン、モリブデンを基材とする合金のうちの何れか一つで構成され、前記第2伝熱干渉部が、銅-タングステン系合金で構成され、
前記電極本体が、銅または銅合金で構成されている請求項2に記載の抵抗溶接用電極。
The heat transfer interference part has a first heat transfer interference part on the center side and a second heat transfer interference part around it,
The first heat transfer interference part is made of any one of tungsten, an alloy based on tungsten, molybdenum, an alloy based on molybdenum, and the second heat transfer interference part is made of copper- Consists of tungsten alloy,
The resistance welding electrode according to claim 2, wherein the electrode body is made of copper or a copper alloy.
前記伝熱干渉部が、前記電極の電極本体を構成する部材とは異なる部材を前記電極本体に保持して形成してある請求項1〜3の何れか一項に記載の抵抗溶接用電極。   The resistance welding electrode according to any one of claims 1 to 3, wherein the heat transfer interference portion is formed by holding a member different from a member constituting the electrode body of the electrode on the electrode body. 前記電極の電極本体および前記伝熱干渉部が焼結により形成してある請求項1〜3の何れか一項に記載の抵抗溶接用電極。   The electrode for resistance welding according to any one of claims 1 to 3, wherein the electrode main body and the heat transfer interference part of the electrode are formed by sintering. 前記伝熱干渉部が、前記電極本体の当接方向に対する直角方向断面視において、前記挟持面の側ほど外径寸法を大きく構成してある請求項1〜5の何れか一項に記載の抵抗溶接用電極。   The resistance according to any one of claims 1 to 5, wherein the heat transfer interference portion is configured such that an outer diameter dimension is larger toward a side of the holding surface in a cross-sectional view perpendicular to the contact direction of the electrode body. Welding electrode.
JP2008069806A 2008-03-18 2008-03-18 Electrode for resistance welding Pending JP2009220168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008069806A JP2009220168A (en) 2008-03-18 2008-03-18 Electrode for resistance welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008069806A JP2009220168A (en) 2008-03-18 2008-03-18 Electrode for resistance welding

Publications (1)

Publication Number Publication Date
JP2009220168A true JP2009220168A (en) 2009-10-01

Family

ID=41237530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008069806A Pending JP2009220168A (en) 2008-03-18 2008-03-18 Electrode for resistance welding

Country Status (1)

Country Link
JP (1) JP2009220168A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173155A (en) * 2012-02-24 2013-09-05 Nisshin Steel Co Ltd Spot welding method of steel plate having different plate thickness
JP2016078036A (en) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 Electrode for spot weld
WO2018101249A1 (en) 2016-12-01 2018-06-07 日本碍子株式会社 Electroconductive support member and method for manufacturing same
WO2019107265A1 (en) 2017-11-28 2019-06-06 日本碍子株式会社 Conductive end member and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173155A (en) * 2012-02-24 2013-09-05 Nisshin Steel Co Ltd Spot welding method of steel plate having different plate thickness
JP2016078036A (en) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 Electrode for spot weld
WO2018101249A1 (en) 2016-12-01 2018-06-07 日本碍子株式会社 Electroconductive support member and method for manufacturing same
KR20190008382A (en) 2016-12-01 2019-01-23 엔지케이 인슐레이터 엘티디 Conductive support member and manufacturing method thereof
US11608545B2 (en) 2016-12-01 2023-03-21 Ngk Insulators, Ltd. Conductive supporting member and method for producing the same
WO2019107265A1 (en) 2017-11-28 2019-06-06 日本碍子株式会社 Conductive end member and manufacturing method therefor
KR20200074200A (en) 2017-11-28 2020-06-24 엔지케이 인슐레이터 엘티디 Conductive tip member and method for manufacturing the same
US11511368B2 (en) 2017-11-28 2022-11-29 Ngk Insulators, Ltd. Electrically conductive tip member and method for producing the same

Similar Documents

Publication Publication Date Title
JP6139022B2 (en) Gas welding torch with diffuser
JP6041374B2 (en) Spot welding method for steel plates with different thickness
KR101449350B1 (en) Cell block and method for manufacturing same
US20120031880A1 (en) Electrode unit of spot welding machine
JP2009220168A (en) Electrode for resistance welding
JP6032285B2 (en) Indirect spot welding method
WO2015083835A1 (en) Electrode for spot welding, and welding device and welding method employing same
JP5938747B2 (en) Rivet, dissimilar material joining structure provided with rivets, and dissimilar material joint manufacturing method
WO2010143273A1 (en) Semiconductor device
JP6217226B2 (en) Thermal mass flow meter, mass flow controller, and thermal mass flow meter manufacturing method
US20140045046A1 (en) Welding method of sealed secondary battery, sealed secondary battery, and cap body
JP2011031271A (en) Resistance welding method
JP2011031269A (en) Resistance welding apparatus, and electrode used therefor
JP5873403B2 (en) Spot welding electrode tips
JP5873402B2 (en) Spot welding electrode tips
JP2007118066A (en) Member to be welded
WO2024034173A1 (en) Resistance welding device and resistance welding method
JP7433200B2 (en) heater
JP5099582B2 (en) Resistance welding collar, resistance welding electrode and resistance welding method
JP5873404B2 (en) Spot welding electrode tips
EP3247009B1 (en) Method for manufacturing tubular metal shell including ground electrode bar for spark plug, and method for manufacturing spark plug
JP2009142762A (en) Catalytic carrier to be heated electrically and its manufacturing method
JP2024022801A (en) Resistance-welding device and resistance-welding method
JP5602780B2 (en) Terminal member, terminal and terminal manufacturing method
JP5534985B2 (en) Connection method of fusing terminal and coated conductive wire