JP2009219660A - Flow rate control valve - Google Patents

Flow rate control valve Download PDF

Info

Publication number
JP2009219660A
JP2009219660A JP2008067143A JP2008067143A JP2009219660A JP 2009219660 A JP2009219660 A JP 2009219660A JP 2008067143 A JP2008067143 A JP 2008067143A JP 2008067143 A JP2008067143 A JP 2008067143A JP 2009219660 A JP2009219660 A JP 2009219660A
Authority
JP
Japan
Prior art keywords
elastic member
discharge port
fluid discharge
control valve
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067143A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sato
裕之 佐藤
Satoshi Shioda
聡 塩田
Yukio Kuroyama
幸雄 黒山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2008067143A priority Critical patent/JP2009219660A/en
Publication of JP2009219660A publication Critical patent/JP2009219660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that shape characters are given to an elastic member to perform fine exhaust gas of a current flow control valve but the process influences on the reproducibility because of the axial deviation, or that the shape characters are given to a fluid body exit but the fine adjustment of the process is difficult during manufacture of a mold. <P>SOLUTION: The elastic member has a simple shape for giving no influence on the axial deviation while the compressed surface of the elastic member and the fluid exit are perpendicular to the drive axis of the elastic member, and a simple shape protrusion is a little higher than the fluid body exit and it is mounted adjacent to the fluid exit in order to deform the elastic member in the area of fine exhaust gas and control the minute degree of opening of the fluid exit and the elastic member, and so the fine adjustment during manufacture of a metal mold becomes easy. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は血圧計等で使用される電磁式流量コントロール弁に関し、簡単な構造でありながらカフ内の圧力を連続的かつ微細に減圧する機能と、一気に減圧し、カフ内の空気を素早く抜く機能を併せ持つ流量コントロール弁に関する。   The present invention relates to an electromagnetic flow control valve used in a sphygmomanometer, etc., which has a simple structure, a function of continuously and finely reducing the pressure in the cuff, and a function of quickly reducing the pressure in the cuff and quickly removing the air in the cuff. The present invention relates to a flow control valve having both.

電子血圧計による血圧測定は多くの場合オシロメトリック法が用いられる。血圧測定では測定部位である上腕や手首にカフを巻き、そこに空気を送り込んで血管を圧迫し、一旦血液の流れを止める。その後徐々に、圧迫をゆるめていくと、血液の圧力が血管を圧迫しているカフの圧力を上回る。すると血液が心臓の脈動に合わせて断続的に流れ出す。
オシロメトリック法では、カフを加圧した後、減圧していく段階で、心臓の拍動に同調した血管壁の振動を反映したカフ圧の変動を観測することによって血圧値を決定する。一般的には圧脈波が急激に大きくなったときのカフ圧を最高血圧とし、急激に小さくなったときのカフ圧を最低血圧とする。このような電子血圧計において、カフの減圧に流量コントロール弁が用いられている。
図7はオシロメトリック法を用いた血圧計に用いられる流量コントロール弁の一般的な構成をしめす断面図である。図7の流量コントロール弁は、カフやポンプを接続する空気導入部701と弾性部材702を介して流体排出口703を開閉する駆動軸704と、これを電磁力で駆動する磁気回路を形成するコイル705、磁石706、ヨーク707等で構成されている。また駆動軸704はリリースバネ708により常に流体排出口703を開放状態にする方向に付勢されている。
In many cases, an oscillometric method is used for blood pressure measurement by an electronic sphygmomanometer. In blood pressure measurement, a cuff is wrapped around the upper arm or wrist, which is the measurement site, and air is sent into the cuff to compress the blood vessels, temporarily stopping the blood flow. When the pressure is gradually released thereafter, the blood pressure exceeds the pressure of the cuff pressing the blood vessel. Then, blood flows out intermittently according to the pulsation of the heart.
In the oscillometric method, the blood pressure value is determined by observing the fluctuation of the cuff pressure reflecting the vibration of the blood vessel wall in synchronization with the pulsation of the heart at the stage of depressurization after the cuff is pressurized. Generally, the cuff pressure when the pressure pulse wave suddenly increases is the maximum blood pressure, and the cuff pressure when the pressure pulse wave rapidly decreases is the minimum blood pressure. In such an electronic sphygmomanometer, a flow control valve is used to reduce the cuff.
FIG. 7 is a cross-sectional view showing a general configuration of a flow control valve used in a sphygmomanometer using the oscillometric method. The flow control valve in FIG. 7 includes an air introduction part 701 that connects a cuff and a pump, a drive shaft 704 that opens and closes a fluid discharge port 703 via an elastic member 702, and a coil that forms a magnetic circuit that drives this by electromagnetic force. 705, a magnet 706, a yoke 707, and the like. The drive shaft 704 is always urged by a release spring 708 in a direction to open the fluid discharge port 703.

上述のような血圧計の血圧測定を行う際の流量コントロール弁の動作の一例を以下に説明する。まず、コイル705に所定の電圧を印加して、磁石706、ヨーク707による磁気回路によりコイル705に推力を発生させ、駆動軸704を弾性部材702が流体排出口703に圧接する方向に移動させ、空気導入部701を閉じた状態にする。この時コイル705はリリースバネ708に負荷を受けているが、十分に磁気回路の推力が勝っている状態である。次にこの状態でポンプによりカフに空気を注入するが、前述の通り、カフは流量コントロール弁に接続されており、かつ閉じた状態であるので、カフが膨らみ腕又は手首を圧迫する。プログラムによって決められた圧力までカフの圧迫が到達するとここから減圧工程に移行するが、このときコイル705への印加電圧を徐々に減少させることにより、推力を弱めていくとリリースバネ708の力と空気導入部701からの空気の圧力により弾性部材702が圧接されていた流体排出口703から離れる方向に動き出す。カフの減圧工程はこのようにして流量コントロール弁のコイル705に印加される電圧をコントロールすることで、徐々にカフ内の空気を抜いてゆき、この工程内で血圧値の計測が行われる。通常、最高血圧値、最低血圧値の順に決定され、最低血圧値が算出された時点で血圧計測が終了すると、それ以降はカフの減圧をコントロールする必要がなくなり、また、使い勝手の観点からもカフの空気を素早く抜くことが望ましい。このとき流量コントロール弁はコイル705に印加される電圧をカットして磁気回路の推力を無くし、リリースバネ708と空気導入部701からの空気の圧力をもって弾性部材702と流体排出口703の間隔が最大になる位置関係まで駆動軸704を移動させる。   An example of the operation of the flow control valve when performing blood pressure measurement of the sphygmomanometer as described above will be described below. First, a predetermined voltage is applied to the coil 705, a thrust is generated in the coil 705 by a magnetic circuit including the magnet 706 and the yoke 707, and the drive shaft 704 is moved in a direction in which the elastic member 702 is pressed against the fluid discharge port 703. The air introduction part 701 is closed. At this time, the coil 705 is under load by the release spring 708, but the thrust of the magnetic circuit is sufficiently won. Next, in this state, air is injected into the cuff by the pump. As described above, since the cuff is connected to the flow control valve and is closed, the cuff swells and presses the arm or wrist. When the pressure of the cuff reaches the pressure determined by the program, the process proceeds to a pressure reducing process. When the thrust is weakened by gradually decreasing the voltage applied to the coil 705, the force of the release spring 708 is increased. The elastic member 702 starts to move away from the fluid discharge port 703 where the elastic member 702 is pressed by the pressure of the air from the air introduction portion 701. In the cuff decompression step, the voltage applied to the coil 705 of the flow control valve is controlled in this manner, so that the air in the cuff is gradually removed, and the blood pressure value is measured in this step. Normally, when blood pressure measurement is completed at the time when the systolic blood pressure value is calculated in the order of the systolic blood pressure value and the diastolic blood pressure value is calculated, it is no longer necessary to control the decompression of the cuff. It is desirable to quickly vent the air. At this time, the flow control valve cuts the voltage applied to the coil 705 to eliminate the thrust of the magnetic circuit, and the distance between the elastic member 702 and the fluid discharge port 703 is maximized by the pressure of the air from the release spring 708 and the air introduction part 701. The drive shaft 704 is moved to such a positional relationship.

上記の説明から、流量コントロール弁の役割で重要なのはカフを加圧する際に空気漏れが発生しないようにする完全遮蔽能力と、カフの減圧工程における微少流量コントロール能力と、血圧測定終了時にカフ内の空気を素早く抜く開放能力である。特に微少流量コントロール能力は、血圧値決定に大きく寄与するものであり、従来よりこの能力の分解能を上げる方向で様々な方法が提案されてきている。特許文献1によれば、上記説明の弾性部
材に相当するオリフィスパッキンの流体排出口と圧接される端面を傾ける方法、特許文献2によれば、上記説明の弾性部材に相当するオリフィスパッキンの流体排出口と圧接される端面を曲面形状に形成する方法、特許文献3によれば、上記説明の弾性部材に相当する弁体の流体排出口と圧接される端面に微細な突起を並べて形成する方法、その他、流体排出口側の圧接される端面を傾けたり、圧接される端面に突起を設ける方法等がある。
From the above explanation, what is important in the role of the flow control valve is the complete shielding ability to prevent air leakage when pressurizing the cuff, the minute flow control ability in the cuff decompression process, and the cuff in the cuff at the end of blood pressure measurement. It is the opening ability to draw air quickly. In particular, the minute flow control ability greatly contributes to the determination of the blood pressure value, and various methods have been proposed so far in order to increase the resolution of this ability. According to Patent Document 1, a method of inclining an end surface that is in pressure contact with a fluid discharge port of an orifice packing corresponding to the elastic member described above, and according to Patent Document 2, fluid discharge of an orifice packing corresponding to the elastic member described above. A method of forming an end surface that is in pressure contact with the outlet into a curved shape, and according to Patent Document 3, a method of forming and arranging fine protrusions on the end surface that is in pressure contact with the fluid discharge port of the valve body corresponding to the elastic member described above, In addition, there is a method of inclining an end surface to be pressed on the fluid discharge port side or providing a protrusion on the end surface to be pressed.

特開平6−47007号公報(2頁)JP-A-6-47007 (page 2) 特開2002-156051号公報(2頁)JP 2002-156051 A (2 pages) 特開2005-155898号公報(2頁)JP 2005-155898 A (2 pages)

従来の方法はいずれも弾性部材と流体排出口の接触領域付近の駆動軸のストロークに対する気体流量の分解能を拡大する狙いで提案されたものである。しかし、前述の従来技術では以下に示す問題を有している。オリフィスパッキンを流体排出口に対して傾ける方法は、図6に示すように駆動軸の軸ぶれが発生すると、オリフィスパッキンと流体排出口の間隔が変化してしまい、流量コントロールの繰り返し特性が変化してしまう。これはオリフィスパッキンの流体排出口との圧接される端面を曲面形状に形成する方法でも同様に接触開始位置がずれてしまうことで繰り返し特性が変化する。これらは駆動軸の軸受けにクリアランスが必要な限り逃れられない問題である。弁体の圧接される端面に微細な突起を並べて形成する方法は弁体の成型上の性質から特に微細な突起の寸法の生産時のバラツキを抑えることが難しい。このバラツキはそのまま流量コントロール特性のバラツキとなって現れてしまう。これらの弾性部材は以上の説明から駆動軸に対して芯合わせを必要とするため、キャップ形状に成型して駆動軸にかぶせる方法を採る場合が多く、弾性部材と駆動軸の間に空気が残り、これが流量コントロールの繰り返し特性に悪影響を与えることも考えられる。流体排出口側の圧接される端面を傾けたり、突起を設ける方法は流体排出口を製作する上で金型製作後の微調整が難しいという問題がある。また、微細な突起を設ける為の金型作製期間や、流体排出口の微調整のための金型修正期間が長くかかってしまうという問題もある。   All the conventional methods have been proposed with the aim of expanding the resolution of the gas flow rate with respect to the stroke of the drive shaft in the vicinity of the contact region between the elastic member and the fluid discharge port. However, the above-described conventional techniques have the following problems. The method of inclining the orifice packing with respect to the fluid discharge port is as shown in FIG. 6, and if the drive shaft is shaken, the distance between the orifice packing and the fluid discharge port changes, and the flow control repeatability changes. End up. In the method of forming a curved end face that is in pressure contact with the fluid discharge port of the orifice packing, the contact start position shifts in the same manner, and the characteristics repeatedly change. These are problems that cannot be avoided as long as a clearance is required for the bearing of the drive shaft. The method of forming fine protrusions side by side on the pressure contact end face of the valve body makes it difficult to suppress variation during production of the dimensions of the fine protrusions due to the molding properties of the valve body. This variation appears as a variation in the flow rate control characteristic. Since these elastic members need to be centered with respect to the drive shaft from the above description, a method of forming a cap shape and covering the drive shaft is often used, and air remains between the elastic member and the drive shaft. This may adversely affect the repetitive characteristics of flow control. The method of inclining the end surface to be pressure-contacted on the fluid discharge port side or providing the protrusion has a problem that fine adjustment after the mold is manufactured is difficult in manufacturing the fluid discharge port. In addition, there is a problem that a mold production period for providing fine protrusions and a mold correction period for fine adjustment of the fluid discharge port take a long time.

そこで、本発明では上述した従来技術による問題点を解消するため、駆動軸の軸ぶれに影響されず、生産時の寸法バラツキが発生しにくく、金型製作後の微調整を容易にし、構成部品の制作期間や微調整の為の金型修正期間が短期間で済む簡単な構造を特別な装置の付加や構成の大きな変更をせずに実現することが可能な技術を提供する事を目的とする。   Therefore, in the present invention, in order to solve the above-described problems caused by the prior art, it is not affected by shaft runout of the drive shaft, hardly causes dimensional variation during production, facilitates fine adjustment after mold manufacture, and component parts The purpose is to provide a technology that can realize a simple structure that requires only a short period of production time and a mold correction period for fine adjustment without adding a special device or making a major change in the configuration. To do.

これらの課題を解決するために本発明の流量コントロール弁には、下記に記載の手段を採用する。すなわち本発明の流量コントロール弁は、圧縮性流体を排出させる流体排出口と、この流体排出口を任意に開閉する弾性部材とを備える流量コントロール弁であって、流体排出口及び弾性部材の圧接される端面を弾性部材の動作方向に対して垂直とし、微細排気を行う場合に流体排出口よりも先に弾性部材に接触するように形成された突起を有することを特徴としている。   In order to solve these problems, the following means are employed in the flow control valve of the present invention. That is, the flow control valve of the present invention is a flow control valve comprising a fluid discharge port for discharging a compressive fluid and an elastic member for arbitrarily opening and closing the fluid discharge port, and the fluid discharge port and the elastic member are in pressure contact with each other. The end face is perpendicular to the operation direction of the elastic member, and has projections formed so as to come into contact with the elastic member before the fluid discharge port when fine exhaust is performed.

また、本発明の流量コントロール弁は弾性部材が一定の厚さのシート材から型抜きされたものであることが好ましい。   In the flow control valve of the present invention, it is preferable that the elastic member is die-cut from a sheet material having a constant thickness.

また、本発明の流量コントロール弁は少なくとも空気導入部と流体排出口とが一体に成型されたトップケースと突起とが別体であることが好ましい。
(作用)
本発明による流量コントロール弁の圧縮性流体を排出させる流体排出口と、この流体排
出口を任意の開度で開閉する弾性部材の各当接面は平面形状とし、弾性部材の開閉動作方向軸に対し垂直という関係にある。また、流体排出口および弾性部材の圧接される端面は平面であり、凸凹を有さない。以上の構成だけでは弾性部材は流体排出口を閉塞するか否かの動作しかできないので、排気流量を連続的かつ徐々に制御しようとすれば、弾性部材の移動距離制御の精度を極めて高いものにしなければならないが、流体排出口の近傍に流体排出口よりも先に弾性部材に接触するように形成された突起を設けることで、弾性部材は流体排出口に当接しているとき、常に突起によってたわめられた状態となる。弾性部材が完全に流体排出口に当接して閉じている状態から、離れる方向に少し動いたとき、弾性部材はまだ突起により、その表面がたわめられて曲面状態になっているので流体排出口を一気に開放することはなく、流体排出口を段階的に開放することになる。このように、弾性部材と流体排出口の圧接状態が突起によって段階的に変化する為、圧縮気体を流体排出口から排出させる場合には排出流量を微細かつ連続的に制御することが可能である。
Further, in the flow control valve of the present invention, it is preferable that at least the top case in which the air introduction part and the fluid discharge port are integrally molded and the protrusion are separate.
(Function)
The fluid discharge port for discharging the compressive fluid of the flow control valve according to the present invention and each contact surface of the elastic member that opens and closes the fluid discharge port at an arbitrary opening have a flat shape, and the opening and closing operation direction axis of the elastic member is It has a vertical relationship. Moreover, the end surface where the fluid discharge port and the elastic member are in pressure contact with each other is a flat surface and has no irregularities. With only the above configuration, the elastic member can only operate whether or not to block the fluid discharge port. Therefore, if the exhaust flow rate is to be controlled continuously and gradually, the moving distance control accuracy of the elastic member is extremely high. It is necessary to provide a protrusion formed in contact with the elastic member before the fluid discharge port in the vicinity of the fluid discharge port. Be in a state of being bent. When the elastic member moves slightly away from the state where the elastic member is completely in contact with the fluid discharge port, the elastic member is still curved due to the protrusions due to the protrusions. The outlet is not opened all at once, and the fluid outlet is opened step by step. As described above, since the pressure contact state between the elastic member and the fluid discharge port changes stepwise by the protrusion, the discharge flow rate can be finely and continuously controlled when the compressed gas is discharged from the fluid discharge port. .

以上の説明のように、本発明の流量コントロール弁においては、下記に記載する効果を有する。   As described above, the flow control valve of the present invention has the effects described below.

血圧計に用いられるような流量コントロール弁において、弾性部材の圧接される端面が流体排出口の圧接される端面に対して角度を有していたり、曲面状に形成されている場合、弾性部材の駆動軸の軸受け部等に生じる軸ずれによって繰り返し動作時の圧接される端面の間隔が変化したり、当たり始めの箇所が変わってしまうことで気体を流出させる開口部面積が変化してしまう。前述のように各圧接される端面を平面形状とし、弾性部材の開閉動作方向軸に対し垂直という関係にあり、互いに平行であれば、弾性部材の駆動軸の軸ずれが発生しても、流体排出口と弾性部材の圧接される端面の当たり方は、繰り返しても変わらず、軸ずれによる影響を受けない。また、弾性部材の圧接される端面には凸凹を有さない。これは凸凹を設けた場合よりも制御の再現性で有利である。何故なら凸凹を設けた場合も前述したように動作方向軸の軸ずれが発生すると、凸の当たり方が変わり、気体を流出させる開口部面積が変化してしまうことになるが、圧接される端面に凸凹を有さなければ軸ずれは問題にならないからであるし。さらに言えば、凸凹を付加するということは、その分、金型製造期間がかかることになり、生産性を考え多数個取をしたときの寸法精度の管理も難しくなるうえ、寸法のバラツキが個々の流量コントロール弁の流量コントロール特性のバラツキに反映される。流体排出口側の圧接される端面を傾けたり、突起を設ける場合は流体排出口を製作する上で金型製作後の微調整が難しいという問題があるが、流体排出口とは別に設けた突起の形状は円柱形のボス等の簡単な形状でも機能としては問題ないので、微調整のための金型修正は容易となる。   In a flow control valve used in a sphygmomanometer, when the end face to which the elastic member is pressed has an angle with respect to the end face to which the fluid discharge port is pressed or is formed in a curved surface, The gap between the end faces that are pressed against each other during repeated operations changes due to a shaft misalignment that occurs in the bearing portion of the drive shaft, and the area of the opening through which the gas flows out changes due to a change in the location where the contact starts. As described above, each pressure contact end surface is planar and has a relationship perpendicular to the axis of the elastic member opening / closing operation direction, so long as it is parallel to each other. The manner in which the discharge port and the end face where the elastic member is in pressure contact does not change even if it is repeated, and is not affected by the axial deviation. Moreover, the end surface to which the elastic member is pressed does not have unevenness. This is more advantageous in the reproducibility of the control than when the unevenness is provided. This is because even when unevenness is provided, if the axis of the movement direction axis is shifted as described above, the contact method of the protrusion will change, and the area of the opening through which the gas flows out will change. This is because the axis misalignment will not be a problem if there is no unevenness. Furthermore, adding unevenness will increase the mold manufacturing period, making it difficult to manage the dimensional accuracy when taking a large number of parts in consideration of productivity, and individual variations in dimensions. This is reflected in the variation in the flow control characteristics of the flow control valve. If the end face to be pressed on the fluid discharge port side is tilted or a protrusion is provided, there is a problem that fine adjustment after the mold is manufactured is difficult to manufacture the fluid discharge port, but the protrusion provided separately from the fluid discharge port Since a simple shape such as a cylindrical boss has no problem in function, it is easy to correct the mold for fine adjustment.

本発明の流量コントロール弁に用いられる弾性部材は、一定の厚さのシート材から型抜きで作製することにより、生産性を向上することが出来る。何故なら、弾性部材の表面に傾斜等、特殊な形状を与える場合は、大きなシートにまとめて成型してからビク型等で抜き取るとすれば、抜き取り時の位置精度が必要になる。しかし、本発明の弾性部材にはこのような特殊な形状を付加する必要がないので、抜き取り時に精密な位置決めをする必要がない。また、上記説明の弾性部材の駆動軸への取り付けにおいても精密な芯合わせは必要なく、必然的に両面テープや接着剤による貼り付け等、駆動軸との間に隙間が出来ない方法となり、キャップ状の弾性部材を駆動軸にかぶせる取り付け方法に対して、流量コントロールの繰り返し特性で有利となる。   The elastic member used in the flow rate control valve of the present invention can be improved in productivity by being punched from a sheet material having a certain thickness. This is because, when a special shape such as an inclination is given to the surface of the elastic member, if it is formed into a large sheet and then extracted with a big die or the like, positional accuracy at the time of extraction is required. However, since it is not necessary to add such a special shape to the elastic member of the present invention, it is not necessary to perform precise positioning at the time of extraction. In addition, when attaching the elastic member to the drive shaft described above, precise centering is not necessary, and there is no way to create a gap between the drive shaft, such as attachment with a double-sided tape or adhesive. In contrast to the mounting method in which the elastic member is placed on the drive shaft, it is advantageous in the flow rate control repetition characteristics.

本発明の流量コントロール弁に用いられる流体排出口とは別に設けた突起は流体排出口と一体にせずに、例えばネジ式の別部品とし、突出量を調整可能にすることで、金型作成後の微調整で発生する金型修正作業を無くすことが出来る。   The protrusion provided separately from the fluid discharge port used in the flow rate control valve of the present invention is not integrated with the fluid discharge port, for example, as a separate screw type part, and the protrusion amount can be adjusted, so that the protrusion amount can be adjusted. It is possible to eliminate the mold correction work that occurs in the fine adjustment.

以下、図面を用いて本発明を利用した流量コントロール弁の最適な実施形態を説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a flow control valve using the present invention will be described with reference to the drawings.

図1は本発明の実施形態の一例として流量コントロール弁の概略断面図を図示したものである。この流量コントロール弁の全体的な構成は、ポンプやカフに接続する空気導入部101、流体排出口102、突起103はトップケース104の一部として一体で形成されている。その他、気体流路の開閉弁となる弾性部材105、駆動軸106とこれを電磁力によって駆動するコイル107、磁石108、ヨーク109、駆動電圧をカットされた際に開閉弁を開いた状態にするリリースバネ110などで構成されている。   FIG. 1 is a schematic sectional view of a flow control valve as an example of an embodiment of the present invention. In the overall configuration of the flow control valve, the air introduction part 101, the fluid discharge port 102, and the protrusion 103 connected to the pump and the cuff are integrally formed as a part of the top case 104. In addition, the elastic member 105 serving as the opening / closing valve of the gas flow path, the drive shaft 106, the coil 107, the magnet 108, the yoke 109, and the driving valve 106 that are driven by electromagnetic force, and the opening / closing valve are opened when the drive voltage is cut. It is composed of a release spring 110 and the like.

ここで、本実施形態の特徴は、流体排出口102、突起103、弾性部材105の当接時の状態であり、図2にその動作状態を示す。血圧計の動作順序に沿って説明すると、まず流体排出口201を弾性部材202で閉じた図2(a)に示す完全遮蔽状態でポンプによりカフの加圧を開始する。このとき、突起203も弾性部材202に当接しているが、磁気回路により弾性部材202を強く流体排出口201側に押し付けているので、流体排出口201と弾性部材202の間に隙間は無い。ポンプによる加圧が終了して減圧工程に移行すると、磁気回路の電圧を少し落として電磁力を減少させ、弾性部材202が流体排出口201から離れる方向に動くが、完全に離れてしまわないように制御して、突起203により表面をたわめられた弾性部材202と流体排出口201の一部に隙間が出来る図2(b)に示す微細流量コントロール状態を作り出す。この状態を細かくコントロールしてカフ内圧を徐々に減らしその間に最高血圧値と最低血圧値を決定する。最低血圧値を決定した後はカフ内の空気を一気に抜くために、磁気回路の印加電圧をカットして電磁力が発生しない状態にすると、リリースバネとカフから流れてくる空気圧によって、弾性部材202が流体排出口201から完全に離れた図2(c)に示す弁開放状態となり、血圧測定を終了する。   Here, the feature of the present embodiment is a state when the fluid discharge port 102, the protrusion 103, and the elastic member 105 are in contact with each other, and FIG. Explaining along the operation sequence of the sphygmomanometer, first, the cuff pressurization is started by the pump in the completely shielded state shown in FIG. 2A in which the fluid discharge port 201 is closed by the elastic member 202. At this time, the projection 203 is also in contact with the elastic member 202, but since the elastic member 202 is strongly pressed against the fluid discharge port 201 by the magnetic circuit, there is no gap between the fluid discharge port 201 and the elastic member 202. When pressurization by the pump is completed and the process proceeds to the decompression process, the electromagnetic force is decreased by slightly reducing the voltage of the magnetic circuit, and the elastic member 202 moves away from the fluid discharge port 201, but does not completely separate. 2B, a minute flow rate control state shown in FIG. 2B is created in which a gap is formed between the elastic member 202 whose surface is bent by the protrusion 203 and a part of the fluid discharge port 201. By finely controlling this state, the cuff internal pressure is gradually reduced while the maximum blood pressure value and the minimum blood pressure value are determined. After the minimum blood pressure value is determined, if the applied voltage of the magnetic circuit is cut and no electromagnetic force is generated in order to draw air in the cuff at once, the elastic member 202 is caused by the air pressure flowing from the release spring and the cuff. Becomes completely open from the fluid discharge port 201, and the valve is opened as shown in FIG.

図3は弾性部材を一定の厚さのシート材から製作する場合を説明する図である。均一厚さに成型したシート材301からビク型等で弾性部材302を多数、容易に作製できる。こうして作られた弾性部材の駆動軸への取り付けを図4(a)に示す。前述した弾性部材401の駆動軸402への取り付け方法は、両面テープ、接着剤等考えられるが、両面テープや接着剤の厚さによる寸法精度への影響までも排除したければ、インサート成型によって弾性部材401と駆動軸402を一体成型することも可能である。いずれの方法であっても、図4(b)に示したキャップ状の弾性部材403を駆動軸404に被せる取り付け方法に対し、弾性部材と駆動軸との間に空気層の隙間を無くすことが可能である。   FIG. 3 is a diagram illustrating a case where the elastic member is manufactured from a sheet material having a certain thickness. A large number of elastic members 302 can be easily manufactured from a sheet material 301 formed to have a uniform thickness, such as a big die. FIG. 4A shows the attachment of the elastic member thus made to the drive shaft. The elastic member 401 can be attached to the drive shaft 402 by a double-sided tape, an adhesive, or the like. However, if the influence of the thickness of the double-sided tape or the adhesive on the dimensional accuracy is also excluded, it is elastic by insert molding. The member 401 and the drive shaft 402 can be integrally formed. In any method, the gap between the elastic member and the drive shaft can be eliminated with respect to the attachment method in which the cap-shaped elastic member 403 shown in FIG. Is possible.

図5は突起をトップケースとは独立した別部品とした時の断面図である。トップケース501に雌ネジを設け、突起502の側面の一部に雄ネジを形成して突起502の流体排出口504の端面からの突出量Lを調節可能にするものである。突起502は微細排気を行う場合に流体排出口504より先に弾性部材503に接触して、弾性部材503を曲面状にたわませて、流体排出口504と弾性部材503との接触の際に隙間を作り出し、段階的な微細排気が可能にするものである。突出量Lは微細排気の特性に大きく影響する重要な寸法であるが、本構成を採用することによって、実際に流量コントロール弁を動作させながら突起502の突出量Lを希望する微細排気の特性が得られるように調整し、最適な突出量を探ることが出来る。流量コントロール弁を構成する各部品の寸法および組み立て精度が十分に良く保たれていれば、突出量Lを一定の値に管理してあらかじめトップケース501に組み込めば良いし、なんらかの原因で微細排気の特性が最適な状態からずれてしまった場合には、突出量Lの再調整も可能である。   FIG. 5 is a cross-sectional view when the protrusion is a separate part independent of the top case. The top case 501 is provided with a female screw, and a male screw is formed on a part of the side surface of the protrusion 502 so that the protrusion amount L of the protrusion 502 from the end surface of the fluid discharge port 504 can be adjusted. The projection 502 comes into contact with the elastic member 503 prior to the fluid discharge port 504 when fine exhaust is performed, and the elastic member 503 is bent into a curved shape so that the fluid discharge port 504 and the elastic member 503 are in contact with each other. It creates gaps and enables stepwise fine exhaust. The amount of protrusion L is an important dimension that greatly affects the characteristics of the fine exhaust. By adopting this configuration, the characteristics of the fine exhaust for which the protrusion amount L of the protrusion 502 is desired while actually operating the flow control valve can be obtained. Adjustments can be made to obtain the optimum amount of protrusion. If the dimensions and assembly accuracy of the components that make up the flow control valve are kept sufficiently good, the protrusion L can be managed at a constant value and incorporated in the top case 501 beforehand. When the characteristics deviate from the optimum state, the protrusion amount L can be readjusted.

図6は従来の流量コントロール弁の弾性部材602の駆動軸の軸ずれによる影響を示す
図である。図6(a)は弾性部材の流体排出口601との当接面を傾けた場合の図であり、軸ずれによって流体排出口601との間隔がh1からh2に変化することを示している。図6(b)は弾性部材602の流体排出口601との当接面を曲面にした場合の図であり、軸ずれによって流体排出口601との開口具合が未接触寸法p1からp2に変化することを示している。図6(c)は弾性部材602の流体排出口601との当接面に凸凹を設けた場合の図であり、軸ずれにより流体排出口601と弾性部材602の接触具合が変化し、未接触部が発生した場合を示している。本発明のように、流体排出口と、弾性部材の各当接面は平面形状とし、弾性部材の開閉動作方向軸に対し垂直という関係にあることと、流体排出口および弾性部材の圧接される端面は平面であり、凸凹を有さない構成であれば上述の軸ずれによる影響は受けない。
FIG. 6 is a diagram showing the influence of the axial displacement of the drive shaft of the elastic member 602 of the conventional flow control valve. FIG. 6A is a view when the contact surface of the elastic member with the fluid discharge port 601 is tilted, and shows that the distance from the fluid discharge port 601 is changed from h1 to h2 due to the axial deviation. FIG. 6B is a diagram in the case where the contact surface of the elastic member 602 with the fluid discharge port 601 is a curved surface, and the degree of opening with the fluid discharge port 601 changes from the non-contact dimension p1 to p2 due to the axis deviation. It is shown that. FIG. 6C is a diagram in the case where the contact surface of the elastic member 602 with the fluid discharge port 601 is provided with irregularities, and the contact state between the fluid discharge port 601 and the elastic member 602 changes due to an axial deviation, and is not in contact. This shows a case where a part is generated. As in the present invention, each contact surface of the fluid discharge port and the elastic member has a planar shape and is in a relationship perpendicular to the opening / closing operation direction axis of the elastic member, and the fluid discharge port and the elastic member are pressed against each other. The end face is a flat surface and is not affected by the above-described axial deviation as long as it has no unevenness.

本発明の流量コントロール弁の実施形態における構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure in embodiment of the flow control valve of this invention. 本発明の流量コントロール弁の実施形態における流体排出口周辺での動きを示す説明図である。It is explanatory drawing which shows the movement in the fluid discharge port periphery in embodiment of the flow control valve of this invention. 本発明の流量コントロール弁の弾性部材の製作方法の一例について示す斜視図である。It is a perspective view shown about an example of the manufacturing method of the elastic member of the flow control valve of this invention. 本発明の流量コントロール弁の弾性部材の駆動軸への取り付け状態を示した断面図である。It is sectional drawing which showed the attachment state to the drive shaft of the elastic member of the flow control valve of this invention. 本発明の流量コントロール弁の突起の突出量を調節可能にした場合を示した断面図である。It is sectional drawing which showed the case where the protrusion amount of the protrusion of the flow control valve of this invention was made adjustable. 従来の流量コントロール弁の弾性部材の軸ずれによる影響を示した断面図である。It is sectional drawing which showed the influence by the axial shift of the elastic member of the conventional flow control valve. 流量コントロール弁の一般的な構成を示す断面図である。It is sectional drawing which shows the general structure of a flow control valve.

符号の説明Explanation of symbols

101 空気導入部
102 流体排出口
103 突起
104 トップケース
105 弾性部材
106 駆動軸
107 コイル
108 磁石
109 ヨーク
110 リリースバネ
201 流体排出口
202 弾性部材
203 突起
301 シート材
302 弾性部材
401 弾性部材
402 駆動軸
501 トップケース
502 突起
503 弾性部材
601 流体排出口
602 弾性部材
701 空気導入部
702 弾性部材
703 流体排出口
704 駆動軸
705 コイル
706 磁石
707 ヨーク
708 リリースバネ
DESCRIPTION OF SYMBOLS 101 Air introduction part 102 Fluid discharge port 103 Protrusion 104 Top case 105 Elastic member 106 Drive shaft 107 Coil 108 Magnet 109 Yoke 110 Release spring 201 Fluid discharge port 202 Elastic member 203 Protrusion 301 Sheet material 302 Elastic member 401 Elastic member 402 Drive shaft 501 Top case 502 Protrusion 503 Elastic member 601 Fluid discharge port 602 Elastic member 701 Air introduction portion 702 Elastic member 703 Fluid discharge port 704 Drive shaft 705 Coil 706 Magnet 707 Yoke 708 Release spring

Claims (3)

圧縮性流体を排出させる流体排出口と、該流体排出口を開閉する弾性部材とを備える流量コントロール弁であって、前記流体排出口および前記弾性部材の圧接される端面を前記弾性部材の動作方向に対して垂直とし、微細排気を行う場合に前記流体排出口より先に前記弾性部材に接触するように形成された突起を有する流量コントロール弁。 A flow rate control valve comprising a fluid discharge port for discharging a compressive fluid and an elastic member for opening and closing the fluid discharge port, wherein an end surface of the fluid discharge port and the elastic member are in pressure contact with each other in an operation direction of the elastic member And a flow control valve having a protrusion formed so as to come into contact with the elastic member before the fluid discharge port when fine exhaust is performed. 前記弾性部材が一定の厚さのシート材から型抜きされたものであることを特徴とする請求項1に記載の流量コントロール弁。 2. The flow control valve according to claim 1, wherein the elastic member is a die cut from a sheet material having a constant thickness. 少なくとも空気導入部と前記流体排出口とが一体に成型されたトップケースと前記突起とが別体であることを特徴とする請求項1または請求項2に記載の流量コントロール弁。 The flow rate control valve according to claim 1 or 2, wherein at least the top case formed integrally with the air introduction part and the fluid discharge port and the protrusion are separate.
JP2008067143A 2008-03-17 2008-03-17 Flow rate control valve Pending JP2009219660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067143A JP2009219660A (en) 2008-03-17 2008-03-17 Flow rate control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067143A JP2009219660A (en) 2008-03-17 2008-03-17 Flow rate control valve

Publications (1)

Publication Number Publication Date
JP2009219660A true JP2009219660A (en) 2009-10-01

Family

ID=41237107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067143A Pending JP2009219660A (en) 2008-03-17 2008-03-17 Flow rate control valve

Country Status (1)

Country Link
JP (1) JP2009219660A (en)

Similar Documents

Publication Publication Date Title
JP2004167547A (en) Method for shearing sheet
JP6089517B2 (en) Flow rate control valve and blood pressure information measuring apparatus provided with the same
JP2006263752A (en) Hydroforming method and apparatus
CN101055040A (en) Electric-powered air release valve and blood pressure gauge
US5320013A (en) Method of blanking metal foil on piezoelectric actuator operated press, and die sets for practicing the method
JP2001268858A (en) Rotor for motor, method for manufacturing the same and motor-operated compressor
JP6805558B2 (en) Flow control valve, its manufacturing method, and blood pressure information measuring device
JP2009219660A (en) Flow rate control valve
JP2006205232A (en) Burring method and burring device
JPH07144237A (en) Stripper device of punching die and punch assembly body using the same
CN111954776A (en) Electric valve
JP3415033B2 (en) Mold for thickening drawing and method of manufacturing yoke
EP1837094A1 (en) A method for fastening plate-like members and fastening structure for plate-like members
JP2017207121A (en) Flow passage block, fluid control device, and method for producing flow passage block
JP4024143B2 (en) Method for manufacturing hydrodynamic bearing member
JP3841931B2 (en) Molding method and molding equipment by mixing both forward and reverse throttles
JP2009216152A (en) Flow control valve
JP2007253175A (en) Method for forming ejector outer cylinder
WO2013042471A1 (en) Seal plate with spacer and manufacturing method therefor
JP3107916B2 (en) Flow control valve
JP2001160609A (en) Electronic component manufacturing method and device
JP2006207561A (en) Nozzle holder made of sintered alloy for internal combustion engine, its molding die, and its forming method
JP2001150030A (en) Electronic component manufacturing method, manufacturing equipment therefor and driving method for the manufacturing equipment
JP2004202526A (en) Method and equipment for producing fluid bearing member, and fluid bearing member
JP2018149560A (en) Closed forging apparatus