JP2009219329A - Switching power supply for driving linear motor - Google Patents

Switching power supply for driving linear motor Download PDF

Info

Publication number
JP2009219329A
JP2009219329A JP2008063424A JP2008063424A JP2009219329A JP 2009219329 A JP2009219329 A JP 2009219329A JP 2008063424 A JP2008063424 A JP 2008063424A JP 2008063424 A JP2008063424 A JP 2008063424A JP 2009219329 A JP2009219329 A JP 2009219329A
Authority
JP
Japan
Prior art keywords
circuit
power supply
current
voltage
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063424A
Other languages
Japanese (ja)
Inventor
Takashi Ochiai
孝志 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Kiko Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Neomax Kiko Co Ltd
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Neomax Kiko Co Ltd, Neomax Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008063424A priority Critical patent/JP2009219329A/en
Publication of JP2009219329A publication Critical patent/JP2009219329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching power supply for driving a linear motor which enables miniaturization and cost reduction and improves the power factor. <P>SOLUTION: The switching power supply has a rectifying circuit 2 for carrying out full-wave rectification of an input AC power supply; an inductor L connected to the rectifying circuit 2 in series, a voltage step-up chopper circuit 3 having a plurality of semiconductor switching elements Q which obtain a higher DC voltage than a DC voltage supplied from the rectifying circuit 2; and a control circuit 7 adjusting the off-time of the switching element Q. For example, a control IC, which carries out switching control for a plurality of MOSFETs for operations in current critical mode by shifting phases from each other, can be used as the control circuit 7. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リニア同期モータの巻線に駆動電流を供給するリニアモータ駆動用スイッチング電源に関する。   The present invention relates to a linear motor driving switching power supply for supplying a driving current to windings of a linear synchronous motor.

半導体製造装置(例えば投影露光装置や検査装置)においては、ガラス基板などを搭載したステージを所定の位置に移動させるリニア同期モータ(以下単にリニアモータという)は、一般的には、交流電力を直流変換(整流平滑)し、PWM(パルス幅変調)アンプで駆動コイル(以下可動子という)に供給されると共に、可動子の加速度・速度・位置などをセンサで検出し、これらの制御量を制御装置で指令値と比較することにより動作するが、この種のステージ駆動に際しては、高精度の位置決め精度および停止精度ならびに繰り返しの精度が要求される。このため、リニアモータの駆動電源には安定した直流電力をPWMアンプに供給することが望まれる。供給された直流電力を、PWM(パルス幅変調)方式の増幅回路を有するスイッチング部でPWM方式(スイッチング周波数を固定してスイッチのオン幅を変化)により所定周波数の駆動電流に変換することにより、リニアモータが駆動される(特許文献1参照)。  In a semiconductor manufacturing apparatus (for example, a projection exposure apparatus or an inspection apparatus), a linear synchronous motor (hereinafter simply referred to as a linear motor) that moves a stage on which a glass substrate or the like is mounted to a predetermined position is generally used to convert alternating current power into direct current. This is converted (rectified and smoothed), supplied to the drive coil (hereinafter referred to as the mover) by a PWM (pulse width modulation) amplifier, and the acceleration, speed, position, etc. of the mover are detected by the sensor to control these control amounts. The apparatus operates by comparing with a command value. However, when driving this type of stage, high positioning accuracy, stopping accuracy, and repetition accuracy are required. For this reason, it is desired to supply a stable DC power to the PWM amplifier as a driving power source of the linear motor. By converting the supplied DC power into a drive current having a predetermined frequency by a PWM method (fixing the switching frequency and changing the ON width of the switch) in a switching unit having a PWM (pulse width modulation) method amplifier circuit, A linear motor is driven (see Patent Document 1).

通常のスイッチング電源は、回路が簡単で軽量であるという利点をもつコンデンサインプット型整流回路を備えているので、交流入力電圧(Vac:Vu、Vv、Vw)[図7(a)参照]がコンデンサの電圧よりも低い区間では電流が流れない(通電時間が短くなる)ため、全波整流後の電圧(Vout)はリップル成分をもつ波形(脈流)[図7(b)参照]となる。このため電流が流れる区間(導通角)が狭い程ピーク値が大きくなり、このような波形をフーリエ展開したとき、奇数次の高調波が現われる。このため、通常のスイッチング動作(PWM方式)では、図7(c)に示すような入力電流波形(Iin[u])となる。特にコンデンサインプット型整流回路においては、力率(実効電力/皮相電力)が低くなるほど高調波電流が大きくなるので、力率を改善することが望まれる。しかも上述したリニアモータ用電源の場合、ステージの高速移動のために、リニアモータの高推力化(例えば5000N以上)が必要とされるので、スイッチング電源の容量が増大し、力率の改善が極めて重要である。   Since a normal switching power supply includes a capacitor input type rectifier circuit having an advantage that the circuit is simple and light, an AC input voltage (Vac: Vu, Vv, Vw) [see FIG. 7A] is a capacitor. Since the current does not flow in a section lower than the voltage of (the current-carrying time is shortened), the voltage (Vout) after full-wave rectification becomes a waveform having a ripple component (pulsating flow) [see FIG. 7B]. For this reason, the peak value increases as the current flowing section (conduction angle) becomes narrower, and when such a waveform is Fourier-expanded, odd-order harmonics appear. For this reason, in a normal switching operation (PWM method), an input current waveform (Iin [u]) as shown in FIG. In particular, in a capacitor input type rectifier circuit, since the harmonic current increases as the power factor (effective power / apparent power) decreases, it is desired to improve the power factor. Moreover, in the case of the power source for the linear motor described above, since a high thrust (for example, 5000 N or more) of the linear motor is required for high-speed movement of the stage, the capacity of the switching power source increases and the power factor is extremely improved. is important.

そこで、図8に示すように、従来のスイッチング電源では、電流ひずみによる力率の低下を改善するために、交流電源(3相AC)を整流回路RFで全波整流し、DC−DCコンバータ[例えば昇圧形コンバータ(ブーストコンバータ)]に入力し、高周波でスイッチングして直流電圧を昇圧させるとともに、出力電圧を帰還回路FBにフィードバックして出力電圧を調整する(安定化させる)フィードバック制御用信号をPWM回路に加え、さらに全波整流後の電流を力率調整回路PFCに入力して力率を改善したフィードフォワード制御用信号をPWM回路に加えて、入力電流を交流入力電圧に略追従して変化させ、位相差のないほぼ正弦波状にすることが行われている。昇圧形コンバータを使用することにより、スイッチング素子(例えばパワーMOSFET)を0V基準の信号で制御できるので、制御回路の設計が容易となるという利点がある。   Therefore, as shown in FIG. 8, in the conventional switching power supply, in order to improve the decrease in power factor due to current distortion, the AC power supply (three-phase AC) is full-wave rectified by a rectifier circuit RF, and a DC-DC converter [ For example, a step-up converter (boost converter)] is input and switched at a high frequency to boost a DC voltage, and a feedback control signal is fed back to the feedback circuit FB to adjust (stabilize) the output voltage. In addition to the PWM circuit, the current after full-wave rectification is input to the power factor adjustment circuit PFC to add a feedforward control signal that improves the power factor to the PWM circuit, and the input current substantially follows the AC input voltage. It is made to change and make it a substantially sine wave shape without a phase difference. By using the step-up converter, the switching element (for example, power MOSFET) can be controlled with a 0 V reference signal, which is advantageous in that the control circuit can be easily designed.

図8に記載されているように、力率改善機能を有する昇圧形コンバータを使用することにより、力率を例えば0.9以上まで高めることは可能である。しかしながらフィードバック制御用信号を商用周波数に応答する十分低い応答速度にするために、平滑コンデンサの容量を十分大きくする必要があり、電源の大型化を招くといった問題を伴う。   As shown in FIG. 8, it is possible to increase the power factor to, for example, 0.9 or more by using a boost converter having a power factor improving function. However, in order to make the feedback control signal have a sufficiently low response speed to respond to the commercial frequency, it is necessary to sufficiently increase the capacity of the smoothing capacitor, which causes a problem that the power supply is increased in size.

そこでスイッチング電源の力率を改善するために、種々の電源回路が提案されている。特許文献2には、複合共振コンバータを使用するともに、その制御手段を低速応答として、二次側直流出力電圧の平均値が一定になるようにした力率改善コンバータ回路が記載されている。   Therefore, various power supply circuits have been proposed in order to improve the power factor of the switching power supply. Patent Document 2 describes a power factor correction converter circuit that uses a composite resonance converter and uses a control means thereof as a low-speed response so that the average value of the secondary side DC output voltage is constant.

特許文献3には、交流を入力して直流を出力するスイッチング電源装置において、1つのコンバータで高調波規制に対応できるようにするために、ディザー回路の電圧を共振回路の共振作用により昇圧して、主スイッチの電流の最小限の増加により高調波を減少させることが記載されている。   In Patent Document 3, in a switching power supply device that inputs alternating current and outputs direct current, the voltage of the dither circuit is boosted by the resonant action of the resonant circuit so that one converter can cope with harmonic regulation. It is described that the harmonics are reduced by a minimal increase in the main switch current.

特許文献4には、高調波電流ノイズを防止するために、交流電源を全波整流した先から分岐した複数の電流経路と、この各電流経路に個々に設けられた複数のインダクタと、複数のインダクタのそれぞれの出力電流を共通の容量素子に供給して直流電圧を生成する直流電圧生成部と、この複数のインダクタに流れる電流を制御するスイッチング部とを備えるとともに、スイッチング部は、交流電源に流れる平均的な電流が正弦波状となるように、複数のインダクタに流れる電流をスイッチングによって制御する。この際に、スイッチング部は、複数のインダクタ毎に互いに異なる位相を用いてスイッチングによる制御を行うようにした電源装置が記載されている。   In Patent Document 4, in order to prevent harmonic current noise, a plurality of current paths branched from the point where full-wave rectification of the AC power supply, a plurality of inductors individually provided in each current path, a plurality of Each of the inductors includes a DC voltage generator that generates a DC voltage by supplying each output current to a common capacitive element, and a switching unit that controls the current flowing through the plurality of inductors. The currents that flow through the plurality of inductors are controlled by switching so that the average current that flows is sinusoidal. In this case, a power supply device is described in which the switching unit performs control by switching using phases different from each other for each of a plurality of inductors.

特開2001−197773号公報(第4―6頁、図1)JP 2001-197773 A (page 4-6, FIG. 1) 特開2001−119940号公報(第5―7頁、図1)JP 2001-119940 A (Page 5-7, FIG. 1) 特開2004−180406号公報公報(第6−8頁、図1)JP 2004-180406 A (page 6-8, FIG. 1) 特開2007−195282号公報(第2〜3頁、図1)JP 2007-195282 (pages 2 and 3, FIG. 1)

特許文献2に記載された力率改善コンバータ回路は、1つのコンバータで高調波規制に対応することは可能であるが、直交型制御トランスによる自励発振形スイッチング周波数制御方式複合共振型コンバータ回路を有するので、最適な制御が難しく、また素子の電圧ストレスが大になるという問題がある。   Although the power factor correction converter circuit described in Patent Document 2 can cope with harmonic regulation with one converter, a self-excited oscillation type switching frequency control system composite resonance type converter circuit with an orthogonal control transformer is used. Therefore, there is a problem that optimal control is difficult and voltage stress of the element becomes large.

また特許文献3に記載されたスイッチング電源も共振型コンバータを有するので、最適な制御が難しく、また素子の電圧ストレスが大になるという問題がある。   Further, since the switching power supply described in Patent Document 3 also has a resonant converter, there is a problem that optimal control is difficult and voltage stress of the element becomes large.

特許文献4には、この電源装置をリニアモータ駆動用電源に使用することは記載されていない。   Patent Document 4 does not describe the use of this power supply device as a linear motor driving power supply.

従って本発明の目的は、小型化かつ低コスト化が可能な力率を改善したリニアモータ駆動用スイッチング電源を提供することである。   Accordingly, an object of the present invention is to provide a switching power supply for driving a linear motor having an improved power factor that can be reduced in size and cost.

上記目的を達成するために、本発明のリニアモータ駆動用スイッチング電源は、交流電源を入力として全波整流を行う整流回路と、前記整流回路に直列に接続されたインダクタンスと前記整流回路から供給された直流電圧よりも高い直流電圧を得る複数の半導体スイッチング素子を有する昇圧チョッパ回路と、前記スイッチング素子のオフ時間を調整するコントロール回路を有することを特徴とするものである。   In order to achieve the above object, a switching power supply for driving a linear motor of the present invention is supplied from a rectifier circuit that performs full-wave rectification using an AC power supply as an input, an inductance connected in series to the rectifier circuit, and the rectifier circuit. And a step-up chopper circuit having a plurality of semiconductor switching elements for obtaining a DC voltage higher than the DC voltage, and a control circuit for adjusting the OFF time of the switching elements.

本発明において、前記コントロール回路は、電流臨界モードの動作を行う複数のMOSFETを互いに位相をずらしてスイッチング制御する機能を有することが好ましい。   In the present invention, it is preferable that the control circuit has a function of switching and controlling a plurality of MOSFETs that operate in a current critical mode by shifting their phases.

本発明によれば、昇圧チョッパ回路を構成するスイッチング素子のゲートに例えば臨界モードインターリーブ機能を有するコントロール回路を接続し、スイッチング素子のオフ時間を調整するので、小型化かつ低コスト化が可能な力率を改善したリニアモータ駆動用スイッチング電源を得ることができる。   According to the present invention, a control circuit having, for example, a critical mode interleaving function is connected to the gate of the switching element constituting the boost chopper circuit, and the switching element off-time is adjusted. A linear motor driving switching power supply with improved efficiency can be obtained.

以下、本発明の詳細を添付図面(図1〜図6)を参照して説明する。   Hereinafter, details of the present invention will be described with reference to the accompanying drawings (FIGS. 1 to 6).

図1は本発明の実施の形態に係るスイッチング電源を示す回路図、図2は本発明の原理を説明するための図、図3は図1のスイッチング電源で得られる入力電流の波形を示す図、図4は本発明で使用するコントロールICの一例を示すブロック図、図5はコントロールICの機能を説明するための回路図、図6はコントロールICの出力電圧波形を示す図である。   1 is a circuit diagram showing a switching power supply according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the principle of the present invention, and FIG. 3 is a diagram showing a waveform of an input current obtained by the switching power supply of FIG. 4 is a block diagram showing an example of a control IC used in the present invention, FIG. 5 is a circuit diagram for explaining the function of the control IC, and FIG. 6 is a diagram showing an output voltage waveform of the control IC.

図1に示すスイッチング電源1は、交流電力(例えば3相AC)に接続された整流回路2と、この整流回路の出力電圧を所定の直流電圧に変換する昇圧チョッパ回路3を有する。   A switching power supply 1 shown in FIG. 1 includes a rectifier circuit 2 connected to AC power (for example, three-phase AC), and a boost chopper circuit 3 that converts an output voltage of the rectifier circuit into a predetermined DC voltage.

このスイッチング電源1は、抵抗R1、R2により昇圧チョッパ回路3の出力電圧を検出する帰還回路4と、検出された直流電圧を基準電圧と比較してその誤差電圧を増幅するオペアンプを有する誤差増幅回路5と、キャリア信号を生成する三角波発生回路61と、増幅された誤差電圧の振幅とキャリア信号の振幅とを比較して入力信号の振幅(入力電圧)に応じたパルス幅を有する波形(パルス波)を出力するコンパレータ(オペアンプ)62を有するPWM回路6と、このパルス波のオフ時間を制御するコントロールIC7を有する。   This switching power supply 1 includes an error amplifier circuit having a feedback circuit 4 that detects the output voltage of the boost chopper circuit 3 using resistors R1 and R2, and an operational amplifier that compares the detected DC voltage with a reference voltage and amplifies the error voltage. 5 and a triangular wave generation circuit 61 that generates a carrier signal, and compares the amplitude of the amplified error voltage with the amplitude of the carrier signal and has a waveform (pulse wave) having a pulse width corresponding to the amplitude (input voltage) of the input signal ) And a control IC 7 for controlling the off time of the pulse wave.

スイッチング電源1の主要部の構成は次の通りである。   The configuration of the main part of the switching power supply 1 is as follows.

整流回路2は、交流電力(例えば3相AC)を全波整流して平滑化された直流に変換するために、ダイオードD1〜D6で形成されたダイオードブリッジ11と、平滑コンデンサC1を有する。昇圧チョッパ回路3は、半導体スイッチング素子Q(例えばパワーMOSFET)がオンのときは、入力電圧ViによりインダクタLに磁気エネルギーが蓄積され(FETにドレイン電流Iが流れる)、一方半導体スイッチング素子Qがオフの時は電圧(Vo−Vi)がオンの時と逆方向にインダクタLに加えられ、インダクタLに蓄積されている磁気エネルギーはダイオードD7に流れて負荷に供給される(電流Iが流れる)。定常状態では、磁気エネルギーの増加分と減少分が等しいと仮定して、電力変換率(M)は、1/D[但しD:デューティー比(Ton/T)、Ton:オン時間、T:スイッチング周期(=1/f)]で表される。したがって電力変換率(M)が1より大となるので、昇圧チョッパ回路3では、昇圧された直流電圧が得られる。なお図1の回路は複数の半導体スイッチング素子を有するが、理解を容易にするために、Q以外の半導体スイッチング素子を省略している。 The rectifier circuit 2 includes a diode bridge 11 formed of diodes D1 to D6 and a smoothing capacitor C1 in order to convert AC power (for example, three-phase AC) into full-wave rectified and smoothed DC. When the semiconductor switching element Q (for example, a power MOSFET) is on, the boost chopper circuit 3 stores magnetic energy in the inductor L by the input voltage Vi (drain current IQ flows in the FET), while the semiconductor switching element Q When the voltage is off, the voltage (Vo-Vi) is applied to the inductor L in the opposite direction to that when the voltage is on, and the magnetic energy stored in the inductor L flows to the diode D7 and is supplied to the load (current ID flows). ). Assuming that the increase and decrease of the magnetic energy are equal in the steady state, the power conversion rate (M) is 1 / D [where D: duty ratio (Ton / T), Ton: on time, T: switching Period (= 1 / f)]. Therefore, since the power conversion rate (M) is larger than 1, the boosted chopper circuit 3 can obtain a boosted DC voltage. Although the circuit of FIG. 1 has a plurality of semiconductor switching elements, the semiconductor switching elements other than Q are omitted for easy understanding.

またダイオードに電流Iが流れる期間はチョーク電流モードの種類によって異なるが、本発明では電流臨界モードで制御することが好ましい。電流不連続モードは、ソフトスイッチングが可能でノイズを少なくできるが、電流リプルが大きいので、電流容量の大きなMOSFETを使用する必要がある。電流連続モードは、ハードスイッチングをしているので、ノイズを発生するが、電流リプルは少ないので、大容量に向いている。電流臨界モードは、電流不連続モードと電流連続モードとの境界にあるので、ノイズ、電流リプル及びMOSFETの負担を有る程度まで軽減することができる(電流不連続モードと電流連続モードとの中間)。 The period during which the current ID flows in the diode varies depending on the type of choke current mode, but in the present invention, it is preferable to control in the current critical mode. In the current discontinuous mode, soft switching is possible and noise can be reduced. However, since the current ripple is large, it is necessary to use a MOSFET having a large current capacity. In the continuous current mode, since hard switching is performed, noise is generated, but since current ripple is small, it is suitable for large capacity. Since the current critical mode is at the boundary between the current discontinuous mode and the current continuous mode, noise, current ripple, and the burden of the MOSFET can be reduced to some extent (between the current discontinuous mode and the current continuous mode). .

コントロールIC7は、PWM回路6から出力されたパルス波に基づいて、半導体スイッチング素子Qを駆動する制御信号を生成するもので、特に、スイッチング素子のオン時間を一定とし、オフ時間を変化させる機能を有するものを使用する。またコントロールIC7は、基準電圧発生回路、発振周期を決定する鋸波発振回路、PWM波形を生成するパルス幅変調器、分周回路、定電圧/定電流制御を行う誤差増幅器、MOSFETのゲート駆動回路などの機能を有するものが使用される。   The control IC 7 generates a control signal for driving the semiconductor switching element Q based on the pulse wave output from the PWM circuit 6, and has a function of changing the off time with the switching element's on time constant. Use what you have. The control IC 7 includes a reference voltage generation circuit, a sawtooth oscillation circuit that determines an oscillation period, a pulse width modulator that generates a PWM waveform, a frequency divider, an error amplifier that performs constant voltage / constant current control, and a MOSFET gate drive circuit. Those having functions such as are used.

コントロールIC7により、スイッチング素子Q(例えばパワーMOSFET)に、そのオン時間を一定とし、オフ時間を変化させるような制御信号を入力することにより、図2に示すような原理で正弦波状の入力電流を得ることができる。すなわち、パワーMOSFETは、ゲート・ソース間電圧が一定の値を越えると、ドレインからソースに向かってドレイン電流(スイッチング電流)が流れ、ゲート・ソース間電圧が一定の値以下ではドレイン電流が流れない。そこで、スイッチング電流のオン時間を一定とし、オフ時間を変化させることにより、オン時間が同一のときはインダクタのピーク電流は入力電圧に比例するので、ドレイン電流ILの最大値(三角波の頂点)が入力電圧(正弦波の包絡線)に達するとゼロに戻り、かつ三角形の底辺が連続して接するようになる。これにより入力電流Iinは三角形の面積を底辺で割った値の点を結んだ線となり、正弦波状の入力電圧(Vin)に比例するので、入力電圧に比例した入力電流(Iin)を得ることができる。   The control IC 7 inputs a control signal for changing the OFF time to the switching element Q (for example, a power MOSFET), thereby changing the sinusoidal input current according to the principle shown in FIG. Obtainable. That is, in the power MOSFET, when the gate-source voltage exceeds a certain value, a drain current (switching current) flows from the drain to the source, and when the gate-source voltage is less than a certain value, the drain current does not flow. . Therefore, by making the on-time of the switching current constant and changing the off-time, the peak current of the inductor is proportional to the input voltage when the on-time is the same, so the maximum value of the drain current IL (the apex of the triangular wave) is When the input voltage (sinusoidal envelope) is reached, it returns to zero and the base of the triangle comes into continuous contact. As a result, the input current Iin becomes a line connecting points obtained by dividing the area of the triangle by the base, and is proportional to the sinusoidal input voltage (Vin). Therefore, the input current (Iin) proportional to the input voltage can be obtained. it can.

このようにスイッチング素子Qのオン時間を一定とし、オフ時間を変化させることにより、図3に示すような滑らかな入力電流波形が得られるので、力率を例えば0.90以上に改善することができる。したがってPWMアンプに高電圧を安定して供給することができ、多相コイル(例えば3相コイル)を有するリニアモータを高出力(推力)かつ高精度で駆動することが可能となる。   Thus, by making the on-time of the switching element Q constant and changing the off-time, a smooth input current waveform as shown in FIG. 3 can be obtained, so that the power factor can be improved to 0.90 or more, for example. it can. Therefore, a high voltage can be stably supplied to the PWM amplifier, and a linear motor having a multiphase coil (for example, a three-phase coil) can be driven with high output (thrust) and high accuracy.

スイッチング素子のオン時間を一定とし、オフ時間を変化させる機能を有するコントロールIC7としては、市販の電源用コントロールIC、例えば臨界モードを採用し、かつ2系統のブーストコンバータを180°位相をシフトさせて制御するインターリーブ機能を有するコントロールIC(ルネサス社製R2A20112SP/DD)を使用することができる。このコントロールICの回路ブロックを図4に示す。同図において、各端子の機能は次の通りである。ZCD−Mはマスターコンバータ用ゼロ電流検出入力端子、ZCD−Sはスレーブコンバータ用ゼロ電流検出入力端子、NCはオープン端子、VREFは基準電圧出力端子、SGNDは小信号回路用接地力端子、RTはクロック周波数設定用タイミング抵抗接続端子、RAMPはランプ波形設定用容量接続入力端子、COMPはエラーアンプ出力端子(位相補償端子)、FBはエラーアンプ入力端子(電圧帰還入力端子)、OCP−Sはスレーブコンバータ過電流検出入力端子、OCP−Mはマスターコンバータ過電流検出入力端子、NCはオープン端子、PGNDは出力段回路用接地端子、GD−Sはスレーブコンバータ用MOSFETゲート駆動端子、GD−Mはマスターコンバータ用MOSFETゲート駆動端子、VCCは電源電圧入力端子を示す。   As a control IC 7 having a function of changing the off time by keeping the switching element on time constant, a commercially available power supply control IC, for example, a critical mode is adopted, and two boost converters are shifted in phase by 180 °. A control IC (R2A20112SP / DD manufactured by Renesas) having an interleaving function to be controlled can be used. A circuit block of this control IC is shown in FIG. In the figure, the function of each terminal is as follows. ZCD-M is the zero current detection input terminal for the master converter, ZCD-S is the zero current detection input terminal for the slave converter, NC is the open terminal, VREF is the reference voltage output terminal, SGND is the ground force terminal for the small signal circuit, RT is Clock frequency setting timing resistor connection terminal, RAMP is a ramp waveform setting capacitor connection input terminal, COMP is an error amplifier output terminal (phase compensation terminal), FB is an error amplifier input terminal (voltage feedback input terminal), and OCP-S is a slave Converter overcurrent detection input terminal, OCP-M is a master converter overcurrent detection input terminal, NC is an open terminal, PGND is a ground terminal for an output stage circuit, GD-S is a MOSFET gate drive terminal for a slave converter, and GD-M is a master MOSFET gate drive terminal for converter, VCC is power supply voltage input It shows the terminal.

上記のコントロールICは、図5に示すように、2つのパワーMOSFETゲート駆動出力端子GD−SとGD−MをそれぞれパワーMOSFETQ1及びQ2のゲートに接続し、2つのゼロ電流検出入力端子ZCD−MとZCD−SをそれぞれチョークコイルL1とL2に接続して、2つのパワーMOSFETを交互に動作させるインターリーブ動作を行うことができる。このコントロールICを使用することにより、スイッチング素子のオン時間を一定とし、オフ時間を変化させて出力電圧を制御することが可能となる。したがって入力電流はオン時間が一定となるので、入力電圧に比例した入力電流を得ることができる。   As shown in FIG. 5, the control IC connects two power MOSFET gate drive output terminals GD-S and GD-M to the gates of the power MOSFETs Q1 and Q2, respectively, and two zero current detection input terminals ZCD-M. And ZCD-S can be connected to choke coils L1 and L2, respectively, to perform an interleave operation in which two power MOSFETs are operated alternately. By using this control IC, it is possible to control the output voltage by keeping the on-time of the switching element constant and changing the off-time. Accordingly, since the on-time of the input current is constant, an input current proportional to the input voltage can be obtained.

図6に上記のコントロールICのAC入力電圧波形(Vac)[(a)]、同AC入力電流波形(Iac(u))[(b)]、同出力電圧波形(Vout)[(c)]を示す。図6から明らかなように、上記のコントロールICによれば、なめらかな電圧波形が得られることがわかる。したがって複雑な制御を行うことなく、通常の昇圧チョッパ回路と略同様の構成で力率を改善することができる。   FIG. 6 shows the AC input voltage waveform (Vac) [(a)], AC input current waveform (Iac (u)) [(b)], and output voltage waveform (Vout) [(c)] of the control IC. Indicates. As can be seen from FIG. 6, according to the control IC, a smooth voltage waveform can be obtained. Therefore, the power factor can be improved with substantially the same configuration as a normal boost chopper circuit without performing complicated control.

本発明においては、図示を省略したが、上記の昇圧チョッパ回路に、交流電源に帰還するノイズを抑制するために入力フィルタ回路(ローパスフィルタ)、スイッチング素子に突入電流が流れるのを防止するための突入防止回路(例えば突入電流が流れたときの電圧ドロップにより電流制限をする抵抗方式)、出力電圧を平滑化する平滑回路などの通常の昇圧チョッパ回路に接続されている回路を付加できることはもちろんである。   In the present invention, although not shown, an input filter circuit (low-pass filter) is provided in the boost chopper circuit to suppress noise returning to the AC power supply, and an inrush current is prevented from flowing through the switching element. Of course, it is possible to add a circuit connected to a normal boost chopper circuit such as an inrush prevention circuit (for example, a resistance method that limits current by dropping a voltage when an inrush current flows) and a smoothing circuit that smoothes the output voltage. is there.

本発明の実施の形態に係るスイッチン電源を示す回路図である。It is a circuit diagram which shows the switched-on power supply which concerns on embodiment of this invention. 本発明における半導体スイッチング素子の動作原理を示す図である。It is a figure which shows the principle of operation of the semiconductor switching element in this invention. (a)は入力電圧波形を示す図、(b)はスイッチング素子のゲート電圧波形を示す図、(c)は本発明により得られる入力電流の波形を示す図である。(A) is a figure which shows an input voltage waveform, (b) is a figure which shows the gate voltage waveform of a switching element, (c) is a figure which shows the waveform of the input current obtained by this invention. コントロールICのブロック図である。It is a block diagram of a control IC. コントロールICの動作説明をするための図である。It is a figure for demonstrating operation | movement of control IC. (a)はコントロールICの入力電圧波形を示す図、(b)は入力電流波形を示す図、(c)は出力電圧波形を示す図である。(A) is a figure which shows the input voltage waveform of control IC, (b) is a figure which shows an input current waveform, (c) is a figure which shows an output voltage waveform. (a)は入力電圧波形を示す図、(b)は全波整流後の電圧波形を示す図、(c)は従来のスイッチング電源により得られる入力電流の波形を示す図である。(A) is a figure which shows an input voltage waveform, (b) is a figure which shows the voltage waveform after full wave rectification, (c) is a figure which shows the waveform of the input current obtained by the conventional switching power supply. 従来の力率改善コンバータ回路の一例を示すブロック図である。It is a block diagram which shows an example of the conventional power factor improvement converter circuit.

符号の説明Explanation of symbols

1:スイッチング電源、2:全波整流回路、3:昇圧チョッパ回路、4:帰還回路、5:誤差増幅回路、6:PWM回路、7:コントロールIC 1: switching power supply, 2: full-wave rectifier circuit, 3: boost chopper circuit, 4: feedback circuit, 5: error amplifier circuit, 6: PWM circuit, 7: control IC

Claims (2)

交流電源を入力として全波整流を行う整流回路と、前記整流回路に直列に接続されたインダクタと前記整流回路から供給された直流電圧よりも高い直流電圧を得る半導体スイッチング素子を有する昇圧チョッパ回路と、前記スイッチング素子のオフ時間を調整するコントロール回路を有することを特徴とするリニアモータ駆動用スイッチング電源。 A rectifier circuit that performs full-wave rectification using an AC power supply as an input, an inductor connected in series to the rectifier circuit, and a boost chopper circuit having a semiconductor switching element that obtains a DC voltage higher than the DC voltage supplied from the rectifier circuit; A switching power supply for driving a linear motor comprising a control circuit for adjusting an off time of the switching element. 前記コントロール回路は、電流臨界モードの動作を行う複数のMOSFETを互いに位相をずらしてスイッチング制御する機能を有することを特徴とする請求項1に記載のリニアモータ駆動用スイッチング電源。 2. The switching power supply for driving a linear motor according to claim 1, wherein the control circuit has a function of performing switching control of a plurality of MOSFETs that operate in a current critical mode by shifting phases from one another.
JP2008063424A 2008-03-13 2008-03-13 Switching power supply for driving linear motor Pending JP2009219329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063424A JP2009219329A (en) 2008-03-13 2008-03-13 Switching power supply for driving linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063424A JP2009219329A (en) 2008-03-13 2008-03-13 Switching power supply for driving linear motor

Publications (1)

Publication Number Publication Date
JP2009219329A true JP2009219329A (en) 2009-09-24

Family

ID=41190637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063424A Pending JP2009219329A (en) 2008-03-13 2008-03-13 Switching power supply for driving linear motor

Country Status (1)

Country Link
JP (1) JP2009219329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065414A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power factor correction current resonance converter
JP2014180087A (en) * 2013-03-13 2014-09-25 Lapis Semiconductor Co Ltd Step-up switching regulator and semiconductor device
JP2015107050A (en) * 2013-11-28 2015-06-08 ジョンソン エレクトリック ソシエテ アノニム Power converter circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065414A (en) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd Power factor correction current resonance converter
JP2014180087A (en) * 2013-03-13 2014-09-25 Lapis Semiconductor Co Ltd Step-up switching regulator and semiconductor device
JP2015107050A (en) * 2013-11-28 2015-06-08 ジョンソン エレクトリック ソシエテ アノニム Power converter circuit

Similar Documents

Publication Publication Date Title
US8125805B1 (en) Switch-mode converter operating in a hybrid discontinuous conduction mode (DCM)/continuous conduction mode (CCM) that uses double or more pulses in a switching period
US7307857B2 (en) Non-isolated DC-DC converters with direct primary to load current
US9488995B2 (en) Voltage converter and voltage conversion method having multiple converter stages
JP2005110434A (en) Power factor improvement circuit
JP2008113514A (en) Power supply circuit and control circuit therewith
TW201223107A (en) AC/DC power conversion methods and apparatus
US9160238B2 (en) Power converter with current feedback loop
JP5842465B2 (en) Power supply
US10924004B2 (en) AC-DC converter circuit arrangement and method for operating a respective AC-DC converter circuit arrangement
JP2010206858A (en) Switching power supply
JP5501857B2 (en) Switching power supply
JP5930700B2 (en) Switching power supply device and control method thereof
Mukherjee et al. High-frequency LC 3 L resonant DC-DC converter for automotive LED driver applications
Ahmed Modeling and simulation of ac–dc buck-boost converter fed dc motor with uniform PWM technique
JPH07115774A (en) Power supply
JP2014197945A (en) Power conversion device and motor drive device having the same
JP2001069748A (en) Power factor improving circuit
KR101911262B1 (en) Power transforming apparatus having noise reduction function and air conditioner including the same
WO2011048818A1 (en) Dc power supply device, and motor driving inverter apparatus using same
JP2011083049A (en) Voltage converter
JP2009219329A (en) Switching power supply for driving linear motor
JP2019062665A (en) AC-DC converter
JP4473041B2 (en) DC power supply
KR101609726B1 (en) Control circuit of switching rectifier with high power factor
KR100420964B1 (en) Single-stage converter compensating power factor