JP2009216658A - Method for manufacturing gyro sensor - Google Patents

Method for manufacturing gyro sensor Download PDF

Info

Publication number
JP2009216658A
JP2009216658A JP2008063035A JP2008063035A JP2009216658A JP 2009216658 A JP2009216658 A JP 2009216658A JP 2008063035 A JP2008063035 A JP 2008063035A JP 2008063035 A JP2008063035 A JP 2008063035A JP 2009216658 A JP2009216658 A JP 2009216658A
Authority
JP
Japan
Prior art keywords
vibrator
gyro sensor
insulating layer
manufacturing
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008063035A
Other languages
Japanese (ja)
Inventor
Satoshi Waga
聡 和賀
Takeshi Ikeda
剛 池田
Takashi Sato
崇 佐藤
Sumuto Morita
澄人 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008063035A priority Critical patent/JP2009216658A/en
Publication of JP2009216658A publication Critical patent/JP2009216658A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gyro sensor, in particular, can restrain a positional shift or the like from being generated between an oscillator and a pedestal part, compared with conventional one, and can restrain output sensitivity from being dispersed. <P>SOLUTION: The convex pedestal part 13 is formed integrally with a support substrate 11 on the support substrate 11, and the periphery of the pedestal part 13 is filled with an insulating layer 35. Then, an Si substrate 38 is joined to an upper face 13a of the flatened pedestal part 13 and an upper face 35b of the insulating layer 35. The Si substrate 38 is worked thereafter into an oscillator shape. The insulating layer 35 is removed followed thereto. The gyro sensor is easily and properly formed while the positional shift or the like is restrained from being generated between the oscillator 12 and the pedestal part 13, compared with the conventional one, and while the output sensitivity is restrained from being dispersed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、MEMS(微小電気機械システム:Micro ElectroMechanical System)技術を用いて形成されたジャイロセンサの製造方法に関する。   The present invention relates to a method for manufacturing a gyro sensor formed using a MEMS (Micro Electro Mechanical System) technology.

図9は、従来のジャイロセンサの一工程図を示す。
従来では、図9に示すように、支持基板1上に形成された凸形状の台座部2上に樹脂や特許文献1及び特許文献2のように金バンプ等の接合部材3を設けた状態で、振動子4の基部4aを台座部2上に位置決めして固定していた(ダイボンディング)。
FIG. 9 is a process diagram of a conventional gyro sensor.
Conventionally, as shown in FIG. 9, a resin or a bonding member 3 such as a gold bump is provided on a convex pedestal 2 formed on a support substrate 1 as in Patent Document 1 and Patent Document 2. The base 4a of the vibrator 4 was positioned and fixed on the pedestal 2 (die bonding).

しかしながら図9に示す従来のジャイロセンサの製造方法であると、振動子4の基部4aと台座部2との間に位置ずれが生じやすい。特に、この位置ずれにより振動子4の垂直方向(高さ方向;図9に示すZ軸方向)振動の共振周波数のばらつきが大きくなり、出力感度にばらつきが生じる問題があった。   However, in the conventional method for manufacturing a gyro sensor shown in FIG. 9, misalignment is likely to occur between the base portion 4 a of the vibrator 4 and the pedestal portion 2. In particular, due to this positional shift, there is a problem that the variation in the resonance frequency of the vibration in the vertical direction (height direction; Z-axis direction shown in FIG. 9) of the vibrator 4 becomes large and the output sensitivity varies.

また特許文献3に記載された発明では、SOI基板を用い、上面に位置するSi基板を振動子形状に加工し、Si基板と支持基板間に位置する犠牲層(絶縁層)を等方性エッチングで除去する。このとき、振動子の基部と支持基板との間に一部の犠牲層を接合部として残すことで振動子の基部が支持基板上に犠牲層を介して固定された構造に形成できる。   In the invention described in Patent Document 3, an SOI substrate is used, a Si substrate located on the upper surface is processed into a vibrator shape, and a sacrificial layer (insulating layer) located between the Si substrate and the support substrate is isotropically etched. Remove with. At this time, by leaving a part of the sacrificial layer as a joint between the base of the vibrator and the support substrate, the base of the vibrator can be formed on the support substrate via the sacrificial layer.

しかしながら特許文献3に記載された発明のように等方性エッチングを用いて、振動子の基部と支持基板との間に均一な大きさで且つ所定位置に適切に犠牲層(接合部)を残すのは非常に困難であった。したがって、特許文献3に記載された製造方法では、残される犠牲層の大きさや形成位置のばらつきが大きくなり、振動子と残される犠牲層との間に位置ずれが生じたり、また振動子と残される犠牲層との接触面積がばらつく結果、出力感度のばらつきを適切に抑制することはできなかった。
特開2005−308608号公報 特開2005−127758号公報 特開2000−321073号公報
However, as in the invention described in Patent Document 3, isotropic etching is used to leave a sacrificial layer (junction) appropriately in a predetermined position at a uniform size between the base of the vibrator and the support substrate. It was very difficult. Therefore, in the manufacturing method described in Patent Document 3, the size of the remaining sacrificial layer and the variation in the formation position increase, and a positional shift occurs between the vibrator and the remaining sacrificial layer, or the vibrator and the residual material remain. As a result of variation in the contact area with the sacrificial layer, it was not possible to appropriately suppress variations in output sensitivity.
JP 2005-308608 A JP 2005-127758 A JP 2000-321073 A

そこで本発明は上記従来の課題を解決するためのものであり、特に、従来に比べて振動子と台座部間の位置ずれ等を抑制でき、出力感度のばらつきを抑制できるジャイロセンサを提供することを目的としている。   Accordingly, the present invention is to solve the above-described conventional problems, and in particular, to provide a gyro sensor that can suppress positional deviation and the like between a vibrator and a pedestal as compared with the prior art and can suppress variations in output sensitivity. It is an object.

本発明は、支持基板上に台座部を介して振動子の基部が接合されてなるジャイロセンサの製造方法において、以下の工程を有することを特徴とするものである。   The present invention is a gyro sensor manufacturing method in which a base portion of a vibrator is bonded to a support substrate via a pedestal portion, and includes the following steps.

(A) 支持基板の上面を凸加工して、(D)工程で形成される振動子の基部下の位置に凸状の台座部を前記支持基板と一体化して形成する工程、
(B) 前記台座部の周囲を絶縁層で埋める工程、
(C) 平坦化面である前記台座部の上面及び前記絶縁層の上面に振動子材を接合する工程、
(D) 前記振動子材を振動子形状に加工する工程、
(E) 前記絶縁層を除去する工程。
(A) A process of projecting the upper surface of the support substrate and forming a convex pedestal unit integrally with the support substrate at a position below the base of the vibrator formed in the step (D),
(B) a step of filling the periphery of the pedestal portion with an insulating layer;
(C) bonding the vibrator material to the upper surface of the pedestal portion and the upper surface of the insulating layer, which are flattened surfaces;
(D) processing the vibrator material into a vibrator shape;
(E) The process of removing the said insulating layer.

このように、本発明では振動子材を平坦な面上に接合し、振動子材を固定した状態で振動子形状に加工するため、所定形状の振動子を適切且つ容易に形成できるとともに、(D)工程の加工工程で、台座部と振動子の基部との位置合わせを高精度に行うことが出来る。さらに、(E)工程では、支持基板と一体に形成された台座部を残して絶縁層のみを適切に除去することが出来る。その結果、従来に比べて、振動子の基部と台座部との位置合わせのばらつきを小さくでき、また台座部を均一な形状で形成でき、台座部と振動子との接触面積のばらつきを小さくできる。したがって本実施形態のジャイロセンサの製造方法によれば、従来に比べて、振動子の垂直方向振動における共振周波数のばらつき等を小さくでき、出力感度のばらつきを効果的に抑制できるジャイロセンサを簡単且つ適切に製造することが出来る。   Thus, in the present invention, the vibrator material is bonded to a flat surface and processed into a vibrator shape in a state where the vibrator material is fixed, and thus a vibrator having a predetermined shape can be formed appropriately and easily. In the processing step D), the pedestal portion and the base portion of the vibrator can be aligned with high accuracy. Furthermore, in the step (E), only the insulating layer can be appropriately removed while leaving the pedestal formed integrally with the support substrate. As a result, it is possible to reduce the variation in alignment between the base portion and the pedestal portion of the vibrator, and to form the pedestal portion in a uniform shape, and to reduce the variation in the contact area between the pedestal portion and the vibrator as compared with the conventional case. . Therefore, according to the manufacturing method of the gyro sensor of the present embodiment, the gyro sensor that can reduce the variation of the resonance frequency in the vertical vibration of the vibrator and the like and can effectively suppress the fluctuation of the output sensitivity can be simplified and compared with the conventional method. It can be manufactured properly.

本発明では、前記(A)工程で、前記支持基板の上面をエッチングして凸加工することが好ましい。これにより、適切且つ簡単に所定形状の台座部を形成できる。   In the present invention, it is preferable that in the step (A), the upper surface of the support substrate is etched to be convexly processed. Thereby, the base part of a predetermined shape can be formed appropriately and easily.

本発明では、前記絶縁層を、PSG層あるいはBPSG層で形成することが好ましい。
本発明では、前記(B)工程で前記絶縁層を成膜した後、前記絶縁層に対して熱処理を施すことが好ましい。
これにより、台座部の周囲を隙間無く適切に絶縁層で埋めることが出来る。
In the present invention, the insulating layer is preferably formed of a PSG layer or a BPSG layer.
In the present invention, it is preferable to heat-treat the insulating layer after forming the insulating layer in the step (B).
Thereby, the circumference | surroundings of a base part can be appropriately filled up with an insulating layer without gap.

本発明では、前記台座部の上面及び前記絶縁層の上面をCMP技術を用いて平坦化処理することが好ましい。これにより、前記台座部の上面及び前記絶縁層の上面を適切且つ簡単に平坦化処理できる。   In the present invention, it is preferable that the upper surface of the pedestal part and the upper surface of the insulating layer are planarized using a CMP technique. Thereby, the upper surface of the pedestal part and the upper surface of the insulating layer can be planarized appropriately and easily.

また本発明では、前記(B)工程で、前記振動子材であるSi基板を、前記台座部の上面及び前記絶縁層の上面に接合することが好ましい。これによりSi基板と台座部の間を例えば常温接合できる。   In the present invention, in the step (B), it is preferable that the Si substrate as the vibrator material is bonded to the upper surface of the pedestal portion and the upper surface of the insulating layer. Thereby, for example, room temperature bonding can be performed between the Si substrate and the pedestal portion.

本発明では、前記(C)工程と前記(D)工程の間に以下の工程を有することが好ましい。   In this invention, it is preferable to have the following processes between the said (C) process and the said (D) process.

(F) 平坦な前記Si基板上に下から下部電極、圧電膜、及び上部電極の順に積層して成り、駆動部及び検出部を備える圧電機能素子を形成する工程。これにより所定パターンの圧電機能素子を適切且つ簡単に形成できる。   (F) A step of forming a piezoelectric functional element including a driving unit and a detection unit, which are formed by laminating a lower electrode, a piezoelectric film, and an upper electrode in this order on the flat Si substrate. Thereby, a piezoelectric functional element having a predetermined pattern can be formed appropriately and easily.

また本発明では、前記(D)工程で、前記振動子材を振動子形状と前記振動子形状の周囲を囲む枠形状に加工して、前記振動子の周囲に枠体を設けることが出来る。   In the present invention, in the step (D), the vibrator material can be processed into a vibrator shape and a frame shape surrounding the vibrator shape, and a frame body can be provided around the vibrator.

また本発明では、前記(D)工程で、少なくとも2つのアーム部と、これらアーム部を連結する基部とを備える音叉型振動子を形成することが出来る。   In the present invention, in the step (D), a tuning fork vibrator including at least two arm portions and a base portion connecting these arm portions can be formed.

本発明の角速度センサの構成によれば、従来に比べて、振動子の垂直方向振動における共振周波数のばらつき等を小さくでき、出力感度のばらつきを効果的に抑制できるジャイロセンサを簡単且つ適切に製造することが出来る。   According to the configuration of the angular velocity sensor of the present invention, it is possible to easily and appropriately manufacture a gyro sensor that can reduce variations in resonance frequency and the like in vertical vibrations of the vibrator and can effectively suppress variations in output sensitivity, compared to the conventional case. I can do it.

図1は、本発明の第1実施形態のジャイロセンサの平面図、図2は図1に示すA−A線に沿って高さ方向に切断し矢印方向から見た拡大断面図、図3は図1に示すB−B線に沿って高さ方向に切断し矢印方向から見た部分拡大断面図、図4は図1に示すC−C線に沿って高さ方向に切断し矢印方向から見た断面図、図5は、本実施形態のジャイロセンサの変形例を示す断面図、図6は、本発明の第2実施形態のジャイロセンサの平面図、図7は図6に示すD−D線に沿って高さ方向に切断し矢印方向から見た断面図である。   FIG. 1 is a plan view of a gyro sensor according to a first embodiment of the present invention, FIG. 2 is an enlarged sectional view taken along the line AA shown in FIG. FIG. 4 is a partial enlarged cross-sectional view taken along the line BB shown in FIG. 1 and viewed from the direction of the arrow, and FIG. 4 is cut along the line CC along the line shown in FIG. FIG. 5 is a sectional view showing a modified example of the gyro sensor of the present embodiment, FIG. 6 is a plan view of the gyro sensor of the second embodiment of the present invention, and FIG. It is sectional drawing cut | disconnected in the height direction along D line, and seeing from the arrow direction.

各図におけるX軸方向及びY軸方向は支持基板平面内での直交する2方向を指す。Z軸方向はX軸方向及びY軸方向に対して直交する高さ方向(垂直方向)を指す。   The X-axis direction and the Y-axis direction in each figure indicate two orthogonal directions in the support substrate plane. The Z-axis direction indicates a height direction (vertical direction) orthogonal to the X-axis direction and the Y-axis direction.

図1、図4に示すようにジャイロセンサ10は、シリコンあるいはガラスで形成された支持基板11と、振動子12と、支持基板11と振動子12間を接合する台座部13と、振動子12を所定方向に振動させ、且つ振動子12がコリオリ力を受けたときに変位する変位量を検出するための圧電機能素子14とを有して構成される。   As shown in FIGS. 1 and 4, the gyro sensor 10 includes a support substrate 11 made of silicon or glass, a vibrator 12, a pedestal 13 that joins the support substrate 11 and the vibrator 12, and the vibrator 12. And a piezoelectric functional element 14 for detecting a displacement amount when the vibrator 12 receives a Coriolis force.

振動子12はSi基板を加工して形成されたものであることが好適である。図1,図4に示す形態では振動子12は音叉型振動子である。図1,図4に示すように振動子12はX軸方向に所定間隔を空けてY軸方向に長く延びる2本のアーム部15,16(第1アーム部15と第2アーム部16)と、これらアーム部15,16の一端部側を連結する基部(連結部)17とを有して構成される。   The vibrator 12 is preferably formed by processing a Si substrate. 1 and 4, the vibrator 12 is a tuning fork vibrator. As shown in FIGS. 1 and 4, the vibrator 12 includes two arm portions 15 and 16 (a first arm portion 15 and a second arm portion 16) that extend long in the Y-axis direction with a predetermined interval in the X-axis direction. And a base portion (connecting portion) 17 that connects one end portions of the arm portions 15 and 16.

図4に示すように振動子12の基部17が支持基板11に台座部13を介して接合され固定されている。このため図4に示すように振動子12のアーム部15,16は、支持基板11の上面から上方に浮いた状態である。   As shown in FIG. 4, the base portion 17 of the vibrator 12 is joined and fixed to the support substrate 11 via the pedestal portion 13. Therefore, as shown in FIG. 4, the arm portions 15 and 16 of the vibrator 12 are in a state of floating upward from the upper surface of the support substrate 11.

圧電機能素子14は各アーム部15,16の上面から基部17上にかけて形成されている。以下、圧電機能素子14の形態について説明する。   The piezoelectric functional element 14 is formed from the upper surface of each arm part 15, 16 to the base part 17. Hereinafter, the form of the piezoelectric functional element 14 will be described.

図1,図2に示すように、第1アーム部15上には互いにX軸方向に離間して設けられた第1駆動部18及び第2駆動部19と、駆動部18,19間に離間して設けられた検出部20が設けられる。   As shown in FIGS. 1 and 2, the first drive unit 18 and the second drive unit 19 provided on the first arm unit 15 so as to be spaced apart from each other in the X-axis direction are separated from the drive units 18 and 19. Thus, a detection unit 20 is provided.

図2に示すように、第1駆動部18及び第2駆動部19は、下から下部電極18a,19a、例えばPZTからなり垂直方向(Z軸方向)に分極処理された圧電膜18b,19b、及び上部電極(駆動電極)18c,19cの順に積層されている。   As shown in FIG. 2, the first driving unit 18 and the second driving unit 19 are composed of lower electrodes 18 a and 19 a, for example, piezoelectric films 18 b and 19 b made of PZT and polarized in the vertical direction (Z-axis direction). The upper electrodes (drive electrodes) 18c and 19c are stacked in this order.

また、図2に示すように、検出部20は、下から下部電極20a、例えばPZTからなり垂直方向(Z軸方向)に分極処理された圧電膜20b、及び上部電極(検出電極)20cの順に積層されている。   As shown in FIG. 2, the detection unit 20 includes a lower electrode 20a from the bottom, for example, a piezoelectric film 20b made of PZT and polarized in the vertical direction (Z-axis direction), and an upper electrode (detection electrode) 20c in this order. Are stacked.

検出部20は、アーム部15のX軸方向(幅方向)の略中心位置にY軸方向に沿って設けられており、各駆動部18,19は、検出部20からX軸方向(幅方向)に略等間隔の位置にY軸方向に沿って設けられる。   The detection unit 20 is provided along the Y-axis direction at a substantially central position in the X-axis direction (width direction) of the arm unit 15. ) At substantially equal intervals along the Y-axis direction.

図1に示すように、第2アーム部16側にも第1アーム部15と同じ圧電機能素子14が形成されている。第1アーム部15に形成された圧電機能素子14と第2アーム部16に形成された圧電機能素子14とは、第1アーム部15と第2アーム部16との間のY軸方向への中心線を対称軸として線対称関係で形成される。   As shown in FIG. 1, the same piezoelectric functional element 14 as the first arm portion 15 is formed on the second arm portion 16 side. The piezoelectric functional element 14 formed on the first arm portion 15 and the piezoelectric functional element 14 formed on the second arm portion 16 are in the Y-axis direction between the first arm portion 15 and the second arm portion 16. It is formed in a line symmetrical relationship with the center line as the axis of symmetry.

図3に示すように、振動子12の基部17上には各下部電極と接続する共通グランド25が形成され、共通グランド25上には、例えばPZTからなり垂直方向(Z軸方向)に分極処理された圧電膜26が形成される。   As shown in FIG. 3, a common ground 25 connected to each lower electrode is formed on the base 17 of the vibrator 12, and the common ground 25 is made of, for example, PZT and is polarized in the vertical direction (Z-axis direction). The formed piezoelectric film 26 is formed.

そして図1,図3に示すように、第1アーム部15に形成された第1駆動部18の上部電極18cと、第2アーム部16に形成された第1駆動部18の上部電極18cとが基部17上にまで引き出されて基部17の圧電膜26上で共通の電極パッド21に接続される。   As shown in FIGS. 1 and 3, the upper electrode 18 c of the first driving unit 18 formed on the first arm unit 15 and the upper electrode 18 c of the first driving unit 18 formed on the second arm unit 16. Is pulled out onto the base 17 and connected to the common electrode pad 21 on the piezoelectric film 26 of the base 17.

また図1,図3に示すように、第1アーム部15に形成された第2駆動部19の上部電極19cと、第2アーム部16に形成された第2駆動部19の上部電極19cとが基部17上にまで引き出されて基部17の圧電膜26上で共通の電極パッド22に接続される。   As shown in FIGS. 1 and 3, the upper electrode 19 c of the second drive unit 19 formed on the first arm unit 15, and the upper electrode 19 c of the second drive unit 19 formed on the second arm unit 16, Is pulled out onto the base 17 and connected to the common electrode pad 22 on the piezoelectric film 26 of the base 17.

さらに図1,図3に示すように、第1アーム部15に形成された検出部20の上部電極20c、及び第2アーム部16に形成された検出部20の上部電極20cとが夫々、基部17上にまで引き出されて基部17の圧電膜26上で電極パッド23,24に接続されている。   Further, as shown in FIGS. 1 and 3, the upper electrode 20c of the detection unit 20 formed on the first arm unit 15 and the upper electrode 20c of the detection unit 20 formed on the second arm unit 16 are respectively base portions. 17 is pulled out up to 17 and connected to the electrode pads 23 and 24 on the piezoelectric film 26 of the base 17.

図示しない駆動回路から互いに位相が逆の駆動振動が電極パッド21,22に供給される。このとき、例えば、第1駆動部18の圧電膜18bがY軸方向に縮むと、第2駆動部19の圧電膜19bはY軸方向に延びる。これにより各アーム部15,16が逆位相でX軸方向に曲がり音叉振動を起こす。   Drive vibrations whose phases are opposite to each other are supplied to the electrode pads 21 and 22 from a drive circuit (not shown). At this time, for example, when the piezoelectric film 18b of the first drive unit 18 contracts in the Y-axis direction, the piezoelectric film 19b of the second drive unit 19 extends in the Y-axis direction. As a result, the arm portions 15 and 16 are bent in the X-axis direction in the opposite phase to cause tuning fork vibration.

このように振動子12がX軸方向にて音叉振動しているときに、Y軸周りの角速度Ωがジャイロセンサ10に印加されるとコリオリ力により各アーム部15,16がZ軸方向に逆位相で変位する。このときの各アーム部15,16の変位量は各アーム部15,16に設けられた検出部20の上部電極20cにて検出される。各アーム部15,16の上部電極20cにて検出された電荷は逆極性であり、それら電荷は夫々電極パッド23,24に導かれる。そして各電極パッド23,24に接続される図示しない差動アンプ等を備える検出回路にて信号処理がされて角速度信号が出力される。   As described above, when the vibrator 12 is oscillating with a tuning fork in the X-axis direction, when the angular velocity Ω around the Y-axis is applied to the gyro sensor 10, the arms 15 and 16 are reversed in the Z-axis direction by Coriolis force. Displace with phase. The displacement amount of each arm part 15 and 16 at this time is detected by the upper electrode 20c of the detection part 20 provided in each arm part 15 and 16. The charges detected by the upper electrodes 20c of the arm portions 15 and 16 have opposite polarities, and these charges are guided to the electrode pads 23 and 24, respectively. Then, signal processing is performed by a detection circuit including a differential amplifier (not shown) connected to the electrode pads 23 and 24, and an angular velocity signal is output.

本実施形態では、支持基板11と振動子12の基部17間を接合する台座部13は支持基板11と一体で形成された凸状部である。すなわち支持基板11がSiで形成されていれば台座部13もSiで形成されている。   In the present embodiment, the pedestal portion 13 that joins between the support substrate 11 and the base portion 17 of the vibrator 12 is a convex portion formed integrally with the support substrate 11. That is, if the support substrate 11 is made of Si, the pedestal portion 13 is also made of Si.

図4に示す実施形態では、支持基板11がアーム部15,16の下側全体に設けられているが、例えば図5に示すようにアーム部15,16下の支持基板11が切断されて、アーム部15,16の下側に支持基板11が設けられていない形態にすることも出来る。これによりアーム部15,16の下側にIC等を設置できるスペースを設けることが出来る。   In the embodiment shown in FIG. 4, the support substrate 11 is provided on the entire lower side of the arm portions 15 and 16, but the support substrate 11 below the arm portions 15 and 16 is cut, for example, as shown in FIG. It is also possible to adopt a form in which the support substrate 11 is not provided below the arm portions 15 and 16. As a result, a space where an IC or the like can be installed can be provided below the arm portions 15 and 16.

図6,図7に示す形態では、図1,図4の形態と違って、振動子12の周囲に振動子12と同じ材質で形成された枠体30が設けられる。図6,図7に示す形態では、枠体30と振動子12の基部17とが一体化し、振動子12のアーム部15,16の部分では枠体30はアーム部15,16から間隔を空けて配置されている。   In the form shown in FIGS. 6 and 7, unlike the form shown in FIGS. 1 and 4, a frame body 30 made of the same material as that of the vibrator 12 is provided around the vibrator 12. 6 and 7, the frame body 30 and the base portion 17 of the vibrator 12 are integrated, and the frame body 30 is spaced from the arm portions 15 and 16 at the arm portions 15 and 16 of the vibrator 12. Are arranged.

図6に示すように、枠体30も振動子12と同様に支持基板11と一体に形成された台座部13上に接合されている。   As shown in FIG. 6, the frame body 30 is also joined onto a pedestal portion 13 formed integrally with the support substrate 11, similarly to the vibrator 12.

このように振動子12の周囲に枠体30を設けた形態であると、ジャイロセンサを実装するときに枠体30の部分をんで実装できる等、実装を楽にすることが出来る。   When the frame 30 is provided around the vibrator 12 as described above, the mounting can be facilitated such that the frame 30 can be mounted by mounting the gyro sensor.

次に図1,図4に示す形態のジャイロセンサ10の製造方法を説明する。図8A〜図8Eはジャイロセンサ10の製造方法を示す一工程図(図4と同じ位置での断面図)を示す。   Next, a method for manufacturing the gyro sensor 10 having the configuration shown in FIGS. 1 and 4 will be described. 8A to 8E are process diagrams (a cross-sectional view at the same position as FIG. 4) showing the method for manufacturing the gyro sensor 10. FIG.

まず図8Aに示す工程では例えばSiで形成された支持基板11の上面をエッチングにより凸加工して台座部13を形成する。よって台座部13は支持基板11と一体化されている。台座部13の厚さ寸法H1は、1μm〜10μm程度である。また台座部13のY軸方向における長さ寸法L1は、350〜1000μm、X軸方向における幅寸法は、250〜1000μm程度である。   First, in the step shown in FIG. 8A, the upper surface of the support substrate 11 made of, for example, Si is convexly processed by etching to form the pedestal portion 13. Therefore, the pedestal 13 is integrated with the support substrate 11. A thickness dimension H1 of the pedestal portion 13 is about 1 μm to 10 μm. Moreover, the length dimension L1 in the Y-axis direction of the pedestal portion 13 is about 350 to 1000 μm, and the width dimension in the X-axis direction is about 250 to 1000 μm.

次に台座部13の周囲を絶縁層35で埋める。例えば絶縁層35をスパッタ法やCVD法等で成膜する。図示しないが、例えば台座部13を形成するときに支持基板11の上面にリフトオフ用のレジスト層を設けて、レジスト層に覆われていない支持基板11の上面をエッチングで削って台座部13を形成し、レジスト層を残した状態で台座部13の周囲に絶縁層35を成膜し、その後、レジスト層を除去する。   Next, the periphery of the pedestal 13 is filled with an insulating layer 35. For example, the insulating layer 35 is formed by sputtering or CVD. Although not shown, for example, when forming the pedestal portion 13, a lift-off resist layer is provided on the upper surface of the support substrate 11, and the pedestal portion 13 is formed by etching the upper surface of the support substrate 11 not covered with the resist layer by etching. Then, the insulating layer 35 is formed around the pedestal portion 13 with the resist layer remaining, and then the resist layer is removed.

本実施形態では、PSG(リンケイ酸ガラス)あるいはBPSG(ホウ素・リンケイ酸ガラス)を絶縁層35として用いることが好ましい。PSG層あるいはBPSG層を常圧CVD法にて台座部13の周囲に成膜し、その後、熱処理(リフロー)を施す。PSGやBPSGはSiO2に比べて軟化点が低いので、PSGやBPSGにより台座部13の周囲に隙間無く緻密な絶縁層35を形成できる。熱処理(リフロー)の温度は、1000〜1200℃程度である。 In the present embodiment, it is preferable to use PSG (phosphosilicate glass) or BPSG (boron / phosphosilicate glass) as the insulating layer 35. A PSG layer or a BPSG layer is formed around the pedestal 13 by atmospheric pressure CVD, and then heat treatment (reflow) is performed. Since PSG and BPSG have a lower softening point than SiO 2 , a dense insulating layer 35 can be formed around the pedestal portion 13 with PSG or BPSG. The temperature of the heat treatment (reflow) is about 1000 to 1200 ° C.

なお本実施形態では、絶縁層35をPSGやBPSG以外の材質、例えばSiO2で形成することを除外するものではない。 In the present embodiment, it is not excluded that the insulating layer 35 is formed of a material other than PSG or BPSG, for example, SiO 2 .

次に、台座部13の上面13a及び絶縁層35の上面35bを例えばCMP技術を用いて平坦化処理する。台座13と絶縁層35とは異種材料なので緻密な絶縁層であると上面13aの品質が安定する。   Next, the upper surface 13a of the pedestal 13 and the upper surface 35b of the insulating layer 35 are planarized using, for example, a CMP technique. Since the pedestal 13 and the insulating layer 35 are different materials, the quality of the upper surface 13a is stable if the pedestal 13 and the insulating layer 35 are dense insulating layers.

次に図8Bに示す工程では、平坦化された台座部13の上面13a及び絶縁層35の上面35bにSi基板(振動子材)38を接合する。Si基板38の厚さ寸法H2は、100〜250μm程度である。Si基板38を台座部13上及び絶縁層35上に常温接合や熱圧着により適切に接合できる。   Next, in a step shown in FIG. 8B, a Si substrate (vibrator material) 38 is bonded to the flattened upper surface 13a of the pedestal 13 and the upper surface 35b of the insulating layer 35. The thickness dimension H2 of the Si substrate 38 is about 100 to 250 μm. The Si substrate 38 can be appropriately bonded to the pedestal 13 and the insulating layer 35 by normal temperature bonding or thermocompression bonding.

次に図8Cに示す工程では、Si基板38上に圧電機能素子14を形成する。圧電機能素子14を形成するにはまず、Si基板38上に図示しない下地膜(例えばSiO2)を成膜した後、下から下部電極、圧電膜、上部電極の順に成膜して図1〜図3に示した形状の圧電機能素子14を形成する。圧電機能素子14は下部電極、圧電膜、上部電極から成る積層膜をパターニングして駆動部18,19や検出部20を離間形成し、さらには振動子12の基部17となるSi基板38上にて上部電極を図1に示す電極配線パターンで形成するとともに各上部電極と接続される各電極パッドをパターン形成する。 Next, in the step shown in FIG. 8C, the piezoelectric functional element 14 is formed on the Si substrate 38. In order to form the piezoelectric functional element 14, first, a base film (not shown) (for example, SiO 2 ) is formed on the Si substrate 38, and then the lower electrode, the piezoelectric film, and the upper electrode are formed in this order from the bottom. The piezoelectric functional element 14 having the shape shown in FIG. 3 is formed. The piezoelectric functional element 14 is formed by patterning a laminated film composed of a lower electrode, a piezoelectric film, and an upper electrode to form the drive units 18 and 19 and the detection unit 20 apart from each other, and further on the Si substrate 38 that becomes the base 17 of the vibrator 12. The upper electrode is formed with the electrode wiring pattern shown in FIG. 1, and each electrode pad connected to each upper electrode is patterned.

次に図8Dに示す工程では、Si基板38を図1に示す音叉型振動子形状に加工する。Si基板38の加工はディープRIE(Deep RIE)を用いることが高精度に振動子12を形成できて好適である。振動子12のY軸方向の長さ寸法L2は、2.5〜12mm程度、このうちアーム部15,16の長さ寸法L3は2〜10mm程度である。   Next, in a step shown in FIG. 8D, the Si substrate 38 is processed into a tuning fork type vibrator shape shown in FIG. For processing the Si substrate 38, it is preferable to use deep RIE because the vibrator 12 can be formed with high accuracy. The length L2 of the vibrator 12 in the Y-axis direction is about 2.5 to 12 mm, and the length L3 of the arm portions 15 and 16 is about 2 to 10 mm.

Si基板38から振動子12を形成するには図示しないマスク層(例えばレジスト)を用いて行う。本実施形態では、Si基板38を平坦な面上に接合しSi基板38を固定した状態で振動子形状に加工するため、所定形状の振動子12を適切且つ簡単に形成できるとともに、台座部13と振動子12の基部17との位置合わせを高精度に行うことが出来る。   The vibrator 12 is formed from the Si substrate 38 using a mask layer (for example, a resist) (not shown). In the present embodiment, since the Si substrate 38 is bonded to a flat surface and processed into a vibrator shape with the Si substrate 38 fixed, the vibrator 12 having a predetermined shape can be formed appropriately and easily, and the pedestal portion 13 can be formed. And the base 17 of the vibrator 12 can be aligned with high accuracy.

次に図8Eに示す工程では、絶縁層35を除去する。絶縁層35を等方性エッチングにて除去することが振動子12のアーム部15,16下の絶縁層35全体を適切に除去できて好ましい。このときのエッチングはドライエッチングでもウエットエッチングでもどちらでもよい。またこのとき、絶縁層35をエッチングするが、支持基板11及び台座部13はエッチングされない(あるいはエッチングされ難い)ように選択性のあるエッチング剤を使用する。従来のようにSOI基板を用いて摺動子の基部下の犠牲層を部分的に残すように犠牲層をエッチング処理する製造方法では摺動子の形状が限定されたり、また残される犠牲層の形状を小さいばらつきで形成することは非常に難しかった。これに対して、本実施形態では、絶縁層(犠牲層)35を除去したときに、支持基板11と一体で形成された台座部13をそのまま残すことが出来る。また本実施形態では、従来に比べて絶縁層35の除去工程における制約を少なくできるので、製造工程の煩雑化を抑制できる。   Next, in the step shown in FIG. 8E, the insulating layer 35 is removed. It is preferable to remove the insulating layer 35 by isotropic etching because the entire insulating layer 35 under the arm portions 15 and 16 of the vibrator 12 can be appropriately removed. Etching at this time may be either dry etching or wet etching. At this time, the insulating layer 35 is etched, but a selective etching agent is used so that the support substrate 11 and the pedestal portion 13 are not etched (or hardly etched). In the conventional manufacturing method in which the sacrificial layer is etched so as to partially leave the sacrificial layer below the base of the slider using an SOI substrate, the shape of the slider is limited, or the sacrificial layer remaining It was very difficult to form the shapes with small variations. On the other hand, in this embodiment, when the insulating layer (sacrificial layer) 35 is removed, the pedestal portion 13 formed integrally with the support substrate 11 can be left as it is. Moreover, in this embodiment, since the restriction | limiting in the removal process of the insulating layer 35 can be reduced compared with the past, the complication of a manufacturing process can be suppressed.

上記した本実施形態のジャイロセンサの製造方法では、図8Aの工程で支持基板11と一体で形成された凸状の台座部13を形成し、台座部13の周囲を絶縁層35で埋め、図8Bの工程では、平坦化された台座部13の上面13a及び絶縁層35の上面35bに将来、振動子12として残されるSi基板38を接合している。   In the gyro sensor manufacturing method of the present embodiment described above, the convex pedestal portion 13 formed integrally with the support substrate 11 is formed in the step of FIG. 8A, and the periphery of the pedestal portion 13 is filled with the insulating layer 35. In the step 8B, a Si substrate 38 to be left as the vibrator 12 in the future is bonded to the flattened upper surface 13a of the pedestal 13 and upper surface 35b of the insulating layer 35.

本実施形態では、このように、Si基板38を平坦な面上に接合しSi基板38を固定した状態で振動子形状に加工するため、所定形状の振動子12を適切且つ簡単に形成できるとともに、台座部13と振動子12の基部17との位置合わせを図8Dの加工工程で高精度の行うことが出来る。さらに図8Eの工程で、支持基板11と一体化された台座部13を残して絶縁層(犠牲層)35のみを適切に除去できる。その結果、従来に比べて、振動子12の基部17と台座部13との位置合わせのばらつきを小さくでき、また台座部13の形状を均一な形状で形成でき、台座部13と振動子12との接触面積のばらつきを小さくできる。したがって本実施形態のジャイロセンサの製造方法によれば、従来に比べて、振動子12の垂直方向振動(Z軸方向振動)の共振周波数のばらつき等を小さくでき、出力感度のばらつきを効果的に抑制できるジャイロセンサを簡単且つ適切に製造することが出来る。   In this embodiment, since the Si substrate 38 is bonded to a flat surface and processed into a vibrator shape with the Si substrate 38 fixed, the vibrator 12 having a predetermined shape can be formed appropriately and easily. The positioning of the base portion 13 and the base portion 17 of the vibrator 12 can be performed with high accuracy by the processing step of FIG. 8D. Further, in the step of FIG. 8E, only the insulating layer (sacrificial layer) 35 can be appropriately removed leaving the pedestal portion 13 integrated with the support substrate 11. As a result, it is possible to reduce variations in alignment between the base portion 17 and the pedestal portion 13 of the vibrator 12 and to form the pedestal portion 13 in a uniform shape as compared with the conventional case. The variation in the contact area can be reduced. Therefore, according to the manufacturing method of the gyro sensor of this embodiment, the variation in the resonance frequency of the vertical vibration (Z-axis direction vibration) of the vibrator 12 can be reduced compared to the conventional case, and the variation in output sensitivity can be effectively reduced. The gyro sensor which can be suppressed can be manufactured easily and appropriately.

図6に示す枠体30を振動子12の周囲に形成するには図8Dに示す工程でSi基板38を振動子12と枠体30の形状に加工して残せばよい。   In order to form the frame 30 shown in FIG. 6 around the vibrator 12, the Si substrate 38 may be processed into the shape of the vibrator 12 and the frame 30 in the step shown in FIG. 8D.

振動子12の形状は、特に限定されるものではない。例えば、上記実施形態ではアーム部15,16の数は2本であったが3本以上であってもよいし1本でもよい。   The shape of the vibrator 12 is not particularly limited. For example, in the above embodiment, the number of the arm portions 15 and 16 is two, but may be three or more or one.

また振動子12そのものをPZT等の圧電材料で形成し、振動子12に駆動電極や検出電極を直接設けた形態で形成することも可能である。   Alternatively, the vibrator 12 itself may be formed of a piezoelectric material such as PZT, and the vibrator 12 may be directly provided with a drive electrode and a detection electrode.

本発明の第1実施形態のジャイロセンサの平面図、The top view of the gyro sensor of 1st Embodiment of this invention, 図1に示すA−A線に沿って高さ方向に切断し矢印方向から見た拡大断面図、The expanded sectional view cut | disconnected in the height direction along the AA line shown in FIG. 図1に示すB−B線に沿って高さ方向に切断し矢印方向から見た部分拡大断面図、The partial expanded sectional view cut | disconnected in the height direction along the BB line shown in FIG. 図1に示すC−C線に沿って高さ方向に切断し矢印方向から見た断面図、Sectional drawing cut | disconnected in the height direction along the CC line shown in FIG. 本実施形態のジャイロセンサの変形例を示す断面図、Sectional drawing which shows the modification of the gyro sensor of this embodiment, 本発明の第2実施形態のジャイロセンサの平面図、The top view of the gyro sensor of 2nd Embodiment of this invention, 図6に示すD−D線に沿って高さ方向に切断し矢印方向から見た断面図、Sectional drawing cut | disconnected in the height direction along the DD line | wire shown in FIG. 図8A〜図8Eは、本実施形態のジャイロセンサの製造方法を示す一工程図(図4と同じ位置での断面図)、8A to 8E are process diagrams (sectional view at the same position as FIG. 4) showing a method for manufacturing the gyro sensor of the present embodiment, 従来におけるジャイロセンサの製造方法を説明するための一工程図(断面図)、1 process drawing (sectional drawing) for demonstrating the manufacturing method of the conventional gyro sensor,

符号の説明Explanation of symbols

10 ジャイロセンサ
11 支持基板
12 振動子
13 台座部
14 圧電機能素子
15、16 アーム部
17 基部
18、19 駆動部
18a、19a、20a 下部電極
18b、19b、20b、26 圧電膜
18c、19c、20c 上部電極
20 検出部
21、22、23、24 電極パッド
25 共通グランド
30 枠体
35 絶縁層(犠牲層)
38 Si基板
DESCRIPTION OF SYMBOLS 10 Gyro sensor 11 Support substrate 12 Vibrator 13 Base part 14 Piezoelectric functional element 15, 16 Arm part 17 Base part 18, 19 Drive part 18a, 19a, 20a Lower electrode 18b, 19b, 20b, 26 Piezoelectric film 18c, 19c, 20c Upper part Electrode 20 Detection unit 21, 22, 23, 24 Electrode pad 25 Common ground 30 Frame 35 Insulating layer (sacrificial layer)
38 Si substrate

Claims (9)

支持基板上に台座部を介して振動子の基部が接合されてなるジャイロセンサの製造方法において、以下の工程を有することを特徴とするジャイロセンサの製造方法。
(A) 支持基板の上面を凸加工して、(D)工程で形成される振動子の基部下の位置に凸状の台座部を前記支持基板と一体化して形成する工程、
(B) 前記台座部の周囲を絶縁層で埋める工程、
(C) 平坦化面である前記台座部の上面及び前記絶縁層の上面に振動子材を接合する工程、
(D) 前記振動子材を振動子形状に加工する工程、
(E) 前記絶縁層を除去する工程。
A gyro sensor manufacturing method in which a base portion of a vibrator is bonded to a support substrate via a pedestal portion, and includes the following steps.
(A) A process of projecting the upper surface of the support substrate and forming a convex pedestal unit integrally with the support substrate at a position below the base of the vibrator formed in the step (D),
(B) a step of filling the periphery of the pedestal portion with an insulating layer;
(C) bonding the vibrator material to the upper surface of the pedestal portion and the upper surface of the insulating layer, which are flattened surfaces;
(D) processing the vibrator material into a vibrator shape;
(E) The process of removing the said insulating layer.
前記(A)工程で、前記支持基板の上面をエッチングして凸加工する請求項1記載のジャイロセンサの製造方法。   The method for manufacturing a gyro sensor according to claim 1, wherein in the step (A), the upper surface of the support substrate is etched to perform convex processing. 前記絶縁層を、PSG層あるいはBPSG層で形成する請求項1又は2に記載のジャイロセンサの製造方法。   The gyro sensor manufacturing method according to claim 1, wherein the insulating layer is formed of a PSG layer or a BPSG layer. 前記(B)工程で前記絶縁層を成膜した後、前記絶縁層に対して熱処理を施す請求項1ないし3のいずれかに記載のジャイロセンサの製造方法。   4. The method for manufacturing a gyro sensor according to claim 1, wherein after the insulating layer is formed in the step (B), heat treatment is performed on the insulating layer. 前記台座部の上面及び前記絶縁層の上面をCMP技術を用いて平坦化処理する請求項1ないし4のいずれかに記載のジャイロセンサの製造方法。   The gyro sensor manufacturing method according to claim 1, wherein the upper surface of the pedestal part and the upper surface of the insulating layer are planarized using a CMP technique. 前記(C)工程で、前記振動子板であるSi基板を、前記台座部の上面及び前記絶縁層の上面に接合する請求項1ないし5のいずれかに記載のジャイロセンサの製造方法。   The gyro sensor manufacturing method according to claim 1, wherein in the step (C), the Si substrate as the vibrator plate is bonded to the upper surface of the pedestal and the upper surface of the insulating layer. 前記(C)工程と前記(D)工程の間に以下の工程を有する請求項6記載のジャイロセンサの製造方法。
(F) 平坦な前記Si基板上に下から下部電極、圧電膜、及び上部電極の順に積層して成り、駆動部及び検出部を備える圧電機能素子を形成する工程。
The manufacturing method of the gyro sensor of Claim 6 which has the following processes between the said (C) process and the said (D) process.
(F) A step of forming a piezoelectric functional element including a driving unit and a detection unit, which are formed by laminating a lower electrode, a piezoelectric film, and an upper electrode in this order on the flat Si substrate.
前記(D)工程で、前記振動子材を振動子形状と前記振動子形状の周囲を囲む枠形状に加工して、前記振動子の周囲に枠体を設ける請求項1ないし7のいずれかに記載のジャイロセンサの製造方法。   8. The method according to claim 1, wherein in the step (D), the vibrator material is processed into a vibrator shape and a frame shape surrounding the vibrator shape, and a frame body is provided around the vibrator. The manufacturing method of gyro sensor of description. 前記(D)工程で、少なくとも2つのアーム部と、これらアーム部を連結する基部とを備える音叉型振動子を形成する請求項1ないし8のいずれかに記載のジャイロセンサの製造方法。   The method for manufacturing a gyro sensor according to claim 1, wherein in the step (D), a tuning fork vibrator including at least two arm portions and a base portion connecting the arm portions is formed.
JP2008063035A 2008-03-12 2008-03-12 Method for manufacturing gyro sensor Withdrawn JP2009216658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063035A JP2009216658A (en) 2008-03-12 2008-03-12 Method for manufacturing gyro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063035A JP2009216658A (en) 2008-03-12 2008-03-12 Method for manufacturing gyro sensor

Publications (1)

Publication Number Publication Date
JP2009216658A true JP2009216658A (en) 2009-09-24

Family

ID=41188658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063035A Withdrawn JP2009216658A (en) 2008-03-12 2008-03-12 Method for manufacturing gyro sensor

Country Status (1)

Country Link
JP (1) JP2009216658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078391A (en) * 2008-09-25 2010-04-08 Sony Corp Angular velocity sensor element, method for manufacturing angular velocity sensor element, angular velocity sensor, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183518A (en) * 1997-07-31 1999-07-09 St Microelectron Srl Manufacture of sensor provided with accelerometer and gyro, and sensor manufactured by the method
JP2000321073A (en) * 1999-05-07 2000-11-24 Alps Electric Co Ltd Gyroscope and its manufacture
JP2007285879A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Angular velocity sensor and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11183518A (en) * 1997-07-31 1999-07-09 St Microelectron Srl Manufacture of sensor provided with accelerometer and gyro, and sensor manufactured by the method
JP2000321073A (en) * 1999-05-07 2000-11-24 Alps Electric Co Ltd Gyroscope and its manufacture
JP2007285879A (en) * 2006-04-17 2007-11-01 Seiko Epson Corp Angular velocity sensor and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078391A (en) * 2008-09-25 2010-04-08 Sony Corp Angular velocity sensor element, method for manufacturing angular velocity sensor element, angular velocity sensor, and electronic device

Similar Documents

Publication Publication Date Title
JP4999227B2 (en) Formation of suspended beam using SOI substrate and its application to fabrication of vibratory gyrometer
JP5177015B2 (en) Packaged device and packaged device manufacturing method
JP5350339B2 (en) Micro-electromechanical system and manufacturing method thereof
JP2001196484A (en) Manufacturing method of mems structure enabling wafer level vacuum packaging
KR101371149B1 (en) MEMS Based Gyroscope
JP5592087B2 (en) Semiconductor device and manufacturing method of semiconductor device
US6242276B1 (en) Method for fabricating micro inertia sensor
JP4640459B2 (en) Angular velocity sensor
JP2009059941A (en) Airtight package, and manufacturing method of airtight package
JP4591000B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
JP5451396B2 (en) Angular velocity detector
JP2010036280A (en) Manufacturing method of mems structure
WO2015198513A1 (en) Gyro sensor and electronic apparatus
JP2009216658A (en) Method for manufacturing gyro sensor
JP6455751B2 (en) MEMS piezoelectric sensor
JP5306674B2 (en) Manufacturing method of gyro sensor
JP2005020411A (en) Manufacturing method of silicon microphone
JP2010145315A (en) Vibration gyroscope
JP2012127692A (en) Mems sensor and manufacturing method of the same, and mems package
JP2009264886A (en) Gyroscope sensor element and method for manufacturing therefor
JP4367111B2 (en) Semiconductor dynamic quantity sensor
JP4561352B2 (en) Manufacturing method of micro electro mechanical device
JP2010060398A (en) Gyroscope sensor and method for manufacturing the same
JP2010117247A (en) Mems sensor and method for manufacturing the same
JP2009253902A (en) Piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120814