JP2009216579A - Nuclear magnetic resonance device and its signal takeout method - Google Patents

Nuclear magnetic resonance device and its signal takeout method Download PDF

Info

Publication number
JP2009216579A
JP2009216579A JP2008061236A JP2008061236A JP2009216579A JP 2009216579 A JP2009216579 A JP 2009216579A JP 2008061236 A JP2008061236 A JP 2008061236A JP 2008061236 A JP2008061236 A JP 2008061236A JP 2009216579 A JP2009216579 A JP 2009216579A
Authority
JP
Japan
Prior art keywords
probe coil
coil
probe
band
magnetic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008061236A
Other languages
Japanese (ja)
Other versions
JP5290598B2 (en
Inventor
Minseok Park
ミンソク 朴
Michiya Okada
道哉 岡田
Kenji Kawasaki
健司 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008061236A priority Critical patent/JP5290598B2/en
Publication of JP2009216579A publication Critical patent/JP2009216579A/en
Application granted granted Critical
Publication of JP5290598B2 publication Critical patent/JP5290598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten a signal-to-noise ratio (SNR), in an NMR device equipped with a probe coil 5 arranged near a sample, and a resonance circuit 6 for adjusting a resonance frequency, in order to detect a nuclear magnetic resonance signal emitted from the sample in a sample tube 4 by utilizing electromagnetic induction. <P>SOLUTION: A probe coil 5 is formed by winding a belt-like wire rod having each different width according to a position, and a third terminal 503 is provided on a coil center part other than a first and second terminals 501, 502 provided on both ends, and the first and second terminals are grounded through variable capacity capacitors 601, 602, and the third terminal is connected to a receiving circuit. Hereby, in the NMR device reducing a noise generated from the sample by a dielectric loss, and having a magnet 1 whose B0 intensity is about 14T, the probe coil 5 for tuning and matching, and having a winding diameter of 5 mm or more which is an outer diameter of the sample tube 4 used generally for NMR measurement, and its resonance circuit is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、試料が発する核磁気共鳴信号を、電磁気誘導を利用して検出するため、試料近傍に配置するプローブコイルと、そのインピーダンスおよび共振周波数を調整する共振回路を備えた核磁気共鳴装置とその信号取り出し方法に関するものである。   In order to detect a nuclear magnetic resonance signal emitted from a sample using electromagnetic induction, the present invention provides a probe coil disposed in the vicinity of the sample, and a nuclear magnetic resonance apparatus including a resonance circuit that adjusts its impedance and resonance frequency. The present invention relates to the signal extraction method.

核磁気共鳴(Nuclear Magnetic Resonance、以下、NMR)装置は、強い静磁場(以下、B0)を作る磁石の中の検出空間に置かれた試料分子に一連の高周波の交流磁場パターンを照射し、試料分子内の核スピンに摂動を与え、その応答を測定する装置である。   Nuclear Magnetic Resonance (hereinafter referred to as NMR) equipment irradiates a sample molecule placed in a detection space in a magnet that creates a strong static magnetic field (hereinafter referred to as B0) with a series of high-frequency alternating magnetic field patterns, It is a device that perturbs the nuclear spin in a molecule and measures its response.

応答の測定には、主に電磁気誘導を利用する方法が使われているが、他に磁力を利用する方法、光−磁気相互作用を利用する方法などが知られている。電磁気誘導を利用する測定方法では、前記核スピンが作る磁束が通過する位置に配置した、プローブコイルを用いる。前記摂動に核スピンが応答すると、コイルを通過する磁束が時間変動して、コイルに誘導起電力が生ずる。NMR装置はコイルに生じた誘導起電力を増幅し信号処理を施した後、NMR信号として出力する。電磁気誘導を利用するNMR装置は、以上にようにプローブコイルを用いて核スピンの応答を電気信号に変換する。   For the measurement of the response, a method using electromagnetic induction is mainly used, but other methods such as a method using magnetic force and a method using optical-magnetic interaction are known. In the measurement method using electromagnetic induction, a probe coil is used that is disposed at a position where the magnetic flux generated by the nuclear spin passes. When a nuclear spin responds to the perturbation, the magnetic flux passing through the coil fluctuates over time, and an induced electromotive force is generated in the coil. The NMR apparatus amplifies the induced electromotive force generated in the coil, performs signal processing, and then outputs it as an NMR signal. The NMR apparatus using electromagnetic induction converts the nuclear spin response into an electrical signal using the probe coil as described above.

NMR装置を用いれば、様々な交流磁場パターンに対する核スピンの応答を解析することにより、分子の構造および分子のダイナミックス、分子間相互作用を解析することができる。NMR装置を用いた分析手法は、試料分子を破壊する必要がない点と、試料分子を結晶化する必要がない点で、他の分析手法にない特長を持つ。   By using the NMR apparatus, it is possible to analyze the molecular structure, molecular dynamics, and intermolecular interaction by analyzing the nuclear spin response to various alternating magnetic field patterns. An analysis method using an NMR apparatus has features that are not found in other analysis methods in that it does not require destruction of sample molecules and does not require crystallization of sample molecules.

一方で、NMRは他の分析手法に比べ信号対雑音比(Signal-to-Noise Ratio、以下、SNR)が低いことが知られており、NMRのSNRを向上させるため種々の努力が費やされてきた。今まで、NMRのSNR向上に特に大きく寄与した2つの方法は、前記磁石のB0強度を上げる方法と、前記プローブコイルを冷却する方法である。   On the other hand, NMR is known to have a low signal-to-noise ratio (hereinafter referred to as SNR) compared to other analysis methods, and various efforts are made to improve the SNR of NMR. I came. Up to now, two methods that have greatly contributed to improving the SNR of NMR are a method of increasing the B0 strength of the magnet and a method of cooling the probe coil.

B0強度を上げると、電磁気誘導を利用するNMR装置において、NMRのSNRは、B0強度の7/4乗に比例して上昇することが非特許文献1から理論的に知られている。そのため、B0強度を向上させるための努力が続けられ、最初にB0強度0.7TのNMR装置が製品として登場した1952年以来、最高22TのNMR装置が存在する2007年までの35年の間に、B0強度は最高30倍向上した。一般的に広く使われるNMR装置にもB0強度14T前後の磁石が使われている。核スピンの応答によりプローブコイルに誘導されるNMR信号周波数f0は、f0=γB0/2πの関係であり、14TのNMR装置において、約600MHzである。γは回転磁気率(Gyromagnetic ratio)であり、水素核、炭素核などの原子核の種類毎に決まっている物性値である。   It is theoretically known from Non-Patent Document 1 that when the B0 intensity is increased, the NMR SNR increases in proportion to the 7/4 power of the B0 intensity in an NMR apparatus using electromagnetic induction. For this reason, efforts to improve the B0 intensity were continued, and since 1952 when the first NMR equipment with a B0 intensity of 0.7T was first introduced as a product, it was during the 35 years until 2007 when there was a maximum of 22T NMR equipment. The B0 strength was improved up to 30 times. Magnets with a B0 strength of around 14T are also used in NMR apparatuses that are widely used in general. The NMR signal frequency f0 induced in the probe coil by the response of the nuclear spin has a relationship of f0 = γB0 / 2π, and is about 600 MHz in the 14T NMR apparatus. γ is a Gyromagnetic ratio, which is a physical property value determined for each type of atomic nucleus such as a hydrogen nucleus or a carbon nucleus.

しかし、B0強度を上げることによる更なるNMRのSNR向上は、下記の2つの理由から限界に近づいている。第1の理由は、磁石の値段と大きさおよび運転費用である。高いB0強度を有するNMR磁石は、それ自体が高価であるだけでなく、規模が大きいため専用の建物を用意する必要があり、更に運転費用も高い。これらの理由のため、最高22TのB0強度を有する磁石が入手できる現在でも、広く使われるNMR装置のB0強度は14T前後である。   However, further NMR SNR improvement by increasing the B0 intensity is approaching the limit for the following two reasons. The first reason is the price and size of the magnet and the operating cost. An NMR magnet having a high B0 strength is not only expensive in itself, but also has a large scale, so a dedicated building needs to be prepared, and the operation cost is high. For these reasons, the B0 intensity of widely used NMR devices is around 14T even now that magnets with a B0 intensity of up to 22T are available.

B0強度を上げることによる更なるNMRのSNR向上が困難な第2の理由は、NMR用磁石を作る超電導材料が凡そ22Tを超す磁場強度では常電導状態に転移することである。磁石が常電導状態になると、電気抵抗のため磁石に流れる電流が減衰し、B0が時間と共に減衰するため、NMR用磁石として使うことは困難である。そのため、B0を22T以上に上げるためには、より高い磁場強度でも超電導状態を維持できる新たな超電導材料を開発する必要がある。そのため、B0強度を更に向上させることは、不可能ではないが、非常に困難である。   The second reason why it is difficult to further improve the SNR of NMR by increasing the B0 intensity is that the superconducting material for making the NMR magnet transitions to a normal conducting state at a magnetic field strength exceeding approximately 22T. When the magnet is in a normal conducting state, the current flowing through the magnet is attenuated due to electric resistance, and B0 is attenuated with time, so that it is difficult to use as an NMR magnet. Therefore, in order to raise B0 to 22T or more, it is necessary to develop a new superconducting material that can maintain a superconducting state even with a higher magnetic field strength. Therefore, it is not difficult to further improve the B0 strength, but it is very difficult.

NMRのSNR向上に特に大きく寄与したもう1つの方法は、前記プローブコイルの低温化である。プローブコイルを10K〜70Kの低温に冷却させることにより、プローブコイルの熱雑音を大幅に低減できる。   Another method that has greatly contributed to the improvement of NMR SNR is to lower the temperature of the probe coil. By cooling the probe coil to a low temperature of 10K to 70K, the thermal noise of the probe coil can be greatly reduced.

しかし、プローブコイルを冷却することによるNMRのSNR向上も、以下の2つの理由から限界に直面している。   However, the NMR SNR improvement by cooling the probe coil also faces limitations for the following two reasons.

第1の理由は、試料で発生する熱雑音である。NMRのSNRに影響する雑音は、プローブコイルの熱雑音の他に、試料の熱雑音がある。プローブコイルの温度が常温の場合は、プローブコイルの熱雑音が支配的な雑音原であった。しかし、プローブコイルの冷却によってプローブコイルで発生する熱雑音を減らしていくと、試料が作る熱雑音が益々支配的になってくる。このため、プローブコイルを冷却して得られる熱雑音低減効果は、コイル温度を下げていくほど小さくなる。   The first reason is thermal noise generated in the sample. Noise affecting the SNR of NMR includes thermal noise of the sample in addition to thermal noise of the probe coil. When the temperature of the probe coil was normal temperature, the thermal noise of the probe coil was the dominant noise source. However, if the thermal noise generated in the probe coil is reduced by cooling the probe coil, the thermal noise produced by the sample becomes more and more dominant. For this reason, the thermal noise reduction effect obtained by cooling the probe coil becomes smaller as the coil temperature is lowered.

プローブコイルを冷却することによる更なるNMRのSNR向上が困難な第2の理由は、プローブコイルと試料間に入れる熱シールドである。多くの場合、試料の温度は200K以上に保つことが好ましい。例えば、タンパク質試料を用いる測定では、試料の温度を体温に近い300〜310Kに維持することが求められる場合がある。即ち、プローブコイル10〜70Kに冷却させると同時に、試料の温度を常温に保つことが要求されるのである。このような要求を満たすためには、プローブコイルと試料との間に、熱シールドを施せばよい。しかし、熱シールドを入れると、プローブコイルと試料間の距離が遠くなるため、プローブコイルの検出感度が低下する逆効果が発生する。プローブコイルと試料間の温度差が大きいほど、熱シールドが占める空間は大きくなり、プローブコイルの検出感度も大きく低下する。従って、プローブコイルの温度を下げていくと、ある温度以下では、熱雑音低減のポジティブ効果よりプローブコイルの検出感度低下のネガティブ効果が大きくなり、NMRのSNRが劣化する。   The second reason why it is difficult to further improve the SNR of NMR by cooling the probe coil is a heat shield placed between the probe coil and the sample. In many cases, it is preferable to keep the temperature of the sample at 200K or higher. For example, in measurement using a protein sample, it may be required to maintain the temperature of the sample at 300 to 310 K close to body temperature. That is, it is required to cool the probe coil 10 to 70K and at the same time maintain the temperature of the sample at room temperature. In order to satisfy such requirements, a heat shield may be provided between the probe coil and the sample. However, when a heat shield is inserted, the distance between the probe coil and the sample is increased, and thus an adverse effect occurs in which the detection sensitivity of the probe coil is reduced. The larger the temperature difference between the probe coil and the sample, the larger the space occupied by the heat shield, and the detection sensitivity of the probe coil is greatly reduced. Therefore, as the temperature of the probe coil is lowered, below a certain temperature, the negative effect of lowering the detection sensitivity of the probe coil becomes larger than the positive effect of reducing thermal noise, and the SNR of NMR deteriorates.

上記2つの方法の他に、NMRのSNRを向上するもう1つの方法として、前記プローブコイルの形状をもっと感度の高い形状に変える方法がある。一般的に使われているプローブコイルは鞍型コイル(Saddle coil)であるが、ソレノイド型コイルが鞍型コイルより感度が高いことが知られている(非特許文献1)。   In addition to the above two methods, another method for improving the SNR of NMR is to change the shape of the probe coil to a more sensitive shape. The probe coil generally used is a saddle coil, but it is known that the solenoid coil has higher sensitivity than the saddle coil (Non-patent Document 1).

しかし、ソレノイド型コイルを使ってNMRのSNRを向上させることは、下記の2つの理由により、大きく制約されてきた。   However, improving the SNR of NMR using a solenoid coil has been greatly restricted for the following two reasons.

第1の理由は、プローブコイルのインダクタンスLが高いため、高い共振周波数frを得ることが難しいことである。プローブコイルを用いて核スピンの応答を検出するためには、前記NMR信号周波数f0とプローブコイルの共振周波数frを一致させることと、プローブコイルのインピーダンスを受信回路の特性インピーダンスと一致させることが、必要である。f0とfrを一致させることを同調(tuning)、インピーダンスを一致させることを整合(matching)と呼び、付属回路を設けて同調と整合を実現する。プローブコイルの共振周波数frは、プローブコイルと前記付属回路からなる共振回路(Resonant circuit)のインダクタンスLと、キャパシタンスCにより決まり、正確な値は付属回路のタイプにより異なるが、fr≒1/(2π√(LC))である。共振回路のLは、プローブコイルのインダクタンスLとほぼ一致することが一般的である。共振回路のCは、浮遊容量(Stray capacitance)Csより小さくすることはできない。ソレノイド型コイルは、インダクタンスLが大きいため、高いfrを得ることは困難である。高いfrが得られなければ、NMRのSNRを向上させることは難しい。同調ができなければSNRが低下し、また、低いfrに合わせてf0を低くして同調しても、f0に比例する前記B0強度が低くなるためNMRのSNRが低下するためである。   The first reason is that it is difficult to obtain a high resonance frequency fr because the inductance L of the probe coil is high. In order to detect the nuclear spin response using the probe coil, the NMR signal frequency f0 and the resonance frequency fr of the probe coil are matched, and the impedance of the probe coil is matched with the characteristic impedance of the receiving circuit. is necessary. Matching f0 and fr is called tuning, and matching impedance is called matching. An auxiliary circuit is provided to achieve tuning and matching. The resonance frequency fr of the probe coil is determined by the inductance L and the capacitance C of the resonance circuit (Resonant circuit) composed of the probe coil and the attached circuit, and the exact value varies depending on the type of the attached circuit, but fr≈1 / (2π √ (LC)). In general, the resonance circuit L substantially matches the inductance L of the probe coil. The C of the resonant circuit cannot be smaller than the stray capacitance Cs. Since the solenoid type coil has a large inductance L, it is difficult to obtain a high fr. Unless high fr is obtained, it is difficult to improve the SNR of NMR. This is because if the tuning is not possible, the SNR is lowered, and even if the tuning is performed by lowering f0 in accordance with the low fr, the B0 intensity proportional to f0 is lowered, so that the SNR of NMR is lowered.

14T前後のB0強度を有するNMR装置で、ソレノイド型コイルを用いる方法として、ソレノイドの巻き直径(winding diameter)を小さくしたソレノイド型マイクロコイルが知られている(非特許文献1)。ソレノイド型マイクロコイルは、小さいインダクタンスLを持つため、14T前後のB0強度でも同調できる。ソレノイド型マイクロコイルは、ソレノイド型コイルが本来持つ高い感度に加えて、コイルと試料が近いことによる感度向上もあるため、高い単位試料体積あたりSNR(SNR per unit volume)を持つことが知られている。しかし、ソレノイド型およびその他のマイクロコイルは、プローブコイルが小さいため、一度に測定できる試料体積が小さくなり、単位試料体積あたりのSNRに試料体積を乗算した合計SNR(total SNR)が低下してしまう欠点がある。   As a method of using a solenoid type coil in an NMR apparatus having a B0 intensity of around 14T, a solenoid type micro coil having a reduced solenoid winding diameter is known (Non-patent Document 1). Since the solenoid type microcoil has a small inductance L, it can be tuned even with a B0 intensity of around 14T. Solenoid microcoils are known to have high SNR per unit volume (SNR per unit volume) because of the high sensitivity inherent to solenoidal coils, as well as improved sensitivity due to the proximity of the coil and the sample. Yes. However, in the solenoid type and other microcoils, since the probe coil is small, the sample volume that can be measured at a time is reduced, and the total SNR (total SNR) obtained by multiplying the SNR per unit sample volume by the sample volume is reduced. There are drawbacks.

巻き直径を小さくしたマイクロコイルは、また、前記プローブコイルの低温化によるNMRのSNR向上が難しい課題も有する。プローブコイルを冷却すると同時に試料の温度を常温近傍で維持するためには、前述の通り、プローブコイルと試料の間に熱シールドを設ける必要がある。マイクロコイルでは熱シールドを設ける空間が非常に狭いため、プローブコイルの低温化は、不可能ではないが現実的に極めて困難である。   The microcoil with a reduced winding diameter also has a problem that it is difficult to improve the SNR of NMR by lowering the temperature of the probe coil. In order to cool the probe coil and maintain the temperature of the sample at around room temperature, it is necessary to provide a heat shield between the probe coil and the sample as described above. In the microcoil, since the space for providing the heat shield is very narrow, it is practically extremely difficult to reduce the temperature of the probe coil, although it is not impossible.

ソレノイド型コイルを使ってNMR測定を制約した第2の理由は、試料が作る熱雑音が鞍型コイルより高いことである。試料が作る熱雑音の多くは、誘電損失(Dielectric loss)により発生する。誘電損失は電場強度の2乗に比例して増加するため、プローブコイルが試料中に作る電場が強いほど、試料が作る熱雑音は大きくなる。ソレノイド型コイルは、試料中に大きな電場を作ることが知られており、試料による熱雑音の面で鞍型コイルより不利である。   The second reason for limiting the NMR measurement using the solenoid type coil is that the thermal noise produced by the sample is higher than that of the saddle type coil. Most of the thermal noise generated by the sample is generated by dielectric loss. Since the dielectric loss increases in proportion to the square of the electric field strength, the stronger the electric field that the probe coil creates in the sample, the greater the thermal noise that the sample makes. Solenoid type coils are known to create a large electric field in the sample, and are disadvantageous in comparison with saddle type coils in terms of thermal noise caused by the sample.

誘電損失をソレノイド型コイルより低減したプローブコイルに、特許文献1に開示されたスクロールコイル(Scroll coil)がある。スクロールコイルは、一定幅を持つ帯状の線材をスイスロール(Swiss roll)の形に巻いたコイルである。特許文献1によれば、プローブコイルが作る電場はロールのターンとターンの間のギャップに集中するため、試料中の電場強度がソレノイド型コイルより低下し、その結果、試料による誘電損失が低減される。   As a probe coil in which dielectric loss is reduced from that of a solenoid type coil, there is a scroll coil disclosed in Patent Document 1. The scroll coil is a coil in which a strip-shaped wire having a certain width is wound in the form of a Swiss roll. According to Patent Document 1, since the electric field generated by the probe coil is concentrated in the gap between the turns of the roll, the electric field strength in the sample is lower than that of the solenoid coil, and as a result, the dielectric loss due to the sample is reduced. The

特許文献2は、スクロールコイルを実装の面から更に改良したZコイルを開示している。特許文献2によれば、スクロールコイルは空間的に非常に狭いため、試料に近い側に給電線を接続することが困難であった。Zコイルは、給電線の接続を簡便にするために、帯状の線材の給電線接続部を細くした、スクロールコイルの一種である。   Patent Document 2 discloses a Z coil in which the scroll coil is further improved in terms of mounting. According to Patent Document 2, since the scroll coil is spatially very narrow, it is difficult to connect a power supply line to the side close to the sample. The Z coil is a kind of scroll coil in which a feeding line connecting portion of a strip-shaped wire is thinned for easy connection of feeding lines.

スクロールコイルとそれを改良したZコイルは、試料による誘電損失を低減した一方で、対向する導体面を増やしたため浮遊容量Csが増加する課題を残した。Csが増加することは、前述式fr≒1/(2π√(LC))の容量Cの下限値が上がることであり、共振周波数frを高くすることが難しくなる。このため、スクロールコイルとZコイルを14T前後のB0強度を持つNMR装置で使うためには、マイクロコイルに関して前述した如く、コイルの巻き直径を小さくしてインダクタンスLを減らす必要がある。インダクタンスLを減らせば、共振周波数frを高くしてNMR信号周波数f0と同調できるのである。ただし、コイルの巻き直径を小さくすることにより、スクロールコイルやZコイルも、単位試料体積あたりSNRに試料体積を乗算した合計SNR(total SNR)が低下する課題と、プローブコイルの低温化が難しい課題がある。   The scroll coil and the Z coil improved from it have reduced the dielectric loss due to the sample, but have left the problem of increasing the stray capacitance Cs because the opposing conductor surfaces are increased. An increase in Cs means that the lower limit value of the capacitance C of the above-mentioned formula fr≈1 / (2π√ (LC)) is increased, and it is difficult to increase the resonance frequency fr. For this reason, in order to use the scroll coil and the Z coil in an NMR apparatus having a B0 intensity of around 14T, it is necessary to reduce the inductance L by reducing the coil winding diameter as described above with respect to the microcoil. If the inductance L is reduced, the resonance frequency fr can be increased and tuned to the NMR signal frequency f0. However, by reducing the winding diameter of the coil, the scroll coil and the Z coil also have a problem that the total SNR (total SNR) obtained by multiplying the sample volume by the SNR per unit sample volume decreases, and a problem that it is difficult to lower the temperature of the probe coil There is.

US 7,081,753 B2US 7,081,753 B2 GB 2,426,345 AGB 2,426,345 A Andrew G. Webb, Radiofrequency microcoils in magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy,31巻,1−42項、1997年Andrew G. Webb, Radiofrequency microcoils in magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.31, paragraph 1-42, 1997

以上の背景技術を鑑み、本発明が解決しようとする課題は、信号対雑音比(SNR)を高めることのできる核磁気共鳴信号を、電磁気誘導を利用して検出することである。   In view of the above background art, a problem to be solved by the present invention is to detect a nuclear magnetic resonance signal capable of increasing a signal-to-noise ratio (SNR) by using electromagnetic induction.

より具体的には、試料近傍に配置するプローブコイルと、プローブコイルのインピーダンスおよび共振周波数を調整する共振回路において、誘電損失により試料から発生する雑音を低減でき、B0強度が14T前後の磁石を有するNMR装置で同調および整合ができ、NMR測定で一般的に使われる試料管の外径である5mm以上の巻き直径を持つプローブコイルとその共振回路を実現することである。   More specifically, in a probe coil arranged in the vicinity of the sample and a resonance circuit that adjusts the impedance and resonance frequency of the probe coil, noise generated from the sample due to dielectric loss can be reduced, and a B0 intensity has a magnet of about 14T. The object is to realize a probe coil that can be tuned and matched by an NMR apparatus and has a winding diameter of 5 mm or more, which is the outer diameter of a sample tube generally used in NMR measurement, and its resonance circuit.

本発明はその一面において、静磁場を作る磁石装置に室温ボアが設けられ、この室温ボアにプローブと試料管が挿入され、前記磁石装置の中心部に近い前記プローブの先端部にはプローブコイルが配置され、このプローブコイルには共振回路が接続された核磁気共鳴装置において、前記プローブコイルの両端部に設けた第1,第2の引き出し線と、プローブコイルの中心部に設けた第3の引き出し線と、この第3の引き出し線と前記第1,第2の引き出し線の共通接続部との間から信号を取り出すように計測装置を接続したことを特徴とする。   In one aspect of the present invention, a magnet device for generating a static magnetic field is provided with a room temperature bore, a probe and a sample tube are inserted into the room temperature bore, and a probe coil is provided at the tip of the probe near the center of the magnet device. In a nuclear magnetic resonance apparatus in which a resonance circuit is connected to the probe coil, first and second lead wires provided at both ends of the probe coil and a third electrode provided at the center of the probe coil The measuring device is connected so as to extract a signal from the lead wire and between the third lead wire and the common connection portion of the first and second lead wires.

本発明の望ましい実施態様においては、プローブコイルを構成する帯線の幅を位置により変化させるとともに、コイルの両端に設けた第1,第2の引き出し線を可変容量キャパシタを介して接地し、前記第3の引き出し線と接地との間に計測装置の受信回路を接続することを特徴とする。   In a preferred embodiment of the present invention, the width of the band constituting the probe coil is changed depending on the position, and the first and second lead lines provided at both ends of the coil are grounded via the variable capacitor, A receiving circuit of the measuring device is connected between the third lead wire and the ground.

本発明の望ましい実施態様によれば、信号対雑音比(SNR)を高めることのできる核磁気共鳴信号を、電磁気誘導を利用して検出することができる。   According to a preferred embodiment of the present invention, a nuclear magnetic resonance signal capable of increasing a signal-to-noise ratio (SNR) can be detected using electromagnetic induction.

本発明の具体的な実施形態によれば、プローブコイルを構成する帯線の幅を位置により変化させ、プローブコイルが試料中心に作る電場強度を低減することにより、試料が誘電損失によって発生させる雑音を低減できて、プローブコイルの両端に設けた第1,第2の引き出し線の他に、コイルの中心部に第3の引き出し線を設け、第3の引き出し線から信号を取り出すことと、第1,第2の引き出し線と接地との間に可変容量キャパシタを設けて共振回路を構成することにより、5mm以上の巻き直径で300MHz以上の共振周波数frを持つ利点がある。   According to a specific embodiment of the present invention, the noise generated by the dielectric loss due to the dielectric loss by changing the width of the band line constituting the probe coil according to the position and reducing the electric field strength created by the probe coil at the center of the sample. In addition to the first and second lead wires provided at both ends of the probe coil, a third lead wire is provided at the center of the coil to extract a signal from the third lead wire, By forming a resonance circuit by providing a variable capacitor between the first and second lead wires and the ground, there is an advantage of having a resonance frequency fr of 300 MHz or more with a winding diameter of 5 mm or more.

本発明のその他の目的と特徴は、以下に述べる実施形態の中で明らかにする。   Other objects and features of the present invention will be clarified in the embodiments described below.

以下に、図面を参照して本発明の望ましい実施例について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1によるプローブコイルおよび共振回路を含むNMR装置の構成図である。先ず、NMR装置の一般的な構成として、静磁場を作る磁石装置1に室温ボア(Bore)2と2'が設けられ、室温ボア2にプローブ3を、室温ボア2'に試料管4を、各々挿入する。磁石装置1の中心部に近いプローブ3の先端部にはプローブコイル5が配置され、試料管4はプローブコイル5を貫通して挿入される。プローブコイル5には共振回路6が接続されており、本実施例ではプローブコイル5が3つの端子を持つため、前記接続は3つの線で行われる。共振回路6は高周波信号ケーブル7により計測装置8と接続される。計測装置8は、NMR信号を取得する際に、高周波信号ケーブル7を経由して高周波の交流磁場パターンをプローブコイル5に送信し、プローブコイル5から核スピンの応答信号を高周波信号ケーブル7を経由して受信し、データ処理を行う。処理されたデータは、ユーザコンピュータ9から、ユーザに提供される。   FIG. 1 is a configuration diagram of an NMR apparatus including a probe coil and a resonance circuit according to Embodiment 1 of the present invention. First, as a general configuration of the NMR apparatus, a magnet apparatus 1 for generating a static magnetic field is provided with room temperature bores 2 and 2 ', a probe 3 in the room temperature bore 2, a sample tube 4 in the room temperature bore 2', Insert each one. A probe coil 5 is disposed at the tip of the probe 3 near the center of the magnet device 1, and the sample tube 4 is inserted through the probe coil 5. A resonance circuit 6 is connected to the probe coil 5, and since the probe coil 5 has three terminals in this embodiment, the connection is made by three lines. The resonance circuit 6 is connected to the measuring device 8 by a high frequency signal cable 7. When acquiring the NMR signal, the measuring device 8 transmits a high-frequency AC magnetic field pattern to the probe coil 5 via the high-frequency signal cable 7, and transmits a nuclear spin response signal from the probe coil 5 via the high-frequency signal cable 7. And receive data. The processed data is provided to the user from the user computer 9.

図2は、図1の構成から、試料管4とプローブコイル5と共振回路6を更に詳しく示した図である。図の左側には、本発明の説明に用いる座標系を示した。ただし、座標系の原点は黒い点で示したプローブコイル5の中心Oであり、表示を簡単にするため座標系を破線に沿って移して示した。試料管4を囲むように配置されたプローブコイル5は、Y軸の周りに帯状の線材をソレノイド状に巻いて作られる。帯状線材の両端は、第1,第2の引き出し線(lead)501と502となり、引き出し線501と502の端部がプローブコイル5の第1,第2の端子となる。プローブコイル5の第1,第2の端子は、各々、共振回路6の第1,第2の入力端子611,612を介して可変容量キャパシタ601と602に各々接続される。プローブコイル5の中心部には、もう1つの引き出し線503が設けられ、引き出し線503の端部がプローブコイル5の第3端子となる。プローブコイル5の第3端子は、共振回路6の第3の入力端子613を介して同軸線(Coaxial cable)603の芯線(Center core)604に接続される。可変容量キャパシタ601と602の、プローブコイル5と反対側の端子と、同軸線603の外皮(Conducting shield)605は、接地される。   FIG. 2 is a diagram showing the sample tube 4, the probe coil 5, and the resonance circuit 6 in more detail from the configuration of FIG. On the left side of the figure, a coordinate system used for explaining the present invention is shown. However, the origin of the coordinate system is the center O of the probe coil 5 indicated by a black dot, and the coordinate system is moved along the broken line for easy display. The probe coil 5 arranged so as to surround the sample tube 4 is made by winding a strip-shaped wire around the Y axis in a solenoid shape. Both ends of the strip wire are first and second lead lines 501 and 502, and ends of the lead lines 501 and 502 are first and second terminals of the probe coil 5. The first and second terminals of the probe coil 5 are connected to the variable capacitors 601 and 602 via the first and second input terminals 611 and 612 of the resonance circuit 6, respectively. Another lead wire 503 is provided at the center of the probe coil 5, and the end portion of the lead wire 503 serves as the third terminal of the probe coil 5. A third terminal of the probe coil 5 is connected to a center core 604 of a coaxial cable 603 via a third input terminal 613 of the resonance circuit 6. The terminals of the variable capacitors 601 and 602 opposite to the probe coil 5 and the outer shield (Conducting shield) 605 of the coaxial line 603 are grounded.

図3は、実施例1のプローブコイル5の形状を示す図である。図3の(A)、(B)、(C)は、各々、xと−zと、y軸の方向から見たプローブコイル5の形状を示す。図中のHとDは、プローブコイル5の高さと巻き直径を示す。W(θ)は帯線(Ribbon)の幅であり、巻き角度θにより変化する。巻き角度θの定義は図3の(C)に示す。CとEは、各々、θ=0度と±360度でのW値である。G1とG2は帯線間の間隔(gap)であって、G1は巻きターン間の間隔を、G2はターンと引き出し線間の間隔を表す。図3の形状において、H=C+2(E+G1)となる。   FIG. 3 is a diagram illustrating the shape of the probe coil 5 according to the first embodiment. (A), (B), and (C) of FIG. 3 show the shape of the probe coil 5 viewed from the x-, -z, and y-axis directions, respectively. H and D in the figure indicate the height and winding diameter of the probe coil 5. W (θ) is the width of the ribbon (Ribbon), and changes depending on the winding angle θ. The definition of the winding angle θ is shown in FIG. C and E are W values at θ = 0 ° and ± 360 °, respectively. G1 and G2 are the gaps (gap) between the strips, G1 is the gap between the winding turns, and G2 is the gap between the turns and the lead lines. In the shape of FIG. 3, H = C + 2 (E + G1).

本実施例のプローブコイルは、図3の(A)、(B)、(C)に示すように、θにより異なる幅を持つ帯線を、単層(single layer)のソレノイド状に巻いて作られる。   As shown in FIGS. 3A, 3B, and 3C, the probe coil of the present embodiment is formed by winding a band having a different width depending on θ into a single-layer solenoid shape. It is done.

このように、本発明の実施例1においては、まず、プローブコイル5は帯線を巻いて作られ、プローブコイルの中心部の帯線幅がプローブコイルの両端部の帯線幅より広くなるように帯線幅を位置により変化させている。これにより、帯線の縁部をプローブコイルの中心から遠くに配置する。また、プローブコイル5の両端部に第1,第2の引き出し線501と502を設け、プローブコイルの中心部に第3の引き出し線503を更に設けて、第1,第2の引き出し線501と502を、各々、可変容量キャパシタ601と602の一端に接続し、可変容量キャパシタ601と602の他端は接地する。そして、第3の引き出し線503を、受信回路8に繋がる同軸信号線603の芯線に接続し、同軸信号線603の外皮632は接地している。   Thus, in the first embodiment of the present invention, first, the probe coil 5 is formed by winding a band, so that the band width at the center of the probe coil is wider than the band width at both ends of the probe coil. The band width is changed depending on the position. Thereby, the edge part of a strip is arrange | positioned far from the center of a probe coil. In addition, first and second lead lines 501 and 502 are provided at both ends of the probe coil 5, and a third lead line 503 is further provided at the center of the probe coil. 502 is connected to one end of each of the variable capacitors 601 and 602, and the other ends of the variable capacitors 601 and 602 are grounded. The third lead wire 503 is connected to the core wire of the coaxial signal line 603 connected to the receiving circuit 8, and the outer skin 632 of the coaxial signal wire 603 is grounded.

図4は、本実施例の帯線の展開図であり、図5は、本実施例の帯線幅W(θ)がθにより変化する様子を示す図である。W(0度)=C、W(±360度)=Eは前記の通りである。また、ターンと引き出し線間の間隔を、図3の(B)に示したように一定値G2とするために、W=Cとなるθ=0度近傍のθ区間504と、W(θ)が一定比率で変化する区間505を設ける。この時、504区間の範囲は(1)式の通りとすればよい。   FIG. 4 is a development view of the band line of the present embodiment, and FIG. 5 is a diagram showing a state in which the band line width W (θ) of the present embodiment changes according to θ. W (0 degree) = C and W (± 360 degrees) = E are as described above. Further, in order to set the interval between the turn and the lead line to a constant value G2 as shown in FIG. 3B, θ section 504 near θ = 0 degrees where W = C, and W (θ) Is provided with a section 505 in which changes at a constant ratio. At this time, the range of the 504 section may be as shown in equation (1).

−180G2/(πD)<θ<180G2/(πD)……………………………(1)
このようにW(θ)を変化させれば、以下で説明する理由により、プローブコイルが試料中心に作る電場強度が低減される。
-180G2 / (πD) <θ <180G2 / (πD) (1)
If W (θ) is changed in this way, the electric field strength produced by the probe coil at the center of the sample is reduced for the reason described below.

交流電場は電荷密度と電流密度により作られ、(2)式の如く3つの項の和として与えられることが、電磁気学の原理から知られている。   It is known from the principle of electromagnetism that an alternating electric field is generated by a charge density and a current density and is given as the sum of three terms as shown in equation (2).

Figure 2009216579
プローブコイルが作る交流電場は、以下の理由により、(2)式の第1項により支配される。先ず、(2)式の各項のX依存性を見ると、第1と第2項は湧き出し点から評価点までの距離Xの2乗に反比例し、第3項はXの1乗に反比例する。プローブコイルでは、Xがプローブコイルの寸法を同じオーダーの値、即ち0.001〜0.01mであるため、(2)式の第3項の電場は他の項の電場の1/100以下になり無視できる。(2)式の第2項も、図2に示したプローブコイルと試料の幾何学的な関係から、無視できる。図2のプローブコイルと試料において、コイル面に沿って流れる電流密度ベクトルと、湧き出し点から評価点までの変位ベクトルとの内角はほぼ90度に近い。そのため、第2項の電流密度ベクトルと前記変位ベクトルの内積は0に近い小さい値を持つ。更に、電流密度ベクトルがY軸周りを回転しながら流れるため、Y軸に対し反対側に流れる電流密度ベクトルが作る電場は互いに打ち消し合う。従って、第2項にある電流密度ベクトルをXの2乗で除算した量の積分も0に近い小さい値を持つ。
Figure 2009216579
The AC electric field created by the probe coil is governed by the first term of equation (2) for the following reason. First, looking at the X dependence of each term in equation (2), the first and second terms are inversely proportional to the square of the distance X from the source point to the evaluation point, and the third term is the first power of X. Inversely proportional. In the probe coil, since X is the value of the probe coil in the same order, that is, 0.001 to 0.01 m, the electric field of the third term in the equation (2) is 1/100 or less of the electric field of the other terms. It can be ignored. The second term of equation (2) can also be ignored from the geometric relationship between the probe coil and the sample shown in FIG. In the probe coil and sample shown in FIG. 2, the inner angle between the current density vector flowing along the coil surface and the displacement vector from the spring point to the evaluation point is approximately 90 degrees. Therefore, the inner product of the current density vector of the second term and the displacement vector has a small value close to zero. Furthermore, since the current density vector flows while rotating around the Y axis, the electric fields generated by the current density vectors flowing on the opposite side with respect to the Y axis cancel each other. Therefore, the integral of the amount obtained by dividing the current density vector in the second term by the square of X also has a small value close to zero.

プローブコイルが作る電場を支配する(2)式の第1項は、電荷密度ρが作る電場を表している。この原理により、プローブコイルの試料中心に近い部分の電荷密度ρを低くすれば、試料中心の電場強度を低減することができる。図2−図5のような帯状線材の場合、電荷分布は帯の縁部(edge)に集中することが電磁気学の法則から知られているから、帯状線材の縁部を試料中心から遠く配置すれば試料中心の電場強度を低減できる。   The first term of the equation (2) that governs the electric field created by the probe coil represents the electric field created by the charge density ρ. Based on this principle, the electric field strength at the center of the sample can be reduced by reducing the charge density ρ in the portion near the sample center of the probe coil. In the case of a strip wire as shown in FIG. 2 to FIG. 5, it is known from the law of electromagnetics that the electric charge distribution is concentrated on the edge of the strip. Therefore, the edge of the strip wire is arranged far from the center of the sample. In this way, the electric field strength at the center of the sample can be reduced.

本実施例の図3〜図5で示したように、帯状線材を用いその中心部の幅Cを端部の幅Eより大きくして中心部から端部まで幅を減らしていけば、帯線の縁部は試料中心から遠く位置させ、試料中心の電場強度を低減する目的を達成できる。   As shown in FIGS. 3 to 5 of the present embodiment, if a strip-shaped wire is used and the width C of the central portion is made larger than the width E of the end portion to reduce the width from the center portion to the end portion, The object can be positioned far from the center of the sample to achieve the purpose of reducing the electric field strength at the center of the sample.

本実施例において、帯線としたことが、丸い断面の丸線(wire)より、NMR信号の検出感度の面で有利である。帯線を用いれば、電荷分布が集中する縁部を試料中心から遠く位置させても、縁と縁の間が帯線により塞がれているため、縁と縁の間から磁束がプローブコイルの外部に漏れることがない。これに比べて丸線の場合は、電荷分布が集中する丸線の表面を試料中心から遠く位置させるためには、丸線と丸線の間隔を広くするしかなく、丸線と丸線の間を通ってプローブコイルの横から外部に漏れる磁束が増加する。電磁誘導によりプローブコイルに誘導されるNMR信号の強度は、プローブコイルを貫通する磁束の量に比例するため、プローブコイルを貫通せず横から外部に漏れる磁束が増えると、NMR信号強度が低下する。以上の理由から、本実施例では帯線を用いる。   In the present embodiment, the use of a band line is more advantageous in terms of NMR signal detection sensitivity than a round cross-section wire. If a band is used, even if the edge where the charge distribution is concentrated is positioned far from the center of the sample, the gap between the edges is blocked by the band. There is no leakage outside. Compared to this, in the case of a round line, in order to position the surface of the round line where the charge distribution is concentrated far from the center of the sample, the distance between the round line and the round line must be widened. The magnetic flux leaking from the side of the probe coil to the outside increases. Since the intensity of the NMR signal induced in the probe coil by electromagnetic induction is proportional to the amount of magnetic flux penetrating the probe coil, if the magnetic flux leaking from the side without penetrating the probe coil increases, the NMR signal intensity decreases. . For the above reason, the band is used in this embodiment.

なるべく多くの磁束がプローブコイルを貫通しNMR信号強度を増加させるために、本実施例は図3の(B)に示すようにターンと引き出し線501、502との間隔G2を一定にした。このため、図4,5の区間504と505の間でW(θ)が不連続的に変化する。このような形状は、製作が複雑になる点で不利であるが、プローブコイルの横から漏れる磁束を減らす効果がある。   In order to increase the NMR signal intensity by passing as much magnetic flux as possible through the probe coil, in this embodiment, the gap G2 between the turn and the lead lines 501 and 502 is made constant as shown in FIG. For this reason, W (θ) changes discontinuously between the sections 504 and 505 in FIGS. Such a shape is disadvantageous in that the manufacturing is complicated, but it has the effect of reducing the magnetic flux leaking from the side of the probe coil.

プローブコイル5の説明に続いて、図6の等価回路を用いて、本実施例の共振回路6を説明する。図6は、図2を更に詳細に分解して表した、プローブコイル5を含めた共振回路6の等価回路図である。プローブコイル5は、第3の引き出し線503との接続点を境界に、2つのコイル504と505に分割される。各コイルは第1,第2の引出し線501,502により、可変容量キャパシタ601,602に接続される。抵抗506と507は、コイル504と505および引き出し線501と502の抵抗を表す。第3の引出し線503の抵抗は508で表す。図2の同軸線603は、芯線604と外皮605に分解して表した。抵抗606は、受信回路の入力インピーダンスを表す。   Following the description of the probe coil 5, the resonance circuit 6 of the present embodiment will be described using the equivalent circuit of FIG. FIG. 6 is an equivalent circuit diagram of the resonance circuit 6 including the probe coil 5, which is a more detailed exploded view of FIG. The probe coil 5 is divided into two coils 504 and 505 with the connection point with the third lead wire 503 as a boundary. Each coil is connected to variable capacitors 601 and 602 by first and second lead wires 501 and 502. Resistors 506 and 507 represent the resistances of the coils 504 and 505 and the lead wires 501 and 502. The resistance of the third lead line 503 is represented by 508. The coaxial line 603 in FIG. 2 is shown as being disassembled into a core wire 604 and an outer skin 605. A resistor 606 represents the input impedance of the receiving circuit.

図7は、NMR信号を検出する際における本実施例の共振回路の作用を説明するために、説明に便利な形に図6を直した等価回路図である。2つに分割し表示したプローブコイル504と505に誘導されるNMR信号を、交流電圧源509と510で表した。ここで、504と505は本来1つのコイル5であって、コイル5に誘導されるNMR信号はコイル504と505の境界となるコイル5の中心点で連続であることから、交流電圧源509と510が出力する電圧は互いに反対位相を持つ。   FIG. 7 is an equivalent circuit diagram obtained by correcting FIG. 6 into a form convenient for explanation in order to explain the operation of the resonance circuit of this embodiment when detecting NMR signals. The NMR signals induced in the probe coils 504 and 505 divided and displayed in two are represented by AC voltage sources 509 and 510, respectively. Here, 504 and 505 are originally one coil 5, and the NMR signal induced in the coil 5 is continuous at the center point of the coil 5 that is the boundary between the coils 504 and 505. The voltages output by 510 have opposite phases.

図7に示した等価回路から、本来のプローブコイル5が持つインダクタンスLに対し、コイル504と505のインダクタンスは各々約L/2のインダクタンスを持つ。したがって、共振回路全体のインダクタンスは、コイル504と505が並列接続されているため、約L/4になることが分かる。即ち、第3の引き出し線503を設けて503から給電すれば、共振回路のインダクタンスをプローブコイルのインダクタンスの約1/4に減らすことができて、より高い共振周波数frが得られる。   From the equivalent circuit shown in FIG. 7, the inductances of the coils 504 and 505 have an inductance of about L / 2 with respect to the inductance L of the original probe coil 5. Therefore, it can be seen that the inductance of the entire resonance circuit is about L / 4 because the coils 504 and 505 are connected in parallel. That is, if the third lead wire 503 is provided and power is supplied from the power source 503, the inductance of the resonance circuit can be reduced to about 1/4 of the inductance of the probe coil, and a higher resonance frequency fr can be obtained.

本発明の実施例1は、以上で述べたように、θにより異なる幅を持つ帯線をソレノイド状に巻いて作ったプローブコイル5を用いることで試料が誘電損失によって発生させる雑音を低減している。更に、プローブコイル5の両端に設けた第1と第2の引出し線501,502の他に、コイルの中心部に第3の引き出し線503を設けて、第1,第2の引出し線501,502は、可変容量キャパシタ601と602を介して接地させる。そして、第3の引出し線503から信号を取り出す共振回路6を用いることで、プローブコイル5の巻き直径が5mm以上でも300MHz以上の共振周波数frを得ることができる。   As described above, the first embodiment of the present invention reduces noise generated by a sample due to dielectric loss by using a probe coil 5 formed by winding a band having a different width depending on θ in a solenoid shape. Yes. Further, in addition to the first and second lead wires 501 and 502 provided at both ends of the probe coil 5, a third lead wire 503 is provided at the center of the coil, and the first and second lead wires 501 and 501 are provided. 502 is grounded via variable capacitors 601 and 602. By using the resonance circuit 6 that extracts a signal from the third lead wire 503, a resonance frequency fr of 300 MHz or more can be obtained even when the winding diameter of the probe coil 5 is 5 mm or more.

本発明の実施例2では、図8に示すプローブコイルに、実施例1の共振回路を接続する。図8の(A)〜(C)は、各々、実施例2のプローブコイルの外見を示す斜視図と、x軸方向から見た断面図と、y方向から見た外見図である。   In Example 2 of the present invention, the resonance circuit of Example 1 is connected to the probe coil shown in FIG. FIGS. 8A to 8C are a perspective view showing the appearance of the probe coil of Example 2, a cross-sectional view seen from the x-axis direction, and an external view seen from the y direction, respectively.

図8(A)に示すように、実施例2のプローブコイルは、引き出し線501と502の幅Eが広い特徴を持つ。引き出し線の幅Eを広くするために、実施例2のプローブコイルは、図8(B)の楕円部に示したような帯線同士の重複(overlap)509を設けた。重複した帯線同士の間には、絶縁層510を設ける。このように作られたプローブコイルは、Y軸方向から見ると図8(C)に示すように、帯線と絶縁層が交互に重なった多層構造となる。   As shown in FIG. 8A, the probe coil of the second embodiment has a feature that the width E of the lead wires 501 and 502 is wide. In order to increase the width E of the lead line, the probe coil of Example 2 was provided with an overlap 509 between the band lines as shown in the elliptical part of FIG. 8B. An insulating layer 510 is provided between the overlapping band lines. When viewed from the Y-axis direction, the probe coil made in this way has a multilayer structure in which band lines and insulating layers are alternately overlapped as shown in FIG.

図9は、本実施例2の帯線の展開図であり、実施例1と異なる点は、位置により帯線幅を変化させている部分の幅が、破線で示す実施例1に比べ、広がっており、その分だけ巻帯線の重なりが生じていることである。   FIG. 9 is a development view of the band line of the second embodiment. The difference from the first embodiment is that the width of the portion where the band width is changed depending on the position is wider than that of the first embodiment shown by the broken line. This means that the windings overlap accordingly.

実施例2のプローブコイル構造は、実施例1のプローブコイル構造に比べて、2つの点で有利である。   The probe coil structure of the second embodiment is advantageous in two points as compared with the probe coil structure of the first embodiment.

第1の利点は、コイル高さHを大きくすることなく引き出し線の幅Eを広くすることができて、引き出し線の抵抗を低下できる点である。引き出し線の抵抗が下がれば、抵抗による熱雑音が低減されるため、NMRのSNRが向上される。従って、実施例2のプローブコイル構造は、実施例1に比べて、同じコイル高さHでもNMRのSNRを向上できる利点がある。   The first advantage is that the width E of the lead line can be increased without increasing the coil height H, and the resistance of the lead line can be reduced. If the resistance of the lead wire decreases, the thermal noise due to the resistance is reduced, so that the SNR of NMR is improved. Therefore, the probe coil structure of the second embodiment has an advantage that the SNR of NMR can be improved even with the same coil height H as compared with the first embodiment.

第2の利点は、帯線同士の重なりにより、電荷密度が高い帯線の縁部が、試料から部分的に遮蔽されることである。重複されて帯線の中で、試料より遠い位置にある帯線の縁部が作る電場は、試料から近い位置にある帯線により遮蔽され、試料に届く電場強度が低くなる。電場強度が低いと、誘電損失による雑音が減るため、NMRのSNRが向上される。   The second advantage is that the edge of the band having a high charge density is partially shielded from the sample due to the overlapping of the bands. The electric field generated by the edge of the band line that is overlapped and located farther from the sample in the band line is shielded by the band line located near the sample, and the electric field intensity reaching the sample is reduced. When the electric field strength is low, noise due to dielectric loss is reduced, so that the SNR of NMR is improved.

実施例2のプローブコイル構造は、一方で、製作が実施例1のプローブコイルより難しい弱点を持つ。また、実施例2のプローブコイル構造は、帯線同士の対向面が実施例1のプローブコイルより増えるため、浮遊容量Csが増加し共振周波数frが低下する弱点も持つ。更に、絶縁層509に用いる物質により、絶縁層509でも誘電損失が発生して雑音を増加させNMRのSNRを劣化させる可能性もある。   On the other hand, the probe coil structure of the second embodiment has a weakness that is more difficult to manufacture than the probe coil of the first embodiment. Further, the probe coil structure of the second embodiment has a weak point that the stray capacitance Cs increases and the resonance frequency fr decreases because the opposed surfaces of the band lines are larger than the probe coil of the first embodiment. Further, depending on the material used for the insulating layer 509, dielectric loss may also occur in the insulating layer 509, increasing noise and degrading NMR SNR.

本発明の望ましい実施態様によるNMR、プローブコイルおよび共振回路は、試料中の電場発生を抑制することで試料の誘電損失を低減することができ、しかも共振回路のインダクタンスがプローブコイルのインダクタンスより小さく、高い共振周波数が得られる。このため、高い誘電損失を持つ試料を測定する用途や、高い共振周波数を必要とする用途に適用できる。   The NMR, probe coil and resonant circuit according to the preferred embodiment of the present invention can reduce the dielectric loss of the sample by suppressing the electric field generation in the sample, and the inductance of the resonant circuit is smaller than the inductance of the probe coil, A high resonance frequency can be obtained. For this reason, it is applicable to the use which measures the sample with a high dielectric loss, and the use which requires a high resonant frequency.

本発明の実施例1によるプローブコイルおよび共振回路を含むNMR装置の構成図である。It is a block diagram of the NMR apparatus containing the probe coil and resonance circuit by Example 1 of this invention. 本発明の実施例1のプローブコイルおよび共振回路を詳しく示した構成図である。It is the block diagram which showed in detail the probe coil and resonance circuit of Example 1 of this invention. 本発明の実施例1のプローブコイルの形状を説明する図である。It is a figure explaining the shape of the probe coil of Example 1 of this invention. 本発明の実施例1のプローブコイルを構成する帯線の展開図である。It is an expanded view of the strip which comprises the probe coil of Example 1 of this invention. 本発明の実施例1のプローブコイルを構成する帯線幅の変化を示す図である。It is a figure which shows the change of the strip line width which comprises the probe coil of Example 1 of this invention. 本発明の実施例1の共振回路の等価回路図である。It is an equivalent circuit schematic of the resonance circuit of Example 1 of the present invention. 本発明の実施例1の共振回路の更なる等価回路図である。It is the further equivalent circuit schematic of the resonance circuit of Example 1 of this invention. 本発明の実施例2のプローブコイルの形状を説明する図である。It is a figure explaining the shape of the probe coil of Example 2 of this invention. 本発明の実施例2のプローブコイルの展開図である。It is an expanded view of the probe coil of Example 2 of this invention.

符号の説明Explanation of symbols

1…磁石装置、2…室温ボア、3…プローブ、4…試料管、5…プローブコイル、6…共振回路、7…高周波信号ケーブル、8…計測装置、9…ユーザコンピュータ、501…第1の引出し線、502…第2の引出し線、503…第3の引出し線、509…帯線間の重複部、510…重複された帯線間の絶縁層、601…第1の可変容量キャパシタ、602…第2の可変容量キャパシタ、603…受信回路に連結される同軸信号線。   DESCRIPTION OF SYMBOLS 1 ... Magnet apparatus, 2 ... Room temperature bore, 3 ... Probe, 4 ... Sample tube, 5 ... Probe coil, 6 ... Resonance circuit, 7 ... High frequency signal cable, 8 ... Measuring device, 9 ... User computer, 501 ... 1st Lead wire, 502... Second lead wire, 503... Third lead wire, 509... Overlapping portion between strips, 510... Insulating layer between overlapped strips, 601. ... second variable capacitor, 603 ... coaxial signal line connected to the receiving circuit.

Claims (12)

静磁場を作る磁石装置に室温ボアが設けられ、この室温ボアにプローブと試料管が挿入され、前記磁石装置の中心部に近い前記プローブの先端部にはプローブコイルが配置され、このプローブコイルには共振回路が接続された核磁気共鳴装置において、前記プローブコイルの両端部に設けた第1,第2の引き出し線と、プローブコイルの中心部に設けた第3の引き出し線と、この第3の引き出し線と前記第1,第2の引き出し線の共通接続部との間から信号を取り出すように接続された計測装置を備えたことを特徴とする核磁気共鳴装置。   A room temperature bore is provided in a magnet device for generating a static magnetic field, a probe and a sample tube are inserted into the room temperature bore, and a probe coil is disposed at the tip of the probe near the center of the magnet device. In the nuclear magnetic resonance apparatus to which the resonance circuit is connected, the first and second lead wires provided at both ends of the probe coil, the third lead wire provided at the center portion of the probe coil, and the third lead wire A nuclear magnetic resonance apparatus comprising a measuring device connected so as to extract a signal from between a lead wire of the lead wire and a common connection portion of the first and second lead wires. 請求項1において、前記第1,第2の引き出し線の共通接続部を接地し、前記第3の引き出し線と設置との間から信号を取り出すように前記計測装置の受信回路を接続したことを特徴とする核磁気共鳴装置。   In Claim 1, the common connection part of the said 1st, 2nd leader line is earth | grounded, and the receiving circuit of the said measuring device was connected so that a signal might be taken out between the said 3rd leader line and installation. Characteristic nuclear magnetic resonance apparatus. 請求項1または2において、前記第1,第2の引き出し線にそれぞれ一端を接続された第1,第2の可変容量キャパシタと、これら可変容量キャパシタの他端を接地し、前記第3の引き出し線と接地との間から信号を取り出すように前記計測装置の受信回路を接続したことを特徴とする核磁気共鳴装置。   3. The first and second variable capacitors having one ends connected to the first and second lead lines, respectively, and the other ends of the variable capacitors are grounded, and the third lead is defined. A nuclear magnetic resonance apparatus, wherein a receiving circuit of the measuring apparatus is connected so as to extract a signal from between a line and ground. 請求項3において、前記第3の引き出し線から前記受信回路に繋がる信号線を同軸ケーブルで形成し、その芯線を前記受信回路の入力信号線に接続し、前記同軸ケーブルの外皮を接地したことを特徴とする核磁気共鳴装置。   In Claim 3, the signal line connected to the receiving circuit from the third lead wire is formed by a coaxial cable, the core wire is connected to the input signal line of the receiving circuit, and the outer sheath of the coaxial cable is grounded Characteristic nuclear magnetic resonance apparatus. 請求項1〜4のいずれかにおいて、幅が変化する帯線を巻いて前記プローブコイルを形成したことを特徴とする核磁気共鳴装置。   The nuclear magnetic resonance apparatus according to any one of claims 1 to 4, wherein the probe coil is formed by winding a band having a variable width. 請求項5において、前記プローブコイルの中心部の帯線幅が、プローブコイルの両端部の帯線幅よりも広いことを特徴とする核磁気共鳴装置。   6. The nuclear magnetic resonance apparatus according to claim 5, wherein the band width of the center portion of the probe coil is wider than the band width of both ends of the probe coil. 請求項1〜4のいずれかにおいて、幅が変化する帯線を巻いて前記プローブコイルを形成し、プローブコイルの中心部の帯線幅がプローブコイルの両端部の帯線幅より広く、かつ帯線を重なりが無く巻いたことを特徴とする核磁気共鳴装置。   5. The band according to claim 1, wherein the probe coil is formed by winding a band having a variable width, the band width at the center of the probe coil is wider than the band at both ends of the probe coil, and the band A nuclear magnetic resonance apparatus characterized by winding wires without overlapping. 請求項1〜4のいずれかにおいて、幅が変化する帯線を巻いて前記プローブコイルを形成し、プローブコイルの中心部の帯線幅がプローブコイルの両端部の帯線幅より広く、かつ一部に帯線を重ねて巻いたことを特徴とする核磁気共鳴装置。   5. The probe coil according to claim 1, wherein the probe coil is formed by winding a band having a variable width, and the band width at the center of the probe coil is wider than the band at both ends of the probe coil. A nuclear magnetic resonance apparatus characterized in that a band is overlapped and wound around the part. 静磁場を作る磁石装置に室温ボアが設けられ、この室温ボアにプローブと試料管が挿入され、前記磁石装置の中心部に近い前記プローブの先端部にはプローブコイルが配置され、このプローブコイルには共振回路が接続され、この共振回路を高周波信号ケーブルにより計測装置に接続し、ユーザコンピュータが前記計測装置に接続された核磁気共鳴装置において、前記プローブコイルは、幅が変化する帯線を巻いて形成され、コイル中心部の帯線幅がコイル両端部の帯線幅より広く、かつ帯線を重なり無く巻かれており、前記プローブコイルの両端部から引き出されて接地された第1,第2の引き出し線と、プローブコイルの中心部に設けた第3の引き出し線と、この第3の引き出し線と接地との間から信号を取り出すように接続された計測装置を備えたことを特徴とする核磁気共鳴装置。   A room temperature bore is provided in a magnet device for generating a static magnetic field, a probe and a sample tube are inserted into the room temperature bore, and a probe coil is disposed at the tip of the probe near the center of the magnet device. In the nuclear magnetic resonance apparatus in which a resonance circuit is connected to the measurement apparatus via a high-frequency signal cable and a user computer is connected to the measurement apparatus, the probe coil is wound with a band whose width changes. The band width of the coil center is wider than the width of the band at both ends of the coil, and the band is wound without overlapping, and is drawn out from both ends of the probe coil and grounded. 2 lead wires, a third lead wire provided in the center of the probe coil, and a measurement connected to take out a signal from between the third lead wire and the ground Nuclear magnetic resonance apparatus comprising the location. 幅が変化する帯線を巻いて形成され、コイル中心部の帯線幅がコイル両端部の帯線幅より広く、プローブコイルの両端部から引き出された第1,第2の引き出し線と、コイルの中心部に設けた第3の引き出し線とを備えたことを特徴とする核磁気共鳴装置用プローブコイル。   A first and second lead wire formed by winding a strip of varying width, the strip width at the center of the coil being wider than the strip width at both ends of the coil, and extending from both ends of the probe coil; A probe coil for a nuclear magnetic resonance apparatus, comprising: a third lead wire provided at a central portion of the magnetic resonance apparatus. 第1,第2の入力端子のそれぞれと接地との間にそれぞれ接続された可変容量キャパシタと、第3の入力端子を同軸ケーブルの芯線に導き、その他端を出力端子として取り出し、かつ前記同軸ケーブルの外皮を接地したことを特徴とする核磁気共鳴装置用共振回路。   A variable capacitor connected between each of the first and second input terminals and the ground; the third input terminal is led to the core of the coaxial cable; the other end is taken out as an output terminal; and the coaxial cable A resonance circuit for a nuclear magnetic resonance apparatus, characterized in that the outer skin of the magnet is grounded. 静磁場を作る磁石装置に室温ボアが設け、この室温ボアにプローブと試料管を挿入し、前記磁石装置の中心部に近い前記プローブの先端部にプローブコイルを配置し、このプローブコイルに共振回路を接続する核磁気共鳴装置の信号取り出し方法において、前記プローブコイルの両端部に第1,第2の引き出し線を設け、プローブコイルの中心部に第3の引き出し線を設け、この第3の引き出し線と前記第1,第2の引き出し線の共通接続部との間から信号を取り出すことを特徴とする核磁気共鳴装置の信号取り出し方法。   A room temperature bore is provided in a magnet device for generating a static magnetic field, a probe and a sample tube are inserted into the room temperature bore, a probe coil is disposed at the tip of the probe near the center of the magnet device, and a resonance circuit is connected to the probe coil. In the signal extraction method of the nuclear magnetic resonance apparatus for connecting the first and second probe coils, first and second lead wires are provided at both ends of the probe coil, and a third lead wire is provided at the center of the probe coil. A signal extraction method for a nuclear magnetic resonance apparatus, wherein a signal is extracted from between a line and a common connection portion of the first and second lead lines.
JP2008061236A 2008-03-11 2008-03-11 Nuclear magnetic resonance apparatus and signal extraction method thereof Expired - Fee Related JP5290598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061236A JP5290598B2 (en) 2008-03-11 2008-03-11 Nuclear magnetic resonance apparatus and signal extraction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061236A JP5290598B2 (en) 2008-03-11 2008-03-11 Nuclear magnetic resonance apparatus and signal extraction method thereof

Publications (2)

Publication Number Publication Date
JP2009216579A true JP2009216579A (en) 2009-09-24
JP5290598B2 JP5290598B2 (en) 2013-09-18

Family

ID=41188584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061236A Expired - Fee Related JP5290598B2 (en) 2008-03-11 2008-03-11 Nuclear magnetic resonance apparatus and signal extraction method thereof

Country Status (1)

Country Link
JP (1) JP5290598B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4300117A1 (en) * 2022-07-01 2024-01-03 Bruker Switzerland AG Nmr probe head with a transmit-receive coil with varying track width
US12000913B2 (en) 2022-07-01 2024-06-04 Bruker Switzerland Ag NMR probehead

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122443A (en) * 1986-10-28 1988-05-26 シーメンス、アクチエンゲゼルシヤフト Surface resonator for nuclear magnetic resonance tomographic imaging
JPH02111342A (en) * 1988-06-28 1990-04-24 Resonex Inc Magnetic resonance imaging apparatus having right-angled phase coil
JPH02309276A (en) * 1989-05-24 1990-12-25 Shimadzu Corp Probe system for nuclear magnetic resonance apparatus
JPH0622924A (en) * 1992-05-07 1994-02-01 Philips Electron Nv Magnetic resonanator
JP2002219111A (en) * 2001-01-25 2002-08-06 Jeol Ltd Nuclear magnetic resonance detection coil
JP2004340943A (en) * 2003-04-23 2004-12-02 Jeol Ltd Probe for nuclear magnetic resonance
WO2006012619A2 (en) * 2004-07-26 2006-02-02 Varian, Inc. Multiple tuned scroll coil
JP2006162258A (en) * 2004-12-02 2006-06-22 Hitachi Ltd Nuclear magnetic resonance probe coil
GB2426345A (en) * 2005-05-20 2006-11-22 Bruker Biospin Gmbh Scroll Coil Arrangement
JP2007170936A (en) * 2005-12-21 2007-07-05 Jeol Ltd Composite type cylindrical coil for nmr
JP2008020398A (en) * 2006-07-14 2008-01-31 Hitachi Ltd Nmr signal detection device and nuclear magnetic resonance analysis device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122443A (en) * 1986-10-28 1988-05-26 シーメンス、アクチエンゲゼルシヤフト Surface resonator for nuclear magnetic resonance tomographic imaging
JPH02111342A (en) * 1988-06-28 1990-04-24 Resonex Inc Magnetic resonance imaging apparatus having right-angled phase coil
JPH02309276A (en) * 1989-05-24 1990-12-25 Shimadzu Corp Probe system for nuclear magnetic resonance apparatus
JPH0622924A (en) * 1992-05-07 1994-02-01 Philips Electron Nv Magnetic resonanator
JP2002219111A (en) * 2001-01-25 2002-08-06 Jeol Ltd Nuclear magnetic resonance detection coil
JP2004340943A (en) * 2003-04-23 2004-12-02 Jeol Ltd Probe for nuclear magnetic resonance
WO2006012619A2 (en) * 2004-07-26 2006-02-02 Varian, Inc. Multiple tuned scroll coil
JP2008507715A (en) * 2004-07-26 2008-03-13 バリアン・インコーポレイテッド Double-tuned scroll coil
JP2006162258A (en) * 2004-12-02 2006-06-22 Hitachi Ltd Nuclear magnetic resonance probe coil
GB2426345A (en) * 2005-05-20 2006-11-22 Bruker Biospin Gmbh Scroll Coil Arrangement
JP2007170936A (en) * 2005-12-21 2007-07-05 Jeol Ltd Composite type cylindrical coil for nmr
JP2008020398A (en) * 2006-07-14 2008-01-31 Hitachi Ltd Nmr signal detection device and nuclear magnetic resonance analysis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4300117A1 (en) * 2022-07-01 2024-01-03 Bruker Switzerland AG Nmr probe head with a transmit-receive coil with varying track width
US12000913B2 (en) 2022-07-01 2024-06-04 Bruker Switzerland Ag NMR probehead

Also Published As

Publication number Publication date
JP5290598B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4768627B2 (en) RF coil for ultra high magnetic field (SHF) MRI
Minard et al. Solenoidal microcoil design—Part II: Optimizing winding parameters for maximum signal‐to‐noise performance
JP4490966B2 (en) High frequency MRI coil
US20050146331A1 (en) Transmit-receive coil system for nuclear quadrupole resonance signal detection in substances and components thereof
JPS6331090B2 (en)
JP6593825B2 (en) Non-contact sensor
US11221380B2 (en) Method and apparatus for analyzing a sample volume comprising magnetic particles
JP2010500090A (en) Sensor array for magnetic inductance tomography
WO2013035581A1 (en) Magnetic field sensor
Darrer et al. Toward an automated setup for magnetic induction tomography
JP5355584B2 (en) Antenna apparatus and magnetic resonance inspection apparatus
US20130134964A1 (en) Coil comprising a winding comprising a multi-axial cable
US20130207651A1 (en) Fluxgate sensor
JP6844075B1 (en) Magnetic particle imaging device
US10551331B2 (en) Measuring apparatus for weak electromagnetic signals from a sample at low frequencies, in addition to a method
JP5290598B2 (en) Nuclear magnetic resonance apparatus and signal extraction method thereof
Yu et al. Intrinsic noise in magnetic film/planar coil sensors
Zhu et al. Analysis of magnetic shielding effect on an RFID coil antenna in metallic environments with a ferrite toroid
JPH0728857B2 (en) Inspection device using nuclear magnetic resonance
US20130328564A1 (en) Nmr rf probe coil exhibiting double resonance
CN115380475A (en) Capacitive detection device comprising a module for inducing polarization
CN111458571A (en) Toroidal coil for magnetic core parameter measurement
CN104155622A (en) Planar radio frequency coil for nuclear magnetic resonance
JP4835038B2 (en) MRI signal detector
Cao et al. Equivalent capacitance model of segmented induction coil in electromagnetic exploration system for deep resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

LAPS Cancellation because of no payment of annual fees