JP2009216263A - Storage water heater and hot water storage tank unit - Google Patents

Storage water heater and hot water storage tank unit Download PDF

Info

Publication number
JP2009216263A
JP2009216263A JP2008058051A JP2008058051A JP2009216263A JP 2009216263 A JP2009216263 A JP 2009216263A JP 2008058051 A JP2008058051 A JP 2008058051A JP 2008058051 A JP2008058051 A JP 2008058051A JP 2009216263 A JP2009216263 A JP 2009216263A
Authority
JP
Japan
Prior art keywords
hot water
water storage
heat insulating
insulating material
tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008058051A
Other languages
Japanese (ja)
Other versions
JP4935720B2 (en
Inventor
Masaki Toyoshima
正樹 豊島
Takashi Fukui
孝史 福井
Shiro Kazama
史郎 風間
So Hiraoka
宗 平岡
Akihiro Nishida
明広 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008058051A priority Critical patent/JP4935720B2/en
Publication of JP2009216263A publication Critical patent/JP2009216263A/en
Application granted granted Critical
Publication of JP4935720B2 publication Critical patent/JP4935720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat insulating structure preventing a heat loss by heat transfer between tanks, found when a plurality of hot water storage tanks are disposed in adjacent to each other. <P>SOLUTION: In this storage water heater provided with the plurality of hot water storage tanks and an external case covering an outer periphery of the whole hot water storage tanks, the plurality of hot water storage tanks are arranged in parallel with each other, the plurality of hot water storage tanks are connected in series by connection pipes, a clearance is formed each between the plurality of hot water storage tanks, and a vacuum heat insulating material is disposed in the clearance of the hot water storage tanks, thus the compact hot water storage tank unit of high heat insulating performance is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、貯湯式給湯機の貯湯タンクユニットの断熱構造に関するものである。 The present invention relates to a heat insulating structure of a hot water storage tank unit of a hot water storage type hot water supply machine.

従来、電気温水器やヒートポンプ式給湯機のような貯湯式給湯機は貯湯タンク周囲に、熱伝導率の低い断熱材を巻くことで、熱漏洩を抑え、省エネルギー化が図られていた。例えば、貯湯タンク断熱材に真空断熱材とシート状断熱材を貯湯タンクと貯湯タンクユニット外箱内部の空間に使用して、貯湯タンクと貯湯タンクユニット外装ケースとが近接して空間間隔が狭い部位には、少なくとも真空断熱材を使用する構造が知られている(例えば特許文献1参照)。 Conventionally, hot water storage water heaters such as electric water heaters and heat pump water heaters have been designed to reduce heat leakage and save energy by winding a heat insulating material with low thermal conductivity around the hot water storage tank. For example, a vacuum heat insulating material and a sheet-shaped heat insulating material are used for the hot water storage tank heat insulating material in the space inside the hot water storage tank and the hot water storage tank unit outer box, and the hot water storage tank and the hot water storage tank unit exterior case are close to each other and the space is narrow. Has known a structure using at least a vacuum heat insulating material (see, for example, Patent Document 1).

ここで前記真空断熱材とは、多孔質構造の芯材(発泡体:ウレタン、粉末:シリカ、繊維:グラスウール 等)を例えばラミネートフィルムなどのプラスチックフィルムで被覆後、内部を減圧(1〜200Pa)して封止した断熱材であり、気体熱伝導率の寄与がほとんどゼロになるため、優れた断熱性能を得ることができる(例えば特許文献1参照)。   Here, the vacuum heat insulating material is a porous core material (foam: urethane, powder: silica, fiber: glass wool, etc.) covered with a plastic film such as a laminate film, and then the inside is decompressed (1 to 200 Pa) Thus, the heat insulating material sealed and the contribution of gas thermal conductivity becomes almost zero, so that excellent heat insulating performance can be obtained (see, for example, Patent Document 1).

特開2005−226965号公報(第1図)Japanese Patent Laying-Open No. 2005-226965 (FIG. 1)

しかし、従来の発明では、貯湯タンクが複数存在する場合の断熱方法については考慮されておらず、タンクが複数隣接した場合に発生するタンク間熱伝導による熱ロスを防ぐことができなかった。   However, the conventional invention does not consider the heat insulation method in the case where there are a plurality of hot water storage tanks, and it has not been possible to prevent the heat loss due to heat conduction between tanks that occurs when a plurality of tanks are adjacent to each other.

本発明は、上述のような課題を解決するためになされたものであり、以下にその手段を説明する。   The present invention has been made to solve the above-described problems, and the means will be described below.

本発明では、複数の貯湯タンクと、前記貯湯タンク全数の外周を覆う外装ケースを設けた貯湯式温水器であって、前記複数の貯湯タンクは並列に設け、前記複数の貯湯タンクは接続配管にて直列に接続され、前記複数の貯湯タンクとの間に隙間を設け、前記貯湯タンクの隙間に真空断熱材を備えたことを特徴とする。 In the present invention, a hot water heater provided with a plurality of hot water storage tanks and an outer case that covers the entire outer circumference of the hot water storage tanks, wherein the plurality of hot water storage tanks are provided in parallel, and the plurality of hot water storage tanks are connected to a connecting pipe. Connected to the plurality of hot water storage tanks, and a gap is provided between the hot water storage tanks, and a vacuum heat insulating material is provided in the gap between the hot water storage tanks.

本発明に係る貯湯タンクユニットは、複数のタンクを隣接した場合にタンク間に真空断熱材を配置することにより、タンク間熱伝導による熱ロスを防ぐことができる。また、断熱性能の高い真空断熱材を用いることで、タンク間の設置間隔を小さくすることが可能となり、タンクを覆う外装ケースを小さくして省スペース化を図ることができる。   The hot water storage tank unit according to the present invention can prevent heat loss due to heat conduction between tanks by disposing a vacuum heat insulating material between tanks when a plurality of tanks are adjacent to each other. In addition, by using a vacuum heat insulating material having high heat insulating performance, it is possible to reduce the installation interval between the tanks, and it is possible to reduce the outer case that covers the tanks and save space.

実施の形態1.
まず機器構成を説明する。本発明の実施の形態1の貯湯式給湯器の構成を図1、図2に基づいて説明する。
図1において、Aは貯湯ユニットであり、貯湯ユニットAは、貯湯タンク1a、1b、一般給湯側混合弁2a、風呂側混合弁2b、減圧弁3、電磁弁4、制御部10、断熱材20、真空断熱材21にて構成されており(センサ類は後述説明)、上記構成品を金属製の外装ケース30内に収めている。貯湯タンク1a、1bはステンレスなどの金属製もしくは樹脂性などである。貯湯タンク1a、1bの外側には断熱材20が配置されており、高温の湯(以下、高温水と略す)を長時間に渡って保温することができる。貯湯タンク1a、1bは複数のタンクから構成されており、配管によって直列接続されている。(配管の直列接続は後述説明)。図1ではタンク2つの構成例としているが、さらに多くの数の貯湯タンクを貯湯ユニットA内に設置してもよい。
Embodiment 1 FIG.
First, the device configuration will be described. The configuration of the hot water storage type hot water supply apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.
In FIG. 1, A is a hot water storage unit, and the hot water storage unit A includes hot water storage tanks 1a and 1b, a general hot water supply side mixing valve 2a, a bath side mixing valve 2b, a pressure reducing valve 3, a solenoid valve 4, a control unit 10, and a heat insulating material 20. The vacuum heat insulating material 21 is used (sensors will be described later), and the above components are housed in a metal outer case 30. The hot water storage tanks 1a and 1b are made of metal such as stainless steel or resin. A heat insulating material 20 is disposed outside the hot water storage tanks 1a and 1b, and hot water (hereinafter abbreviated as high temperature water) can be kept warm for a long time. The hot water storage tanks 1a and 1b are composed of a plurality of tanks and are connected in series by piping. (Pipe connection in series will be described later). Although FIG. 1 shows an example of two tanks, a larger number of hot water storage tanks may be installed in the hot water storage unit A.

Bは熱源ユニットであり、内部に市水温度の水(以下、水もしくは低温水と略す)を目標の貯湯温度まで昇温加熱する熱交換器などの加熱器(図示せず)が内蔵されている。熱源ユニットは、例えばHFCやCO2などを冷媒としたヒートポンプであり、例えば、圧縮機(図示せず)、水と冷媒熱交換する水熱交換器(凝縮器、図示せず)、外気と熱交換する空気熱交換器(蒸発器、図示せず)、膨張弁(図示せず)などから構成されている。また、ヒートポンプに換えて、加熱源を電気ヒーターなどに置き換えても良いし、加熱源を貯湯タンク1に内蔵する構成としてもよい。 B is a heat source unit, and has a built-in heater (not shown) such as a heat exchanger that raises and heats water at a city water temperature (hereinafter abbreviated as water or low-temperature water) to a target hot water temperature. Yes. The heat source unit is a heat pump using, for example, HFC or CO2 as a refrigerant, and includes, for example, a compressor (not shown), a water heat exchanger (condenser, not shown) for exchanging water and refrigerant heat, and exchanging heat with outside air. It consists of an air heat exchanger (evaporator, not shown), an expansion valve (not shown) and the like. Further, instead of the heat pump, the heating source may be replaced with an electric heater or the like, or the heating source may be built in the hot water storage tank 1.

5は風呂側混合弁2bから給湯される給湯水を貯留する浴槽、6は一般給湯側混合弁2aから給湯された温水と水源から供給される市水とを混合して給湯する混合栓であり、シャワー(図示せず)が接続される場合などもある。7は貯湯ユニットAと熱源ユニットBから構成される貯湯システムとの情報入出力(給湯温度の設定や浴槽への給湯の開始又は停止操作など)が可能なリモコンである。リモコンは、風呂側と台所用など複数個設置してもよい。   5 is a bathtub for storing hot water supplied from the bath-side mixing valve 2b, and 6 is a mixing tap for supplying hot water by mixing hot water supplied from the general hot-water supply mixing valve 2a with city water supplied from a water source. In some cases, a shower (not shown) is connected. Reference numeral 7 denotes a remote controller capable of information input / output (setting of hot water supply temperature, start or stop operation of hot water supply to a bathtub, etc.) with a hot water storage system composed of a hot water storage unit A and a heat source unit B. A plurality of remote controllers may be installed for the bath side and kitchen.

続いて、貯湯システムの配管構成について説明する。
水源から供給された市水温度の水は貯湯タンク1b下部と、混合弁2a・2b側と、混合栓6に3分岐される。貯湯タンク1b下部には市水の導入管と、熱源ユニットBへ貯湯タンク下部の水を送水するための管が接続されている。貯湯タンク1b下部から送水された水は、熱源ユニットBで目標温度まで加熱昇温されて、熱源ユニットBから貯湯タンク1aの上部へと繋がる配管を経て貯湯タンク1a上部に戻される。貯湯タンク1a下部と
貯湯タンク1b上部は、配管で直列接続されている。貯湯タンク1bと熱源ユニットB間の水の循環は熱源ユニットに内蔵されるポンプ(図示せず)を動力として行われる。なお、ポンプは熱源ユニットBに内蔵させず、貯湯ユニットAに内蔵する構成としてもよい。
Next, the piping configuration of the hot water storage system will be described.
The water at the city water temperature supplied from the water source is branched into three parts at the lower part of the hot water storage tank 1b, the mixing valves 2a and 2b, and the mixing plug 6. A city water introduction pipe and a pipe for feeding water below the hot water storage tank to the heat source unit B are connected to the lower part of the hot water storage tank 1b. The water sent from the lower part of the hot water storage tank 1b is heated to the target temperature by the heat source unit B, and returned to the upper part of the hot water storage tank 1a through a pipe connected from the heat source unit B to the upper part of the hot water storage tank 1a. The hot water storage tank 1a lower part and the hot water storage tank 1b upper part are connected in series by piping. Circulation of water between the hot water storage tank 1b and the heat source unit B is performed using a pump (not shown) built in the heat source unit as power. The pump may be built in the hot water storage unit A instead of being built in the heat source unit B.

貯湯タンク1a上部には出湯用の配管が設けられており、貯湯タンク1aから出た高温水は2分岐して一般給湯側混合弁2aと風呂側混合弁2bへと分配される。一方混合弁2a,2bの水側入口には水源からの水配管が減圧弁3を経て2分岐して接続されており、混合弁2a、2bにて湯と水が混合されて所定の温度の温水となってそれぞれ給湯される。風呂側は、風呂側混合弁2bと浴槽5が電磁弁4を経由して配管接続されており、浴槽に風呂側混合弁2bから給湯された温水が溜まる構成となっている。また、一般給湯側は、一般給湯側混合弁2aから給湯された温水が水源からの水と混合されて混合栓6から給湯される。
貯湯タンク1a上部から高温水が出た後、貯湯タンク1b上部と貯湯タンク1a下部とを接続した配管を通して、貯湯タンク1b上部の高温水が貯湯タンク1a下部に流れる。貯湯タンク1bの高温水が貯湯タンク1aに流れて減った量は、市水から貯湯タンク1b下部に流入される。そのため、過渡において図4のような貯湯タンク1a側に高温水が満たされ、貯湯タンク1b側に低温水が貯留される状態になり、並列した貯湯タンク1aと1bとの間に温度差が生じる。
The hot water storage tank 1a is provided with a piping for hot water supply, and the hot water discharged from the hot water storage tank 1a is branched into two and distributed to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b. On the other hand, a water pipe from a water source is branched and connected to the water side inlets of the mixing valves 2a and 2b through the pressure reducing valve 3, and hot water and water are mixed at the predetermined temperature by the mixing valves 2a and 2b. Each hot water is supplied as hot water. On the bath side, the bath-side mixing valve 2b and the bathtub 5 are connected by piping via the electromagnetic valve 4, and the hot water supplied from the bath-side mixing valve 2b is accumulated in the bathtub. On the general hot water supply side, hot water supplied from the general hot water supply side mixing valve 2a is mixed with water from the water source and supplied from the mixing plug 6.
After hot water comes out from the upper part of the hot water storage tank 1a, the hot water in the upper part of the hot water storage tank 1b flows to the lower part of the hot water storage tank 1a through a pipe connecting the upper part of the hot water storage tank 1b and the lower part of the hot water storage tank 1a. The amount of hot water stored in the hot water storage tank 1b flowing into the hot water storage tank 1a is reduced and flowed from the city water into the lower part of the hot water storage tank 1b. Therefore, during the transition, hot water is filled on the hot water storage tank 1a side as shown in FIG. 4 and low temperature water is stored on the hot water storage tank 1b side, resulting in a temperature difference between the parallel hot water storage tanks 1a and 1b. .

なお、図1の例は混合栓6がひとつの構成を例に挙げたが、混合栓は、例えば台所や洗面所の蛇口、浴室のカラン兼シャワーなどに接続されるものであり、2つ以上の複数でもよく、混合弁の数を増やしてそれぞれの混合栓に対応する構成としてもよい。また、混合弁2a,2bは、例えばサーボモータ等の駆動源により弁体を駆動する電動弁であり、弁体が動くことにより高温水と水の混合比率を調整して給湯温度を制御できる構造のものである。   In the example of FIG. 1, the configuration of the mixing tap 6 is taken as an example, but the mixing tap is connected to, for example, a kitchen faucet, a bathroom faucet, a bathroom currant and shower, and the like. It is good also as a structure corresponding to each mixing plug by increasing the number of mixing valves. Further, the mixing valves 2a and 2b are electric valves that drive the valve body by a drive source such as a servo motor, for example, and a structure that can control the hot water supply temperature by adjusting the mixing ratio of high temperature water and water by moving the valve body. belongs to.

次に、貯湯ユニットAに設けられたセンサ類と制御部について説明する。
混合弁2a,2bの出口側には給湯流量を計測する流量センサが設けられており、一般給湯側混合弁2aの出口側には流量センサ11aが、風呂側混合弁2bの出口には流量センサ11bがそれぞれ設けられている。そして、配管内を流れる湯水の温度を計測する温度センサが、混合弁水側入口の水温測定用に12c、混合弁高温水側入口の高温水温度測定用に12d(図1では温度センサ12dをタンク上部配管に設ける構成としているが、タンク上部の缶体表面や、タンク上部缶体内部の湯温を直接測定する構成としてもよい)、一般給湯側混合弁2a出口側の給湯温度計測用に12a、風呂側混合弁2b出口側の給湯温度計測用に12b、がそれぞれ設けられている。貯湯タンク1aには貯湯水温度測定用の温度センサ13a〜13eが、貯湯タンク1bには貯湯水温度測定用の温度センサ14a〜14eが設けられており、これらの温度情報から貯湯タンク1a、1bに蓄熱される貯湯熱量を把握することが可能となる。なお、温度センサは、配管やタンクの表面にロー付け、溶接、ねじ固定、フォルダ固定するなどの方法や、水温を直接測るように配管やタンクの内部にセンサを内没させる設置方法などでもよい。
Next, sensors and a control unit provided in the hot water storage unit A will be described.
A flow rate sensor for measuring the hot water supply flow rate is provided on the outlet side of the mixing valves 2a and 2b, a flow rate sensor 11a is provided on the outlet side of the general hot water supply side mixing valve 2a, and a flow rate sensor is provided on the outlet side of the bath side mixing valve 2b. 11b are provided. A temperature sensor for measuring the temperature of the hot water flowing in the pipe is 12c for measuring the water temperature at the inlet of the mixing valve water, and 12d for measuring the temperature of the hot water at the inlet of the mixing valve hot water (in FIG. 1, the temperature sensor 12d is used). Although it is configured to be provided in the tank upper pipe, it may be configured to directly measure the surface of the can body at the upper part of the tank or the hot water temperature inside the tank upper can body), for hot water temperature measurement at the outlet side of the general hot water supply side mixing valve 2a 12a and 12b are provided for measuring the hot water supply temperature at the outlet side of the bath-side mixing valve 2b. The hot water storage tank 1a is provided with temperature sensors 13a to 13e for measuring the temperature of the stored hot water, and the hot water storage tank 1b is provided with temperature sensors 14a to 14e for measuring the temperature of the stored hot water, and from these temperature information, the hot water storage tanks 1a and 1b are provided. It becomes possible to grasp the amount of hot water stored in the hot water. The temperature sensor may be brazed to the surface of the pipe or tank, welded, screwed, or fixed to a folder, or installed in a pipe or tank so that the water temperature can be measured directly. .

制御部10へ接続されるセンサ類、および、リモコン7、熱源ユニットB、弁類(混合弁、電磁弁)の接続構成を図2に示す。制御部10と前記センサ類などは通信ケーブルにより有線接続されており、信号の授受が可能である。なお、制御部10と前記センサ類などの通信は、無線経由としてもよい。
制御部10は貯湯ユニットAに内蔵されており、温度、流量などのセンサ類の測定を行う測定部(図示せず)、測定結果に基づき演算、比較、判定などの処理を行う演算部(図示せず)、演算結果に基づき、弁類などを駆動するための駆動部(図示せず)、熱源ユニットへの運転情報などを送受信する送受信部(図示せず)により構成されている。また、演算部によって得られた結果や予め定められた関数などを計算する近似式やテーブルなどを記憶する記憶部(図示せず)も内蔵しており、必要に応じてこれらの記憶内容を参照、書き換えることが可能である。上記測定、演算、駆動などの処理はマイコンにより処理され、記憶部は半導体メモリーなどによって構成される。また、制御部10には、マイコンによる処理結果をLEDやモニターなどにより表示したり、警告音などを出力したり、電話回線、LAN回線、無線などの通信手段(図示せず)により遠隔地へ情報を出力する出力部(図示せず)、リモコンや基板上のスイッチ類からの操作入力、もしくは電話回線、LAN回線、無線などの通信手段(図示せず)からの通信データ情報を入力する入力部(図示せず)がある。なお、上記構成例では制御部10を貯湯ユニットAに内蔵する構成としたが、貯湯ユニットAにメイン制御部を、熱源ユニットB側に制御部の機能の一部を持つサブ制御部を設けて、メインとサブ間ではデータ通信を行うことにより連携処理を行う構成や、リモコンにそれらの機能を持たせる構成、これらの外部に制御部を別置する形態などとしてもよい。
FIG. 2 shows a connection configuration of the sensors connected to the control unit 10, the remote controller 7, the heat source unit B, and valves (mixing valve, electromagnetic valve). The control unit 10 and the sensors are wired with a communication cable and can exchange signals. Note that communication between the control unit 10 and the sensors may be via wireless communication.
The control unit 10 is built in the hot water storage unit A, and includes a measurement unit (not shown) that measures sensors such as temperature and flow rate, and a calculation unit that performs processing such as calculation, comparison, and determination based on the measurement results (see FIG. (Not shown), based on the calculation result, a drive unit (not shown) for driving valves and the like, and a transmission / reception unit (not shown) for transmitting and receiving operation information to the heat source unit and the like. In addition, a storage unit (not shown) that stores approximate expressions and tables for calculating results obtained by the calculation unit and predetermined functions is also built in, and the stored contents are referred to as necessary. It is possible to rewrite. The processes such as measurement, calculation, and driving are processed by a microcomputer, and the storage unit is constituted by a semiconductor memory or the like. Further, the processing result by the microcomputer is displayed on the control unit 10 by an LED or a monitor, a warning sound or the like is output, or a communication means (not shown) such as a telephone line, a LAN line, or a wireless communication is used to reach a remote place. An output unit (not shown) for outputting information, an operation input from a remote controller or a switch on the board, or an input for inputting communication data information from a communication means (not shown) such as a telephone line, a LAN line, or a radio. Part (not shown). In the above configuration example, the control unit 10 is built in the hot water storage unit A. However, the main control unit is provided in the hot water storage unit A, and the sub-control unit having a part of the function of the control unit is provided on the heat source unit B side. In addition, a configuration in which cooperation processing is performed by performing data communication between the main and the sub, a configuration in which those functions are provided in the remote control, a configuration in which a control unit is provided outside these, and the like may be employed.

次に貯湯動作を説明する。加熱源である熱源ユニットBにて沸き上げられた高温水は、熱源ユニットBと貯湯ユニットAとを接続する配管を経て、上部から貯湯タンク1aへ流入する。貯湯タンク1a下部と貯湯タンク1b上部は直列に配管接続されているため、貯湯タンク1aに流入した体積分の水(高温水もしくは低温水)が貯湯タンク1a下部から貯湯タンク1b上部へ移動する。そして、貯湯タンク1b下部からは流入体積分の低温水が排出されて、配管接続される熱源ユニットBへと戻る。このように、熱源ユニットBと貯湯タンク間では循環回路が形成されて、貯湯タンク内の低温水は順次高温に沸き上げられて貯湯タンクに貯湯される。この貯湯運転は、通常電力料金が安価な夜間に行われるが、昼間貯湯熱量が不足する場合には昼間にも運転を行うことで(追加沸き上げ)、湯切れを防ぐことが可能となる。 Next, the hot water storage operation will be described. The high-temperature water boiled in the heat source unit B, which is a heating source, flows into the hot water storage tank 1a from above through a pipe connecting the heat source unit B and the hot water storage unit A. Since the lower part of the hot water storage tank 1a and the upper part of the hot water storage tank 1b are connected in series, the volume of water (high temperature water or low temperature water) flowing into the hot water storage tank 1a moves from the lower part of the hot water storage tank 1a to the upper part of the hot water storage tank 1b. And the low temperature water for the inflow volume is discharged | emitted from the hot water storage tank 1b lower part, and it returns to the heat source unit B connected with piping. In this way, a circulation circuit is formed between the heat source unit B and the hot water storage tank, and the low temperature water in the hot water storage tank is sequentially heated to a high temperature and stored in the hot water storage tank. This hot water storage operation is usually performed at night when the electricity rate is low, but when the amount of hot water stored in the daytime is insufficient, the hot water storage operation can also be performed during the daytime (additional boiling) to prevent hot water from running out.

次に給湯動作を説明する。貯湯タンク1a,1bの沸き上げ湯温はリモコン7で予め設定することが可能であり、深夜時間帯に、熱源ユニットBのヒートポンプ熱源により貯湯タンク1a,1bの水温を目標沸き上げ湯温まで沸き上げる。また、一般給湯側の給湯温度と、浴槽の設定温度は、予めリモコン7にて設定することが可能である。また、昼間時間帯に貯湯量が不足する場合には、熱源ユニットBを運転して貯湯タンク1a,1bに追加貯湯することも可能である。 Next, the hot water supply operation will be described. The boiling water temperature of the hot water storage tanks 1a, 1b can be preset by the remote controller 7, and the water temperature of the hot water storage tanks 1a, 1b is boiled to the target boiling water temperature by the heat pump heat source of the heat source unit B at midnight. increase. Further, the hot water supply temperature on the general hot water supply side and the set temperature of the bathtub can be set in advance by the remote controller 7. In addition, when the amount of hot water storage is insufficient during the daytime, it is possible to operate the heat source unit B to store additional hot water in the hot water storage tanks 1a and 1b.

次に一般給湯側への給湯動作を説明する。混合栓6を開くと、制御部10は、一般給湯側の温度センサ12aでの検出温度が、設定されている給湯温度となるように一般給湯側混合弁2aを制御し、貯湯タンク1a上部から給湯した高温水と水を適温(例えば42℃)に混合する。   Next, the hot water supply operation to the general hot water supply side will be described. When the mixing tap 6 is opened, the control unit 10 controls the general hot water supply side mixing valve 2a so that the temperature detected by the temperature sensor 12a on the general hot water supply side becomes the set hot water supply temperature, and from the upper part of the hot water storage tank 1a. Hot water supplied with hot water and water are mixed at an appropriate temperature (for example, 42 ° C.).

次に風呂給湯側への給湯動作を説明する。浴槽5への給湯温度は、予めリモコン7で設定することが可能であり、浴槽5への給湯動作としては、湯張り、高温差し湯、足し湯、注水の4つのパターンがある。
以下それぞれの給湯動作について説明する。
Next, a hot water supply operation to the bath hot water supply side will be described. The hot water supply temperature to the bathtub 5 can be set in advance by the remote controller 7, and the hot water supply operation to the bathtub 5 includes four patterns of hot water filling, high-temperature hot water, additional hot water, and water injection.
Each hot water supply operation will be described below.

はじめに給湯動作の内、湯張り動作を説明する。湯張りを行うためには、まずリモコン7で、湯張りスイッチを押す。これにより湯張りの指令が出力され、制御部10が、風呂側の温度センサ12bでの検出温度が設定されている浴槽湯温となるように風呂給湯側混合弁2bを制御するとともに、電磁弁4を開いて浴槽5への湯張りを開始する。浴槽5への湯張り開始後、浴槽側の流量センサ11bにより、積算流量をカウントし、リモコン7であらかじめ設定された浴槽湯量に到達するまで、湯張りを継続する。積算流量が、設定された浴槽湯量に到達すると、電磁弁4を閉じて湯張りを完了する。 First, the hot water filling operation will be described. In order to fill the hot water, first press the hot water switch with the remote controller 7. As a result, a hot water filling command is output, and the control unit 10 controls the bath hot water side mixing valve 2b so that the temperature detected by the temperature sensor 12b on the bath side is set to the bath hot water temperature. 4 is opened and hot water filling to the bathtub 5 is started. After the hot water filling to the bathtub 5 is started, the integrated flow is counted by the flow sensor 11b on the bathtub side, and the hot water filling is continued until the amount of hot water set in the bathtub is reached in advance. When the integrated flow rate reaches the set amount of bathtub hot water, the solenoid valve 4 is closed to complete the hot water filling.

次に高温差し湯動作を説明する。浴槽5内のお湯の温度が下がった時に高温差し湯を行うためには、リモコン7で、高温差し湯スイッチを押す。これにより高温差し湯の指令が出力され、制御部10が、浴槽側の温度センサ12bの検出温度が高温(例えば60℃)になるように風呂給湯側混合弁2bを制御するとともに、電磁弁4を開いて浴槽5への高温差し湯を開始する。浴槽5への高温差し湯開始後、浴槽側の流量センサ11bにより、積算流量をカウントし、一定量(例えば20L)に到達すると、電磁弁9を閉じて高温差し湯を完了する。   Next, the hot water supply operation will be described. In order to perform hot hot water supply when the temperature of hot water in the bathtub 5 falls, the remote control 7 is used to press the hot hot water supply switch. As a result, a hot water hot water command is output, and the controller 10 controls the hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b on the bathtub side becomes high (for example, 60 ° C.), and the solenoid valve 4 To start hot hot water supply to the bathtub 5. After the hot water supply to the bathtub 5 is started, the integrated flow is counted by the flow sensor 11b on the bathtub side, and when reaching a certain amount (for example, 20 L), the electromagnetic valve 9 is closed to complete the hot water supply.

次に足し湯動作を説明する。浴槽5内のお湯の量が減った時に足し湯を行うためには、リモコン7で、足し湯スイッチを押す。これにより足し湯の指令が出力され、制御部10が、浴槽側の温度センサ12bの検出温度がリモコン7で設定されている浴槽湯温となるように風呂給湯側混合弁2bを制御するとともに、電磁弁4を開いて浴槽5への足し湯を開始する。浴槽5への足し湯開始後、浴槽側の流量センサ11bにより、積算流量をカウントし、一定量(例えば20L)に到達すると、電磁弁4を閉じて足し湯を完了する。   Next, the addition hot water operation will be described. In order to perform additional hot water when the amount of hot water in the bathtub 5 decreases, the additional hot water switch is pressed with the remote controller 7. As a result, a command for adding hot water is output, and the control unit 10 controls the bath hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b on the bathtub side becomes the bath water temperature set by the remote controller 7. The solenoid valve 4 is opened to start adding hot water to the bathtub 5. After the start of adding hot water to the bathtub 5, the integrated flow rate is counted by the flow sensor 11b on the bathtub side, and when reaching a certain amount (for example, 20L), the solenoid valve 4 is closed to complete the hot water.

次に注水動作を説明する。注水を行うためには、リモコン7で、注水スイッチを押す。これにより注水の指令が出力され、制御部10が、浴槽側の温度センサ12bの検出温度が市水温となるように風呂給湯側混合弁2bを制御するとともに、電磁弁4を開いて浴槽5への注水を開始する。浴槽5への注水開始後、浴槽側の流量センサ11bにより、積算流量をカウントし、一定量(例えば20L)に到達すると、電磁弁4を閉じて注水を完了する。   Next, the water injection operation will be described. In order to inject water, the remote control 7 is used to push the water injection switch. Thereby, a water injection command is output, and the control unit 10 controls the bath hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b on the bathtub side becomes the city water temperature, and opens the electromagnetic valve 4 to the bathtub 5. Start water injection. After the start of water injection into the bathtub 5, the integrated flow is counted by the flow sensor 11b on the bathtub side, and when reaching a certain amount (for example, 20L), the electromagnetic valve 4 is closed to complete the water injection.

次に断熱材構成を説明する。以下、本発明の特徴である断熱材及び断熱材の形成方法について詳細説明する。
図3は貯湯ユニットAの水平断面図である。図3では図1に記載の弁類を省略しているが、弁類は貯湯タンクと貯湯ユニットの外装ケースに囲まれる角部などのスペースに収められる(図1では弁類を模式的に大きく描いている)。
Next, a heat insulating material structure is demonstrated. Hereinafter, the heat insulating material and the method for forming the heat insulating material, which are features of the present invention, will be described in detail.
FIG. 3 is a horizontal sectional view of the hot water storage unit A. FIG. Although the valves shown in FIG. 1 are omitted in FIG. 3, the valves are stored in a space such as a corner surrounded by an outer case of the hot water storage tank and the hot water storage unit (in FIG. 1, the valves are schematically enlarged. Drawing).

断熱材は真空断熱材21と真空断熱材以外の断熱材20a、20bに分かれており、真空断熱材以外の断熱材は20aと20bの2部品に分割されている。分割された真空断熱材以外の断熱材には、貯湯タンク1a、1bを位置決め・固定するための貯湯タンクの形状とほぼ同じ形状の窪み部が設けられる。真空断熱材以外の断熱材の貯湯タンク1a、1bの間の窪み部の間には、真空断熱材21の厚さ以上の間隔を設け、真空断熱材の位置決めと保持の役目を果たす窪み部が設けられている。真空断熱材21は真空断熱材以外の断熱材20a,20bに挟まれて位置決め固定される構成となっている。 The heat insulating material is divided into a heat insulating material 20a, 20b other than the vacuum heat insulating material 21 and the vacuum heat insulating material, and the heat insulating material other than the vacuum heat insulating material is divided into two parts 20a and 20b. The heat insulating material other than the divided vacuum heat insulating material is provided with a recess having substantially the same shape as the shape of the hot water storage tank for positioning and fixing the hot water storage tanks 1a and 1b. Between the recesses between the hot water storage tanks 1a, 1b of the heat insulating material other than the vacuum heat insulating material, a space larger than the thickness of the vacuum heat insulating material 21 is provided, and a hollow portion serving to position and hold the vacuum heat insulating material is provided. Is provided. The vacuum heat insulating material 21 is configured to be positioned and fixed between heat insulating materials 20a and 20b other than the vacuum heat insulating material.

貯湯タンク1a、1bの周囲に設ける真空断熱材以外の断熱材20a,20bは、柔軟性と圧縮性を有する公知の断熱材が使用可能であり、無機系、有機系のいずれの断熱材も使用でき、また組み合わせて使用することもできる。   As the heat insulating materials 20a and 20b other than the vacuum heat insulating material provided around the hot water storage tanks 1a and 1b, known heat insulating materials having flexibility and compressibility can be used, and any inorganic or organic heat insulating materials can be used. Can also be used in combination.

真空断熱材以外の断熱材の種類の一例を示す。真空断熱材以外の断熱材には無機系と有機系があり、施工性の優れている無機系は、断熱性能がよいなどの観点から繊維体が適用しやすく、その例としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。また有機系としては、ポリウレタン、ポリエチレン、ポリプロピレン。メラミン等の軟質フォームが使用できる。貯湯タンク表面温度が比較的低い箇所では、耐燃性の低い熱可塑性樹脂材料としては、発泡ポリスチレン、発泡ポリエチレンなど、耐燃性の高い熱可塑性樹脂材料としては、発泡ポリフェニレンエーテル、発泡ポリプロピレン、発泡ポリエチレンテレフタレート、発泡α−メチルスチレン、発泡パラメチルスチレン、発泡架橋ポリエチレンなど公知の材料を使用することができる。   An example of the kind of heat insulating materials other than a vacuum heat insulating material is shown. Insulation materials other than vacuum insulation materials include inorganic and organic materials, and inorganic materials that are excellent in workability can be easily applied to fiber bodies from the viewpoint of good heat insulation performance. Examples include glass wool and glass. Known materials such as fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool and the like can be used. Organic materials include polyurethane, polyethylene, and polypropylene. Flexible foams such as melamine can be used. In locations where the surface temperature of the hot water storage tank is relatively low, thermoplastic resins with low flame resistance, such as expanded polystyrene and expanded polyethylene, and thermoplastic resins with high flame resistance, such as expanded polyphenylene ether, expanded polypropylene, and expanded polyethylene terephthalate Well-known materials such as foamed α-methylstyrene, foamed paramethylstyrene, and foamed crosslinked polyethylene can be used.

真空断熱材21は、多孔質構造の芯材(発泡体:ウレタン、粉末:シリカ、繊維:グラスウール 等)を例えばラミネートフィルムなどのプラスチックフィルムで被覆後、内部を減圧(1〜200Pa)して封止した断熱材であり、貯湯タンク1a、1bの間に配置されている。 The vacuum heat insulating material 21 is coated with a porous core material (foam: urethane, powder: silica, fiber: glass wool, etc.) with a plastic film such as a laminate film, and then the inside is decompressed (1 to 200 Pa) and sealed. It is the heat insulation which stopped and is arrange | positioned between the hot water storage tanks 1a and 1b.

次に真空断熱材21をタンク間に設置する効果について説明する。
図4は図3の構成の貯湯ユニットAの垂直断面図である。貯湯タンクは貯湯運転完了後に貯湯タンク1a、1bともに高温水(例えば90℃)が貯湯されてタンク内全体が高温水で満たされるが、給湯を行うとタンク1a上部から高温水が排出され、タンク1b下部に同一容積分の市水温度(例えば9℃)の低温水が供給される。このため、徐々に貯湯タンク1b下部の低温水が占める容積割合いが大きくなり、過渡において図4のような貯湯タンク1a側に高温水が満たされ、貯湯タンク1b側に低温水が貯留される状態になる。
Next, the effect of installing the vacuum heat insulating material 21 between the tanks will be described.
FIG. 4 is a vertical sectional view of the hot water storage unit A configured as shown in FIG. In the hot water storage tank, hot water (for example, 90 ° C.) is stored in the hot water storage tanks 1a and 1b after the hot water storage operation is completed, and the entire tank is filled with the high temperature water. However, when hot water is supplied, the hot water is discharged from the upper part of the tank 1a. Low temperature water having the same volume of city water temperature (for example, 9 ° C.) is supplied to the lower part of 1b. For this reason, the volume ratio occupied by the low temperature water in the lower part of the hot water storage tank 1b gradually increases, and during the transition, the hot water storage tank 1a side as shown in FIG. 4 is filled with high temperature water, and the low temperature water is stored on the hot water storage tank 1b side. It becomes a state.

また、熱源ユニットBにて貯湯タンク1a、1bを沸き上げる際においても、熱源ユニットBで沸き上げた高温水が貯湯タンク1a上部から流入し、貯湯タンク1b下部から低温水が流出して熱源ユニットBへ戻り循環するため、過渡において図4のような貯湯タンク1a側に高温水が満たされ、貯湯タンク1b側に低温水が貯留される状態になる。 In addition, when boiling the hot water storage tanks 1a and 1b in the heat source unit B, the high temperature water boiled in the heat source unit B flows from the upper part of the hot water storage tank 1a, and the low temperature water flows out from the lower part of the hot water storage tank 1b. Since it returns to B and circulates, in a transient state, the hot water storage tank 1a side is filled with high-temperature water as shown in FIG. 4, and the low-temperature water is stored on the hot water storage tank 1b side.

このとき貯湯タンク1aの下部は高温(例えば90℃)、貯湯タンク1bの下部は低温(例えば9℃)となり、貯湯タンク間の熱伝導により高温部の熱が低温タンク側に移動する現象が発生する。高温水が放熱すると、追加沸き上げの回数、量を増やさなければならないため、貯湯エネルギーがロスする。また、高温部の熱が低温タンク側に移動して、低温水温度が中温水(30℃程度以上)に上昇した場合には、貯湯タンク沸上の際に熱源機の運転COPが低下し、システム効率が低下するという悪影響がある(中温水をHP熱源機で沸き上げると、ガスクーラー側の冷媒エンタルピー差が取れなくなるため圧縮機の高圧が上昇して入力が増加し運転効率・COPが悪化する)。つまり、貯湯タンク間の熱伝導により高温部の熱が低温タンク側に移動する現象が発生すると、高温水を追加沸き上げしなければならないエネルギー損失と、低温水温度が中温水になるので運転効率(COP)が低下する現象とで、給湯器のシステム効率が低下する。
さらに、高温側の水温が貯湯に使用可能な下限ぎりぎりの場合には(例えば45℃)、貯湯タンク間熱交換により水温が利用下限以下となり(例えば42℃以下)、給湯利用不可能となる不都合がある。
At this time, the lower part of the hot water storage tank 1a has a high temperature (for example, 90 ° C.), the lower part of the hot water storage tank 1b has a low temperature (for example, 9 ° C.), and heat is transferred between the hot water storage tanks. To do. When hot water dissipates heat, the number and amount of additional boiling must be increased, which results in a loss of hot water storage energy. In addition, when the heat of the high temperature part moves to the low temperature tank side and the temperature of the low temperature water rises to medium temperature water (about 30 ° C. or higher), the operation COP of the heat source machine decreases when the hot water storage tank rises, There is an adverse effect of lowering the system efficiency (If the medium temperature water is boiled with the HP heat source machine, the refrigerant enthalpy difference on the gas cooler side cannot be taken, so the high pressure of the compressor rises, the input increases, and the operating efficiency / COP deteriorates To do). In other words, if heat transfer between hot water storage tanks causes the heat of the high temperature part to move to the low temperature tank side, energy loss that requires additional boiling of the high temperature water and low temperature water temperature becomes medium temperature water, resulting in operating efficiency. With the phenomenon that (COP) decreases, the system efficiency of the water heater decreases.
Furthermore, when the water temperature on the high temperature side is just below the lower limit that can be used for hot water storage (for example, 45 ° C.), the water temperature becomes lower than the lower limit of use (for example, 42 ° C. or lower) due to heat exchange between the hot water storage tanks, making it impossible to use hot water. There is.

図4に示すように貯湯タンク間に断熱性能が高い(熱伝導率が低い)真空断熱材21を設置することにより、貯湯タンク間の熱抵抗を大きくすることが可能となり、これにより貯湯タンク間の熱交換量を低減し、前記説明のタンク間熱移動に伴う不都合を抑止することができ、貯湯エネルギー効率を高めることが可能となる。   As shown in FIG. 4, it is possible to increase the thermal resistance between the hot water storage tanks by installing the vacuum heat insulating material 21 having high thermal insulation performance (low thermal conductivity) between the hot water storage tanks. The amount of heat exchange can be reduced, the inconvenience associated with the above-described heat transfer between tanks can be suppressed, and hot water storage energy efficiency can be increased.

上記説明の貯湯タンク間の熱交換量低減効果は、特に貯湯タンクの外部にヒートポンプなどの加熱源を持ち、加熱源と貯湯タンク間で水を循環させて沸き上げを行う貯湯システムに対しては、沸き上げの際にも大きな効果が得られる。また、給湯使用時においてはヒートポンプなどの加熱源を外部にもつ貯湯システムでも、ヒータなどを貯湯タンク内部にもつ貯湯システムでも同様の効果が得られる。   The heat exchange amount reduction effect between the hot water storage tanks described above is particularly effective for a hot water storage system that has a heating source such as a heat pump outside the hot water storage tank and circulates water between the heating source and the hot water storage tank to raise water. A great effect can be obtained even when boiling. Further, when hot water is used, the same effect can be obtained by a hot water storage system having a heating source such as a heat pump outside or a hot water storage system having a heater or the like inside a hot water storage tank.

東京地方の標準的な冬期の外気温度7℃であれば水温は9℃程度であり、外気温度と水温はほぼ同等である。このため、タンク高温部からの放熱量を低減させるためには、外気に接する面の断熱性能を向上させるのと同様に貯湯タンク同士が接する面の断熱性能を向上させることが重要となる。 If the standard winter air temperature in the Tokyo region is 7 ° C, the water temperature is about 9 ° C, and the outside air temperature and the water temperature are almost the same. For this reason, in order to reduce the amount of heat radiation from the high-temperature part of the tank, it is important to improve the heat insulation performance of the surfaces in contact with the hot water storage tanks as well as the heat insulation performance of the surfaces in contact with the outside air.

図3において真空断熱材21の幅Xは貯湯タンクの幅よりも小さいサイズとしている。円筒形をしている貯湯タンク同士の最近部に真空断熱材21を設けることにより、効率的に断熱することができる。また、貯湯タンク同士の距離が離れている部分は、真空断熱材以外の断熱材の厚さが増すので、真空断熱材ではなくとも断熱効果を得ることができる。
図4において真空断熱材21の高さYは貯湯タンクの高さよりも小さいサイズとしている。貯湯タンク同士の最近部に真空断熱材21を設けることにより、効率的に断熱することができる。半球形をしている上部及び下部は、貯湯タンク同士の距離が離れ、真空断熱材以外の断熱材の厚さが増すので、真空断熱材ではなくとも断熱効果を得ることができる。
これにより、貯湯タンク間熱伝導を抑止するために必要最小限な面積を効率的に断熱することが可能となり、真空断熱材のコストは真空断熱材以外の断熱材の約15倍から30倍であるので、断熱に関わるコストを低く抑えることができる。
In FIG. 3, the width X of the vacuum heat insulating material 21 is smaller than the width of the hot water storage tank. By providing the vacuum heat insulating material 21 in the nearest part of the hot water storage tanks which are cylindrical, it can insulate efficiently. Moreover, since the thickness of heat insulation materials other than a vacuum heat insulating material increases in the part where the hot water storage tanks are separated, the heat insulation effect can be obtained even if it is not a vacuum heat insulating material.
In FIG. 4, the height Y of the vacuum heat insulating material 21 is smaller than the height of the hot water storage tank. By providing the vacuum heat insulating material 21 at the closest part between the hot water storage tanks, it is possible to insulate efficiently. Since the hemispherical upper and lower portions are separated from each other by the hot water storage tanks and the thickness of the heat insulating material other than the vacuum heat insulating material is increased, a heat insulating effect can be obtained even if it is not a vacuum heat insulating material.
This makes it possible to efficiently insulate the minimum area necessary to suppress heat conduction between hot water storage tanks, and the cost of vacuum insulation is approximately 15 to 30 times that of insulation other than vacuum insulation. As a result, the cost of heat insulation can be kept low.

また、タンク間に断熱性能が高い真空断熱材を配置することにより、他の断熱性能が低い断熱材を用いる場合に比べて、断熱厚さを薄くすることができる。したがって、タンク間距離を小さくすることが可能となり、貯湯ユニット全体の設置面積を小さくし、コンパクト化が可能となる。 In addition, by disposing a vacuum heat insulating material having high heat insulating performance between the tanks, the heat insulating thickness can be reduced as compared with the case of using another heat insulating material having low heat insulating performance. Accordingly, the distance between the tanks can be reduced, the installation area of the entire hot water storage unit can be reduced, and the size can be reduced.

また、図3において断熱材20a,20bは2分割されており、真空断熱材21が挟まれる構成となっている。貯湯ユニットAの製作においては、貯湯タンク1a,1bを固定した後に断熱材20aを最初にタンクに嵌め込む。断熱材20aに設けられた真空断熱材21用の溝部は、貯湯タンク1a,1b用溝部の間に設けられ、真空断熱材21用の溝部と貯湯タンク1a,1b用の各溝部の間には、断熱材20aを介している。続いて真空断熱材21を断熱材20aに設けられた溝部に嵌め込む。真空断熱材21用の溝部と貯湯タンク1a,1b用の各溝部の間の断熱材20aによって真空断熱材21は安定して支えられるので、断熱材20bと組み立てる時に確実に位置決めができる。そして、断熱材20aと反対側に、断熱材20aと対象な構造の断熱材20bを設置することで、真空断熱21の位置決め、固定が同時に可能となる。上記工程により断熱材20a,20bをタンク周りに組み立てることによって、効率的に貯湯タンクユニットを製作することが可能となる。 Moreover, in FIG. 3, the heat insulating materials 20a and 20b are divided into two, and the vacuum heat insulating material 21 is sandwiched therebetween. In the manufacture of the hot water storage unit A, after the hot water storage tanks 1a and 1b are fixed, the heat insulating material 20a is first fitted into the tank. The groove for the vacuum heat insulating material 21 provided in the heat insulating material 20a is provided between the groove for the hot water storage tanks 1a and 1b, and between the groove for the vacuum heat insulating material 21 and each groove for the hot water storage tanks 1a and 1b. The heat insulating material 20a is interposed. Subsequently, the vacuum heat insulating material 21 is fitted into a groove provided in the heat insulating material 20a. Since the vacuum heat insulating material 21 is stably supported by the heat insulating material 20a between the groove portion for the vacuum heat insulating material 21 and the groove portions for the hot water storage tanks 1a and 1b, the positioning can be surely performed when the heat insulating material 20b is assembled. Then, by installing the heat insulating material 20a and the heat insulating material 20b having a target structure on the side opposite to the heat insulating material 20a, the vacuum heat insulating 21 can be positioned and fixed at the same time. By assembling the heat insulating materials 20a and 20b around the tank by the above process, a hot water storage tank unit can be efficiently manufactured.

また、図5に示すように、貯湯タンク1a、1bを直列に接続(1b上部と1a下部を接続)する配管を構成する場合には、配管径サイズ以上の距離だけ真空断熱材をオフセットさせる配置とする。これにより、配管を空間効率よく収めることが可能となり、貯湯ユニットAの短辺方向の幅を小さくすることができる(薄型)。したがって、貯湯ユニット全体の設置面積を小さくし、コンパクト化が可能となる。
この例では、オフセットした真空断熱材を用いたが、配管を通すために真空断熱材の一部切り欠きを設ける、真空断熱材に配管を通す穴を開ける、真空断熱材を分割した部分に配管を通す等の方法でも同様な効果が得られる。
Further, as shown in FIG. 5, in the case of configuring a pipe for connecting hot water storage tanks 1a and 1b in series (connecting an upper part of 1b and a lower part of 1a), an arrangement in which the vacuum heat insulating material is offset by a distance equal to or larger than the pipe diameter size. And Thereby, it becomes possible to store piping efficiently, and the width | variety of the short side direction of the hot water storage unit A can be made small (thin type). Therefore, the installation area of the entire hot water storage unit can be reduced and the size can be reduced.
In this example, offset vacuum insulation material was used, but a part of the vacuum insulation material was provided to allow the piping to pass through, a hole was made to pass the piping through the vacuum insulation material, and the vacuum insulation material was divided into parts. The same effect can be obtained by a method such as passing through.

また、図6の真空断熱材の配置例では、複数の貯湯タンク1a,1bが並列に設けられ、接続配管にて直列に接続されており、複数の貯湯タンク1a,1bの間に真空断熱材21aを設けて断熱をしている。さらに、複数の貯湯タンク1a,1bからの周囲に対する熱抵抗を大きくするために複数の貯湯タンク1a,1bを全て一括包囲する形状の真空断熱材21bを設けている。断熱性能が高い真空断熱材を用いることにより、外気と接する面の断熱材を薄くすることが可能となり、同等な断熱性能であれば貯湯ユニット全体の設置面積を小さくし、コンパクト化が可能となる。
なお、図6では、貯湯タンク角部の断熱材を無しとしているが、断熱性能を高めるために断熱材を追加設置してもよい。
Moreover, in the example of arrangement | positioning of the vacuum heat insulating material of FIG. 6, the some hot water storage tanks 1a and 1b are provided in parallel, are connected in series by the connection piping, and a vacuum heat insulating material is provided between several hot water storage tanks 1a and 1b. 21a is provided for heat insulation. Furthermore, in order to increase the thermal resistance to the surroundings from the plurality of hot water storage tanks 1a, 1b, a vacuum heat insulating material 21b having a shape surrounding all of the plurality of hot water storage tanks 1a, 1b is provided. By using vacuum heat insulating material with high heat insulating performance, it is possible to thin the heat insulating material on the surface in contact with the outside air, and if the heat insulating performance is equivalent, the installation area of the entire hot water storage unit can be reduced and the size can be reduced. .
In FIG. 6, the heat insulating material at the corner of the hot water storage tank is omitted, but a heat insulating material may be additionally installed in order to improve the heat insulating performance.

また、図7の真空断熱材の配置例では、複数の貯湯タンク1a,1bが並列に設けられ、接続配管にて直列に接続されており、複数の貯湯タンク1a,1bの間に真空断熱材21aを設けて断熱をしている。さらに、複数の貯湯タンク1a,1bと外装ケース30とが近接して空間間隔が狭い部位に真空断熱材21b〜21gを設けている。断熱性能が高い真空断熱材を用いることにより、外気と接する面の断熱材を薄くすることが可能となり、同等断熱性能であれば貯湯タンクユニットを小さくすることが可能となる。 Moreover, in the example of arrangement | positioning of the vacuum heat insulating material of FIG. 7, the some hot water storage tanks 1a and 1b are provided in parallel, are connected in series by connection piping, and a vacuum heat insulating material is provided between the some hot water storage tanks 1a and 1b. 21a is provided for heat insulation. Furthermore, the vacuum heat insulating materials 21b-21g are provided in the site | part with which the some hot water storage tanks 1a and 1b and the exterior case 30 adjoin, and a space space | interval is narrow. By using a vacuum heat insulating material having high heat insulating performance, the heat insulating material in contact with the outside air can be thinned, and if the heat insulating performance is equivalent, the hot water storage tank unit can be made small.

上記説明のように、真空断熱材21aをタンク間に配置し、断熱材20a,20bに嵌め込む構成とすることにより、貯湯エネルギーロスを抑え、省エネルギー性を高め、かつ製作がし易くコンパクトな貯湯タンクユニットを提供することが可能となる。 As described above, the vacuum heat insulating material 21a is disposed between the tanks and is fitted into the heat insulating materials 20a and 20b, thereby suppressing hot water storage energy loss, improving energy saving, and making the manufacturing easy and compact. A tank unit can be provided.

また、外気と隣接する面の貯湯タンクと外装ケース間の空間間隔が狭い部位に真空断熱材21b〜21gを配置することにより、貯湯エネルギーロスを抑え省エネルギー性を高め、コンパクトな貯湯タンクユニットを提供することが可能となる。 In addition, by providing vacuum heat insulating materials 21b-21g in areas where the space between the hot water storage tank on the surface adjacent to the outside air and the exterior case is narrow, a hot water storage energy loss is suppressed and a compact hot water storage tank unit is provided. It becomes possible to do.

なお、上記説明では、貯湯タンクを2個の構成として説明したが、貯湯タンクは3個以上の複数構成でもよく、またタンクの設置形態も横一列ではなく、縦横碁盤の目のように複数設置してもよい。この場合もタンクが隣接する箇所に真空断熱材を配置することにより、上記説明に同様の効果を得ることができる。 In the above description, the hot water storage tank has been described as having two configurations. However, the hot water storage tank may have multiple configurations of three or more, and the installation form of the tanks is not a horizontal row, but a plurality of hot water storage tanks are installed like a horizontal and horizontal grid. May be. In this case as well, the same effect as described above can be obtained by arranging the vacuum heat insulating material at a location where the tank is adjacent.

実施の形態2.
図8に本発明の実施の形態2による機器構成図を示す。
本発明の構成および動作は、断熱材とタンク周りの水配管(本実施例では並列接続)に関わる部分を除いて実施の形態1に同じであり、これ以外の構成、動作の詳細な説明は省略する。
Embodiment 2. FIG.
FIG. 8 shows a device configuration diagram according to Embodiment 2 of the present invention.
The configuration and operation of the present invention are the same as those of the first embodiment except for the portion related to the heat insulating material and the water piping around the tank (parallel connection in the present embodiment). Omitted.

本発明では、貯湯タンク1a,1bを配管で並列に接続している。貯湯タンク沸上時には1a,1b両方のタンク下部から送水された水が、熱源ユニットBで目標温度まで加熱昇温されて、熱源ユニットBから貯湯タンク1a,1bの上部へと繋がる配管を経て貯湯タンク1a,1b上部に均等に戻される。貯湯タンク1bと熱源ユニットB間の水の循環は熱源ユニットに内蔵されるポンプ(図示せず)を動力として行われる。なお、ポンプは熱源ユニットBに内蔵させず、貯湯ユニットAに内蔵する構成としてもよい。これにより、貯湯タンク1a,1bは均等に沸上げられる。 In the present invention, the hot water storage tanks 1a and 1b are connected in parallel by piping. When the hot water storage tank is heated, the water sent from the lower part of both the tanks 1a and 1b is heated to the target temperature by the heat source unit B, and hot water is stored through the piping connected from the heat source unit B to the upper part of the hot water tanks 1a and 1b. The tanks 1a and 1b are returned to the upper part evenly. Circulation of water between the hot water storage tank 1b and the heat source unit B is performed using a pump (not shown) built in the heat source unit as power. The pump may be built in the hot water storage unit A instead of being built in the heat source unit B. Thereby, the hot water storage tanks 1a and 1b are boiled up evenly.

給湯時には、混合栓6が開かれる、もしくは浴槽5へ給湯が行われると、貯湯タンク1a,1bの上部から均等に高温水が混合弁2a、2bへ供給される。そして、貯湯タンク1a,1bの下部には低温水が供給される。このため、貯湯タンク1a,1b内の高温湯は均等に消費される。したがって、タンク内の高温水と低温水の境界はほぼ同じ高さの位置関係を保ちながら上昇する(貯湯時は下降する)。 At the time of hot water supply, when the mixing tap 6 is opened or hot water is supplied to the bathtub 5, hot water is evenly supplied from the upper parts of the hot water storage tanks 1a and 1b to the mixing valves 2a and 2b. And low temperature water is supplied to the lower part of hot water storage tank 1a, 1b. For this reason, the hot water in the hot water storage tanks 1a and 1b is consumed evenly. Therefore, the boundary between the high temperature water and the low temperature water in the tank rises while maintaining a substantially equal positional relationship (lowers during hot water storage).

《断熱材構成》
図9は貯湯ユニットAの水平断面図である。なお、図9では図8に記載の弁類を省略しているが、弁類は貯湯タンクと貯湯ユニットの外装ケースに囲まれる角部などのスペースに収められる(図8では弁類を模式的に大きく描いている)。
<Insulation composition>
FIG. 9 is a horizontal sectional view of the hot water storage unit A. FIG. Although the valves shown in FIG. 8 are omitted in FIG. 9, the valves are stored in a space such as a corner surrounded by a hot water storage tank and an outer case of the hot water storage unit (in FIG. 8, the valves are schematically shown). Is drawn in large).

図9の真空断熱材の配置では、複数の貯湯タンク1a,1bを全て一括包囲する形状の真空断熱材21を設けており、貯湯タンク1a,1bと真空断熱材21に囲まれる空間には断熱材20が配置されている。断熱材20の材質は実施の形態1にて説明した発泡ポリスチレン、グラスウールなどである。貯湯タンク1a,1bを全て一括包囲する断熱材に断熱性能が高い真空断熱材を用いることにより、外気と接する面の断熱材を薄くすることが可能となり、同等断熱性能であれば貯湯タンクサイズを小さくすることが可能となる。なお、図9では、貯湯タンク角部の断熱材を無しとしているが、断熱性能を高めるために断熱材を追加設置してもよい。 In the arrangement of the vacuum heat insulating material in FIG. 9, a vacuum heat insulating material 21 having a shape surrounding all of the plurality of hot water storage tanks 1 a and 1 b is provided, and the space surrounded by the hot water storage tanks 1 a and 1 b and the vacuum heat insulating material 21 is insulated. A material 20 is arranged. The material of the heat insulating material 20 is foamed polystyrene, glass wool or the like described in the first embodiment. By using a vacuum heat insulating material with high heat insulating performance as a heat insulating material that encloses all of the hot water storage tanks 1a and 1b, it becomes possible to make the heat insulating material on the surface in contact with the outside air thin, and if the heat insulating capacity is equivalent, the hot water storage tank size can be reduced. It can be made smaller. In addition, in FIG. 9, although the heat insulating material of the hot water storage tank corner is not provided, a heat insulating material may be additionally installed in order to improve the heat insulating performance.

本実施例のように、貯湯タンクが並列接続される場合には貯湯タンク内の高温水がほぼ均等に消費される。このため、実施の形態1の図4で説明したような、複数のタンク間における高さ位置方向の温度差が発生せず、タンク間熱移動による貯湯エネルギーロスが発生しない。 When the hot water storage tanks are connected in parallel as in this embodiment, the high temperature water in the hot water storage tank is consumed almost evenly. For this reason, the temperature difference of the height position direction between several tanks as demonstrated in FIG. 4 of Embodiment 1 does not generate | occur | produce, and the hot water storage energy loss by the heat transfer between tanks does not generate | occur | produce.

このようなタンク内温度分布が形成される貯湯タンク構成では、タンク間の熱移動を抑制する必要がないため(外気放熱だけを抑えればよいため)、図9に示すようにタンク間に断熱材を設けず、距離を小さくしてほぼ隣接させる構成が可能となる。これにより、貯湯ユニットAの長辺方向の長さを短くすることが可能となり、貯湯ユニット全体の設置面積を小さくして、コンパクト化が可能となる。また、複数のタンクを一括包囲するため、少ない真空断熱材の使用量で効果的に全てのタンクを包囲することが可能となり(低コスト)、真空断熱使用量に対して高い省エネ効果を得ることができる。 In the hot water storage tank configuration in which such a temperature distribution in the tank is formed, it is not necessary to suppress heat transfer between the tanks (since it is only necessary to suppress heat release from the outside air), as shown in FIG. It is possible to adopt a configuration in which the distance is reduced and the members are substantially adjacent to each other without providing a material. As a result, the length of the hot water storage unit A in the long side direction can be shortened, the installation area of the entire hot water storage unit can be reduced, and compactness can be achieved. In addition, since multiple tanks are enclosed at once, it is possible to effectively surround all tanks with a small amount of vacuum insulation material used (low cost), and a high energy-saving effect can be obtained for the amount of vacuum insulation used. Can do.

上記説明のように、複数の貯湯タンクを並列接続とし、複数のタンクを一括包囲する形状の真空断熱材21を設けることにより、貯湯エネルギーロスを抑えて省エネルギー性を高め、かつ製作がし易くコンパクトな貯湯タンクユニットを提供することが可能となる。 As described above, a plurality of hot water storage tanks are connected in parallel, and a vacuum heat insulating material 21 having a shape surrounding the plurality of tanks is provided, thereby suppressing energy loss in hot water storage, improving energy saving, and compact and easy to manufacture. It is possible to provide a hot water storage tank unit.

なお、上記説明では、貯湯タンクを2個の構成として説明したが、貯湯タンクは3個以上の複数構成でもよく、またタンクの設置形態も横一列ではなく、縦横碁盤の目のように複数設置してもよい。この場合にも複数のタンクを真空断熱材で一括包囲することにより、上記説明に同様の効果が得ることができる。 In the above description, the hot water storage tank has been described as having two configurations. However, the hot water storage tank may have multiple configurations of three or more, and the installation form of the tanks is not a horizontal row, but a plurality of hot water storage tanks are installed like a horizontal and horizontal grid. May be. In this case as well, the same effect as described above can be obtained by collectively enclosing the plurality of tanks with the vacuum heat insulating material.

本発明では、前記タンク間に設置した真空断熱材の幅は前記貯湯タンクの幅よりも小さいので製造コストを安くできる。 In this invention, since the width | variety of the vacuum heat insulating material installed between the said tanks is smaller than the width | variety of the said hot water storage tank, manufacturing cost can be made cheap.

本発明では、前記タンク間に設置した真空断熱材の高さは前記貯湯タンクの高さよりも小さいので製造コストを安くできる。 In the present invention, since the height of the vacuum heat insulating material installed between the tanks is smaller than the height of the hot water storage tank, the manufacturing cost can be reduced.

本発明では、前期複数の貯湯タンクと、前期貯湯タンク間を接続配管で貯湯タンク上部と貯湯タンク下部を接続する貯湯式給湯器であって、前記接続配管を設置する空間分の真空断熱材の幅を小さくできるので接続が容易となる。 The present invention is a hot water storage type hot water heater in which a plurality of hot water storage tanks in the previous period and a hot water storage tank upper part and a lower part of the hot water storage tank are connected by a connection pipe between the previous hot water storage tanks, and the vacuum heat insulating material for the space in which the connection pipe is installed Since the width can be reduced, the connection is easy.

本発明では、複数の貯湯タンクと外装ケースの間の空間に少なくとも2つ以上に分割された真空断熱材以外の断熱材を設け、前記複数の貯湯タンク間に設置した前記真空断熱材以外の断熱材の間に真空断熱材を設け、前記真空断熱材以外の断熱材と前記真空断熱材は、前記複数の貯湯タンク間の少なくとも一部で組み合わさる構成としたので製造が容易になる。 In the present invention, the space between the plurality of hot water storage tanks and the outer case is provided with a heat insulating material other than the vacuum heat insulating material divided into at least two or more, and the heat insulation other than the vacuum heat insulating material installed between the plurality of hot water storage tanks Since a vacuum heat insulating material is provided between the materials, and the heat insulating material other than the vacuum heat insulating material and the vacuum heat insulating material are combined in at least a part between the plurality of hot water storage tanks, manufacturing is facilitated.

本発明では、複数の貯湯タンクを備える貯湯式給湯器において、前記タンク全数の周囲を一括包囲する外装ケースを備え、前記外装ケースの内側において、前記タンク全数の周囲を一括包囲するような真空断熱材と前記複数の貯湯タンクの間に真空断熱材を設置したので省エネルギーに効果がある。 In the present invention, in a hot water storage type hot water heater having a plurality of hot water storage tanks, an external case is provided that collectively surrounds the entire number of the tanks, and a vacuum insulation that collectively surrounds the entire number of the tanks inside the external case. Since a vacuum heat insulating material is installed between the material and the plurality of hot water storage tanks, it is effective for energy saving.

本発明では、前記貯湯タンクと前記外装ケースとが近接して空間間隔の狭い部位に真空断熱材を配置したので省エネルギーに効果がある。 In this invention, since the said hot water storage tank and the said exterior case adjoined and arrange | positioned the vacuum heat insulating material in the site | part with a narrow space space | interval, it is effective in energy saving.

本発明では、複数の貯湯タンクを備える貯湯式給湯器において、前記タンク全数の周囲を一括包囲する外装ケースを備え、前記外装ケースの内側において、前記タンク全数の周囲を一括包囲するように真空断熱材を設置したので省エネルギーに効果がある。 In the present invention, in the hot water storage type hot water heater having a plurality of hot water storage tanks, it is provided with an outer case that collectively surrounds the entire number of the tanks, and is vacuum insulated so as to collectively surround the entire number of the tanks inside the outer case. Since the material is installed, it is effective for energy saving.

本発明では、複数のタンクを配管で並列接続したことを特徴とする。 The present invention is characterized in that a plurality of tanks are connected in parallel by piping.

本発明の実施の形態1の貯湯式給湯器の構成図Configuration diagram of hot water storage type water heater of Embodiment 1 of the present invention 本発明の実施の形態1の制御部周辺構成の図The figure of the control part periphery configuration of Embodiment 1 of the present invention 本発明の実施の形態1の貯湯式給湯器の断熱材構成図1の水平断面図FIG. 1 is a horizontal sectional view of a heat insulating material configuration of a hot water storage type hot water heater according to a first embodiment of the present invention. 本発明の実施の形態1の貯湯式給湯器の断熱材構成図1の垂直断面図1 is a vertical cross-sectional view of a heat insulating material configuration of a hot water storage type water heater according to Embodiment 1 of the present invention. 本発明の実施の形態1の貯湯式給湯器の断熱材構成図2FIG. 2 is a heat insulating material configuration diagram of the hot water storage type water heater according to the first embodiment of the present invention. 本発明の実施の形態1の貯湯式給湯器の断熱材構成図3FIG. 3 is a heat insulating material configuration diagram of the hot water storage type water heater according to the first embodiment of the present invention. 本発明の実施の形態1の貯湯式給湯器の断熱材構成図4FIG. 4 is a heat insulating material configuration diagram of the hot water storage type water heater according to the first embodiment of the present invention. 本発明の実施の形態2の貯湯式給湯器の構成図The block diagram of the hot water storage type water heater of Embodiment 2 of this invention 本発明の実施の形態2の貯湯式給湯器の断熱材構成図Heat insulation material block diagram of hot water storage type water heater of Embodiment 2 of the present invention

符号の説明Explanation of symbols

1a,1b.貯湯タンク、2a.一般給湯側混合弁、2b.風呂給湯側混合弁、3.減圧弁、4.電磁弁、5.浴槽、6.混合栓、7.リモコン、10.制御部、11a,b. 流量センサ、12a,b,c,d. 温度センサ、13a,b,c,d,e. 温度センサ、14a,b,c,d,e. 温度センサ、20.断熱材、21.真空断熱材、30.外装ケース、A.貯湯ユニット、B.熱源ユニット。 1a, 1b. Hot water storage tank, 2a. General hot water supply side mixing valve, 2b. Bath hot water supply side mixing valve, 3. Pressure reducing valve, 4. Solenoid valve, 5. Bathtub, 6. Mixing tap, 7. Remote control, 10. Control unit 11a, b. Flow sensor, 12a, b, c, d. Temperature sensor, 13a, b, c, d, e. Temperature sensor, 14a, b, c, d, e. Temperature sensor, 20. Thermal insulation, 21. Vacuum insulation, 30. Exterior case, A. Hot water storage unit, B. Heat source unit.

Claims (10)

複数の貯湯タンクと、前記貯湯タンク全数の外周を覆う外装ケースを設けた貯湯式温水器であって、前記複数の貯湯タンクは並列に設け、前記複数の貯湯タンクは接続配管にて直列に接続され、前記複数の貯湯タンクとの間に隙間を設け、前記貯湯タンクの隙間に真空断熱材を備えたことを特徴とする貯湯タンクユニット。 A hot water type hot water heater provided with a plurality of hot water storage tanks and an outer case that covers the outer circumference of the total number of the hot water storage tanks, wherein the plurality of hot water storage tanks are provided in parallel, and the plurality of hot water storage tanks are connected in series with a connection pipe A hot water storage tank unit comprising a plurality of hot water storage tanks provided with a gap, and a vacuum heat insulating material provided in the gap between the hot water storage tanks. 前記貯湯タンク間に設置した真空断熱材の幅は、前記貯湯タンクの幅よりも小さいことを特徴とする請求項1に記載の貯湯タンクユニット。 The hot water storage tank unit according to claim 1, wherein the width of the vacuum heat insulating material installed between the hot water storage tanks is smaller than the width of the hot water storage tank. 前記貯湯タンク間に設置した真空断熱材の高さは、前記貯湯タンクの高さよりも小さいことを特徴とする請求項1または2に記載の貯湯タンクユニット。 The hot water storage tank unit according to claim 1 or 2, wherein the height of the vacuum heat insulating material installed between the hot water storage tanks is smaller than the height of the hot water storage tank. 隣接する貯湯タンク間を接続配管で一方の貯湯タンク上部と他方の貯湯タンク下部を接続する貯湯式給湯器であって、前記接続配管を設置する空間分の真空断熱材の幅を小さくすることを特徴とする請求項1または2または3に記載の貯湯タンクユニット。 It is a hot water storage water heater that connects one hot water tank upper part and the other hot water tank lower part with a connecting pipe between adjacent hot water storage tanks, and reduces the width of the vacuum heat insulating material for the space where the connecting pipe is installed. The hot water storage tank unit according to claim 1, 2, or 3. 複数の貯湯タンクと外装ケースの間の空間に設けた真空断熱材以外の断熱材であって、前記真空断熱材以外の断熱材は少なくとも2つ以上に分割され、前記複数の貯湯タンク間に設置した前記真空断熱材以外の断熱材の間に真空断熱材を設け、前記真空断熱材以外の断熱材と前記真空断熱材は、前記複数の貯湯タンク間の少なくとも一部で組み合わさる構成としたことを特徴とする請求項1〜4の何れかに記載の貯湯タンクユニット。 A heat insulating material other than a vacuum heat insulating material provided in a space between a plurality of hot water storage tanks and an outer case, wherein the heat insulating material other than the vacuum heat insulating material is divided into at least two or more and installed between the plurality of hot water storage tanks A vacuum heat insulating material is provided between the heat insulating materials other than the vacuum heat insulating material, and the heat insulating material other than the vacuum heat insulating material and the vacuum heat insulating material are combined in at least a part between the plurality of hot water storage tanks. The hot water storage tank unit according to any one of claims 1 to 4. 複数の貯湯タンクを備える貯湯式給湯器において、前記タンク全数の周囲を一括包囲する外装ケースを備え、前記外装ケースの内側において、前記タンク全数の周囲を一括包囲するような真空断熱材と前記複数の貯湯タンクの間に真空断熱材を設置したことを特徴とする請求項1〜5の何れかに記載の貯湯タンクユニット。 In a hot water storage type hot water heater comprising a plurality of hot water storage tanks, an external case that collectively surrounds the entire number of the tanks is provided, and a vacuum heat insulating material that collectively surrounds the entire number of the tanks inside the external case and the plural The hot water storage tank unit according to any one of claims 1 to 5, wherein a vacuum heat insulating material is installed between the hot water storage tanks. 前記貯湯タンクと前記外装ケースとが近接して空間間隔の狭い部位に真空断熱材を配置することを特徴とする請求項1〜6の何れかに記載の貯湯タンクユニット。 The hot water storage tank unit according to any one of claims 1 to 6, wherein the hot water storage tank and the outer case are close to each other and a vacuum heat insulating material is disposed in a portion having a narrow space interval. 複数の貯湯タンクを備える貯湯式給湯器において、前記タンク全数の周囲を一括包囲する外装ケースを備え、前記外装ケースの内側において、前記タンク全数の周囲を一括包囲するように真空断熱材を設置したことを特徴とする貯湯タンクユニット。 In a hot water storage type hot water heater having a plurality of hot water storage tanks, an external case that collectively surrounds the entire number of the tanks is provided, and a vacuum heat insulating material is installed inside the external case so as to collectively surround the entire number of the tanks. Hot water storage tank unit. 複数のタンクを配管で並列接続したことを特徴とする請求項8に記載の貯湯タンクユニット。 The hot water storage tank unit according to claim 8, wherein a plurality of tanks are connected in parallel by piping. 圧縮機、凝縮器、膨張弁、蒸発器を接続したヒートポンプを熱源とする熱源ユニットと、複数の貯湯タンクを備えた貯湯タンクユニットから構成され、前記貯湯タンクユニットは貯湯タンク全数の周囲を一括包囲する外装ケースを備え、前記タンク間に真空断熱材を備えたことを特徴とする貯湯式給湯システム。 It consists of a heat source unit that uses a heat pump connected to a compressor, condenser, expansion valve, and evaporator as a heat source, and a hot water storage tank unit that includes multiple hot water storage tanks. The hot water storage tank unit surrounds the entire number of hot water storage tanks. A hot water storage type hot water supply system comprising an outer case and a vacuum heat insulating material between the tanks.
JP2008058051A 2008-03-07 2008-03-07 Hot water storage water heater and hot water tank unit Active JP4935720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058051A JP4935720B2 (en) 2008-03-07 2008-03-07 Hot water storage water heater and hot water tank unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058051A JP4935720B2 (en) 2008-03-07 2008-03-07 Hot water storage water heater and hot water tank unit

Publications (2)

Publication Number Publication Date
JP2009216263A true JP2009216263A (en) 2009-09-24
JP4935720B2 JP4935720B2 (en) 2012-05-23

Family

ID=41188313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058051A Active JP4935720B2 (en) 2008-03-07 2008-03-07 Hot water storage water heater and hot water tank unit

Country Status (1)

Country Link
JP (1) JP4935720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066370A (en) * 2012-09-24 2014-04-17 Daikin Ind Ltd Insulation structure and hot water storage unit
JP2019011938A (en) * 2017-07-03 2019-01-24 東芝キヤリア株式会社 Hot water storage device for water heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226965A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Hot water storage tank
JP2005226858A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2007139072A (en) * 2005-11-18 2007-06-07 Corona Corp Heat insulating material for storage tank
JP2007163038A (en) * 2005-12-14 2007-06-28 Sanden Corp Hot water storage tank
JP2007178060A (en) * 2005-12-28 2007-07-12 Sanden Corp Hot-water storage tank
JP2008032240A (en) * 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd Heat pump type water heater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226858A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2005226965A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Hot water storage tank
JP2007139072A (en) * 2005-11-18 2007-06-07 Corona Corp Heat insulating material for storage tank
JP2007163038A (en) * 2005-12-14 2007-06-28 Sanden Corp Hot water storage tank
JP2007178060A (en) * 2005-12-28 2007-07-12 Sanden Corp Hot-water storage tank
JP2008032240A (en) * 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd Heat pump type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066370A (en) * 2012-09-24 2014-04-17 Daikin Ind Ltd Insulation structure and hot water storage unit
JP2019011938A (en) * 2017-07-03 2019-01-24 東芝キヤリア株式会社 Hot water storage device for water heater

Also Published As

Publication number Publication date
JP4935720B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4745269B2 (en) Hot water storage tank unit for hot water storage type water heater
JP4906773B2 (en) Hot water storage water heater
JP2009074743A (en) Heat pump type floor heating device and heat storage container used in the same
JP2006300489A (en) Hot water storage type water heater
JP2010043759A (en) Storage type water heater
JP6450208B2 (en) Hot water storage water heater
JP5220083B2 (en) Hot water system
JP4935720B2 (en) Hot water storage water heater and hot water tank unit
JP2007218551A (en) Heat exchanger and heat pump water heater using it
JP5637903B2 (en) Hot water system
JP5040571B2 (en) Hot water storage water heater
JP5928007B2 (en) Thermal insulation for hot water storage tank and hot water storage type water heater
JP2008057926A (en) Tank unit
JP5197812B2 (en) Hot water storage water heater
JP4305544B2 (en) Hot water storage water heater
JP2007303768A (en) Water heater
JP4240150B1 (en) Hot water storage water heater
JP7257799B2 (en) Storage hot water heater
CN204438524U (en) Bearing type water tank and displacement type water heater
JP4902997B2 (en) Fuel cell system and building
CN102809215A (en) Nakatani kazuhito [jp]; ikeda hidekazu [jp]; nomura masakazu [jp]; yamamura naoto
CN103090550A (en) Solar receiver
JP2007303748A (en) Water heater
JP2008224072A (en) Heat pump water heater
JP2008309431A (en) Floor heating system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4935720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250