JP2009215397A - Polymeric nano dye and its manufacturing method - Google Patents

Polymeric nano dye and its manufacturing method Download PDF

Info

Publication number
JP2009215397A
JP2009215397A JP2008059505A JP2008059505A JP2009215397A JP 2009215397 A JP2009215397 A JP 2009215397A JP 2008059505 A JP2008059505 A JP 2008059505A JP 2008059505 A JP2008059505 A JP 2008059505A JP 2009215397 A JP2009215397 A JP 2009215397A
Authority
JP
Japan
Prior art keywords
general formula
polymer
dye
atom
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008059505A
Other languages
Japanese (ja)
Inventor
Eri Yoshida
絵里 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2008059505A priority Critical patent/JP2009215397A/en
Publication of JP2009215397A publication Critical patent/JP2009215397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical polymeric nano particle having a dye molecule, in an inner nucleus or an outer shell, capable of using for a variety of applications such as a dye and a coating for an electronic printing, a coating for construction, an image formation material, a medical use marker, and a cosmetic composition, as well as to provide a new manufacturing technique of a polymeric fine particle, due to self-organizing, capable of applying and spreading to an electrochemical device for a battery and an antistatic agent, etc. <P>SOLUTION: The fine particle of several tens-hundreds of nano meters is produced by dissolving a copolymer in a specific organic solvent to aggregate a part of the copolymer, wherein the copolymer contains, as a segment component, an onium salt-containing polymer having a dye molecule as a counteranion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、染料分子を塩交換により高分子に担持させナノメートルサイズの高分子微粒子を製造することに関する。この製造技術では水溶性の染料分子を水に不溶化することができるとともに、該微粒子形成の際の溶媒を選択することによって、染料分子を微粒子の内核もしくは外殻のいずれにも導入することができる。この製造方法を用いれば、塩構造をもつ多くの汎用の染料分子を水に不溶化して耐水性の高い染料微粒子に変換することができる。つまり、水溶性染料を顔料化することが可能である。本技術で製造される高分子微粒子は、電子印刷用染料や塗料を始め、建築用塗料、画像形成材料、医療用マーカー、化粧品組成物、電池用の電気化学的デバイス、帯電防止剤など多くの用途が見込まれる。 The present invention relates to production of nanometer-sized polymer fine particles by supporting dye molecules on a polymer by salt exchange. In this production technique, water-soluble dye molecules can be insolubilized in water, and dye molecules can be introduced into either the inner core or the outer shell of the fine particles by selecting a solvent for forming the fine particles. . If this manufacturing method is used, many general-purpose dye molecules having a salt structure can be insolubilized in water and converted into dye fine particles having high water resistance. That is, it is possible to pigmentize a water-soluble dye. Polymer fine particles produced by this technology include dyes and paints for electronic printing, architectural paints, image forming materials, medical markers, cosmetic compositions, electrochemical devices for batteries, antistatic agents and many others. Applications are expected.

以前から、水溶性染料の耐水性の向上を目的として染料を水不溶性の高分子に担持する方法が用いられてきた。例えば、スチレンとアクリル酸との共重合体とポリオキシエチレンとの高分子錯体中に水溶性染料を取り込ませて水不溶化する方法がある。
特開平7−196966
For some time, a method of supporting a dye on a water-insoluble polymer has been used for the purpose of improving the water resistance of the water-soluble dye. For example, there is a method in which a water-soluble dye is incorporated into a polymer complex of a copolymer of styrene and acrylic acid and polyoxyethylene to make it insoluble in water.
JP-A-7-196966

しかし、染料分子の導入がpHや温度の変化に左右されやすい、染料分子の適用範囲が狭い、さらに、染料分子を導入する位置をコントロールできないなどの問題を含んでいた。 However, the introduction of dye molecules is susceptible to changes in pH and temperature, the application range of dye molecules is narrow, and the position where dye molecules are introduced cannot be controlled.

本発明で解決しようとする課題の第1は、pHや温度の変化に左右されない本発明で解決しようとする課題の第1は、pHや温度の変化に左右されない染料の担持方法を選択すること、そのための方法として課題の第2は、染料分子を高分子中に安定にかつ強固な結合力で担持すること、さらに課題の第3は、染料分子を高分子中に担持する位置を制御すること、そして課題の第4は、染料が担持された高分子からナノオーダーの高分子微粒子を製造する方法を提供することを目指すものである。 The first problem to be solved by the present invention is not affected by changes in pH or temperature. The first problem to be solved by the present invention is to select a dye loading method that is not affected by changes in pH or temperature. As a method for that purpose, the second problem is to support the dye molecules stably and firmly in the polymer, and the third problem is to control the position where the dye molecules are supported in the polymer. The fourth object of the present invention is to provide a method for producing nano-order polymer fine particles from a polymer carrying a dye.

上記課題の第1は、染料の適用範囲を広げることを目的とし、課題の第2は、水溶性染料の耐水性の向上を目的としており、さらに課題の第3は、染料の発色性の制御を目的としており、そして課題の第4は、高分子染料のサイズの制御を通して目的の用途に適合した高分子染料微粒子をを製造するための方法を提供することを目指すものである。 The first of the above problems is aimed at broadening the application range of the dye, the second of the problems is aimed at improving the water resistance of the water-soluble dye, and the third of the problems is the control of the color developability of the dye. The fourth object of the present invention is to provide a method for producing fine polymer dye particles suitable for the intended use through control of the size of the high molecular dye.

本発明者らは鋭意検討した結果、塩素イオンや臭素イオンなどのハロゲンイオンを陰イオンとしてもつオニウム塩を側鎖官能基として含むポリマーとポリスチレン誘導体からなるブロック共重合体を、特定の有機溶媒中で染料分子中に含まれる陰イオンと塩交換させることにより、該共重合体中に染料分子が安定にかつ強固に担持され、かつこの共重合体を特定の有機溶媒に溶かすことにより、該共重合体が自己組織化して染料分子を内核もしくは外殻に持つ数十―数百ナノメートルの高分子微粒子を形成することを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have determined that a block copolymer comprising a polymer containing a onium salt having a halogen ion such as a chlorine ion or a bromine ion as an anion as a side chain functional group and a polystyrene derivative in a specific organic solvent. In this case, the dye molecule is stably and firmly supported in the copolymer by salt exchange with an anion contained in the dye molecule, and the copolymer is dissolved in a specific organic solvent. The inventors have found that the polymer self-assembles to form polymer fine particles of several tens to several hundreds of nanometers having dye molecules in the inner core or outer shell, thereby completing the present invention.

すなわち、下記一般式(1)で示されるオニウム塩含有ポリマーと下記一般式(2)で示されるポリスチレン誘導体とからなる共重合体を特定の有機溶媒中に溶かすだけで、ナノオーダーの高分子微粒子が形成されることにより達成される。
一般式(1)

ここで、上記一般式(1)中、Rはラジカル重合開始剤残基、Rはアリール基もしくはアルキル基のいずれかを表す。Mは窒素原子、リン原子、もしくは硫黄原子であるが、リン原子であることがより好ましい。*は下記一般式(2)で示されるポリマーとの結合部位を示す。mは重合度で50―400の整数であり、xはRの置換基数を表し、Mが窒素原子もしくはリン原子の場合には3であり、硫黄原子の場合には2である。Gは下記一般式(3)もしくは(4)である。
一般式(2)

ここで、上記一般式(2)中、Rは精密ラジカル重合の重合制御剤残基、Rは水素原子もしくはアルキル基のいずれかを表す。*は上記一般式(1)で示されるポリマーとの結合部位を示す。nは重合度で、400―2000の整数である。
一般式(3)

ここで、上記一般式(3)中、Rは染料含有アリール基を示す。染料はポルフィリン染料やアゾ染料が含まれるが、アゾ染料であることがより好ましい。

一般式(4)


ここで、上記一般式(4)中、Rは染料含有アリール基を示す。染料は染料はポルフィリン染料やアゾ染料が含まれるが、アゾ染料であることがより好ましい。
That is, nano-order polymer fine particles can be obtained simply by dissolving a copolymer comprising an onium salt-containing polymer represented by the following general formula (1) and a polystyrene derivative represented by the following general formula (2) in a specific organic solvent. Is achieved.
General formula (1)

Here, in the general formula (1), R 1 represents a radical polymerization initiator residue, and R 2 represents either an aryl group or an alkyl group. M is a nitrogen atom, a phosphorus atom or a sulfur atom, more preferably a phosphorus atom. * Represents a binding site with a polymer represented by the following general formula (2). m is an integer of 50 to 400 in terms of polymerization degree, x represents the number of substituents of R 2 , 3 when M is a nitrogen atom or phosphorus atom, and 2 when M is a sulfur atom. G - is the following general formula (3) or (4).
General formula (2)

Here, in the above general formula (2), R 3 represents a polymerization controller residue for precise radical polymerization, and R 4 represents either a hydrogen atom or an alkyl group. * Indicates a binding site with the polymer represented by the general formula (1). n is a polymerization degree and is an integer of 400-2000.
General formula (3)

Here, in the general formula (3), R 3 represents a dye-containing aryl group. The dye includes a porphyrin dye and an azo dye, and more preferably an azo dye.

General formula (4)


Here, in the general formula (4), R 4 represents a dye-containing aryl group. The dye includes a porphyrin dye and an azo dye, and more preferably an azo dye.

また本発明のさらに好ましい態様は、該共重合体の構造がブロック共重合体であり、かつ前記一般式(1)で示されるポリマーの重合度であるmと前記一般式(2)のポリマーの重合度であるnの割合が、n/m=4―40である共重合体を特定の有機溶媒に溶解させることにより達成される。 In a further preferred embodiment of the present invention, the copolymer structure is a block copolymer, and m is the degree of polymerization of the polymer represented by the general formula (1) and the polymer of the general formula (2). The ratio of n, which is the degree of polymerization, is achieved by dissolving a copolymer having n / m = 4-40 in a specific organic solvent.

また、前記記載の一般式(1)と(2)からなる該共重合体は、下記一般式(5)と前記一般式(2)からなる共重合体と、下記一般式(6)もしくは(7)で示される化合物との塩交換により形成される。
一般式(5)

ここで、前記一般式(5)中、Rはラジカル重合開始剤残基、Rはアリール基もしくはアルキル基のいずれかを表す。Mは窒素原子、リン原子、もしくは硫黄原子である。Yは塩素原子もしくは臭素原子である。*は前記一般式(2)で示されるポリマーとの結合部位を示す。mは重合度で、50―400の整数であり、xはRの置換基数を表し、Mが窒素原子もしくはリン原子の場合には3であり、硫黄原子の場合には2である。
一般式(6)

ここで、上記一般式(6)中、Rは染料含有アリール基を示す。Aはナトリウム原子もしくはカリウム原子である。
一般式(7)

ここで、上記一般式(7)中、Rは染料含有アリール基を示す。Mはナトリウムもしくはカリウムである。
In addition, the copolymer composed of the general formulas (1) and (2) described above includes a copolymer composed of the following general formula (5) and the general formula (2), and a general formula (6) or ( It is formed by salt exchange with the compound shown in 7).
General formula (5)

Here, in the general formula (5), R 1 represents a radical polymerization initiator residue, and R 2 represents either an aryl group or an alkyl group. M is a nitrogen atom, a phosphorus atom, or a sulfur atom. Y is a chlorine atom or a bromine atom. * Indicates a binding site with the polymer represented by the general formula (2). m is the degree of polymerization and is an integer of 50 to 400, x represents the number of substituents of R 2 , 3 when M is a nitrogen atom or phosphorus atom, and 2 when M is a sulfur atom.
General formula (6)

Here, in the general formula (6), R 3 represents a dye-containing aryl group. A is a sodium atom or a potassium atom.
General formula (7)

Here, in the general formula (7), R 4 represents a dye-containing aryl group. M is sodium or potassium.

前記一般式(1)と(2)からなる該共重合体は、特定の溶媒中で自己組織化しミセル状の凝集体を形成する。ここで、該共重合体が凝集体を形成する特定の溶媒とは、芳香族系炭化水素もしくはアセトニトリル、あるいはその混合溶媒である。該芳香族系炭化水素はベンゼンもしくはトルエンであることが望ましい。 The copolymer comprising the general formulas (1) and (2) is self-assembled in a specific solvent to form a micellar aggregate. Here, the specific solvent in which the copolymer forms an aggregate is an aromatic hydrocarbon, acetonitrile, or a mixed solvent thereof. The aromatic hydrocarbon is preferably benzene or toluene.

該共重合体は芳香族系炭化水素中もしくは少量のアセトニトリル含有の芳香族系炭化水素中で、前記一般式(1)で示される該オニウム塩含有ポリマーによって該凝集体の内核が形成され、かつ前記一般式(2)で示されるポリスチレン誘導体によって該凝集体の外殻が形成される構造をもつ高分子微粒子を形成する。 The copolymer is formed in an aromatic hydrocarbon or a small amount of acetonitrile-containing aromatic hydrocarbon, and the inner core of the aggregate is formed by the onium salt-containing polymer represented by the general formula (1). Polymer fine particles having a structure in which the outer shell of the aggregate is formed by the polystyrene derivative represented by the general formula (2) are formed.

逆に、該共重合体はアセトニトリルもしくは少量の芳香族系炭化水素含有のアセトニトリル中で、前記一般式(2)で示されるポリスチレン誘導体によって該凝集体の内核が形成され、かつ前記一般式(1)で示される該オニウム塩含有ポリマーによって該凝集体の外殻が形成される構造をもつ高分子微粒子を形成する。 Conversely, the copolymer is formed in acetonitrile or acetonitrile containing a small amount of aromatic hydrocarbon, and the inner core of the aggregate is formed by the polystyrene derivative represented by the general formula (2), and the general formula (1 The polymer particles having a structure in which the outer shell of the aggregate is formed by the onium salt-containing polymer represented by (1).

該共重合体は前記記載の特定溶媒中でいずれも、凝集体の粒径が30―900ナノメートルの範囲にある球状の高分子微粒子を形成する。 In any of the specific solvents described above, the copolymer forms spherical fine polymer particles having an aggregate particle size in the range of 30 to 900 nanometers.

さらに、該共重合体によって形成される凝集体の構造は、芳香族系炭化水素とアセトニトリルの体積比によって内核と外殻の構造がリバーシブルに変化する。 Furthermore, the structure of the aggregate formed by the copolymer changes reversibly between the inner core and the outer shell depending on the volume ratio of the aromatic hydrocarbon and acetonitrile.

本発明によれば、容易に合成が可能な共重合体を用いて、比較的粒径分布の揃った数十―数百ナノメートルの高分子染料微粒子を製造することができる。また、その粒径は各ポリマーセグメントの重合度やその割合、微粒子を形成させる有機溶媒の種類を選択することによって、厳密にコントロールすることが可能である。 According to the present invention, polymer dye fine particles having a relatively uniform particle size distribution of several tens to several hundreds of nanometers can be produced using a copolymer that can be easily synthesized. The particle size can be strictly controlled by selecting the degree of polymerization of each polymer segment, its ratio, and the type of organic solvent for forming fine particles.

さらに本発明は、微粒子を形成時の溶媒の選択によって、染料含有オニウム塩の導入位置を微粒子の内核にも外殻にもすることができ、しかもこれらの構造を可逆的に変換させることができるので、用途の目的に応じてその構造の最適化を図ることが可能である。 Furthermore, according to the present invention, the introduction position of the dye-containing onium salt can be set to both the inner core and the outer shell of the fine particles by selecting the solvent when forming the fine particles, and these structures can be reversibly converted. Therefore, it is possible to optimize the structure according to the purpose of use.

前記一般式(5)で示されるポリマーと前記一般式(2)で示されるポリスチレン誘導体からなるブロック共重合体を、溶媒としてのアセトニトリルに溶かす。この共重合体のアセトニトリル溶液に、少量の水を加えて溶解性を向上させた染料のアセトニトリル溶液を加える。この共重合体と染料の混合溶液を所定の温度(20―50℃、好ましくは30―40℃)で半日以上(好ましくは12―18時間)加熱した後、エバポレーターに続いて真空乾燥により溶媒を完全に除去する。残留物に、体積比として1対1のアセトニトリルとベンゼンの混合溶媒を加え、60℃に加熱して反応によって生成したポリマーを完全に溶解させる。この混合溶液にさらにベンゼンもしくはアセトニトリルを加えると、ミセル状に凝集した粒径が数百―数千ナノメートルの高分子微粒子を溶液状態で得る。 A block copolymer composed of the polymer represented by the general formula (5) and the polystyrene derivative represented by the general formula (2) is dissolved in acetonitrile as a solvent. To the acetonitrile solution of this copolymer is added an acetonitrile solution of a dye whose solubility has been improved by adding a small amount of water. This mixed solution of copolymer and dye is heated at a predetermined temperature (20-50 ° C., preferably 30-40 ° C.) for more than half a day (preferably 12-18 hours), and then the solvent is removed by vacuum drying following an evaporator. Remove completely. A 1 to 1 mixed solvent of acetonitrile and benzene as a volume ratio is added to the residue and heated to 60 ° C. to completely dissolve the polymer produced by the reaction. When benzene or acetonitrile is further added to this mixed solution, polymer fine particles having a particle size of several hundred to several thousand nanometers aggregated in a micelle form are obtained in a solution state.

該共重合体を構成する前記一般式(5)で示されるポリマーの重合度mと一般式(2)で示されるポリマーの重合度nの割合はn/m=4―40であることが望ましい。 The ratio of the polymerization degree m of the polymer represented by the general formula (5) constituting the copolymer and the polymerization degree n of the polymer represented by the general formula (2) is preferably n / m = 4-40. .

ここで、前記一般式(5)と一般式(2)で示されるポリマーからなるブロック共重合体が、前記一般式(6)もしくは(7)で示される化合物と塩交換して、前記一般式(1)と一般式(2)のポリマーからなるブロック共重合体に変換されるメカニズムを、一般式(6)の化合物を例にして図1に基づいて説明する。前記一般式(5)で示されるポリマー(1)と前記一般式(2)で示されるポリスチレン誘導体(2)からなる該共重合体(3)と、一般式(6)で示される化合物(4)を溶媒としてのアセトニトリル中で混合すると、該共重合体(3)中のハロゲン陰イオンと化合物(4)中のスルホキシ陰イオンとが塩交換し、前記一般式(1)で示されるポリマー(5)と一般式(2)のポリスチレン誘導体(2)からなるブロック共重合体(6)が生成する。 Here, the block copolymer composed of the polymer represented by the general formula (5) and the general formula (2) is subjected to salt exchange with the compound represented by the general formula (6) or (7), and the general formula The mechanism of conversion to a block copolymer comprising the polymer of (1) and general formula (2) will be described with reference to FIG. 1 taking the compound of general formula (6) as an example. The copolymer (3) comprising the polymer (1) represented by the general formula (5) and the polystyrene derivative (2) represented by the general formula (2), and the compound (4) represented by the general formula (6) ) In acetonitrile as a solvent, the halogen anion in the copolymer (3) and the sulfoxy anion in the compound (4) undergo salt exchange, and the polymer represented by the general formula (1) ( A block copolymer (6) comprising 5) and the polystyrene derivative (2) of the general formula (2) is produced.

上記の方法によって得れる共重合体(6)は、少量のアセトニトリル含有のベンゼンもしくはトルエン中で自己組織化し、一般式(1)のポリマー(5)を内核に、ポリスチレン誘導体(2)を外殻とする高分子微粒子(8)を形成する(図2)。アセトニトリルとベンゼンもしくはトルエンの割合は体積比で5:95―30:70の範囲にあることが望ましい。 The copolymer (6) obtained by the above method is self-assembled in a small amount of acetonitrile-containing benzene or toluene, and the polymer (5) of the general formula (1) is used as the inner core, and the polystyrene derivative (2) is used as the outer shell. The polymer fine particles (8) are formed (FIG. 2). The ratio of acetonitrile to benzene or toluene is preferably in the range of 5: 95-30: 70 by volume.

ここで、該高分子微粒子の内核を形成している該オニウム塩含有ポリマー(5)は、ファンデルワールス力(7)により凝集する。一方、ポリスチレン誘導体セグメント(2)は凝集に関わらないので、染料分子(4)が微粒子の内側に担持された高分子微粒子(9)を形成する。 Here, the onium salt-containing polymer (5) forming the inner core of the polymer fine particles is aggregated by van der Waals force (7). On the other hand, since the polystyrene derivative segment (2) is not involved in aggregation, the polymer molecules (9) in which the dye molecules (4) are supported inside the fine particles are formed.

ブロック共重合体(6)は、溶媒としてのアセトニトリル中もしくは少量のベンゼンもしくはトルエン含有のアセトニトリル中では、一般式(1)の該オニウム塩含有ポリマー(5)を外殻に、ポリスチレン誘導体(2)を内核に持つ高分子微粒子(9)を形成する(図3)。アセトニトリルとベンゼンもしくはトルエンの割合は体積比で100:0―70:30の範囲にあることが望ましい。 In the block copolymer (6), in acetonitrile as a solvent or in acetonitrile containing a small amount of benzene or toluene, the onium salt-containing polymer (5) of the general formula (1) is used as the outer shell, and the polystyrene derivative (2) To form polymer fine particles (9) having an inner core (FIG. 3). The ratio of acetonitrile to benzene or toluene is preferably in the range of 100: 0 to 70:30 by volume ratio.

ここで、ポリスチレン誘導体(2)が該高分子微粒子の内核を形成し、かつ該オニウム塩含有ポリマー(5)が内核を形成するのは、ポリスチレン誘導体(2)がファンデルワールス力(7)により凝集し、該オニウム塩含有ポリマー(5)が凝集に関わらないためである。 Here, the polystyrene derivative (2) forms the inner core of the polymer fine particle, and the onium salt-containing polymer (5) forms the inner core because the polystyrene derivative (2) has van der Waals force (7). This is because they aggregate and the onium salt-containing polymer (5) is not involved in the aggregation.

一般式(1)で示されるオニウム塩含有ポリマーの具体例は次の通りである。
Specific examples of the onium salt-containing polymer represented by the general formula (1) are as follows.

一般式(2)で示される化合物の具体例は次の通りである。
Specific examples of the compound represented by the general formula (2) are as follows.

一般式(3)で示される化合物の具体例は次の通りである。
Specific examples of the compound represented by the general formula (3) are as follows.

一般式(4)で示される化合物の具体例は次の通りである。
Specific examples of the compound represented by the general formula (4) are as follows.

一般式(5)で示されるポリマーの具体例は次の通りである。
Specific examples of the polymer represented by the general formula (5) are as follows.

前記一般式(5)で示されるポリマーで、Mがリン原子、Rがフェニル基、YがCl、すなわち前記化合物No.70であるポリ(4−スチリルベンジルホスホニウムクロリド)(数平均分子量45,000)と、前記一般式(2)で示されるポリスチレン誘導体で、Rが水素原子すなわち前記化合物No.26であるポリスチレン(数平均分子量49,000)からなるジブロック共重合体の1mgを3.5mLのアセトニトリルに溶解した。一方、前記一般式(3)で示される化合物で前記化合物No.42の対陽イオンがナトリウムであるメチルオレンジの0.4mgを超純水0.5mLに溶解後、アセトニトリル3.0mLを加えた。このメチルオレンジ溶液と共重合体溶液を混合し、30℃のオイルバス中で18時間加熱した。混合溶液を放冷後、エバポレーターで溶媒を除去し、さらに真空乾燥させて溶媒を完全に除去した。残留物にアセトニトリル0.7mLとベンゼン0.7mLを加え、60℃のオイルバス中で18時間加熱した。放冷後、この混合溶液にベンゼン5.6mLを加え、20℃、角度90°の条件で光散乱測定を行った。光散乱解析による粒子径の散乱強度分布を図4に示す。およそ180ナノメートルの高分子微粒子が形成されたことを確認した。また、上記の体積比(アセトニトリル:ベンゼン=0.7mL:6.3mL)の混合溶媒中ではほとんど観察されなかったメチルオレンジに基づくUV吸収が、生成した高分子微粒子のUVスペクトルでははっきり観察されたことから、メチルオレンジが高分子微粒子中で可溶化されたことがわかった(図5)。さらに、核磁気共鳴スペクトルにより、塩交換反応によってブロック共重合体中にメチルオレンジが定量的に導入されたことを確認した(図6)。一方、透過型電子顕微鏡観察により、形成された凝集体が球状であることを確認した(図7)。 In the polymer represented by the general formula (5), M is a phosphorus atom, R 2 is a phenyl group, and Y is Cl. 70 (poly (4-styrylbenzylphosphonium chloride) (number average molecular weight 45,000)) and a polystyrene derivative represented by the above general formula (2), wherein R 4 is a hydrogen atom, that is, the compound no. 1 mg of a diblock copolymer consisting of 26 polystyrene (number average molecular weight 49,000) was dissolved in 3.5 mL of acetonitrile. On the other hand, in the compound represented by the general formula (3), the compound no. After dissolving 0.4 mg of methyl orange whose 42 counter cation is sodium in 0.5 mL of ultrapure water, 3.0 mL of acetonitrile was added. The methyl orange solution and the copolymer solution were mixed and heated in an oil bath at 30 ° C. for 18 hours. After the mixed solution was allowed to cool, the solvent was removed with an evaporator, and the solvent was further removed by vacuum drying. Acetonitrile 0.7mL and benzene 0.7mL were added to the residue, and it heated in the oil bath of 60 degreeC for 18 hours. After allowing to cool, 5.6 mL of benzene was added to this mixed solution, and light scattering measurement was performed under the conditions of 20 ° C. and an angle of 90 °. FIG. 4 shows the scattering intensity distribution of the particle diameter by light scattering analysis. It was confirmed that polymer fine particles of about 180 nanometers were formed. Further, UV absorption based on methyl orange, which was hardly observed in the mixed solvent having the above volume ratio (acetonitrile: benzene = 0.7 mL: 6.3 mL), was clearly observed in the UV spectrum of the produced polymer fine particles. From this, it was found that methyl orange was solubilized in the polymer fine particles (FIG. 5). Furthermore, it was confirmed by nuclear magnetic resonance spectrum that methyl orange was quantitatively introduced into the block copolymer by a salt exchange reaction (FIG. 6). On the other hand, it was confirmed by observation with a transmission electron microscope that the formed aggregate was spherical (FIG. 7).

実施例1の反応によって得られた前記一般式(1)で示されるポリマー、Mがリン原子、Rがフェニル基である前記化合物No.9、Gが一般式(3)の前記化合物No.42と、一般式(2)で示される、Rが水素原子である前記化合物No.26であるポリスチレンからなるジブロック共重合体に、アセトニトリル0.7mLとベンゼン0.7mLを加え、60℃のオイルバス中で18時間加熱後、アセトニトリルを5.6mLを加えた結果、光散乱解析によっておよそ140ナノメートルの高分子微粒子が形成された。 The compound represented by the general formula (1) obtained by the reaction of Example 1, M is a phosphorus atom, and R 2 is a phenyl group. 9, G represents the compound No. 1 in the general formula (3). 42 and the compound No. 2 represented by the general formula (2), wherein R 2 is a hydrogen atom. As a result of adding 0.7 mL of acetonitrile and 0.7 mL of benzene to a diblock copolymer made of polystyrene 26, heating in an oil bath at 60 ° C. for 18 hours, and adding 5.6 mL of acetonitrile, light scattering analysis Formed polymer fine particles of approximately 140 nanometers.

本発明によれば、この製造法で形成されるナノ染料は、染料部位を微粒子の内核にも外殻にも担持させることができるリバーシブルな構造をもつ微粒子である。このナノ染料の製造技術は、染料分子の水不溶化とナノ粒子化を同時に行うことのできる製造技術であり、しかも多くの汎用染料に応用することができる。本技術で製造されるナノ染料は、電子印刷用染料や塗料を始め、建築用塗料、画像形成材料、医療用マーカー、化粧品組成物、電池用の電気化学的デバイス、帯電防止剤などとして多くの用途が見込まれる。 According to the present invention, the nano dye formed by this production method is a fine particle having a reversible structure in which the dye part can be supported on both the inner core and the outer shell of the fine particle. This nano-dye production technique is a production technique capable of simultaneously insolubilizing dye molecules and forming nanoparticles, and can be applied to many general-purpose dyes. Nano dyes produced by this technology include many dyes and paints for electronic printing, architectural paints, image forming materials, medical markers, cosmetic compositions, electrochemical devices for batteries, antistatic agents, etc. Applications are expected.

本発明に基づく染料分子のブロック共重合体への担持メカニズムMechanism for supporting dye molecules on block copolymers based on the present invention 本発明に基づく高分子染料ナノ粒子形成の説明メカニズム1Mechanism 1 of polymer dye nanoparticle formation based on the present invention 本発明に基づく高分子染料ナノ粒子形成の説明メカニズム2Mechanism 2 of polymer dye nanoparticle formation based on the present invention 実施例1および2に関わる高分子微粒子の光散乱強度分布図Light Scattering Intensity Distribution Diagram of Polymer Fine Particles Related to Examples 1 and 2 実施例1に関わる高分子微粒子の紫外可視吸収スペクトルUltraviolet-visible absorption spectrum of polymer fine particles according to Example 1 実施例1に関わる高分子微粒子の核磁気共鳴スペクトルNuclear magnetic resonance spectrum of polymer microparticles related to Example 1 実施例1に関わる高分子微粒子の透過型電子顕微鏡写真Transmission electron micrograph of polymer microparticles related to Example 1

Claims (13)

下記一般式(1)で示されるオニウム塩含有ポリマーと下記一般式(2)で示されるポリスチレン誘導体とからなる共重合体が形成する高分子微粒子であって、該オニウム塩中の陰イオンが染料含有スルホキシ陰イオンもしくは染料含有カルボキシ陰イオンである高分子微粒子。
一般式(1)
ここで、上記一般式(1)中、Rはラジカル重合開始剤残基、Rはアリール基もしくはアルキル基のいずれかを表す。Mは窒素原子、リン原子、もしくは硫黄原子である。*は下記一般式(2)で示されるポリマーとの結合部位を示す。mは重合度で50―400の整数であり、xはRの置換基数を表し、Mが窒素原子もしくはリン原子の場合には3であり、硫黄原子の場合には2である。Gは下記一般式(3)もしくは(4)である。
一般式(2)
ここで、上記一般式(2)中、Rは精密ラジカル重合の重合制御剤残基、Rは水素原子もしくはアルキル基のいずれかを表す。*は上記一般式(1)で示されるポリマーとの結合部位を示す。nは重合度で、400―2000の整数である。
一般式(3)
ここで、上記一般式(3)中、Rは染料含有アリール基を示す。

一般式(4)

ここで、上記一般式(4)中、Rは染料含有アリール基を示す。
Polymer fine particles formed by a copolymer comprising an onium salt-containing polymer represented by the following general formula (1) and a polystyrene derivative represented by the following general formula (2), wherein the anion in the onium salt is a dye Polymer fine particles containing a sulphoxy anion or a dye-containing carboxy anion.
General formula (1)
Here, in the general formula (1), R 1 represents a radical polymerization initiator residue, and R 2 represents either an aryl group or an alkyl group. M is a nitrogen atom, a phosphorus atom, or a sulfur atom. * Represents a binding site with a polymer represented by the following general formula (2). m is an integer of 50 to 400 in terms of polymerization degree, x represents the number of substituents of R 2 , 3 when M is a nitrogen atom or phosphorus atom, and 2 when M is a sulfur atom. G - is the following general formula (3) or (4).
General formula (2)
Here, in the above general formula (2), R 3 represents a polymerization controller residue for precise radical polymerization, and R 4 represents either a hydrogen atom or an alkyl group. * Indicates a binding site with the polymer represented by the general formula (1). n is a polymerization degree and is an integer of 400-2000.
General formula (3)
Here, in the general formula (3), R 3 represents a dye-containing aryl group.

General formula (4)

Here, in the general formula (4), R 4 represents a dye-containing aryl group.
前記一般式(1)と(2)からなる該共重合体の構造がブロック共重合体である高分子微粒子。 Polymer fine particles wherein the structure of the copolymer comprising the general formulas (1) and (2) is a block copolymer. 前記一般式(1)で示されるポリマーの重合度mと一般式(2)で示されるポリマーの重合度nの割合がn/m=4―40である高分子微粒子。 Polymer fine particles in which the ratio of the polymerization degree m of the polymer represented by the general formula (1) and the polymerization degree n of the polymer represented by the general formula (2) is n / m = 4-40. 前記一般式(1)および(2)からなる該共重合体が、下記一般式(5)および前記一般式(2)からなる共重合体と、下記一般式(6)もしくは(7)で示される化合物との塩交換によって形成されることを特徴とする高分子微粒子。
一般式(5)

ここで、前記一般式(5)中、Rはラジカル重合開始剤残基、Rはアリール基もしくはアルキル基のいずれかを表す。Mは窒素原子、リン原子、もしくは硫黄原子である。Yは塩素原子もしくは臭素原子である。*は前記一般式(2)で示されるポリマーとの結合部位を示す。mは重合度で、50―400の整数であり、xはRの置換基数を表し、Mが窒素原子もしくはリン原子の場合には3であり、硫黄原子の場合には2である。
一般式(6)

ここで、上記一般式(4)中、Rは染料含有アリール基を示す。Aはナトリウム原子もしくはカリウム原子である。
一般式(7)

ここで、上記一般式(5)中、Rは染料含有アリール基を示す。Mはナトリウムもしくはカリウムである。
The copolymer comprising the general formulas (1) and (2) is represented by the following general formula (5) and the copolymer comprising the general formula (2), and the following general formula (6) or (7). Fine polymer particles formed by salt exchange with a compound to be obtained.
General formula (5)

Here, in the general formula (5), R 1 represents a radical polymerization initiator residue, and R 2 represents either an aryl group or an alkyl group. M is a nitrogen atom, a phosphorus atom, or a sulfur atom. Y is a chlorine atom or a bromine atom. * Indicates a binding site with the polymer represented by the general formula (2). m is the degree of polymerization and is an integer of 50 to 400, x represents the number of substituents of R 2 , 3 when M is a nitrogen atom or phosphorus atom, and 2 when M is a sulfur atom.
General formula (6)

Here, in the general formula (4), R 3 represents a dye-containing aryl group. A is a sodium atom or a potassium atom.
General formula (7)

Here, in the general formula (5), R 4 represents a dye-containing aryl group. M is sodium or potassium.
前記一般式(1)と(2)からなる該共重合体が、特定の溶媒中で自己組織化しミセル状の凝集体を形成することを特徴とする高分子微粒子。 A polymer fine particle, wherein the copolymer comprising the general formulas (1) and (2) is self-assembled in a specific solvent to form a micellar aggregate. 請求項5に記載の特定の溶媒が芳香族系炭化水素もしくはアセトニトリル、あるいはその混合溶媒である請求項1に記載の高分子微粒子。 The polymer fine particle according to claim 1, wherein the specific solvent according to claim 5 is an aromatic hydrocarbon or acetonitrile, or a mixed solvent thereof. 請求項5に記載の芳香族系炭化水素がベンゼンもしくはトルエンである請求項1に記載の高分子微粒子。 The polymer fine particle according to claim 1, wherein the aromatic hydrocarbon according to claim 5 is benzene or toluene. 請求項5に記載の凝集体であって、芳香族系炭化水素中もしくは少量のアセトニトリル含有の芳香族系炭化水素中で、該凝集体の内核が前記一般式(1)で示される該オニウム塩含有ポリマーによって形成され、かつ該凝集体の外殻が前記一般式(2)で示されるポリスチレン誘導体によって形成されることを特徴とする高分子微粒子。 6. The aggregate according to claim 5, wherein the inner core of the aggregate is represented by the general formula (1) in an aromatic hydrocarbon or a small amount of acetonitrile-containing aromatic hydrocarbon. A polymer fine particle characterized in that it is formed of a polymer containing and the outer shell of the aggregate is formed of a polystyrene derivative represented by the general formula (2). 請求項5に記載の凝集体であって、アセトニトリルもしくは少量の芳香族系炭化水素含有のアセトニトリル中で、該凝集体の内核が前記一般式(2)で示されるポリスチレン誘導体によって形成され、かつ該凝集体の外殻が前記一般式(1)で示される該オニウム塩含有ポリマーによって形成されることを特徴とする高分子微粒子。 The aggregate according to claim 5, wherein the inner core of the aggregate is formed of the polystyrene derivative represented by the general formula (2) in acetonitrile or acetonitrile containing a small amount of an aromatic hydrocarbon, and A polymer fine particle, wherein the outer shell of the aggregate is formed of the onium salt-containing polymer represented by the general formula (1). 請求項8および9に記載の凝集体の粒径が、30―900ナノメートルの範囲にある高分子微粒子。 Polymer fine particles in which the aggregates according to claims 8 and 9 have a particle size in the range of 30-900 nanometers. 請求項8および9に記載の凝集体の形状が球状であることを特徴とする高分子微粒子。 Polymer fine particles, wherein the aggregate according to claim 8 or 9 is spherical. 請求項8および9に記載の凝集体の構造が、芳香族系炭化水素とアセトニトリルの体積比によってリバーシブルに変化することを特徴とする請求項1に記載の高分子微粒子。 10. The fine polymer particle according to claim 1, wherein the aggregate structure according to claim 8 and 9 is reversibly changed depending on a volume ratio of the aromatic hydrocarbon and acetonitrile. 請求項1―12に記載の高分子微粒子の製造方法。
The method for producing polymer fine particles according to claim 1-12.
JP2008059505A 2008-03-10 2008-03-10 Polymeric nano dye and its manufacturing method Pending JP2009215397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059505A JP2009215397A (en) 2008-03-10 2008-03-10 Polymeric nano dye and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059505A JP2009215397A (en) 2008-03-10 2008-03-10 Polymeric nano dye and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009215397A true JP2009215397A (en) 2009-09-24

Family

ID=41187593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059505A Pending JP2009215397A (en) 2008-03-10 2008-03-10 Polymeric nano dye and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009215397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018987A1 (en) * 2011-08-04 2013-02-07 주식회사 엘지화학 Polymer compound comprising dye and curable resin composition comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018987A1 (en) * 2011-08-04 2013-02-07 주식회사 엘지화학 Polymer compound comprising dye and curable resin composition comprising same
JP2014523450A (en) * 2011-08-04 2014-09-11 エルジー・ケム・リミテッド Polymer compound containing dye and curable resin composition containing the same
US8999626B2 (en) 2011-08-04 2015-04-07 Lg Chem, Ltd. Polymer compound comprising dye and curable resin composition comprising same

Similar Documents

Publication Publication Date Title
Hailes et al. Polyferrocenylsilanes: synthesis, properties, and applications
Kong et al. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization
Kuehne et al. Monodisperse conjugated polymer particles by Suzuki–Miyaura dispersion polymerization
Chen et al. A novel one-step approach to core-stabilized nanoparticles at high solid contents
Jia et al. A design strategy for the hierarchical fabrication of colloidal hybrid mesostructures
Bieligmeyer et al. Completely miscible polyethylene nanocomposites
Zhang et al. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach
Sun et al. Monodisperse fluorescent organic/inorganic composite nanoparticles: Tuning full color spectrum
Zhou et al. Coating and structural locking of dipolar chains of cobalt nanoparticles
JP5067691B2 (en) Method for producing polymer thin film and polymer thin film
Yang et al. A detour strategy for colloidally stable block-copolymer grafted MAPbBr 3 quantum dots in water with long photoluminescence lifetime
US9957363B2 (en) Method for forming metal nanowire or metal nanomesh
KR20080103089A (en) Hollow polymer particle, colored hollow polymer particle and their production methods
McHale et al. Synthesis of Prussian blue coordination polymer nanocubes via confinement of the polymerization field using miniemulsion periphery polymerization (MEPP)
Wei et al. MoS2 nanosheet initiated smart polymeric hydrogel for NIR-driven Ag (I) enrichment
Ribeiro et al. Synthesis and Characterization of Perylenediimide Labeled Core− Shell Hybrid Silica− Polymer Nanoparticles
Zeng et al. Solution self-assembly of chalcogen-bonding polymer partners
Han et al. Multi-tunable self-assembled morphologies of stimuli-responsive diblock polyampholyte films on solid substrates
TW202206555A (en) Carbon material dispersion
Lee et al. Tailoring pigment dispersants with polyisobutylene twin-tail structures for electrowetting display application
JP6402867B2 (en) Block copolymer
CN110387047B (en) Polyacid-based star-shaped supramolecular polymer, and preparation method and application thereof
Growney et al. Micellization and adsorption behavior of a near-monodisperse polystyrene-based diblock copolymer in nonpolar media
Tan et al. Template-free synthesis and characterization of single-phase voided poly (o-anisidine) and polyaniline colloidal spheres
Jańczewski et al. Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110310

Free format text: JAPANESE INTERMEDIATE CODE: A621

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130514