JP2009213265A - Dc coaxial power cable connecting portion - Google Patents

Dc coaxial power cable connecting portion Download PDF

Info

Publication number
JP2009213265A
JP2009213265A JP2008053900A JP2008053900A JP2009213265A JP 2009213265 A JP2009213265 A JP 2009213265A JP 2008053900 A JP2008053900 A JP 2008053900A JP 2008053900 A JP2008053900 A JP 2008053900A JP 2009213265 A JP2009213265 A JP 2009213265A
Authority
JP
Japan
Prior art keywords
layer
return
tape winding
connecting portion
semiconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008053900A
Other languages
Japanese (ja)
Other versions
JP5137623B2 (en
Inventor
Hiroshi Niinobe
洋 新延
Masashi Hirano
誠志 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Viscas Corp
Original Assignee
Electric Power Development Co Ltd
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Viscas Corp filed Critical Electric Power Development Co Ltd
Priority to JP2008053900A priority Critical patent/JP5137623B2/en
Publication of JP2009213265A publication Critical patent/JP2009213265A/en
Application granted granted Critical
Publication of JP5137623B2 publication Critical patent/JP5137623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Processing Of Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dc coaxial power cable connecting portion which prevents an return path internal semiconductor layer 33, generated by taping mold, from falling into a gap S between return path conductor element wires 5a in the connection portion. <P>SOLUTION: The dc coaxial power cable connecting portion is configured, wherein a connecting portion 25 of a return path conductor 5 is disposed outside a connection portion main reinforcing insulating layer 23, which is larger in the outside diameter than that of the main insulating layer 3 of a cable located outside the connection portion; a connection portion return path internal semiconductor layer which extends across return path internal semiconductor layers of both cables is formed outside the connection portion; a connection portion return path reinforcing insulating layer extending across return path insulating layers of both cables is formed. The connecting portion return path internal semiconductor layer and the connection portion return path reinforcing insulating layer have a portion made by thermally shrinking a heat-shrinkable insulation tube 32, with an inner semiconductor layer and portions 33 and 34 formed by taping molding. At least a metal taping layer 31 is formed between the portion 33 and 34, formed by taping molding and return path conductor wire elements 5a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中心の主導体と同軸状に帰路導体を有する電力用直流同軸ケーブルの接続部に関するものである。   The present invention relates to a connecting portion of a power DC coaxial cable having a return conductor coaxially with a central main conductor.

電力用直流同軸ケーブルは一般に図3に示すような構造となっている。すなわち、中心に主導体1を有し、その外側に主内部半導電層2、主絶縁層3、主外部半導電層4を介して帰路導体(中性線導体、外部導体ともいう)5を設け、その外側に帰路内部半導電層6、帰路絶縁層7、帰路外部半導電層8を介して鉛被9を設け、その外側にポリエチレン等からなる防食層10を設けた構造となっている(特許文献1参照)。なお、電力用直流同軸ケーブルを海底ケーブルとして使用する場合には、防食層10の外側に、さらに座床、鉄線鎧装、サービング層が設けられる。   A DC coaxial cable for electric power generally has a structure as shown in FIG. That is, a main conductor 1 is provided at the center, and a return conductor (also referred to as a neutral wire conductor or an outer conductor) 5 is provided outside the main inner semiconductive layer 2, the main insulating layer 3, and the main outer semiconductive layer 4. The lead coat 9 is provided on the outer side through the return inner semiconductive layer 6, the return insulating layer 7, and the return outer semiconductive layer 8, and the anticorrosion layer 10 made of polyethylene or the like is provided on the outer side. (See Patent Document 1). When the power DC coaxial cable is used as a submarine cable, a floor, an iron wire armor, and a serving layer are further provided outside the anticorrosion layer 10.

帰路導体5は、多数の帰路導体素線5a(通常は銅線)を同心撚りすることにより形成される。主絶縁層3は架橋ポリエチレンにより形成され、帰路絶縁層7は非架橋のポリエチレンにより形成される。主内部半導電層2及び主外部半導電層4は主絶縁層3との同時押出等により形成され、帰路内部半導電層6及び帰路外部半導電層8は半導電性テープ巻き等により形成される。   The return conductor 5 is formed by concentrically twisting a large number of return conductor strands 5a (usually copper wires). The main insulating layer 3 is formed of crosslinked polyethylene, and the return insulating layer 7 is formed of non-crosslinked polyethylene. The main inner semiconductive layer 2 and the main outer semiconductive layer 4 are formed by co-extrusion with the main insulating layer 3 or the like, and the return inner semiconductive layer 6 and the return outer semiconductive layer 8 are formed by semiconductive tape winding or the like. The

電力用直流同軸ケーブルは、連系線として長距離海底ケーブルなどに使用されることが多い。しかし工場において一連続で製造できるケーブルの長さは限られているため、工場では製造可能な長さのケーブルを複数本製造し、これらのケーブルを接続することで、長距離用の直流同軸ケーブルを製造している。工場で製作される直流同軸ケーブル同士の接続部は一般に工場ジョイントといわれる。この工場ジョイントは、敷設船への積み込みや敷設船からの繰り出しの際に加わる曲げに対応できるように、できるだけ外径を小さく抑えること(ケーブル外径に近い外径で接続すること)が要求される。   Power DC coaxial cables are often used as long-distance submarine cables as interconnection lines. However, since the length of cables that can be manufactured continuously in a factory is limited, DC cables for long distances can be manufactured by manufacturing multiple cables of a length that can be manufactured in the factory and connecting these cables. Is manufacturing. A connection between DC coaxial cables manufactured at a factory is generally called a factory joint. This factory joint is required to keep the outer diameter as small as possible (connect with an outer diameter close to the cable outer diameter) so that it can handle the bending that occurs when loading and unloading from the laying ship. The

直流同軸ケーブルを接続する場合には、中心の主導体を接続した後、主内部半導電層の接続、主絶縁層の接続、主外部半導電層の接続、帰路導体の接続、帰路内部半導電層の接続、帰路絶縁層の接続、帰路外部半導電層の接続、鉛被の接続、防食層の接続が順次行われる。接続部外径を小さく抑えるため、主導体の接続は突き合わせ溶接により行われ、帰路導体の接続は素線突き合わせ溶接、素線周方向重ね合わせ溶接又は素線割り入れ溶接などにより行われる。また、接続部の主内部半導電層、主絶縁層、主外部半導電層の形成には通常のCVケーブルの接続技術をそのまま適用できる。また、接続部の帰路内部半導電層、帰路絶縁層の形成は、TJ方式(絶縁ゴムテープ巻き絶縁)又はTMJ方式(ポリエチレンテープ巻きモールド絶縁)により行うことが提案されている(非特許文献1、非特許文献2参照)。   When connecting a DC coaxial cable, connect the main conductor at the center, then connect the main internal semiconductive layer, connect the main insulating layer, connect the main external semiconductive layer, connect the return conductor, and return the internal semiconductive Layer connection, return insulation layer connection, return external semiconductive layer connection, lead coat connection, and anticorrosion layer connection are sequentially performed. In order to keep the outer diameter of the connection portion small, the main conductors are connected by butt welding, and the return conductors are connected by strand butt welding, strand circumferential welding or strand split welding. Further, a normal CV cable connection technique can be applied to the formation of the main internal semiconductive layer, the main insulating layer, and the main external semiconductive layer in the connection portion. In addition, it has been proposed that the formation of the return inner semiconductive layer and the return insulating layer of the connecting portion is performed by the TJ method (insulating rubber tape winding insulation) or the TMJ method (polyethylene tape winding mold insulation) (Non-Patent Document 1, Non-patent document 2).

特開平11−120836号公報Japanese Patent Laid-Open No. 11-12083 特開昭49−021685号公報Japanese Patent Application Laid-Open No. 49-021685 2000年電線ケーブル技術研究会発表論文EC−00−21「直流同軸ケーブルの開発」Paper-EC-00-21 "Development of DC coaxial cable" published in 2000 Cable Technology Research Group 平成14年電気学会全国大会発表論文7−139「小容量直流同軸XLPEケーブル並びに工場ジョイント」Papers published in 2002-139, Annual Conference of the Institute of Electrical Engineers of Japan “Small Capacity DC Coaxial XLPE Cable and Factory Joint”

電力用直流同軸ケーブルの接続部に形成される主補強絶縁層は、ケーブルの主絶縁層よりも外径が大きくなるため、図4に示すように、主補強絶縁層23の外側で接続される帰路導体5は、素線5aの間隔が広がり、素線5a間に隙間Sができる。なお図4はケーブル接続部の要部の横断面を示したもので、23は両ケーブルの主絶縁層間に跨る主補強絶縁層、24は両ケーブルの主外部半導電層間に跨る接続部の主外部半導電層、26は両ケーブルの帰路内部半導電層間に跨る接続部の帰路内部半導電層、27は両ケーブルの帰路絶縁層間に跨る帰路補強絶縁層である。   Since the outer diameter of the main reinforcing insulating layer formed at the connecting portion of the power DC coaxial cable is larger than that of the main insulating layer of the cable, the main reinforcing insulating layer is connected outside the main reinforcing insulating layer 23 as shown in FIG. In the return conductor 5, the gap between the strands 5a is widened, and a gap S is formed between the strands 5a. FIG. 4 shows a cross section of the main part of the cable connecting portion, in which 23 is a main reinforcing insulating layer straddling the main insulating layers of both cables, and 24 is a main portion of the connecting portion straddling the main outer semiconductive layers of both cables. An external semiconductive layer, 26 is a return internal semiconductive layer of a connecting portion straddling the return internal semiconductive layers of both cables, and 27 is a return reinforcing insulating layer straddling the return insulating layers of both cables.

接続部の帰路導体素線5a間に隙間Sができると、その上に形成される接続部の帰路内部半導電層26は、加熱および加圧モールドにより形成される場合には、隙間Sに落ち込んで変形する。特に帰路補強絶縁層27の形成に加熱および加圧モールドを必要とする接続工法では、上記のような変形が発生しやすい。帰路内部半導電層26が上記のように変形すると、帰路内部半導電層26や、帰路内部半導電層26と帰路補強絶縁層27の界面等に欠陥が発生するおそれがあり、絶縁性能の低下が懸念される。   When the gap S is formed between the return conductor strands 5a of the connecting portion, the return inner semiconductive layer 26 of the connecting portion formed thereon drops into the gap S when formed by heating and pressure molding. It transforms with. In particular, in the connection method that requires heating and pressure molding to form the return reinforcement insulating layer 27, the above-described deformation is likely to occur. If the return inner semiconductive layer 26 is deformed as described above, defects may occur in the return inner semiconductive layer 26, the interface between the return inner semiconductive layer 26 and the return reinforcing insulating layer 27, and the insulation performance deteriorates. Is concerned.

なお、帰路導体素線5a間の隙間Sを電気的に保障するために、帰路導体5の上に金属パイプを設けることが提案されている(特許文献2)が、これは帰路内部半導電層26と帰路補強絶縁層27の変形を防止することを目的としたものではない。また、帰路導体素線5aを接続した上に剛性の金属パイプを上手く装着させることは、熟練を要する作業になる。さらに、パイプ形状の場合には、ケーブルが曲げられたり、ねじれたりする場合に金属パイプが追従できず、パイプが局部的に変形するなどの支障が生じる危険性がある。   In order to electrically secure the gap S between the return conductor strands 5a, it has been proposed to provide a metal pipe on the return conductor 5 (Patent Document 2). It is not intended to prevent the deformation of H.26 and the return reinforcement insulating layer 27. In addition, it is an operation that requires skill to connect the return conductor element wire 5a and to attach the rigid metal pipe well. Furthermore, in the case of a pipe shape, when a cable is bent or twisted, the metal pipe cannot follow and there is a risk that troubles such as local deformation of the pipe may occur.

本発明の目的は、上記の問題点に鑑み、接続部の帰路導体素線間に生じる隙間に帰路内部半導電層が落ち込むおそれのない電力用直流同軸ケーブルの接続部を提供することにある。   In view of the above problems, an object of the present invention is to provide a connecting portion of a power direct-current coaxial cable in which a return-side internal semiconductive layer does not fall into a gap generated between return conductor strands of the connecting portion.

上記目的を達成するため本願の請求項1に係る発明は、接続される2本のケーブルの主絶縁層より外径が大きい接続部主補強絶縁層の外側に帰路導体が配置され、前記帰路導体の外側に両ケーブルの帰路内部半導電層間に跨る接続部帰路内部半導電層が設けられ、前記接続部帰路内部半導電層の外側に両ケーブルの帰路絶縁層間に跨る接続部帰路補強絶縁層が設けられた電力用直流同軸ケーブルの接続部において、
前記接続部帰路内部半導電層と接続部帰路補強絶縁層を、内部半導電層付き熱収縮絶縁チューブを熱収縮させて形成した部分と、テープ巻きモールドで形成した部分とで構成すると共に、少なくとも、前記テープ巻きモールドで形成された部分と帰路導体との間に金属テープ巻き層を設けたことを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 of the present application is characterized in that a return conductor is disposed outside a connecting portion main reinforcing insulating layer having an outer diameter larger than that of the main insulating layer of two cables to be connected, A connecting portion return inner semiconductive layer straddling between the return inner semiconductive layers of both cables is provided outside, and a connecting portion return reinforcing insulating layer straddling between the return insulating layers of both cables is provided outside the connecting portion return inner semiconductive layer. In the connection part of the provided DC coaxial cable for power,
The connection part return inner semiconductive layer and the connection part return reinforcing insulating layer are composed of a part formed by heat shrinking a heat-shrinkable insulating tube with an inner semiconductive layer, and a part formed by a tape winding mold, and at least A metal tape winding layer is provided between the portion formed by the tape winding mold and the return conductor.

また、請求項2に係る発明は、請求項1に係る発明において、前記内部半導電層付き熱収縮絶縁チューブは、一軸延伸フィルムをその収縮方向が周方向に向くように多層巻きしてなるものであることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the heat-shrinkable insulating tube with an inner semiconductive layer is formed by winding a uniaxially stretched film in a multilayer so that the shrinking direction is in the circumferential direction. It is characterized by being.

また、請求項3に係る発明は、請求項1に係る発明において、前記ケーブルの帰路内部半導電層および帰路絶縁層と内部半導電層付き熱収縮絶縁チューブとの間のテープ巻きモールド部分が、前記帰路導体の直ぐ内側の層の外径がケーブルの部分より大きくなった位置にあり、少なくとも、このテープ巻きモールド部分の下に前記金属テープ巻き層が設けられていることを特徴とするものである。   The invention according to claim 3 is the invention according to claim 1, wherein the tape winding mold portion between the return inner semiconductive layer and the return insulating layer of the cable and the heat-shrinkable insulating tube with the inner semiconductive layer, The outer diameter of the layer immediately inside the return conductor is located at a position larger than the cable portion, and at least the metal tape winding layer is provided under the tape winding mold portion. is there.

また、請求項4に係る発明は、請求項1に係る発明において、前記熱収縮絶縁チューブによって形成された部分が接続部の軸方向に複数に分かれており、それらの間にテープ巻きモールド部分が設けられており、少なくとも、このテープ巻きモールド部分の下に前記金属テープ巻き層が設けられていることを特徴とするものである。   The invention according to claim 4 is the invention according to claim 1, wherein the portion formed by the heat-shrinkable insulating tube is divided into a plurality of portions in the axial direction of the connecting portion, and a tape-wound mold portion is interposed between them. The metal tape winding layer is provided at least under the tape winding mold portion.

ケーブルの主絶縁層より外径が大きい接続部主補強絶縁層の外側に配置された帰路導体には素線間に隙間ができるが、本発明によれば、素線間に隙間が生じた帰路導体上に形成する接続部帰路内部半導電層および接続部帰路補強絶縁層を、これらが一体となった内部半導電層付き熱収縮絶縁チューブを収縮させることにより形成し、また、素線間に隙間が生じた範囲であって、少なくとも、接続部帰路内部半導電層および接続部帰路補強絶縁層を、加熱および加圧を必要とするテープ巻きモールドにより形成する部分には、その内側に金属テープ巻き層を設けたので、帰路内部半導電層が帰路導体素線間の隙間に落ち込むのを抑制できる。このため半導電層と絶縁層との間に欠陥が発生する要因が少なくなり、電力用直流同軸ケーブル接続部の品質を安定させることができる。   There is a gap between the strands of the return conductor disposed outside the main reinforcing insulating layer of the connection portion whose outer diameter is larger than that of the main insulation layer of the cable. The connecting part return inner semiconductive layer and the connecting part return reinforcing insulating layer formed on the conductor are formed by shrinking the heat-shrinkable insulating tube with the inner semiconductive layer in which these are integrated, and between the strands. In the part where the gap is generated and at least the connecting part return inner semiconductive layer and the connecting part return reinforcing insulating layer are formed by tape winding molding that requires heating and pressurization, a metal tape is provided on the inside. Since the winding layer is provided, it is possible to suppress the return inner semiconductive layer from falling into the gap between the return conductor strands. For this reason, the factor which a defect generate | occur | produces between a semiconductive layer and an insulating layer decreases, and the quality of the direct current | flow coaxial cable connection part for electric power can be stabilized.

接続部帰路内部半導電層および接続部帰路補強絶縁層を形成するほとんどの領域で絶縁チューブによる収縮力のみであることや、予め内部半導電層を形成された絶縁チューブであれば、隙間Sへの落ち込みはほとんどないし、金属層がなくとも問題は生じない。一部の狭い範囲でテープ巻きモールドによる加熱・加圧処理がなされているため、この部位に変形を防止できる適切な厚みの金属層が金属テープで形成されていればよいので、柔軟性のある金属テープでも接続部帰路内部半導電層が帰路導体素線間の隙間に落ち込むのを十分に抑制できると考えられる。
なお、金属テープ巻き層は、帰路導体の接続が完了したときの形状に容易に合わせることができる利点がある。
To the gap S, if the insulating tube has an internal semiconductive layer formed in advance, it is only the contraction force by the insulating tube in most regions where the connecting portion return inner semiconductive layer and the connecting portion return reinforcing insulating layer are formed. There is almost no drop, and there is no problem even if there is no metal layer. Since heat and pressure treatment by tape winding mold is performed in a narrow range, it is only necessary to form a metal layer with an appropriate thickness that can prevent deformation at this part, so it is flexible. It can be considered that the metal tape can sufficiently suppress the connection portion return-side internal semiconductive layer from dropping into the gap between the return conductor wires.
The metal tape winding layer has an advantage that it can be easily matched to the shape when the connection of the return conductor is completed.

図1(A)は本発明に係る電力用直流同軸ケーブル接続部の一実施形態を示す。接続すべき直流同軸ケーブル20A、20Bはそれぞれ、中心に主導体1を有し、その外側に主内部半導電層2、主絶縁層3、主外部半導電層4を順次設け、その外側に多数の帰路導体素線5aを同心撚りしてなる帰路導体5を設け、その外側に帰路内部半導電層6、帰路絶縁層7、帰路外部半導電層8、鉛被9、防食層10を順次設けたものである。   FIG. 1A shows an embodiment of a power direct-current coaxial cable connecting portion according to the present invention. Each of the DC coaxial cables 20A and 20B to be connected has a main conductor 1 at the center, and a main inner semiconductive layer 2, a main insulating layer 3, and a main outer semiconductive layer 4 are sequentially provided on the outer side, and a large number on the outer side. The return conductor 5 is formed by concentrically twisting the return conductor strand 5a, and the return inner semiconductive layer 6, the return insulating layer 7, the return outer semiconductive layer 8, the lead coating 9, and the anticorrosion layer 10 are sequentially provided on the outer side. It is a thing.

両ケーブル20A、20Bの端部は段剥ぎされ、主導体1、1同士は外径増大を抑制するため突き合わせ溶接により接続されている。21はその溶接接続部である。また、両ケーブルの主内部半導電層2、2同士は両者の端部に跨るように接続部主内部半導電層22を形成することにより接続され、主絶縁層3、3同士は両者の端部に跨るように接続部主補強絶縁層23を形成することにより接続され、主外部半導電層4、4同士は両者の端部に跨るように接続部主外部半導電層24を形成することにより接続されている。接続部の主内部半導電層22、主補強絶縁層23、主外部半導電層24の形成には、周知のCVケーブルの接続技術がそのまま適用できる。接続部主補強絶縁層23は図示のようにケーブルの主絶縁層3よりも厚さが厚くなり、外径が大きくなる。これに伴い接続部主外部半導電層24もケーブルの主外部半導電層4より外径が大きくなる。   The ends of both cables 20A and 20B are stripped, and the main conductors 1 and 1 are connected to each other by butt welding in order to suppress an increase in outer diameter. 21 is the welding connection part. Further, the main internal semiconductive layers 2 and 2 of both cables are connected by forming a connection main internal semiconductive layer 22 so as to straddle the ends of both cables, and the main insulating layers 3 and 3 are connected to the ends of both. The connection part main reinforcing semiconductive layer 24 is formed so as to be connected to each other by forming the connection part main reinforcing insulating layer 23 so that the main outer semiconductive layers 4, 4 extend over both ends. Connected by. For the formation of the main inner semiconductive layer 22, the main reinforcing insulating layer 23, and the main outer semiconductive layer 24 in the connection portion, a well-known CV cable connection technique can be applied as it is. As shown in the drawing, the connecting portion main reinforcing insulating layer 23 is thicker than the main insulating layer 3 of the cable, and the outer diameter is increased. Along with this, the outer diameter of the connection main outer semiconductive layer 24 is larger than that of the main outer semiconductive layer 4 of the cable.

両ケーブル20A、20Bの帰路導体5、5は接続部主外部半導電層24上で接続される。帰路導体5、5の接続は、外径増大を抑制するため、例えば素線5aを突き合わせ溶接することにより行われる。25はその溶接接続部である。接続部主補強絶縁層23はケーブルの主絶縁層3より外径が大きいため、接続部の帰路導体5の素線5a間には図1(B)に示すように隙間Sができる。   The return conductors 5, 5 of both cables 20 </ b> A, 20 </ b> B are connected on the connection portion main outer semiconductive layer 24. The return conductors 5 and 5 are connected, for example, by butt welding the strands 5a in order to suppress an increase in outer diameter. Reference numeral 25 denotes the weld connection. Since the connecting portion main reinforcing insulating layer 23 has an outer diameter larger than that of the main insulating layer 3 of the cable, a gap S is formed between the strands 5a of the return conductor 5 of the connecting portion as shown in FIG.

本発明では、このように素線5a間に隙間が生じた接続部の帰路導体5a上に金属テープ巻き層31を設ける。金属テープ巻き層31は金属テープ(通常は銅テープ)を1/2ラップ巻きで形成することが好ましい。金属テープ巻き層31の両端はハンダ付けにより帰路導体5に固定する。   In the present invention, the metal tape winding layer 31 is provided on the return conductor 5a of the connecting portion where the gap is generated between the strands 5a. The metal tape winding layer 31 is preferably formed by winding a metal tape (usually a copper tape) by 1/2 wrap. Both ends of the metal tape winding layer 31 are fixed to the return conductor 5 by soldering.

金属テープ巻き層31の外側には、図2に示すような内部半導電層付き熱収縮絶縁チューブ32を被せて熱収縮させる。内部半導電層付き熱収縮絶縁チューブ32は、径方向に熱収縮可能な円筒状の内部半導電層26の上に、径方向に熱収縮可能な円筒状の絶縁層27を一体に形成したものである。この実施形態では、金属テープ巻き層31のストレート区間(外径一定区間)に2本の内部半導電層付き熱収縮絶縁チューブ32を直列に配置して熱収縮させている。   A heat-shrinkable insulating tube 32 with an internal semiconductive layer as shown in FIG. The heat-shrinkable insulating tube 32 with the inner semiconductive layer is formed by integrally forming a cylindrical insulating layer 27 that can be thermally contracted in the radial direction on the cylindrical inner semiconductive layer 26 that can be thermally contracted in the radial direction. It is. In this embodiment, two heat-shrinkable insulating tubes 32 with internal semiconductive layers are arranged in series in the straight section (constant outer diameter section) of the metal tape winding layer 31 and thermally contracted.

図2に示す内部半導電層付き熱収縮絶縁チューブ32は、マンドレル上に、半導電性材料製の一軸延伸フィルム(一軸延伸半導電性フィルム)をその延伸方向が周方向に向くように多層巻きして所要厚さの径方向に熱収縮可能な内部半導電層26を形成し、その上に絶縁性材料製の一軸延伸フィルム(一軸延伸絶縁フィルム)をその延伸方向が周方向に向くように多層巻きして所要厚さの径方向に熱収縮可能な絶縁層27を形成した後、マンドレルを引き抜くことにより製造できる。   The heat-shrinkable insulating tube 32 with an internal semiconductive layer shown in FIG. 2 is wound in a multilayer manner on a mandrel so that a uniaxially stretched film (uniaxially stretched semiconductive film) made of a semiconductive material is oriented in the circumferential direction. Then, the inner semiconductive layer 26 that can be heat-shrinkable in the radial direction of the required thickness is formed, and a uniaxially stretched film (uniaxially stretched insulating film) made of an insulating material is formed thereon so that the stretched direction is in the circumferential direction. It can be manufactured by drawing the mandrel after forming the insulating layer 27 that is heat-shrinkable in the radial direction of the required thickness by multilayer winding.

内部半導電層付き熱収縮絶縁チューブ32は、主導体1、1の接続を行う前に予めどちらかのケーブル20A又は20Bの外側に配置しておき、帰路導体5、5の接続、金属テープ巻き層31の形成が終わった時点で接続部に引き戻す。このようにして金属テープ巻き層31の外側に被せられた内部半導電層付き熱収縮絶縁チューブ32を、加熱して金属テープ巻き層31上に熱収縮させる。   Inner semiconducting layer with a thermally shrinkable insulating tube 32, should be placed in the outside of the advance either cable 20A or 20B before performing the connection of the main body 1, 1, connections return conductor 5,5, a metal tape winding When the formation of the layer 31 is finished, the layer 31 is pulled back. In this way, the heat-shrinkable insulating tube 32 with the inner semiconductive layer placed on the outer side of the metal tape winding layer 31 is heated and thermally contracted onto the metal tape winding layer 31.

金属テープ巻き層31の両端部のテーパー区間(外径漸減区間)では、熱収縮したチューブ32の内部半導電層26とケーブルの帰路内部半導電層6とが接続され、当該チューブ32の絶縁層27とケーブルの帰路絶縁層7とが接続される。これらの接続は次のように行われる。すなわち、熱収縮したチューブ32の端部並びに両ケーブルの帰路内部半導電層6及び帰路絶縁層7の端部をそれぞれ、予め外径が漸減するテーパー形状に形成し、前記チューブ32の内部半導電層26とケーブルの帰路内部半導電層6とを、前記テーパー形状の間のV字状凹部の底部を埋めるようにテープ巻きモールドにより形成した半導電層テープ巻きモールド部33により接続し、前記チューブ32の絶縁層27とケーブルの帰路絶縁層7とを、前記V字状凹部を埋めるようにテープ巻きモールドにより形成した絶縁層テープ巻きモールド部34により接続する。半導電層テープ巻きモールド部33及び絶縁層テープ巻きモールド部34を形成する際には、ポリエチレンからなる半導電性テープあるいは絶縁テープを巻いた上に加圧テープを巻き、この状態で加圧モールドする。すなわち、テープ巻き層の加熱、加圧が行われるが、接続部の帰路導体5、5上には金属テープ巻き層31が設けられているので、テープ巻きモールドの際に、半導電層テープ巻きモールド部33が帰路導体の素線5a間の隙間に落ち込むおそれはない。   In the taper section (outer diameter gradually decreasing section) at both ends of the metal tape winding layer 31, the inner semiconductive layer 26 of the heat-shrinkable tube 32 and the return inner semiconductive layer 6 of the cable are connected, and the insulating layer of the tube 32 is connected. 27 and the cable return insulation layer 7 are connected. These connections are made as follows. That is, the end portions of the heat-shrinkable tube 32 and the end portions of the return inner semiconductive layer 6 and the return insulating layer 7 of both cables are respectively formed in a tapered shape whose outer diameter is gradually reduced in advance. The tube 26 is connected to the return inner semiconductive layer 6 of the cable by a semiconductive layer tape winding mold portion 33 formed by a tape winding mold so as to fill a bottom portion of the V-shaped recess between the tapered shapes, and the tube The insulating layer 27 of 32 and the return insulating layer 7 of a cable are connected by the insulating layer tape winding mold part 34 formed by tape winding mold so that the said V-shaped recessed part might be filled up. When the semiconductive layer tape winding mold part 33 and the insulating layer tape winding mold part 34 are formed, a pressure conductive tape is wound on a semiconductive tape or insulating tape made of polyethylene, and the pressure mold is formed in this state. To do. That is, the tape winding layer is heated and pressurized, but since the metal tape winding layer 31 is provided on the return conductors 5 and 5 of the connecting portion, the semiconductive layer tape winding is performed at the time of tape winding molding. There is no possibility that the mold part 33 falls into the gap between the return conductor strands 5a.

また、金属テープ巻き層31のストレート区間の中間部では、熱収縮したチューブ32の内部半導電層26同士、絶縁層27同士が接続される。この接続も上記と同様に行われる。すなわち、熱収縮したチューブ32の端部をそれぞれ、予め外径が漸減するテーパー形状に形成し、前記チューブ32の内部半導電層26同士を、前記テーパー形状の間のV字状凹部の底部を埋めるようにテープ巻きモールドにより形成した半導電層テープ巻きモールド部33により接続し、前記チューブ32の絶縁層27同士を、前記V字状凹部を埋めるようにテープ巻きモールドにより形成した絶縁層テープ巻きモールド部34により接続する。この場合も、半導電層テープ巻きモールド部33及び絶縁層テープ巻きモールド部34を形成する際には、テープ巻き層の加熱、加圧が行われるが、接続部の帰路導体5、5上には金属テープ巻き層31が設けられているので、テープ巻きモールドの際に、半導電層テープ巻きモールド部33が帰路導体の素線5a間の隙間に落ち込むおそれはない。   Further, in the middle portion of the straight section of the metal tape winding layer 31, the inner semiconductive layers 26 and the insulating layers 27 of the thermally contracted tube 32 are connected. This connection is performed in the same manner as described above. That is, the end portions of the heat-shrinkable tubes 32 are each formed in a tapered shape whose outer diameter gradually decreases, and the inner semiconductive layers 26 of the tubes 32 are formed with the bottoms of the V-shaped recesses between the tapered shapes. Insulating layer tape winding formed by tape winding molding so as to fill the V-shaped recesses between the insulating layers 27 of the tubes 32 connected by a semiconductive layer tape winding mold portion 33 formed by tape winding mold so as to fill. It connects by the mold part 34. FIG. Also in this case, when the semiconductive layer tape winding mold part 33 and the insulating layer tape winding mold part 34 are formed, the tape winding layer is heated and pressurized, but on the return conductors 5 and 5 of the connection part. Since the metal tape winding layer 31 is provided, there is no possibility that the semiconductive layer tape winding mold portion 33 falls into the gap between the return conductor strands 5a during tape winding molding.

以上のようにして形成された帰路補強絶縁層27及び絶縁層テープ巻きモールド部34の上には、両ケーブルの帰路外部半導電層8、8間に跨るように接続部帰路外部半導電層28が形成される。接続部帰路外部半導電層28は従来同様、半導電性テープ巻きにより形成される。   On the return reinforcing insulating layer 27 and the insulating layer tape winding mold part 34 formed as described above, the connecting part return external semiconductive layer 28 is straddled between the return external semiconductive layers 8 and 8 of both cables. Is formed. The connecting portion return outer semiconductive layer 28 is formed by winding a semiconductive tape as in the conventional case.

この後、両ケーブルの鉛被9、9の端部間を鉛管29により接続し、防食層10、10の端部間を熱収縮性防食スリーブ30により接続する。この点も従来同様である。   Thereafter, the ends of the lead covers 9 and 9 of both cables are connected by a lead tube 29, and the ends of the anticorrosion layers 10 and 10 are connected by a heat shrinkable anticorrosion sleeve 30. This is the same as in the prior art.

以上のように構成された電力用直流同軸ケーブルの接続部は、素線5a間に隙間が生じた接続部の帰路導体5a上に金属テープ巻き層31が設けられているので、その上に形成される半導電層テープ巻きモールド部33が素線5a間の隙間Sに落ち込むのを抑制でき、絶縁性能を安定させることができる。   The connecting portion of the power DC coaxial cable configured as described above is formed on the metal tape winding layer 31 on the return conductor 5a of the connecting portion where a gap is formed between the strands 5a. It can suppress that the semiconductive layer tape winding mold part 33 to be fallen in the clearance gap S between the strands 5a, and can stabilize insulation performance.

なお、上記の実施形態では、金属テープ巻き層31を、接続のために帰路導体5を露出させた区間の全長に設けたが、金属テープ巻き層31は、半導電層テープ巻きモールド部33及び絶縁層テープ巻きモールド部34を形成する区間だけに設けてもよい。内部半導電層付き熱収縮絶縁チューブ32を熱収縮させる場合は、外部からの加圧が不要であるため、金属テープ巻き層31がなくても、素線5a間の隙間Sへの接続部帰路内部半導電層26の落ち込みは少ないからである。   In the above embodiment, the metal tape winding layer 31 is provided over the entire length of the section where the return conductor 5 is exposed for connection. However, the metal tape winding layer 31 includes the semiconductive layer tape winding mold portion 33 and You may provide only in the area in which the insulating layer tape winding mold part 34 is formed. When the heat-shrinkable insulating tube 32 with the inner semiconductive layer is heat-shrinked, no external pressurization is required, so that the connection part return path to the gap S between the strands 5a is possible without the metal tape winding layer 31. This is because the internal semiconductive layer 26 is less depressed.

また、上記の実施形態では、金属テープ巻き層31のストレート区間のほぼ半分の長さを有する内部半導電層付き熱収縮絶縁チューブ32を2本直列に配置して熱収縮させたが、これは、1本の内部半導電層付き熱収縮絶縁チューブ32の長さが短くて済むようにするためである。金属テープ巻き層31のストレート区間を1本の内部半導電層付き熱収縮絶縁チューブでカバーできれば、内部半導電層付き熱収縮絶縁チューブは1本でもよい。その場合は、中間の半導電層テープ巻きモールド部33及び絶縁層テープ巻きモールド部34は不要となる。   Further, in the above embodiment, the two heat-shrinkable insulating tubes 32 with internal semiconductive layers, which are approximately half the length of the straight section of the metal tape winding layer 31, are arranged in series and thermally contracted. This is to shorten the length of one heat-shrinkable insulating tube 32 with an internal semiconductive layer. If the straight section of the metal tape winding layer 31 can be covered with one heat-shrinkable insulating tube with an inner semiconductive layer, the number of heat-shrinkable insulating tubes with an inner semiconductive layer may be one. In that case, the intermediate semiconductive layer tape winding mold part 33 and the insulating layer tape winding mold part 34 become unnecessary.

接続部帰路内部半導電層26及び接続部帰路補強絶縁層27を、内部半導電層付き熱収縮絶縁チューブ32を用いて形成すると、これらをテープ巻きモールドにより形成する場合に比べ、欠陥の発生が少なく、品質を安定させることができると共に、接続部外径の増大を抑制でき、また接続時間の短縮を図ることができる。   When the connecting portion return inner semiconductive layer 26 and the connecting portion return reinforcing insulating layer 27 are formed using the heat-shrinkable insulating tube 32 with the inner semiconductive layer, defects are generated as compared with the case where they are formed by tape winding mold. As a result, the quality can be stabilized, the increase in the outer diameter of the connection portion can be suppressed, and the connection time can be shortened.

本発明に係る電力用直流同軸ケーブル接続部の一実施形態を示す、(A)は縦断面図、(B)は要部の横断面図。BRIEF DESCRIPTION OF THE DRAWINGS One Embodiment of the direct-current coaxial cable connection part for electric power which concerns on this invention is shown, (A) is a longitudinal cross-sectional view, (B) is a cross-sectional view of the principal part. 図1の接続部に用いる内部半導電層付き熱収縮絶縁チューブを示す、(A)は一部切開正面図、(B)は端面図。The heat-shrinkable insulation tube with an internal semiconductive layer used for the connection part of FIG. 1 is shown, (A) is a partially cut front view, (B) is an end view. 電力用直流同軸ケーブルの一例を示す横断面図。The cross-sectional view which shows an example of the direct current | flow coaxial cable for electric power. 従来の電力用直流同軸ケーブル接続部の問題点を示す要部の横断面図。The cross-sectional view of the principal part which shows the problem of the conventional DC coaxial cable connection part for electric power.

符号の説明Explanation of symbols

1:主導体
2:主内部半導電層
3:主絶縁層
4:主外部半導電層
5:帰路導体
5a:素線
6:帰路内部半導電層
7:帰路絶縁層
8:帰路外部半導電層
9:鉛被
10:防食層
20A、20B:電力用直流同軸ケーブル
21:主導体の溶接接続部
22:接続部主内部半導電層
23:接続部主補強絶縁層
24:接続部主外部半導電層
25:帰路導体の素線の溶接接続部
26:接続部帰路内部半導電層
27:接続部帰路補強絶縁層
31:金属テープ巻き層
32:内部半導電層付き熱収縮絶縁チューブ
33:半導電層テープ巻きモールド部
34:絶縁層テープ巻きモールド部
1: Main conductor 2: Main inner semiconductive layer 3: Main insulating layer 4: Main outer semiconductive layer 5: Return conductor 5a: Wire 6: Return inner semiconductive layer 7: Return insulating layer 8: Return outer semiconductive layer 9: lead coating 10: anticorrosion layer 20A, 20B: DC coaxial cable for power 21: main conductor weld connection 22: connection main internal semiconductive layer 23: connection main reinforcing insulating layer 24: connection main external semiconductive Layer 25: Welding of return conductor strand 26: Connection portion return inner semiconductive layer 27: Connection portion return reinforcing insulating layer 31: Metal tape winding layer 32: Heat shrinkable insulating tube 33 with inner semiconductive layer: Semiconductive Layer tape winding mold part 34: Insulating layer tape winding mold part

Claims (4)

接続される2本のケーブルの主絶縁層より外径が大きい接続部主補強絶縁層の外側に帰路導体が配置され、前記帰路導体の外側に両ケーブルの帰路内部半導電層間に跨る接続部帰路内部半導電層が設けられ、前記接続部帰路内部半導電層の外側に両ケーブルの帰路絶縁層間に跨る接続部帰路補強絶縁層が設けられた電力用直流同軸ケーブルの接続部において、
前記接続部帰路内部半導電層と接続部帰路補強絶縁層を、内部半導電層付き熱収縮絶縁チューブを熱収縮させて形成した部分と、テープ巻きモールドで形成した部分とで構成すると共に、少なくとも、前記テープ巻きモールドで形成された部分と帰路導体との間に金属テープ巻き層を設けたことを特徴とする電力用直流同軸ケーブルの接続部。
A return conductor is disposed outside the connection main reinforcement insulating layer having a larger outer diameter than the main insulation layer of the two cables to be connected, and the connection return path straddling between the return inner semiconductive layers of both cables outside the return conductor In the connection part of the DC coaxial cable for power provided with an internal semiconductive layer, and provided with a connection part return reinforcing insulation layer straddling the return insulation layers of both cables outside the connection part return internal semiconductive layer,
The connection part return inner semiconductive layer and the connection part return reinforcing insulating layer are composed of a part formed by heat shrinking a heat-shrinkable insulating tube with an inner semiconductive layer, and a part formed by a tape winding mold, and at least A connecting portion of a DC coaxial cable for electric power, wherein a metal tape winding layer is provided between a portion formed by the tape winding mold and a return conductor.
前記内部半導電層付き熱収縮絶縁チューブは、一軸延伸フィルムをその収縮方向が周方向に向くように多層巻きしてなるものであることを特徴とする請求項1記載の電力用直流同軸ケーブルの接続部。   2. The DC coaxial cable for electric power according to claim 1, wherein the heat-shrinkable insulating tube with an inner semiconductive layer is formed by winding a uniaxially stretched film in multiple layers so that the shrinking direction is in the circumferential direction. Connection part. 前記ケーブルの帰路内部半導電層および帰路絶縁層と内部半導電層付き熱収縮絶縁チューブとの間のテープ巻きモールド部分が、前記帰路導体の直ぐ内側の層の外径がケーブルの部分より大きくなった位置にあり、少なくとも、このテープ巻きモールド部分の下に前記金属テープ巻き層が設けられていることを特徴とする請求項1に記載の電力用直流同軸ケーブルの接続部。   The return inner semiconductive layer of the cable and the tape winding mold portion between the return insulating layer and the heat-shrinkable insulating tube with the inner semiconductive layer are such that the outer diameter of the layer immediately inside the return conductor is larger than that of the cable. 2. The connecting portion of the power direct-current coaxial cable according to claim 1, wherein the metal tape winding layer is provided at least under the tape winding mold portion. 前記熱収縮絶縁チューブによって形成された部分が接続部の軸方向に複数に分かれており、それらの間にテープ巻きモールド部分が設けられており、少なくとも、このテープ巻きモールド部分の下に前記金属テープ巻き層が設けられていることを特徴とする請求項1に記載の電力用直流同軸ケーブルの接続部。   A portion formed by the heat-shrinkable insulating tube is divided into a plurality of portions in the axial direction of the connecting portion, and a tape winding mold portion is provided between them, and at least the metal tape is provided below the tape winding mold portion. The connecting portion of the power direct-current coaxial cable according to claim 1, wherein a winding layer is provided.
JP2008053900A 2008-03-04 2008-03-04 DC coaxial cable connection for power Active JP5137623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008053900A JP5137623B2 (en) 2008-03-04 2008-03-04 DC coaxial cable connection for power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053900A JP5137623B2 (en) 2008-03-04 2008-03-04 DC coaxial cable connection for power

Publications (2)

Publication Number Publication Date
JP2009213265A true JP2009213265A (en) 2009-09-17
JP5137623B2 JP5137623B2 (en) 2013-02-06

Family

ID=41185869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053900A Active JP5137623B2 (en) 2008-03-04 2008-03-04 DC coaxial cable connection for power

Country Status (1)

Country Link
JP (1) JP5137623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519343A (en) * 2010-02-01 2013-05-23 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー Coupling of a multi-conductor submarine optical cable to a submarine device, with an isolated bypass conductive path across the submarine device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953631U (en) * 1982-09-30 1984-04-09 日東電工株式会社 Heat-shrinkable tube with multilayer structure
JPS63192670U (en) * 1987-05-30 1988-12-12
JPH0378417A (en) * 1989-08-18 1991-04-03 Fujikura Ltd Method for connecting corrosion preventive layer of metal coated of-cable
JP2004236378A (en) * 2003-01-28 2004-08-19 Fujikura Ltd Joint for plastic-insulated power cable
JP2007325442A (en) * 2006-06-02 2007-12-13 Viscas Corp Joint of dc coaxial power cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953631U (en) * 1982-09-30 1984-04-09 日東電工株式会社 Heat-shrinkable tube with multilayer structure
JPS63192670U (en) * 1987-05-30 1988-12-12
JPH0378417A (en) * 1989-08-18 1991-04-03 Fujikura Ltd Method for connecting corrosion preventive layer of metal coated of-cable
JP2004236378A (en) * 2003-01-28 2004-08-19 Fujikura Ltd Joint for plastic-insulated power cable
JP2007325442A (en) * 2006-06-02 2007-12-13 Viscas Corp Joint of dc coaxial power cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519343A (en) * 2010-02-01 2013-05-23 タイコ エレクトロニクス サブシー コミュニケーションズ エルエルシー Coupling of a multi-conductor submarine optical cable to a submarine device, with an isolated bypass conductive path across the submarine device

Also Published As

Publication number Publication date
JP5137623B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
TWI336982B (en) Joint of superconducting cable
US9721699B2 (en) Water-stop structure for wire harness
US9379531B2 (en) Device for joining hybrid electrical transmission cables
DK2681820T3 (en) High voltage cable insulation insulated with impregnated paper or paper polypropylene laminate (ppl)
US11876358B2 (en) Method of manufacturing HVDC mass impregnated cable transition joint
US20210399443A1 (en) Wire connection structure and wire connection method
JP4904090B2 (en) Return conductor connection method for DC coaxial cable for electric power
WO2006041070A1 (en) Superconducting cable connection structure
JP5137623B2 (en) DC coaxial cable connection for power
WO2007142069A1 (en) Method for connecting return conductors of power supply dc coaxial cables and connection portion between power supply dc coaxial cables
JP4751424B2 (en) Superconducting cable core connection structure
JP5100245B2 (en) DC coaxial cable connection for power
JP2011150166A (en) Cable connection portion, power and optical fiber composite cable, and cable connection method
JP4716160B2 (en) Superconducting cable
JP4927794B2 (en) Superconducting cable former connection method and superconducting cable former connection structure
JP5003942B2 (en) Superconducting cable and superconducting cable connection
JP4897952B2 (en) DC coaxial cable connection for power
JP4795123B2 (en) Return conductor connection method for DC coaxial cable for electric power
JP5832035B2 (en) Tape-wrap insulation connection for power cables
JP5294307B2 (en) DC coaxial cable connection for power
JP2008017569A (en) Intermediate joint for power cable
JP5052824B2 (en) DC coaxial cable connection for power
US20220013928A1 (en) Cable assembly and method of joining cables
JP2019524042A (en) Cable junction, termination or cross-connection mechanism, and method for providing cable junction, termination or cross-connection mechanism
JP5496592B2 (en) Underground cable connection protection tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5137623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250