JP2009210442A - Contact combustion type spectrometer - Google Patents

Contact combustion type spectrometer Download PDF

Info

Publication number
JP2009210442A
JP2009210442A JP2008054135A JP2008054135A JP2009210442A JP 2009210442 A JP2009210442 A JP 2009210442A JP 2008054135 A JP2008054135 A JP 2008054135A JP 2008054135 A JP2008054135 A JP 2008054135A JP 2009210442 A JP2009210442 A JP 2009210442A
Authority
JP
Japan
Prior art keywords
sample liquid
combustion
tube
analyzer
vaporization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008054135A
Other languages
Japanese (ja)
Other versions
JP2009210442A5 (en
JP5012580B2 (en
Inventor
Naomi Funazaki
菜穂美 船崎
Hiroshi Sakuramoto
宏 櫻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2008054135A priority Critical patent/JP5012580B2/en
Priority to CN 200810176771 priority patent/CN101526512B/en
Publication of JP2009210442A publication Critical patent/JP2009210442A/en
Publication of JP2009210442A5 publication Critical patent/JP2009210442A5/ja
Application granted granted Critical
Publication of JP5012580B2 publication Critical patent/JP5012580B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dripping type contact combustion type spectrometer that allows vaporization to proceed smoothly and can precisely perform measurement even if time for leveling processing is not set long. <P>SOLUTION: The dripping type contact combustion type spectrometer 1 has a combustion tube 10 heated by a heating furnace 100, brings a sample liquid S containing a water-contaminated substance dripped into the combustion tube 10 into contact with a catalyst 19 by vaporization, and measures the degree of pollution in the water-contaminated substance contained in the sample liquid. The contact combustion type spectrometer 1 has a vaporization member 21 with which the sample liquid S dripped into the combustion tube 10 collides to vaporize the collided sample liquid S. The vaporization member 21 is formed by porous ceramics. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばTOC計、TN計などの接触燃焼式分析計に関し、特に、滴下方式の接触燃焼式分析計に関する。   The present invention relates to a catalytic combustion analyzer such as a TOC meter or a TN meter, and more particularly to a dropping type catalytic combustion analyzer.

従来、工場排水や下水道排水などの水質汚濁物質を含む排水などの汚濁度を測定する水質分析計である、例えば全有機炭素分析計(TOC計)、全窒素分析計(TN計)には、接触燃焼式のものが広く使用されている。   Conventionally, for example, total organic carbon analyzer (TOC meter) and total nitrogen analyzer (TN meter) are water quality analyzers that measure the degree of pollution of wastewater containing water pollutants such as factory wastewater and sewage wastewater. A catalytic combustion type is widely used.

また、接触燃焼式分析計には、排水などからの微量の試料液体をサンプリングし、試料液体注入部から所定の温度に保持された燃焼管内に滴下して注入し、水分を蒸発気化すると共に、試料液体中の水質汚濁物質をCO2、NOに燃焼分解し計測部に送給して試料排水の汚濁度を計測する、所謂、滴下方式のものが知られている(例えば特許文献1参照)。 In addition, a small amount of sample liquid from the drainage or the like is sampled into the contact combustion type analyzer, and dropped into the combustion tube held at a predetermined temperature from the sample liquid injection part, and the moisture is evaporated and evaporated. A so-called dripping method is known in which water pollutants in a sample liquid are combusted and decomposed into CO 2 and NO, and sent to a measurement unit to measure the pollution degree of sample drainage (see, for example, Patent Document 1). .

上記特許文献1の発明では、滴下する試料液体が直接触媒に接触し、触媒が劣化するのを防ぐために、触媒の上部にセラミックファイバーから成る触媒床を設け、滴下された試料液体が触媒に直接接触するのを防止している。   In the invention of the above Patent Document 1, in order to prevent the sample liquid to be dropped from coming into direct contact with the catalyst and the catalyst from deteriorating, a catalyst bed made of ceramic fibers is provided on the top of the catalyst, and the dropped sample liquid is directly applied to the catalyst. Preventing contact.

上記特許文献1に記載の構成では、滴下された試料液体は、燃焼管内に間欠的に供給(滴下)されており、触媒床を構成するセラミックファイバーに直接に、しかも、特定の箇所に当たることとなる。従って、試料液体の滴下が間欠的であり、1回の滴下量も少量(例えば20μL程度)であれば実用的であるが、1回の滴下量が多かったり、1回の滴下量が少量であっても数mLの試料液体が連続的に滴下されるような方式の分析計では、実用上問題が生じる。すなわち、触媒の劣化は抑制し得たとしても、セラミックファイバーは、試料液体が直接当たる部分の劣化が特に著しく、そのため、結局は、触媒床全体を頻繁に交換することが余儀なくされる。   In the configuration described in Patent Document 1, the dropped sample liquid is intermittently supplied (dropped) into the combustion tube, and directly hits the ceramic fiber constituting the catalyst bed and hits a specific location. Become. Therefore, it is practical if the sample liquid is intermittently dropped and the amount of one drop is small (for example, about 20 μL), but the amount of one drop is large or the amount of one drop is small. Even if there is an analyzer of a type in which several mL of sample liquid is continuously dropped, a problem arises in practice. That is, even if the deterioration of the catalyst can be suppressed, in the ceramic fiber, the deterioration of the portion directly hit by the sample liquid is particularly remarkable, so that eventually the entire catalyst bed must be frequently replaced.

一方、例えば図6に示す構造のように燃焼管10を二重管構造にするなどして、試料液体を触媒上に滴下しないで気化させるタイプの接触燃焼式分析計1Aも存在する。この接触燃焼式分析計1Aの概略構成について説明すると以下の通りである。   On the other hand, there is also a catalytic combustion analyzer 1A of a type that vaporizes a sample liquid without dripping it onto the catalyst, for example, by making the combustion tube 10 into a double tube structure as shown in FIG. The schematic configuration of the catalytic combustion analyzer 1A will be described as follows.

つまり、接触燃焼式分析計1Aは、燃焼管10を備えており、燃焼管10は、加熱炉100に装入自在とされ、加熱炉100に装入することにより加熱炉100によって全体が加熱される。   That is, the catalytic combustion analyzer 1 </ b> A includes a combustion tube 10, and the combustion tube 10 can be inserted into the heating furnace 100, and the whole is heated by the heating furnace 100 by being inserted into the heating furnace 100. The

燃焼管10は、一端(上方端)11aが開口し、他端(下方端11b)が閉鎖された所定長さの外管11と、この外管11内に配置された両端12a、12bが開口したパイプ状の内管12とから成る二重管構造とされる。   The combustion tube 10 has one end (upper end) 11a opened and the other end (lower end 11b) closed, and a predetermined length of the outer tube 11 and both ends 12a and 12b disposed in the outer tube 11 opened. The pipe-shaped inner pipe 12 is a double pipe structure.

内管12の一端(上方端)12aは、環状の上保持具13により外管11の上方端開口部11aに固定され、また、内管12の他端(下方端)12bは、外管11の下方端底部11bより所定の長さだけ上方に位置して環状の下保持具14により固定されている。上環状保持具13及び下環状保持具14には、それぞれ、円周に沿って複数個の貫通孔13a、14aが形成されている。これによって、外管11と内管12との間には環状通路17が形成される。環状通路17の下方領域には、白金を用いた触媒19が充填され、酸化部40を構成している。   One end (upper end) 12a of the inner tube 12 is fixed to the upper end opening 11a of the outer tube 11 by an annular upper holding tool 13, and the other end (lower end) 12b of the inner tube 12 is fixed to the outer tube 11. The lower end bottom 11b is positioned above the lower end portion 11b by a predetermined length and is fixed by an annular lower holding tool 14. The upper annular holder 13 and the lower annular holder 14 are each formed with a plurality of through holes 13a and 14a along the circumference. As a result, an annular passage 17 is formed between the outer tube 11 and the inner tube 12. The lower region of the annular passage 17 is filled with a catalyst 19 using platinum to constitute an oxidation unit 40.

また、内管12の下方端開口部12bと、外管11の下方端底部11bとの間には、空間部15が形成されている。外管11の底部11bには、この空間部15へと上方に突出して、且つ、内管12の下方端開口部12bと対向した位置に台状の気化部材16が形成されており、気化部20を構成している。   A space 15 is formed between the lower end opening 12 b of the inner tube 12 and the lower end bottom 11 b of the outer tube 11. On the bottom 11b of the outer tube 11, a trapezoidal vaporizing member 16 is formed at a position protruding upward into the space 15 and facing the lower end opening 12b of the inner tube 12. 20 is constituted.

上記構成の接触燃焼式分析計1Aでは、試料液体Sは、試料液体注入部50によって内管12の上端開口部12aより一定量づつ滴下して燃焼管10内へと注入される。同時に、内管12内には、キャリアガス供給部(図示せず)からキャリアガスが供給される。   In the contact combustion analyzer 1 </ b> A having the above-described configuration, the sample liquid S is dropped from the upper end opening 12 a of the inner tube 12 by a certain amount by the sample liquid injection unit 50 and injected into the combustion tube 10. At the same time, a carrier gas is supplied into the inner tube 12 from a carrier gas supply unit (not shown).

燃焼管10は、加熱炉100にて加熱されており、そのため、内管12内へと滴下された試料液体Sが内管12内を通り、燃焼管10の底部11bに設置された台座、即ち、気化部材16上に落下すると、気化部20を構成する気化部材16にて加熱され、試料液体Sは蒸発気化され、水質汚濁物質を含んだ試料ガスSGとなる。   The combustion tube 10 is heated in the heating furnace 100. Therefore, the sample liquid S dropped into the inner tube 12 passes through the inner tube 12, and is a pedestal installed at the bottom 11b of the combustion tube 10, that is, When falling on the vaporizing member 16, the sample liquid S is heated by the vaporizing member 16 constituting the vaporizing unit 20, and the sample liquid S is evaporated and vaporized to become a sample gas SG containing a water pollutant.

試料ガスSGは、キャリアガスと共に、内管12と外管11との間に形成された環状通路17の下方端入口、即ち、下環状保持具14の貫通孔14aから上方へと酸化部40に流動し、環状通路17に充填された触媒19と接触する。これによって、試料ガスSG中に含まれる水質汚濁物質がCO2に燃焼分解される。 The sample gas SG, together with the carrier gas, enters the oxidation portion 40 upward from the lower end inlet of the annular passage 17 formed between the inner tube 12 and the outer tube 11, that is, from the through hole 14a of the lower annular holder 14. It flows and contacts the catalyst 19 filled in the annular passage 17. Thereby, the water pollutant contained in the sample gas SG is combusted and decomposed into CO 2 .

CO2は、キャリアガスと共に、内管12と外管11との間に形成された環状通路17の更に上方へと流動し、環状通路17の上方流出口、即ち、上環状保持具13の貫通穴13aから計測部60に搬送され、試料液体(排水など)の汚濁度を計測する。
特開2005−24489号公報
The CO 2 flows together with the carrier gas further upward in the annular passage 17 formed between the inner tube 12 and the outer tube 11, and passes through the upper outlet of the annular passage 17, that is, through the upper annular holder 13. It is conveyed from the hole 13a to the measuring unit 60 and measures the pollution degree of the sample liquid (drainage or the like).
JP 2005-24489 A

しかしながら、本発明者らの研究実験の結果、次のことが分かった。   However, as a result of the experiments conducted by the present inventors, the following has been found.

上記接触燃焼式分析計1Aにて滴下された試料液体Sの気化面16aを形成する、台状の気化部材16は、外管11と一体的に硬質セラミクス(即ち、緻密質セラミクス)にて作製されている。   The trapezoidal vaporization member 16 forming the vaporization surface 16a of the sample liquid S dropped by the catalytic combustion analyzer 1A is made of hard ceramics (that is, dense ceramics) integrally with the outer tube 11. Has been.

本発明者らの研究実験によれば、試料液体を緻密質セラミクスで形成された高温度の気化面16aに滴下すると、ライデンフロスト現象が起き、試料液体Sがスムースに気化しないことが分かった。   According to the research experiment conducted by the present inventors, it was found that when the sample liquid was dropped on the high temperature vaporization surface 16a formed by dense ceramics, the Leidenfrost phenomenon occurred and the sample liquid S was not vaporized smoothly.

ライデンフロスト現象とは、例えば高温の金属板上に水滴を落とすと、丸い滴となって板上を転がりまわり、なかなか蒸発しない現象をいう。これは、水滴と金属板の間に熱を伝え難い水蒸気の膜ができる(膜沸騰)ためである。   The Leidenfrost phenomenon is a phenomenon in which, for example, when a water drop is dropped on a high-temperature metal plate, it rolls around the plate and does not evaporate easily. This is because a water vapor film that hardly transfers heat between the water droplet and the metal plate is formed (film boiling).

つまり、上記構成の接触燃焼式分析計1Aでは、試料液体Sを緻密質セラミクスで形成された気化部材16の気化面16aに滴下しても、気化がスムースに進行せず、分析計における指示が不安定になる。   That is, in the catalytic combustion analyzer 1A having the above-described configuration, even if the sample liquid S is dropped on the vaporization surface 16a of the vaporization member 16 formed by dense ceramics, vaporization does not proceed smoothly, and an instruction from the analyzer is given. It becomes unstable.

そのため、従来の上記接触燃焼式分析計1Aは、試料液体Sを連続的に供給(滴下)することにより得られた計測信号を、計測部60に設けた信号処理手段により平準化処理し、測定値を得ることが必要とされた。そして、その平準化処理は、相当長い時間分の計測信号を基に行う必要があるため、1測定周期を相当長くしなくてはならないという問題があった。また更に、連続的に測定値を出力する方式であれば応答遅れを生ずるという問題もあった。   Therefore, the conventional catalytic combustion analyzer 1A performs a leveling process on the measurement signal obtained by continuously supplying (dropping) the sample liquid S by the signal processing means provided in the measurement unit 60, and measuring the measurement signal. It was necessary to get a value. Then, since the leveling process needs to be performed based on measurement signals for a considerably long time, there is a problem that one measurement cycle has to be considerably long. In addition, there is a problem that a response delay occurs if the measurement value is continuously output.

一方、接触燃焼式分析計1Aのような構成の分析計において、少量の試料液体を間欠的に供給(滴下)することも考えられる。この場合、滴下する試料液体が少量なので、ライデンフロスト現象は発生し難い。しかし、ライデンフロスト現象が発生した場合には、上述したのと同様の問題が生ずる。   On the other hand, it is conceivable to intermittently supply (drop) a small amount of sample liquid in an analyzer having a configuration such as the catalytic combustion analyzer 1A. In this case, since the sample liquid to be dripped is small, the Leidenfrost phenomenon hardly occurs. However, when the Leidenfrost phenomenon occurs, the same problem as described above occurs.

本発明者らは、上記問題を解決するために多くの実験研究を行った結果、上記構成の滴下方式の接触燃焼式分析計であっても、滴下された試料液体を気化する気化部材を多孔質セラミクスにて形成することにより、ライデンフロスト現象の発生を抑制し得ることを見出した。   As a result of conducting many experimental studies to solve the above problems, the present inventors perforated a vaporizing member that vaporizes the dropped sample liquid even in the dropping type catalytic combustion analyzer having the above configuration. It has been found that the formation of Leidenfrost phenomenon can be suppressed by forming with a ceramic material.

本発明は、本発明者らの斯かる新規な知見に基づくものである。   The present invention is based on the novel findings of the present inventors.

本発明の目的は、気化をスムースに進行させ、平準化処理の時間を長く設定しなくても精度良く測定することのできる滴下方式の接触燃焼式分析計を提供することである。   An object of the present invention is to provide a dripping-type catalytic combustion analyzer that can perform vaporization smoothly and can measure accurately without setting a long time for leveling treatment.

上記目的は本発明に係る接触燃焼式分析計にて達成される。要約すれば、本発明は、加熱炉にて加熱される燃焼管を備え、燃焼管内へと滴下された水質汚濁物質を含んだ試料液体を気化して触媒と接触させ、試料液体中に含まれる水質汚濁物質の汚濁度を計測する滴下方式の接触燃焼式分析計において、
前記燃焼管内に滴下された前記試料液体が衝突し、衝突した前記試料液体を気化させる気化部材を備え、前記気化部材が多孔質セラミクスにて形成されることを特徴とする接触燃焼式分析計である。
The above object is achieved by the catalytic combustion analyzer according to the present invention. In summary, the present invention includes a combustion tube heated in a heating furnace, vaporizes a sample liquid containing water contaminants dropped into the combustion tube, contacts the catalyst, and is contained in the sample liquid. In a drop-type catalytic combustion analyzer that measures the pollution level of water pollutants,
A catalytic combustion analyzer comprising: a vaporizing member that collides with the sample liquid dropped into the combustion tube and vaporizes the collided sample liquid, and the vaporizing member is formed of porous ceramics. is there.

本発明の一実施態様によれば、前記気化部材の前記気化面には溝が形成される。   According to an embodiment of the present invention, a groove is formed on the vaporizing surface of the vaporizing member.

本発明の他の実施態様によれば、前記気化部材の上端部外周には、前記気化面より上方へと突出して壁部材が形成されている。   According to another embodiment of the present invention, a wall member is formed on the outer periphery of the upper end portion of the vaporizing member so as to protrude upward from the vaporized surface.

本発明の接触燃焼式分析計によれば、気化をスムースに進行させることができる。それにより、平準化処理の時間を長く設定しなくても精度良く測定することができる。   According to the catalytic combustion analyzer of the present invention, vaporization can be smoothly progressed. Thereby, it is possible to measure accurately without setting the leveling process time long.

以下、本発明に係る接触燃焼式分析計を図面に則して更に詳しく説明する。   Hereinafter, the catalytic combustion type analyzer according to the present invention will be described in more detail with reference to the drawings.

実施例1
図1に、本発明に係る接触燃焼式分析計1の一実施例の概略構成を示す。本実施例の接触燃焼式分析計1は、先に図6を参照して説明した滴下方式の接触燃焼式分析計1Aと同様の構成とされる。
Example 1
FIG. 1 shows a schematic configuration of an embodiment of a catalytic combustion analyzer 1 according to the present invention. The catalytic combustion analyzer 1 of the present embodiment has the same configuration as the dropping type catalytic combustion analyzer 1A described above with reference to FIG.

ただ、本実施例の接触燃焼式分析計1においては、先の接触燃焼式分析計1Aにて使用されていた気化部材16を台座として、新たに、この台座16の上に多孔質セラミクスにて形成された気化部材21を載置し、気化面21aを形成した構成において先の接触燃焼式分析計1Aと大きく異なる。   However, in the catalytic combustion analyzer 1 of the present embodiment, the vaporizing member 16 used in the previous catalytic combustion analyzer 1A is used as a pedestal, and a porous ceramic is newly provided on the pedestal 16. The structure in which the formed vaporization member 21 is placed and the vaporization surface 21a is formed is greatly different from the previous catalytic combustion analyzer 1A.

以下に本実施例の滴下方式の接触燃焼式分析計1について説明する。   Hereinafter, the dropping combustion catalytic combustion analyzer 1 of this embodiment will be described.

本実施例の滴下方式の接触燃焼式分析計1は、従来と同様に、燃焼管10を備えている。燃焼管10は、加熱炉100に装入自在とされ、加熱炉100に装入することにより加熱炉100によって全体が加熱される。   The drop-type catalytic combustion analyzer 1 of the present embodiment includes a combustion tube 10 as in the prior art. The combustion tube 10 can be freely inserted into the heating furnace 100, and the whole is heated by the heating furnace 100 by being inserted into the heating furnace 100.

燃焼管10は、緻密質セラミクスにて形成された、外管11と内管12とにて形成され、内管12と外管11との間に環状の通路17が形成された二重管構造とされる。   The combustion tube 10 is formed of a dense ceramic and is formed of an outer tube 11 and an inner tube 12, and a double tube structure in which an annular passage 17 is formed between the inner tube 12 and the outer tube 11. It is said.

つまり、外管11は、所定長さを有した概略円筒形状のセラミクス管とされ、その一端(上方端)11aは開口した開口部とされる。また、他端(下方端)11bは閉鎖されて、底部を形成している。この円筒状外管11内に、同一軸線にて、両端12a、12bが開口したパイプ状のセラミクス管とされる内管12が配置される。   That is, the outer tube 11 is a substantially cylindrical ceramic tube having a predetermined length, and one end (upper end) 11a thereof is an open opening. The other end (lower end) 11b is closed to form the bottom. Inside the cylindrical outer tube 11, an inner tube 12 that is a pipe-shaped ceramic tube having both ends 12a and 12b opened is disposed on the same axis.

外管11及び内管12の一つの具体的寸法を挙げれば、外管11の長さは20cm、外径5.5cm、内径4.5cmとされ、内管12の長さは16cm、外径2.5cm、内径2.0cmとされる。勿論、外管11及び内管12の寸法、形状は、この値に限定されるものではなく、当業者が必要に応じて任意に変更し得る。   If one specific dimension of the outer tube 11 and the inner tube 12 is given, the outer tube 11 has a length of 20 cm, an outer diameter of 5.5 cm, and an inner diameter of 4.5 cm, and the inner tube 12 has a length of 16 cm and an outer diameter. The inner diameter is 2.5 cm and the inner diameter is 2.0 cm. Of course, the dimensions and shapes of the outer tube 11 and the inner tube 12 are not limited to these values, and those skilled in the art can arbitrarily change them as necessary.

本実施例では、内管12の一端(上方端)12aは、環状の上保持具13により外管11の上方端開口部11aに固定される。また、内管12の他端(下方端)12bは、外管11の下方端底部11bより所定の長さだけ上方に位置して、環状の下保持具14により固定される。これによって、内管12と外管11との間には環状通路17が形成される。上環状保持具13及び下環状保持具14には、それぞれ、円周に沿って複数個の貫通孔13a、14aが形成されている。   In the present embodiment, one end (upper end) 12 a of the inner tube 12 is fixed to the upper end opening 11 a of the outer tube 11 by an annular upper holder 13. The other end (lower end) 12 b of the inner tube 12 is positioned above the lower end bottom portion 11 b of the outer tube 11 by a predetermined length and is fixed by an annular lower holding tool 14. As a result, an annular passage 17 is formed between the inner tube 12 and the outer tube 11. The upper annular holder 13 and the lower annular holder 14 are each formed with a plurality of through holes 13a and 14a along the circumference.

また、環状通路17の下方領域には、通常、環状通路17の下端より上方へと環状通路17の長さの、即ち、内管12の長さの略1/4程度の位置まで触媒(酸化触媒)19が充填され、酸化部40を構成している。触媒19としては、白金などの貴金属、コバルト酸化物、酸化銅、アルミナなどが使用される。   Further, in the lower region of the annular passage 17, the catalyst (oxidation) is usually performed upward from the lower end of the annular passage 17 to the position of the length of the annular passage 17, that is, about 1/4 of the length of the inner tube 12. (Catalyst) 19 is filled to form the oxidation unit 40. As the catalyst 19, a noble metal such as platinum, cobalt oxide, copper oxide, alumina or the like is used.

本実施例において、燃焼管10の下方部には、即ち、内管12の下方端開口部12bと外管11の下方端底部11bとの間には、従来と同様に、空間部15が形成されており、外管11の底部11bには、この空間部15へと上方に突出して、且つ、内管12の下方端開口部12bと対向した位置に台座16が形成されている。   In the present embodiment, a space 15 is formed in the lower portion of the combustion tube 10, that is, between the lower end opening 12b of the inner tube 12 and the lower end bottom 11b of the outer tube 11, as in the conventional case. On the bottom 11b of the outer tube 11, a pedestal 16 is formed at a position protruding upward into the space 15 and facing the lower end opening 12b of the inner tube 12.

本実施例では、この台座16の上に、本発明の特徴をなす気化部材21が載置される。   In the present embodiment, the vaporizing member 21 that characterizes the present invention is placed on the pedestal 16.

図2をも参照すると、本実施例にて、気化部材21は、厚さ(T)が6〜18mm、直径(D)が39mmの円板とされるが、この形状、寸法に限定されるものではない。滴下される試料液体の量などにより適宜変更することができる。重要なのは、気化部材21が多孔質セラミクスにて作製されることである。   Referring also to FIG. 2, in this embodiment, the vaporizing member 21 is a disk having a thickness (T) of 6 to 18 mm and a diameter (D) of 39 mm, but is limited to this shape and size. It is not a thing. It can be appropriately changed depending on the amount of the sample liquid to be dropped. What is important is that the vaporizing member 21 is made of porous ceramics.

本発明でいう「多孔質セラミクス」とは、給水率が0%とされる、所謂、緻密質セラミクスでないセラミクスを意味する。   The “porous ceramics” referred to in the present invention means ceramics that are not so-called dense ceramics, in which the water supply rate is 0%.

また、本実施例では、図2に示すように、円板状気化部材21の上方外周部は縮径加工され、この縮径加工部21bにリング22が嵌合されている。リング22は、その上端縁部22aが、気化部材21の上面、即ち、気化面21aより1〜5mm程度上方へと突出している。このリング22は、詳しくは後述するが、主として、気化部材21の気化面21aに滴下された試料液体が気化部材21より不所望に外方へと落下するのを抑制する壁部材として機能するものである。勿論、このリング22は、所望により、気化部材21と一体に成形することも可能である。   In the present embodiment, as shown in FIG. 2, the upper outer peripheral portion of the disk-like vaporizing member 21 is subjected to diameter reduction processing, and the ring 22 is fitted to the diameter reduction processing portion 21b. The upper end edge 22a of the ring 22 protrudes about 1 to 5 mm above the upper surface of the vaporizing member 21, that is, the vaporized surface 21a. As will be described in detail later, the ring 22 mainly functions as a wall member that suppresses the sample liquid dropped on the vaporization surface 21a of the vaporization member 21 from dropping undesirably outward from the vaporization member 21. It is. Of course, the ring 22 can be formed integrally with the vaporizing member 21 if desired.

本実施例では、リング22の外径(D)は気化部材21と同じ39mmとし、内径(D1)は34mm、気化面21aからの突出高さ2mmとした。つまり、リング22の厚さ(T1)を4mm、気化部材21の縮径加工した嵌合部21bの高さT2を2mmとした。   In this embodiment, the outer diameter (D) of the ring 22 is 39 mm, which is the same as that of the vaporizing member 21, the inner diameter (D1) is 34 mm, and the protruding height from the vaporizing surface 21a is 2 mm. That is, the thickness (T1) of the ring 22 was 4 mm, and the height T2 of the fitting portion 21b in which the diameter of the vaporizing member 21 was reduced was 2 mm.

更に、本発明者らの研究実験の結果によると、図3(a)に示すように、気化部材21の気化面21aには、図3(b)に記載するような山形の切削刃30を用いて、断面が略三角形状とされる溝31a、31bを、ピッチ(P)にて互いに直交する方向に形成するのが好適であることが分かった。換言すれば、気化面21aは、気化面21aに多数の山形部(凸部)32が形成された凹凸面とされる。   Further, according to the results of the research experiment by the present inventors, as shown in FIG. 3A, a chevron-shaped cutting blade 30 as shown in FIG. 3B is provided on the vaporizing surface 21a of the vaporizing member 21. It has been found that it is preferable to form the grooves 31a and 31b having a substantially triangular cross section in a direction orthogonal to each other at a pitch (P). In other words, the vaporization surface 21a is an uneven surface in which a large number of chevron portions (convex portions) 32 are formed on the vaporization surface 21a.

本実施例で使用した切削刃30は、図示するように、頂部角度(α)は30°、頂部の半径(R)は0.3mmとされたが、これに限定するものではない。   As shown in the drawing, the cutting blade 30 used in this example has a top angle (α) of 30 ° and a top radius (R) of 0.3 mm, but is not limited thereto.

本実施例にて、各溝のピッチ(P)は1.2〜3mm、溝深さ(H)は0.5〜3mmとした。   In this example, the pitch (P) of each groove was 1.2 to 3 mm, and the groove depth (H) was 0.5 to 3 mm.

また、本発明者らの実験の結果で言えば、直交する溝31a、31bを形成することにより形成される多数の山形部(凸部)32の頂部32aは、平面部とされるが、この平面部32aの幅(W)はできるだけ小さいのが好ましい。本実施例では、山形部平面部32aの幅(W)は、0.6mm以下とされた。   In addition, according to the results of experiments by the present inventors, the top portions 32a of a large number of chevron portions (convex portions) 32 formed by forming orthogonal grooves 31a and 31b are flat portions. The width (W) of the flat portion 32a is preferably as small as possible. In the present embodiment, the width (W) of the chevron plane portion 32a is set to 0.6 mm or less.

これは、以下の理由に基づくものと考える。   This is considered to be based on the following reasons.

本実施例で使用する多孔質セラミクスからなる円板は、寸法精度を満たすようにするために、焼成した多孔質セラミクスの丸棒を指定の寸法よりもやや厚く切出し、これを研磨して指定された厚さに加工する。そのため、この研磨によって円板の表面においては、多孔質セラミクスが有している微細な孔の状態が何らかの変化を生じ、毛細管現象により液体を吸い上げるという多孔質セラミクスの特性が阻害されているのではないかと考えられる。   The disk made of porous ceramics used in this example is specified by cutting a fired porous ceramic round bar slightly thicker than the specified dimensions and polishing it to satisfy the dimensional accuracy. To a thick thickness. Therefore, on the surface of the disk due to this polishing, the state of the fine pores that the porous ceramic has has some change, and the characteristic of the porous ceramic that sucks up the liquid by capillary action is hindered It is thought that there is not.

従って、研磨された表面を切削し、多孔質セラミクスが本来有している微細な孔が表面に露出するようにすることで、滴下された試料液体が速やかに吸い上げられるため、ライデンフロスト現象を生じることなく、気化がスムースに進行するものと考えられる。   Therefore, by cutting the polished surface so that the fine pores inherent to the porous ceramic are exposed on the surface, the dropped sample liquid is quickly sucked up, resulting in the Leidenfrost phenomenon. Therefore, it is considered that the vaporization proceeds smoothly.

研磨された表面の微細な孔を露出させる別法として、気化部材21の気化面21aを、サンドブラストなどの粗面化処理により粗面とすることもできる。   As another method of exposing fine holes on the polished surface, the vaporized surface 21a of the vaporizing member 21 can be roughened by a roughening process such as sandblasting.

また、本実施例では、直交する溝31a、31bを形成し、表面積を大きくするようにしたが、溝は、平行方向(溝31aのみ、又は、溝31bのみ)でもよい。   In the present embodiment, the orthogonal grooves 31a and 31b are formed to increase the surface area, but the grooves may be parallel (only the groove 31a or only the groove 31b).

次に、図1を参照して、上記構成の接触燃焼式分析計1の動作態様について説明する。   Next, with reference to FIG. 1, the operation | movement aspect of the catalytic combustion type analyzer 1 of the said structure is demonstrated.

本実施例にて、試料液体Sは、試料液体注入部50より所定量計量して内管12の上端開口部12aより一定量づつ滴下して燃焼管10内へと注入される。燃焼管10は、加熱炉100にて600〜900℃に加熱される。   In this embodiment, the sample liquid S is weighed by a predetermined amount from the sample liquid injection portion 50, and dropped at a constant amount from the upper end opening 12 a of the inner tube 12 and injected into the combustion tube 10. The combustion tube 10 is heated to 600 to 900 ° C. in the heating furnace 100.

試料液体Sは、通常、1回30〜40μLの滴下量にて間欠的に、本実施例では、5〜6秒間隔にて、合計で2.8mLを燃焼管10の内管12内へと注入する。   In general, the sample liquid S is intermittently supplied in a dropping amount of 30 to 40 μL at a time, and in this embodiment, a total of 2.8 mL is put into the inner tube 12 of the combustion tube 10 at intervals of 5 to 6 seconds. inject.

内管12内へと滴下された試料液体Sは、内管12内を通り、燃焼管10の底部に設置した気化部材21の多孔質セラミクスとされる気化面21a上に落下する。気化面21aに試料液体Sの液滴が衝突すると、液滴は細かい粒に分かれる。つまり、気化面21aに落下した液滴は、この細かい粒に分かれることにより、粒同士が合体しにくくなり、気化までの時間が短くなる。また、多孔質セラミクスとされる気化面21aで浸み込み現象が起きるため、気化面21aの液滴に対する接触面が大きくなり、気化が促進されるものと考えられる。   The sample liquid S dropped into the inner tube 12 passes through the inner tube 12 and falls onto the vaporization surface 21 a that is the porous ceramic of the vaporization member 21 installed at the bottom of the combustion tube 10. When the droplet of the sample liquid S collides with the vaporization surface 21a, the droplet is divided into fine particles. That is, the droplets that have fallen on the vaporization surface 21a are divided into fine particles, which makes it difficult for the particles to coalesce and the time to vaporization is shortened. In addition, since the soaking phenomenon occurs on the vaporized surface 21a, which is considered to be porous ceramics, it is considered that the contact surface of the vaporized surface 21a with respect to the droplets becomes large and vaporization is promoted.

気化部材21の外周面にリング22を設けたことにより、気化面21a上の細かい粒が気化面21aから外方へと落下し、燃焼管10の底部11bに溜まることが防止される。更に、燃焼管10の底部11bに溜まった灰分が上昇して気化面21aへと回りこむことが有効に防止され、液滴の気化効率を大幅に向上させることができる。   By providing the ring 22 on the outer peripheral surface of the vaporizing member 21, it is possible to prevent fine particles on the vaporized surface 21 a from dropping from the vaporized surface 21 a and collecting on the bottom 11 b of the combustion tube 10. Furthermore, it is possible to effectively prevent the ash accumulated in the bottom 11b of the combustion tube 10 from rising and flowing around the vaporization surface 21a, and the vaporization efficiency of the droplets can be greatly improved.

次に、図1を参照して、更に詳しく、接触燃焼式分析計1の全体構成と、斯かる接触燃焼式分析計1を使用した水質分析方法の一実施例について説明する。図1には、試料液体中の有機物量の測定する場合の測定装置全体の構成をブロック図を含めて示す。   Next, with reference to FIG. 1, the whole structure of the catalytic combustion analyzer 1 and an embodiment of a water quality analysis method using the catalytic combustion analyzer 1 will be described in more detail. FIG. 1 shows a configuration of the whole measuring apparatus including a block diagram when measuring the amount of organic substances in a sample liquid.

本実施例では、一例として、上記構成の接触燃焼式分析計1を全有機炭素分析計(TOC計)として使用して試料液体中の有機物量の測定を行うものとする。   In this embodiment, as an example, the catalytic combustion analyzer 1 having the above-described configuration is used as a total organic carbon analyzer (TOC meter) to measure the amount of organic substances in a sample liquid.

本実施例にて、試料液体注入部50は、試料導入部51とIC(無機体炭素)除去部52とを有している。試料液体注入部50にて、試料液体Sは、先ず、試料導入部51に導入され、試料導入部51に導入された試料液体Sは、IC除去部52を経て燃焼管10の内管12内に注入される。   In the present embodiment, the sample liquid injection unit 50 has a sample introduction unit 51 and an IC (inorganic carbon) removal unit 52. In the sample liquid injection section 50, the sample liquid S is first introduced into the sample introduction section 51, and the sample liquid S introduced into the sample introduction section 51 passes through the IC removal section 52 in the inner tube 12 of the combustion tube 10. Injected into.

IC除去部52においては、試料導入部51に導入された試料液体Sに酸を加え、試料液体S中に含まれるIC(無機体炭素)を二酸化炭素(CO2)に変え、例えば窒素ガスなどを通気(バブリング)することにより試料液体S中から二酸化炭素を除去する。IC(無機体炭素)としては、試料液体S中に溶存している二酸化炭素、炭酸水素イオン、炭酸イオン、懸濁体炭酸塩類、などがある。本実施例では、導入した試料液体Sを希釈し、塩酸(HCl)を加えて窒素ガスを通気し、試料液体S中から無機体炭素を除去した。 In the IC removing unit 52, an acid is added to the sample liquid S introduced into the sample introducing unit 51, and the IC (inorganic carbon) contained in the sample liquid S is changed to carbon dioxide (CO 2 ), for example, nitrogen gas or the like. Carbon dioxide is removed from the sample liquid S by bubbling. Examples of IC (inorganic carbon) include carbon dioxide, hydrogen carbonate ions, carbonate ions, suspended carbonates dissolved in the sample liquid S, and the like. In this example, the introduced sample liquid S was diluted, hydrochloric acid (HCl) was added, nitrogen gas was passed, and inorganic carbon was removed from the sample liquid S.

無機体炭素が除去された試料液体Sは、定量ポンプなどを有する試料液体注入部50によって、所定量計量して内管12の上端開口部12aより一定量づつ滴下して燃焼管10内へと注入する。このとき内管12には、キャリアガス供給部70からキャリアガスが供給される。キャリアガスとしては窒素ガスを使用することができる。また、本実施例では、1回30〜40μLの滴下量にて間欠的に、5〜6秒間隔にて燃焼管10の内管12内へ滴下した。つまり、試料液体の滴下は、0.4mL/分で7分間行った。   The sample liquid S from which the inorganic carbon has been removed is weighed by a predetermined amount by the sample liquid injection unit 50 having a metering pump or the like, and dropped into the combustion tube 10 by a predetermined amount from the upper end opening 12a of the inner tube 12. inject. At this time, the carrier gas is supplied to the inner tube 12 from the carrier gas supply unit 70. Nitrogen gas can be used as the carrier gas. Moreover, in the present Example, it dripped in the inner pipe | tube 12 of the combustion pipe | tube 10 intermittently by the dripping amount of 30-40 microliters once at intervals of 5-6 seconds. That is, the sample liquid was dropped at 0.4 mL / min for 7 minutes.

燃焼管10は、気化部材21が配置された気化部20の温度が650℃〜750℃になるように、加熱炉100にて加熱した。   The combustion tube 10 was heated in the heating furnace 100 so that the temperature of the vaporizing unit 20 where the vaporizing member 21 was disposed was 650 ° C to 750 ° C.

斯かる構成にて、試料液体Sは、気化部20に設置した気化部材21にて極めて効率よく気化される。気化された試料ガスSGは、キャリアガスと共に触媒19が充填された酸化部40へと搬送され、触媒19と接触することにより試料ガスSG中に含まれる水質汚濁物質が酸化され、CO2ガスを発生する。本実施例では、酸化触媒19としては、白金アルミナを使用した。 With such a configuration, the sample liquid S is vaporized very efficiently by the vaporizing member 21 installed in the vaporizing unit 20. The vaporized sample gas SG is transported together with the carrier gas to the oxidation unit 40 filled with the catalyst 19, and the water pollutant contained in the sample gas SG is oxidized by contacting with the catalyst 19, and CO 2 gas is removed. appear. In this example, platinum alumina was used as the oxidation catalyst 19.

このCO2ガスは、キャリアガスと共に計測部60へと送給される。計測部60へと送給されたCO2ガスは、先ず、キャリアガスによって除湿部61に運ばれ、CO2ガス中の水分が除去される。除湿部61におけるCO2ガス中の水分は、吸湿剤を用いて、或いは、冷却して凝縮除去することにより除去される。 This CO 2 gas is supplied to the measuring unit 60 together with the carrier gas. The CO 2 gas supplied to the measuring unit 60 is first carried to the dehumidifying unit 61 by the carrier gas, and moisture in the CO 2 gas is removed. The moisture in the CO 2 gas in the dehumidifying unit 61 is removed by using a hygroscopic agent or by cooling and condensing and removing.

水分が除去されたCO2ガスは、測定部62に導入され、CO2ガス濃度が、例えば、非分散型赤外分析計にて測定される。 The CO 2 gas from which the moisture has been removed is introduced into the measuring unit 62, and the CO 2 gas concentration is measured by, for example, a non-dispersive infrared analyzer.

測定部62からの出力信号は、演算部63でTOC値に換算し、表示部64、出力部65によりTOC値としての表示や外部出力を行う。   The output signal from the measurement unit 62 is converted into a TOC value by the calculation unit 63, and the display unit 64 and the output unit 65 perform display or external output as the TOC value.

上記構成の本実施例の分析計1によれば、試料導入からCO2ガス測定終了までの1測定周期は、約15分で処理することができる。 According to the analyzer 1 of the present embodiment having the above configuration, one measurement cycle from sample introduction to the end of CO 2 gas measurement can be processed in about 15 minutes.

本実施例にて、試料液体Sの滴下は、7分間行うが、演算部63でのTOC値に換算するためのCO2ガス測定値のサンプリングは、最後の100秒間のみである。つまり、このときに得られるデータは、十分に立ち上がった後のデータであって、必要に応じて行うスムージング処理(平準化処理)をするのに必要なだけのデータを得ることができる。 In this embodiment, the sample liquid S is dropped for 7 minutes, but sampling of the CO 2 gas measurement value for conversion into the TOC value in the calculation unit 63 is performed only for the last 100 seconds. In other words, the data obtained at this time is data that has risen sufficiently, and it is possible to obtain as much data as necessary to perform the smoothing process (leveling process) performed as necessary.

本実施例の接触燃焼式分析計1を使用した上記構成の測定により、良好な分析結果を得ることができた。すなわち、本実施例の接触燃焼式分析計1によれば、気化がスムースに進行するため、試料液体の滴下開始から一定時間が経過した後(十分に立ち上がった後)は、測定部62に導入されるCO2ガス濃度が安定する。このため、平準化処理は、短時間のデータ(例えば、数十秒間のデータ)を基に行っても精度の高い測定値を得ることができる。 By the measurement of the above configuration using the catalytic combustion analyzer 1 of the present example, a good analysis result could be obtained. That is, according to the catalytic combustion analyzer 1 of the present embodiment, since the vaporization proceeds smoothly, after a certain time has elapsed from the start of dropping of the sample liquid (after sufficiently rising), it is introduced into the measuring unit 62. The CO 2 gas concentration is stabilized. Therefore, even if the leveling process is performed based on short-time data (for example, data for several tens of seconds), a highly accurate measurement value can be obtained.

なお、本発明者らは、本発明の接触燃焼式分析計1の作用効果を立証するために、更に、以下の実験を試みた。   In addition, the present inventors further tried the following experiment in order to prove the operation effect of the catalytic combustion analyzer 1 of the present invention.

この実験では、上述した構成とされる本実施例の接触燃焼式分析計1と、比較例として、従来のTOC分析計を使用して、CO2の出力値のばらつきを観察した。測定結果を図4に示す。 In this experiment, the variation in the output value of CO 2 was observed using the catalytic combustion analyzer 1 of the present embodiment configured as described above and a conventional TOC analyzer as a comparative example. The measurement results are shown in FIG.

比較例として使用したTOC計は、図1に示す本実施例の接触燃焼式分析計1の気化部20から気化部材21を除いた接触燃焼式分析計1’であった。   The TOC meter used as a comparative example was a catalytic combustion analyzer 1 'in which the vaporizing member 21 was removed from the vaporizing section 20 of the catalytic combustion analyzer 1 of the present embodiment shown in FIG.

本実験では、両分析計1、1’ともに、気化部20の温度が十分に上がってから、標準液を連続的に滴下した。標準液としては、200mgC/Lのフタル酸水素カリウム溶液に、IC除去のための塩酸を加えたものを使用した。200mgC/Lの場合のCO2換算理論値は、1344ppmである。 In this experiment, both analyzers 1 and 1 ′ were continuously dropped with the standard solution after the temperature of the vaporization unit 20 was sufficiently increased. As the standard solution, a 200 mg C / L potassium hydrogen phthalate solution added with hydrochloric acid for IC removal was used. The theoretical CO 2 equivalent value at 200 mg C / L is 1344 ppm.

本発明の分析計1の測定結果を、比較例とされる従来の分析計1’の測定結果と比較すると理解されるように、本発明の接触燃焼式分析計1は、比較例に比して、CO2の出力値のばらつきが極めて小さく、極めて安定した指示値を得ることができる。 As can be understood by comparing the measurement result of the analyzer 1 of the present invention with the measurement result of the conventional analyzer 1 ′, which is a comparative example, the catalytic combustion analyzer 1 of the present invention is compared with the comparative example. Thus, variation in the output value of CO 2 is extremely small, and an extremely stable indicating value can be obtained.

つまり、上述したように、本発明の接触燃焼式分析計1によれば、平準化処理の基になるデータのサンプリングを長時間行わなくても信頼度の高い、高精度の測定が可能である。   That is, as described above, according to the catalytic combustion analyzer 1 of the present invention, it is possible to perform highly reliable and highly accurate measurement without sampling data that is the basis of the leveling process for a long time. .

また、本実施例の滴下方式の接触燃焼式分析計1は、TOC計、TN計などの水質分析装置として使用し、水質汚濁物質を安定して、高精度に測定することができる。   In addition, the dropping type catalytic combustion analyzer 1 of this embodiment can be used as a water quality analyzer such as a TOC meter or a TN meter, and can stably measure water pollutants with high accuracy.

実施例2
上記実施例1では、本発明に係る接触燃焼式分析計1の燃焼管10は、図1に示すように、外管11と内管12とにて形成され、内管12と外管11との間に環状の通路17が形成された二重管構造とされるものとして説明したが、これに限定されるものではない。
Example 2
In the first embodiment, the combustion tube 10 of the catalytic combustion analyzer 1 according to the present invention is formed of an outer tube 11 and an inner tube 12, as shown in FIG. However, the present invention is not limited to this.

例えば、図5(a)を参照すると、燃焼管10の一つの変更実施例を示す。この変更実施例では、燃焼管10は、本管81と、本管81の途中に接続された支管82とを備えている。   For example, referring to FIG. 5 (a), one modified embodiment of the combustion tube 10 is shown. In this modified embodiment, the combustion pipe 10 includes a main pipe 81 and a branch pipe 82 connected in the middle of the main pipe 81.

勿論、燃焼管10は、図示してはいないが、加熱炉に装入自在とされ、加熱炉に装入することにより加熱炉によって全体が加熱される。   Of course, although not shown, the combustion tube 10 can be inserted into the heating furnace, and the whole is heated by the heating furnace by being inserted into the heating furnace.

本管81の底部は、気化部20とされ、本発明の特徴をなす気化部材21が設置される。   The bottom part of the main pipe 81 is a vaporization part 20, and a vaporization member 21 that characterizes the present invention is installed.

一方、気化部材21が設置された底部より上方に位置して本管81に接続された支管82には、本管81との接続部に隣接して触媒(酸化触媒)19が充填された酸化部40が形成される。   On the other hand, the branch pipe 82 connected to the main pipe 81 and positioned above the bottom where the vaporizing member 21 is installed is adjacent to the main pipe 81 and is filled with the catalyst (oxidation catalyst) 19. Part 40 is formed.

従って、この構成の燃焼管10においても、試料液体Sが試料液体注入部50から本管81の上端開口部81aより一定量づつ滴下して本管81内へと注入されると、気化部材21にて極めて効率よく気化される。気化された試料ガスSGは、支管82の酸化部40へと搬送され、触媒19と接触することにより試料ガスSG中に含まれる水質汚濁物質が酸化され、CO2ガスを発生する。このCO2ガスは、計測部60へと送給され、実施例1と同様にして水質汚濁物質の汚濁度が計測される。 Therefore, also in the combustion tube 10 having this configuration, when the sample liquid S is dropped from the sample liquid injection part 50 by a constant amount from the upper end opening 81a of the main pipe 81 and injected into the main pipe 81, the vaporizing member 21 Vaporizes very efficiently. The vaporized sample gas SG is transported to the oxidation section 40 of the branch pipe 82, and when contacted with the catalyst 19, water pollutants contained in the sample gas SG are oxidized to generate CO 2 gas. This CO 2 gas is supplied to the measuring unit 60, and the pollution degree of the water pollutant is measured in the same manner as in the first embodiment.

同様に、図5(b)を参照すると、燃焼管10の他の変更実施例を示す。この変更実施例では、燃焼管10は、主管91を備えており、その内部が仕切り壁92にて分離され、試料液体供給路93と、試料ガス通路94と、を形成する。   Similarly, referring to FIG. 5 (b), another modified embodiment of the combustion tube 10 is shown. In this modified embodiment, the combustion tube 10 includes a main tube 91, the inside of which is separated by a partition wall 92, and forms a sample liquid supply passage 93 and a sample gas passage 94.

勿論、燃焼管10は、図示してはいないが、加熱炉に装入自在とされ、加熱炉に装入することにより加熱炉によって全体が加熱される。   Of course, although not shown, the combustion tube 10 can be inserted into the heating furnace, and the whole is heated by the heating furnace by being inserted into the heating furnace.

主管91の底部は、試料液体供給路93と試料ガス通路94とが連通した気化部20とされ、本発明の特徴をなす気化部材21が設置される。   The bottom portion of the main pipe 91 is a vaporization section 20 in which a sample liquid supply passage 93 and a sample gas passage 94 communicate with each other, and a vaporization member 21 that characterizes the present invention is installed.

気化部材21が設置された気化部20より上方に位置して試料ガス通路94には、触媒(酸化触媒)19が充填された酸化部40が形成される。   An oxidation part 40 filled with a catalyst (oxidation catalyst) 19 is formed in the sample gas passage 94 located above the vaporization part 20 where the vaporization member 21 is installed.

従って、この構成の燃焼管10においても、試料液体Sが試料液体注入部50から主管91の上端開口部91aより一定量づつ滴下して試料液体供給路93内へと注入されると、気化部材21にて極めて効率よく気化される。気化された試料ガスSGは、試料ガス通路94の酸化部40へと搬送され、触媒19と接触することにより試料ガスSG中に含まれる水質汚濁物質が酸化され、CO2ガスを発生する。このCO2ガスは、計測部60へと送給され、実施例1と同様にして水質汚濁物質の汚濁度が計測される。 Accordingly, also in the combustion tube 10 having this configuration, when the sample liquid S is dropped from the sample liquid injection part 50 by a constant amount from the upper end opening 91a of the main pipe 91 and injected into the sample liquid supply path 93, the vaporizing member. 21 is very efficiently vaporized. The vaporized sample gas SG is transported to the oxidation section 40 of the sample gas passage 94, and when contacted with the catalyst 19, water pollutants contained in the sample gas SG are oxidized to generate CO 2 gas. This CO 2 gas is supplied to the measuring unit 60, and the pollution degree of the water pollutant is measured in the same manner as in the first embodiment.

以上説明した構成の燃焼管10を備えた接触燃焼式分析計においても、実施例1で説明した接触燃焼式分析計1と同様の作用効果を達成し得る。   Even in the contact combustion type analyzer provided with the combustion tube 10 having the above-described configuration, the same operational effects as those of the contact combustion type analyzer 1 described in the first embodiment can be achieved.

本発明の接触燃焼式分析計の一実施例を説明する概略構成図である。It is a schematic block diagram explaining one Example of the catalytic combustion type analyzer of this invention. 本発明の接触燃焼式分析計の特徴をなす気化部材の斜視図である。It is a perspective view of the vaporization member which makes the characteristic of the contact combustion type analyzer of the present invention. 図3(a)は、気化部材の気化面を説明する平面図であり、図3(b)は、気化面に溝を形成するための切削刃の形状を示す正面図である。Fig.3 (a) is a top view explaining the vaporization surface of a vaporization member, FIG.3 (b) is a front view which shows the shape of the cutting blade for forming a groove | channel in a vaporization surface. 本発明の接触燃焼式分析計と従来のTOC分析計におけるCO2の出力値のばらつきを観察した図である。It is a view obtained by observing the variation in the output value of the CO 2 in the catalytic combustion type analyzers and conventional TOC analyzer of the present invention. 本発明の接触燃焼式分析計の燃焼管の他の変更実施例を説明する概略構成図である。It is a schematic block diagram explaining the other modified example of the combustion pipe of the catalytic combustion type analyzer of this invention. 従来の接触燃焼式分析計の一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the conventional catalytic combustion type analyzer.

符号の説明Explanation of symbols

1 接触燃焼式分析計
10 燃焼管
11 外管
12 内管
19 触媒
20 気化部
21 気化部材
21a 気化面
22 リング(壁部材)
40 酸化部
50 試料液体注入部
60 計測部
70 キャリアガス供給部
81 本管
82 支管
91 主管
100 加熱炉
DESCRIPTION OF SYMBOLS 1 Contact combustion type analyzer 10 Combustion pipe 11 Outer pipe 12 Inner pipe 19 Catalyst 20 Evaporation part 21 Evaporation member 21a Evaporation surface 22 Ring (wall member)
40 Oxidation section 50 Sample liquid injection section 60 Measurement section 70 Carrier gas supply section 81 Main pipe 82 Branch pipe 91 Main pipe 100 Heating furnace

Claims (3)

加熱炉にて加熱される燃焼管を備え、燃焼管内へと滴下された水質汚濁物質を含んだ試料液体を気化して触媒と接触させ、試料液体中に含まれる水質汚濁物質の汚濁度を計測する滴下方式の接触燃焼式分析計において、
前記燃焼管内に滴下された前記試料液体が衝突し、衝突した前記試料液体を気化させる気化部材を備え、前記気化部材が多孔質セラミクスにて形成されることを特徴とする接触燃焼式分析計。
Equipped with a combustion tube heated in a heating furnace, the sample liquid containing water pollutants dripped into the combustion tube is vaporized and brought into contact with the catalyst, and the pollution degree of the water pollutants contained in the sample liquid is measured. In a dripping type contact combustion analyzer,
A catalytic combustion analyzer comprising a vaporizing member that collides with the sample liquid dropped into the combustion tube and vaporizes the collided sample liquid, and the vaporizing member is formed of porous ceramics.
前記気化部材の前記気化面には溝が形成されることを特徴とする請求項1に記載の接触燃焼式分析計。   The catalytic combustion analyzer according to claim 1, wherein a groove is formed in the vaporizing surface of the vaporizing member. 前記気化部材の上端部外周には、前記気化面より上方へと突出して壁部材が形成されていることを特徴とする請求項1又は2に記載の接触燃焼式分析計。   The catalytic combustion analyzer according to claim 1 or 2, wherein a wall member is formed on the outer periphery of the upper end portion of the vaporizing member so as to protrude upward from the vaporized surface.
JP2008054135A 2008-03-04 2008-03-04 Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer Expired - Fee Related JP5012580B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008054135A JP5012580B2 (en) 2008-03-04 2008-03-04 Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer
CN 200810176771 CN101526512B (en) 2008-03-04 2008-11-18 Gasification member and contact burning type analysis meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054135A JP5012580B2 (en) 2008-03-04 2008-03-04 Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer

Publications (3)

Publication Number Publication Date
JP2009210442A true JP2009210442A (en) 2009-09-17
JP2009210442A5 JP2009210442A5 (en) 2011-04-28
JP5012580B2 JP5012580B2 (en) 2012-08-29

Family

ID=41094487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054135A Expired - Fee Related JP5012580B2 (en) 2008-03-04 2008-03-04 Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer

Country Status (2)

Country Link
JP (1) JP5012580B2 (en)
CN (1) CN101526512B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131141A (en) * 2009-12-22 2011-07-07 Noritz Corp Evaporator and fuel cell system using the same
JP2013096771A (en) * 2011-10-31 2013-05-20 Ekoro:Kk Apparatus and method for measuring toc included in test water
WO2022071111A1 (en) * 2020-09-30 2022-04-07 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, and combustion reaction unit
KR102647233B1 (en) * 2023-03-08 2024-03-15 에이티티(주) Reaction tube for equipment measuring water quality including crf tubes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190049A1 (en) * 2022-03-31 2023-10-05 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, combustion reaction unit, and total organic carbon measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443206A (en) * 1990-06-07 1992-02-13 Sharp Corp Gasification device of liquid fuel gasification type combustion device
JP2004278466A (en) * 2003-03-18 2004-10-07 Toyota Industries Corp Fuel carburator
JP2005024489A (en) * 2003-07-02 2005-01-27 Toray Eng Co Ltd Water quality analyzer
JP2005106678A (en) * 2003-09-30 2005-04-21 Dkk Toa Corp Combustion furnace for analyzer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6270727B1 (en) * 1998-07-31 2001-08-07 Leco Corporation Analytical crucible
CN2581986Y (en) * 2002-09-28 2003-10-22 武汉元素科技发展有限公司 Sample burner for analyzing organic element content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443206A (en) * 1990-06-07 1992-02-13 Sharp Corp Gasification device of liquid fuel gasification type combustion device
JP2004278466A (en) * 2003-03-18 2004-10-07 Toyota Industries Corp Fuel carburator
JP2005024489A (en) * 2003-07-02 2005-01-27 Toray Eng Co Ltd Water quality analyzer
JP2005106678A (en) * 2003-09-30 2005-04-21 Dkk Toa Corp Combustion furnace for analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131141A (en) * 2009-12-22 2011-07-07 Noritz Corp Evaporator and fuel cell system using the same
JP2013096771A (en) * 2011-10-31 2013-05-20 Ekoro:Kk Apparatus and method for measuring toc included in test water
WO2022071111A1 (en) * 2020-09-30 2022-04-07 ホリバ トカデロ ゲーエムベーハー Total organic carbon meter, and combustion reaction unit
KR102647233B1 (en) * 2023-03-08 2024-03-15 에이티티(주) Reaction tube for equipment measuring water quality including crf tubes

Also Published As

Publication number Publication date
CN101526512B (en) 2013-01-16
CN101526512A (en) 2009-09-09
JP5012580B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5012580B2 (en) Catalytic combustion analyzer and vaporizing member for catalytic combustion analyzer
Fleig et al. Evaluation of SO3 measurement techniques in air and oxy-fuel combustion
WO2008058182A2 (en) Measuring analyte concentrations in liquids
US9989472B2 (en) Solution cathode glow discharge elemental analysis
RU2521719C1 (en) Mercury monitor
JP4609217B2 (en) Water quality analyzer
US8932873B2 (en) Method for monitoring concentration of water borne substance in an aqueous medium
US3960523A (en) Effluent gas monitor
Peterson et al. Dissolved organic carbon measurement using a modified high-temperature combustion analyzer
TW201518727A (en) Liquid-free sample traps and analytical method for measuring trace level acidic and basic AMC
JP4765976B2 (en) Water quality analyzer
KR102208042B1 (en) Gas sampling system
JP2008232695A (en) Water quality analyzer
JP6467805B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment for tar utilization equipment
JP2007263814A (en) Combustion type water quality measuring instrument
JP4036373B2 (en) Water quality analyzer
US20200355661A1 (en) Device and method for partial transfer of a liquid sample, comprising multiple components and method for the online determination and analysis of these components
JP3547421B2 (en) Measurement device for components contained in sample water
JP2011257381A (en) Thermal hydrolysis device and analysis system using the same
JPS6137580B2 (en)
JPH03152445A (en) Method and apparatus for chemical emission quantification of ammonia
ES2674770T3 (en) Solid water separation to sample water spray from a continuous casting machine
KR102593663B1 (en) Moisture trap for analysis of atmospheric air sample and System of analysis for air pollutant using the same
Harrison et al. Apparatus for simultaneous size-differentiated sampling of optical and suboptical aerosols: Application to analysis of nitrates and sulfates
KR102449418B1 (en) Total organic carbon measuring device including raw water filtration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees