JP2009209438A - Thin film forming apparatus - Google Patents

Thin film forming apparatus Download PDF

Info

Publication number
JP2009209438A
JP2009209438A JP2008056100A JP2008056100A JP2009209438A JP 2009209438 A JP2009209438 A JP 2009209438A JP 2008056100 A JP2008056100 A JP 2008056100A JP 2008056100 A JP2008056100 A JP 2008056100A JP 2009209438 A JP2009209438 A JP 2009209438A
Authority
JP
Japan
Prior art keywords
thin film
film forming
substrate
source
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008056100A
Other languages
Japanese (ja)
Inventor
Yuma Kamiyama
遊馬 神山
Kazuyoshi Honda
和義 本田
Taiji Shinokawa
泰治 篠川
Masahiro Yamamoto
昌裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008056100A priority Critical patent/JP2009209438A/en
Publication of JP2009209438A publication Critical patent/JP2009209438A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To form silicon which is a high-capacity electrode active material or its compound by a thin film forming method having high productivity to form an electrode which does not give rise to degradation of charging or discharging characteristics, and to perform film deposition of a vapor region of an evaporation raw material being a region near a high angle incident region. <P>SOLUTION: A shielding plate (29) is disposed in such a manner that raw material particles from a thin film forming source (19) fly in a range of incident angle of 45° to 75° to a substrate (22) when passing a thin film forming section (23a) and a thin film forming section (23b) while the substrate (22) is made to travel by being spirally wound around the peripheral surface of a cooling can (16) formed to a cylindrical shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は薄膜形成装置に関するものである。   The present invention relates to a thin film forming apparatus.

従来の薄膜形成装置としては、巻き出しロールと巻き取りロールとで基板を連続的に移動させると共に、その移動経路に円筒状の冷却キャンを設け、前期基板を冷却キャン周面に沿わせて移動させつつ、冷却キャンの下方に設置したルツボ内の薄膜原料を加熱気化させ、遮蔽板によって基板の薄膜形成範囲を規制することで、前記遮蔽板を介して原料粒子を基板の所定位置に当てて薄膜を形成するよう構成されているものがあった。
このような薄膜形成装置では高温に加熱気化して蒸気にして基板に付着させるため、高温雰囲気中に基板が曝されることになる。このとき、一度の走行で所定量の厚さの薄膜層を形成するためには、ある程度遅い搬送速度で基板を移動させる必要がある。
このため、基板が高温雰囲気に比較的長い時間曝されるため、基板が熱負けして変形したり、シワが入って品質が大きく低下する恐れがあることから、特許文献1では、円筒状キャンにらせん状に複数回基板を巻きつけ、1回の走行で、複数個の薄膜形成領域を設定することで、各薄膜形成領域で形成すべき厚さを薄くすることで、走行速度を向上することができ、基板が一度に高温領域に曝される時間を短縮することができるのに加えて、薄膜形成のあと、冷却キャンに沿って次の薄膜形成領域に移動する間に冷却を行うことで、基板の温度上昇を抑制することが開示されている。
As a conventional thin film forming device, the substrate is continuously moved by the unwinding roll and the winding roll, and a cylindrical cooling can is provided in the moving path, and the previous substrate is moved along the circumferential surface of the cooling can. The thin film material in the crucible placed below the cooling can is heated and vaporized, and the thin film formation range of the substrate is regulated by the shielding plate, so that the raw material particles are applied to a predetermined position of the substrate through the shielding plate. Some were configured to form a thin film.
In such a thin film forming apparatus, the substrate is exposed to a high temperature atmosphere because it is heated and vaporized to a high temperature and vaporized to adhere to the substrate. At this time, in order to form a thin film layer having a predetermined thickness by a single run, it is necessary to move the substrate at a somewhat low transport speed.
For this reason, since the substrate is exposed to a high temperature atmosphere for a relatively long time, the substrate may be deformed due to heat loss, or wrinkles may occur and the quality may be greatly deteriorated. By winding the substrate a plurality of times in a spiral shape and setting a plurality of thin film formation areas in one run, the running speed is improved by reducing the thickness to be formed in each thin film formation area In addition to being able to reduce the time that the substrate is exposed to the high temperature region at one time, cooling is performed after the thin film is formed and moved to the next thin film formation region along the cooling can. Therefore, it is disclosed to suppress the temperature rise of the substrate.

一方、蒸着を行う基板表面にさまざまなパターンを形成することにより、蒸着膜に空間を空け、柱状に形状を制御する方法が試みられている。たとえば、ケイ素(Si)または錫(Sn)の単体、酸化物、合金をリチウムイオン電池の負極活物質に用いる場合、充放電に伴い活物質が膨張、収縮するため、膨張応力を緩和する空間を負極に設けることが提案されており、特許文献4では、基板角度をさまざまに変化させる場合には薄膜形成時に傾斜方向を集電体面の法線方向に対して逆方向に交互に複数回切り替えることでジグザグ形状を有する柱状粒子を形成することを開示している。このジグザグ構造を持つ柱状粒子は、一方向にのみ傾斜した柱状粒子を形成した場合と比較して、粒子成長に伴う粒子幅の広がりを抑制することができ、活物質の膨張収縮にともなう膨張応力を緩和できる。   On the other hand, by forming various patterns on the surface of the substrate on which vapor deposition is performed, a method has been attempted in which a space is formed in the vapor deposition film and the shape is controlled in a columnar shape. For example, when using a simple substance, oxide, or alloy of silicon (Si) or tin (Sn) as the negative electrode active material of a lithium ion battery, the active material expands and contracts with charge and discharge, so a space for relaxing expansion stress is created. Proposed to be provided on the negative electrode, and in Patent Document 4, when the substrate angle is changed variously, the tilt direction is switched alternately several times in the direction opposite to the normal direction of the current collector surface when forming the thin film. And forming columnar particles having a zigzag shape. This columnar particle having a zigzag structure can suppress the expansion of the particle width accompanying the particle growth and the expansion stress accompanying the expansion and contraction of the active material, compared with the case where the columnar particle inclined only in one direction is formed. Can be relaxed.

また、特許文献5では冷却キャンを2本持つ装置を使用することで、2層構造を持つ薄膜を形成する方法が開示されている。
特開昭64−68467号公報 特開2002−313319号公報 特開2005−196970号公報 国際公開第2007/052803号パンフレット 特開平6−111320号公報
Patent Document 5 discloses a method of forming a thin film having a two-layer structure by using an apparatus having two cooling cans.
JP-A 64-68467 JP 2002-313319 A JP-A-2005-196970 International Publication No. 2007/052803 Pamphlet JP-A-6-111320

しかしながら、前記特許文献1で示されている従来の真空薄膜形成装置の構成にて蒸着膜を作成しても斜め形状の柱状粒子が形成されるのみで、ジグザグ形状を有する柱状粒子を形成することができない。これに対してたとえば、特許文献5に示されるような冷却キャンを2本持つ装置を使用することで、2層構造の作成が可能になるが、この方法でジグザグ形状の柱状粒子を形成するためには、複数回基板を往復させるか、複数個の薄膜形成領域を並べる必要があり、基板の搬送方向を逆転するときに基板に負荷がかかりやすくなるほか、装置が複雑になるという課題を有していた。   However, even if a vapor deposition film is created by the configuration of the conventional vacuum thin film forming apparatus shown in Patent Document 1, only oblique columnar particles are formed, and columnar particles having a zigzag shape are formed. I can't. On the other hand, for example, by using an apparatus having two cooling cans as shown in Patent Document 5, it becomes possible to create a two-layer structure, but in order to form zigzag columnar particles by this method In this case, it is necessary to reciprocate the substrate a plurality of times or to arrange a plurality of thin film formation regions, which makes it difficult to apply a load to the substrate when reversing the substrate transport direction, and also complicates the apparatus. Was.

また、特許文献4において指摘されているとおり、長尺の基板をロールから巻きだし、連続的に極板を作成し、ロールで巻き取る場合、電極の製造途中で基板の傾斜角度をさまざまに変えることは困難なため、長手方向断面と幅方向断面に同時に折れ曲がり構造を持つ柱状粒子からなる薄膜層を作成することは困難である。   Further, as pointed out in Patent Document 4, when a long substrate is unwound from a roll, a pole plate is continuously formed and wound by a roll, the inclination angle of the substrate is changed variously during the production of the electrode. Therefore, it is difficult to produce a thin film layer made of columnar particles having a structure in which a longitudinal section and a width section are bent at the same time.

本発明は、前記課題を解決するもので、冷却キャンの下部に薄膜形成源を設置し、冷却キャンの円周方向の装置断面において薄膜形成源の中心を通る法線の両側に薄膜形成部を設定することにより、複数本の冷却キャンを用いなくても、簡潔な装置構成にてジグザグ形状の柱状粒子を形成することを可能にした真空薄膜形成装置を提供することを目的とする。   The present invention solves the above-mentioned problem, and a thin film forming source is installed at the lower portion of the cooling can, and thin film forming portions are provided on both sides of the normal passing through the center of the thin film forming source in the circumferential section of the cooling can. An object of the present invention is to provide a vacuum thin film forming apparatus that can form zigzag columnar particles with a simple apparatus configuration without using a plurality of cooling cans.

上記課題を解決するため、本発明の薄膜形成装置は、
真空中で、長尺基板上に、薄膜を形成する薄膜形成装置であって、
前記長尺基板を搬送させる搬送機構と、
前記搬送中の基板表面上に、薄膜形成源と、
前記基板をらせん状に複数回巻きつけるキャンと、
前記搬送機構と、前記薄膜源と、前記冷却キャンとを収容する真空容器と、
を有し、
前記冷却キャンの円周方向の装置断面において、第1の薄膜形成部と、第2の薄膜形成部とを有し、
前記第1の薄膜形成部の薄膜形成面および前記第2の薄膜形成部の薄膜形成面が、前記薄膜形成源の蒸発面の中心を通る法線の両側に配置されることを特徴とする。
In order to solve the above problems, the thin film forming apparatus of the present invention is
A thin film forming apparatus for forming a thin film on a long substrate in a vacuum,
A transport mechanism for transporting the long substrate;
On the surface of the substrate being transported, a thin film forming source,
A can that spirally winds the substrate multiple times;
A vacuum vessel that houses the transport mechanism, the thin film source, and the cooling can;
Have
In the apparatus cross section in the circumferential direction of the cooling can, it has a first thin film forming portion and a second thin film forming portion,
The thin film forming surface of the first thin film forming portion and the thin film forming surface of the second thin film forming portion are disposed on both sides of a normal passing through the center of the evaporation surface of the thin film forming source.

本発明の薄膜形成装置によれば、複雑な走行系を用いることなく真空薄膜形成によりジグザグ構造の柱状粒子を基板上に作成することができる。   According to the thin film forming apparatus of the present invention, columnar particles having a zigzag structure can be formed on a substrate by vacuum thin film formation without using a complicated traveling system.

以下本発明の実施の形態について、図面を参照しながら説明する。
(装置について)
(実施の形態1)
図1は本発明の薄膜形成装置の一例を示す模式図である。真空容器(12)は、排気装置(11)によって減圧に保たれている。真空容器(12)の中には、薄膜形成源(19)と、基板搬送系が設置されている。基板搬送系は、基板の巻き出しロール(18)、搬送ローラ(15)、内側から水冷された冷却キャン(16)、基板の巻き取りロール(13)等から構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
(About the device)
(Embodiment 1)
FIG. 1 is a schematic view showing an example of a thin film forming apparatus of the present invention. The vacuum vessel (12) is kept under reduced pressure by the exhaust device (11). In the vacuum vessel (12), a thin film formation source (19) and a substrate transfer system are installed. The substrate transport system includes a substrate unwinding roll (18), a transport roller (15), a cooling can (16) cooled with water from the inside, a substrate winding roll (13), and the like.

薄膜形成源(19)は容器に薄膜の原料となる珪素を設置し、高い薄膜形成速度を得るために、電子線源(図示せず)より電子を照射することにより加熱を行う。薄膜形成源の上方には冷却キャンが設置され、開口部を有する遮蔽板を介して薄膜形成源と対向する。   The thin film forming source (19) is heated by irradiating electrons from an electron beam source (not shown) in order to obtain silicon as a raw material for the thin film in a container and to obtain a high thin film forming speed. A cooling can is installed above the thin film forming source and faces the thin film forming source through a shielding plate having an opening.

基板(22)は巻き出しロール(18)から巻き出され、搬送ローラ(15)に沿って、巻き取りロール(13)に巻き取られる間に、冷却水などの冷媒が内側を流れる円筒状の冷却キャン(16)に図2に示すようにらせん状に複数回、たとえば5回巻きつけられて冷却キャン(16)の周面に沿って走行するようになっている。   The substrate (22) is unwound from the unwinding roll (18), and is wound into the take-up roll (13) along the transport roller (15). As shown in FIG. 2, the cooling can (16) is spirally wound a plurality of times, for example, five times, and travels along the peripheral surface of the cooling can (16).

基板(22)が冷却キャン(16)の周面に沿って走行する間に、冷却キャン(16)の下方に設置された薄膜形成源(19)から飛来した粒子の一部が開口部を経由して薄膜
形成部(23)にて基板(22)上に付着して薄膜を形成する。
While the substrate (22) travels along the peripheral surface of the cooling can (16), some of the particles flying from the thin film formation source (19) installed below the cooling can (16) pass through the opening. Then, the thin film is formed on the substrate (22) by the thin film forming section (23).

巻き出しローラ(18)および巻き取りローラ(13)は、その回転を制御することができ、それにより、基板(22)には冷却キャン(16)上に基板を均一に沿わせるための張力を加えている。搬送系の一部、例えば駆動用モーター等は真空容器(12)の外に配置し、回転導入端子を介して駆動力を真空容器(12)中に導入しても良い。   The unwind roller (18) and the take-up roller (13) can control their rotation so that the substrate (22) has a tension to evenly align the substrate on the cooling can (16). Added. A part of the transport system, for example, a driving motor or the like may be disposed outside the vacuum vessel (12), and driving force may be introduced into the vacuum vessel (12) via a rotation introduction terminal.

基板には凹凸パターン形状が表面および裏面に形成された、シート状の金属箔を用いる。その金属素材は、銅、ニッケルなどとなる。形成する凹凸パターン形状は、たとえば20μm×20μmの菱形で、高さが10μm、突起表面粗さRaが2.0μmであるものを用いる。   As the substrate, a sheet-like metal foil having a concavo-convex pattern formed on the front and back surfaces is used. The metal material is copper, nickel, or the like. The concavo-convex pattern shape to be formed is, for example, a rhombus of 20 μm × 20 μm having a height of 10 μm and a projection surface roughness Ra of 2.0 μm.

図3は薄膜形成部(23)と遮蔽板(20)の配置を示す模式図である。遮蔽板(20)は薄膜形成源(19)の上空とその両側に設置される。   FIG. 3 is a schematic diagram showing the arrangement of the thin film forming portion (23) and the shielding plate (20). The shielding plate (20) is installed above and on both sides of the thin film formation source (19).

このことにより、冷却キャンの円周方向の装置断面において薄膜形成源の中心を通る法線の両側に薄膜形成部(23a,b)を設定することができ、薄膜形成時に傾斜方向を集電体面の法線方向に対して逆方向に交互に複数回切り替えられるため、基板(22)上に図9に示すようなジグザグ形状の柱状粒子(25)を形成することが可能になる。   As a result, the thin film forming portions (23a, b) can be set on both sides of the normal passing through the center of the thin film forming source in the apparatus cross section in the circumferential direction of the cooling can. Since it can be switched alternately several times in the opposite direction to the normal direction, zigzag columnar particles (25) as shown in FIG. 9 can be formed on the substrate (22).

遮蔽板(20)は、原料を蒸発させる薄膜形成源(19)と、冷却キャン(16)の円周方向の断面において、薄膜形成源の中心から基板を結ぶ直線と、その直線が基板と交わる点の基板面にたてた法線とでなす角度を入射角と定義する時、入射角が45°以上75°以下になるように設置する。   The shielding plate (20) includes a thin film forming source (19) for evaporating the raw material and a straight line connecting the substrate from the center of the thin film forming source in the circumferential cross section of the cooling can (16), and the straight line intersects the substrate. When an angle formed by a normal line formed on a point substrate surface is defined as an incident angle, the incident angle is set to 45 ° or more and 75 ° or less.

この角度設定により基板に対して薄膜形成粒子が傾斜して飛来するため基板上に凹凸があると突起の影になり原料粒子が付着せず薄膜が形成されない部分ができ、柱状の粒子を形成することが可能になる。   With this angle setting, the thin film-forming particles fly in an inclined manner with respect to the substrate, so that if there are irregularities on the substrate, shadows of the projections will be formed and raw material particles will not adhere to form a portion where no thin film is formed, forming columnar particles It becomes possible.

入射角が45度より小さくなると、基板上の突起による影が小さくなり、柱状粒子(25)の間に十分な隙間を設けることが困難になり、入射角が75度よりも大きくなると、薄膜形成源(19)より飛来する原料粒子が付着しにくくなり、効率的でない。   When the incident angle is smaller than 45 degrees, the shadow caused by the protrusion on the substrate is reduced, and it becomes difficult to provide a sufficient gap between the columnar particles (25). When the incident angle is larger than 75 degrees, a thin film is formed. The raw material particles flying from the source (19) become difficult to adhere and are not efficient.

この方法で薄膜を形成することにより、冷却キャン(16)に基板をらせん状に5回巻きつけた場合には図9に示すような10段のジグザグ構造を持つ柱状粒子(25)からなる活物質層を形成することが可能である。   By forming a thin film by this method, when the substrate is spirally wound around the cooling can (16) five times, an active layer composed of columnar particles (25) having a 10-stage zigzag structure as shown in FIG. It is possible to form a material layer.

なお、排気装置(11)には、たとえば、油拡散ポンプ、クライオポンプ、ターボ分子ポンプなどを主ポンプとした各種真空排気系を用いることができる。   For the exhaust device (11), for example, various vacuum exhaust systems using a main pump such as an oil diffusion pump, a cryopump, and a turbo molecular pump can be used.

たとえば珪素と酸素とを含む化合物の活物質層を形成する場合には、酸素ガスをガス導入管(24)から導入し、酸素ガス雰囲気下で蒸発源9から珪素を蒸発させることで対応することができる。このとき、ガス流量を適宜調整することで活物質層中の酸素濃度分布を変化させることができるのは言うまでもない。   For example, when an active material layer of a compound containing silicon and oxygen is formed, oxygen gas is introduced from the gas introduction pipe (24) and silicon is evaporated from the evaporation source 9 in an oxygen gas atmosphere. Can do. At this time, it goes without saying that the oxygen concentration distribution in the active material layer can be changed by appropriately adjusting the gas flow rate.

また、薄膜形成源(19)の加熱方法には電子を照射する以外に誘導加熱や抵抗加熱により加熱してもなんら問題は無い。   Further, the heating method of the thin film forming source (19) has no problem even if it is heated by induction heating or resistance heating in addition to the electron irradiation.

また、図4に示すように複数個の薄膜形成源(19)を設置してもかまわない。   Also, a plurality of thin film forming sources (19) may be installed as shown in FIG.

また、原料には珪素のほか、スズ、ゲルマニウム、インジウム、亜鉛など用いてもなんら問題は無い。   In addition to silicon, there is no problem even if tin, germanium, indium, zinc or the like is used as a raw material.

また、基板を螺旋状に巻きつけるキャンは水平軸から30°以内の範囲で傾けても良い。(実施の形態2)
本発明において冷却キャンは複数本のキャンによって形成される直線状の成膜領域や、無終端帯に置き換えて装置を構成することもできる。この場合、薄膜形成面が直線状になるため、冷却キャンを用いた場合と同じく入射角を45度から75度に設定しても、冷却キャンを用いた場合よりも薄膜形成面が広く設定できるため、薄膜形成源からのシリコンの蒸発速度が同じであれば、より多くの粒子が薄膜形成部に付着するようになるため、材料の利用効率が向上する。
Further, the can for winding the substrate in a spiral shape may be tilted within a range of 30 ° from the horizontal axis. (Embodiment 2)
In the present invention, the cooling can can be replaced with a linear film-forming region formed by a plurality of cans or an endless belt to constitute an apparatus. In this case, since the thin film forming surface is linear, the thin film forming surface can be set wider than when the cooling can is used, even if the incident angle is set to 45 to 75 degrees as in the case of using the cooling can. Therefore, if the evaporation rate of silicon from the thin film forming source is the same, more particles are attached to the thin film forming portion, so that the material utilization efficiency is improved.

図5は本発明の薄膜形成装置の一例を示す模式図である。実施の形態1の場合と同じく、真空容器(12)は、排気装置(11)によって減圧に保たれている。真空容器(12)の中には、薄膜形成源(19)と、基板搬送系が設置されている。基板搬送系は、基板の巻き出しロール(18)、搬送ローラ(5)、内側から水冷された冷却キャン(16)に支持された無終端帯(17)、基板の巻き取りロール(13)等から構成されている。   FIG. 5 is a schematic view showing an example of the thin film forming apparatus of the present invention. As in the case of the first embodiment, the vacuum vessel (12) is kept under reduced pressure by the exhaust device (11). In the vacuum vessel (12), a thin film formation source (19) and a substrate transfer system are installed. The substrate transport system includes a substrate unwinding roll (18), a transport roller (5), an endless belt (17) supported by a cooling can (16) cooled with water from the inside, a substrate winding roll (13), etc. It is composed of

薄膜形成源(19)は容器に薄膜の原料となる珪素を設置し、高い薄膜形成速度を得るために、電子線源(図示せず)より電子を照射することにより加熱を行う。薄膜形成源の上方には無終端帯(17)が設置され、開口部を有する遮蔽板を介して薄膜形成源と対向する。   The thin film forming source (19) is heated by irradiating electrons from an electron beam source (not shown) in order to obtain silicon as a raw material for the thin film in a container and to obtain a high thin film forming speed. An endless belt (17) is installed above the thin film forming source and faces the thin film forming source through a shielding plate having an opening.

基板(22)は巻き出しロール(18)から巻き出され、搬送ローラ(15)に沿って、巻き取りロール(13)に巻き取られる間に、冷却キャン(16)に支持された無終端帯(17)にらせん状に複数回、たとえば5回巻きつけられて無終端帯(17)の周面に沿って走行するようになっている。   The substrate (22) is unwound from the unwinding roll (18) and supported by the cooling can (16) while being wound along the transport roller (15) by the winding roll (13). It is wound around (17) a plurality of times, for example, 5 times, and travels along the peripheral surface of the endless belt (17).

基板(22)が無終端帯(17)の周面に沿って走行する間に、無終端帯(17)の下方に設置された薄膜形成源(19)から飛来した粒子の一部が開口部を経由して薄膜形成部(23)にて基板(22)上に付着して薄膜を形成する。   While the substrate (22) travels along the peripheral surface of the endless belt (17), a part of the particles flying from the thin film forming source (19) installed below the endless belt (17) is opened. A thin film is formed on the substrate (22) by the thin film forming part (23) via

巻き出しローラ(18)および巻き取りローラ(13)は、その回転を制御することができ、それにより、基板(22)には無終端帯上に基板を均一に沿わせるための張力を加えている。搬送系の一部、例えば駆動用モーター等は真空容器(12)の外に配置し、回転導入端子を介して駆動力を真空容器(12)中に導入しても良い。
(実施の形態3)
本発明は図6に示すとおり、無終端帯(17)を用いることなく、複数のキャン(16)に直接基板を螺旋状に巻きつけてもよい。実施の形態1や2に示すように基板が裏面のキャンや無終端帯に沿って螺旋状に移動する場合、基板はキャンや無終端帯の上を螺旋軸方向に滑りながら移動する必要があり、摩擦により基板に傷を与える可能性があるが、本実施形態においては、キャンとの接触を少なく抑えることができるため、基板の傷を抑制することができるほか、図7に示すようなガイド(21)を設けたキャンを用い、図8に示すようにガイドの間を基板が通過する構造にすることにより、容易に基板の螺旋走行時の蛇行を抑制することができる。このとき、基板とキャンに接触するときに基板のエッジを傷つけないように、ガイドには図8に示すようにテーパーをつけることが望ましい。この場合、薄膜形成中に基板裏面に蒸発粒子が回りこむことを防ぐため基板裏面に遮蔽板(20)を設けることが好ましい。また、この場合、基板裏面の遮蔽板には基板を冷却するための機構を備えることができる。たとえば、薄膜形成中に基板裏面の遮蔽板(20)に水やガスなどの冷媒を通じ、ガス導入穴を設け、基板裏面の遮蔽板(20)と基板の間にガ
スを導入することにより、基板から基板裏面の遮蔽板への伝熱を促進することにより基板を冷却することができる。
(柱状粒子について)
図9は本発明により作成可能な極板30の断面図を示す。 極板30は主に基板22と柱状粒子25からなる。
The unwind roller (18) and the take-up roller (13) can control their rotation, thereby applying tension to the substrate (22) to evenly align the substrate on the endless belt. Yes. A part of the transport system, for example, a driving motor or the like may be disposed outside the vacuum vessel (12), and driving force may be introduced into the vacuum vessel (12) via a rotation introduction terminal.
(Embodiment 3)
In the present invention, as shown in FIG. 6, the substrate may be directly spirally wound around the plurality of cans (16) without using the endless belt (17). As shown in the first and second embodiments, when the substrate moves spirally along the back surface or endless belt, the substrate needs to move while sliding on the can or endless belt in the direction of the spiral axis. Although there is a possibility of scratching the substrate due to friction, in this embodiment, since the contact with the can can be reduced, the scratch on the substrate can be suppressed, and a guide as shown in FIG. By using the can provided with (21) and having a structure in which the substrate passes between the guides as shown in FIG. 8, meandering during spiral traveling of the substrate can be easily suppressed. At this time, it is desirable to taper the guide as shown in FIG. 8 so as not to damage the edge of the substrate when contacting the substrate and the can. In this case, it is preferable to provide a shielding plate (20) on the back surface of the substrate in order to prevent evaporation particles from flowing around the back surface of the substrate during thin film formation. In this case, the shielding plate on the back surface of the substrate can be provided with a mechanism for cooling the substrate. For example, during the formation of the thin film, a gas introduction hole is provided in the shielding plate (20) on the back surface of the substrate by passing a coolant such as water or gas, and the gas is introduced between the shielding plate (20) on the back surface of the substrate and the substrate. The substrate can be cooled by promoting heat transfer from the substrate to the shielding plate on the back surface of the substrate.
(About columnar particles)
FIG. 9 shows a cross-sectional view of an electrode plate 30 that can be made according to the present invention. The electrode plate 30 mainly comprises a substrate 22 and columnar particles 25.

本発明によれば、図3に示すように遮蔽板を用いて入射角を制限した成膜領域を薄膜形成源の中心と冷却キャンの中心を結ぶ線の両側に設けることにより、基板長手方向に対して斜め方向から交互に薄膜形成粒子が付着していくため、ジグザグ形状の柱状粒子を成長させることができ、一方向にのみ傾斜した柱状粒子を形成した場合と比較して、粒子成長に伴う粒子幅の広がりを抑制することができる。薄膜形成粒子の入射方向が基板長手方向から傾いているため、それに伴い形成されるジグザグ形状も斜め方向を向くことから、この装置で作成される極板の断面は図9に示すとおり、基板長手方向、幅方向の両方の断面においてジグザグ構造が観察される。   According to the present invention, as shown in FIG. 3, by forming a film formation region with an incident angle limited by using a shielding plate on both sides of a line connecting the center of the thin film formation source and the center of the cooling can, On the other hand, since the thin film-forming particles adhere alternately from the diagonal direction, zigzag-shaped columnar particles can be grown, which is accompanied by particle growth as compared with the case where columnar particles inclined only in one direction are formed. The spread of the particle width can be suppressed. Since the incident direction of the thin film forming particles is tilted from the longitudinal direction of the substrate, the zigzag shape formed with it is also directed obliquely, so the cross section of the electrode plate created by this apparatus is as shown in FIG. A zigzag structure is observed in both the cross section in the direction and the width direction.

また、本発明の装置を用いた場合、基板を往復させる、または図10に示すように薄膜形成部を複数個持たせることにより、長手方向だけでなく、幅方向にも多段のジグザグ構造を作成することができるのは自明であり、薄膜形成部のキャンや無終端帯に基板を巻きつける回数を変化させることにより、柱状粒子の長手方向の折れ曲がり回数と幅方向の折れ曲がり回数の比を変化させることができるのは言うまでもない。
(極板について)
基板上に突起を作成し、突起に対してナナメ上から粒子を付着させることにより突起の影を利用して柱状粒子を形成する場合、基板上の突起がない部分を突起の影の中に収めるため、突起は原料粒子の入射方向、入射方向に垂直な方向では密に配置し、特に、入射方向に対しては、隙間が存在してはならない。一方、粒子の入射方向に対して傾いた方向では比較的大きな隙間を作成しても、粒子形状に影響を与えない。
When the apparatus of the present invention is used, a multi-stage zigzag structure is created not only in the longitudinal direction but also in the width direction by reciprocating the substrate or by providing a plurality of thin film forming portions as shown in FIG. It is obvious that it is possible to change the ratio of the number of bending in the longitudinal direction and the number of bending in the width direction of the columnar particles by changing the number of times the substrate is wound around the can or endless belt in the thin film forming portion. Needless to say, you can.
(About the electrode plate)
When forming projections on a substrate and forming columnar particles using the shadows of the projections by attaching particles from the slug to the projections, the portion without projections on the substrate is placed in the shadows of the projections. Therefore, the protrusions are densely arranged in the incident direction of the raw material particles and the direction perpendicular to the incident direction, and in particular, there should be no gap in the incident direction. On the other hand, even if a relatively large gap is created in a direction inclined with respect to the incident direction of the particles, the particle shape is not affected.

従来のキャンに1回のみ基板を巻きつけ、キャンの下に位置する薄膜形成源から粒子を入射させる方法では、粒子は基板長手方向から入射するため、図11のような、長手方向から見たときに基板の突起やその上に形成される柱状粒子が存在しないラインがない基板であったが、本発明においては、粒子の入射方向は必ず基板長手方向に対して傾斜するため、巻きつけ角度を調整することで、たとえば、図12に示すように、基板長手方向に大きな突起間距離を持つ基板も使用することが可能である。   In a method in which a substrate is wound only once on a conventional can and particles are incident from a thin film formation source located under the can, since the particles are incident from the longitudinal direction of the substrate, as seen from the longitudinal direction as shown in FIG. Sometimes the substrate does not have a line on which the protrusions of the substrate and the columnar particles formed thereon exist, but in the present invention, the incident direction of the particles is always inclined with respect to the longitudinal direction of the substrate, so the winding angle For example, as shown in FIG. 12, it is possible to use a substrate having a large inter-projection distance in the longitudinal direction of the substrate.

このような基板長手方向に大きな突起間距離を持つ基板を用いた場合、基板長手方向に薄膜形成を行っても柱状粒子が付着しないラインを作ることができるため、スリッターの歯をこのライン上を移動することで、スリットが容易になる。   When a substrate having a large inter-protrusion distance in the longitudinal direction of the substrate is used, a line in which columnar particles do not adhere can be formed even if thin film formation is performed in the longitudinal direction of the substrate. By moving, the slit becomes easy.

本発明の真空薄膜形成装置は、薄膜形成膜を利用した、電池などの電気化学デバイス、フォトニック素子や光回路部品などの光学デバイス、センサーなど、各種デバイス素子等、電気化学素子全般への応用が可能であるが、特に充放電に伴う膨張が大きな活物質のエネルギー密度を有効に引き出すための電池用極板を提供するのに有用である。   The vacuum thin film forming apparatus of the present invention is applied to all electrochemical elements such as electrochemical devices such as batteries, optical devices such as photonic elements and optical circuit parts, sensors, etc., using thin film forming films. In particular, it is useful for providing a battery electrode plate for effectively extracting the energy density of an active material having a large expansion associated with charge / discharge.

本発明の実施の形態1における薄膜形成装置を示す模式図Schematic diagram showing a thin film forming apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷却キャンの使用状態を示す側面図The side view which shows the use condition of the cooling can in Embodiment 1 of this invention 本発明の実施の形態1における冷却キャン、遮蔽板、薄膜形成源の位置関係を示す模式図The schematic diagram which shows the positional relationship of the cooling can, the shielding board, and thin film formation source in Embodiment 1 of this invention 本発明の実施の形態1における別の薄膜形成装置の構成例を示す模式図The schematic diagram which shows the structural example of another thin film formation apparatus in Embodiment 1 of this invention 本発明の実施の形態2における薄膜形成装置を示す模式図Schematic diagram showing a thin film forming apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態3における薄膜形成装置を示す模式図Schematic diagram showing a thin film forming apparatus according to Embodiment 3 of the present invention. 本発明の実施の形態3におけるガイドつきキャンを示す模式図The schematic diagram which shows the can with a guide in Embodiment 3 of this invention 本発明の実施の形態3におけるガイドつきキャンを使用した薄膜形成装置を示す模式図The schematic diagram which shows the thin film forming apparatus using the can with a guide in Embodiment 3 of this invention 本発明の実施により形成される基板上の柱状粒子を示す模式図The schematic diagram which shows the columnar particle on the board | substrate formed by implementation of this invention 本発明における薄膜形成装置の構成例を示す模式図The schematic diagram which shows the structural example of the thin film formation apparatus in this invention 従来の薄膜形成装置にて使用される基板の一例を示す模式図Schematic diagram showing an example of a substrate used in a conventional thin film forming apparatus 本発明の実施にて使用される基板の一例を示す模式図The schematic diagram which shows an example of the board | substrate used by implementation of this invention

符号の説明Explanation of symbols

1 真空槽
2 拡散ポンプ
3 ロータリーポンプ
4 巻き出しロール
5 巻き取りロール
6 フィルム
7 キャン
8 薄膜形成源
9 電子線源
10 遮蔽板
11 排気ポンプ
12 真空槽
13 巻き取りロール
15 搬送ローラ
16 冷却キャン
17 無終端帯
18 巻き出しロール
19 薄膜形成源
20 遮蔽板
21 ガイド
22 基板
23 薄膜形成部
24 ガス導入管
25 柱状粒子
26 基板上の突起
27 基板長手方向
30 極板
θ2 薄膜形成源から基板への薄膜形成粒子の最大入射角
θ3 薄膜形成源から基板への薄膜形成粒子の最小入射角
1 Vacuum chamber
2 Diffusion pump
3 Rotary pump
4 Unwinding roll
5 Take-up roll
6 Film 7 Can
8 Thin film source 9 Electron beam source
DESCRIPTION OF SYMBOLS 10 Shielding plate 11 Exhaust pump 12 Vacuum tank 13 Winding roll 15 Conveying roller 16 Cooling can 17 Endless belt 18 Unwinding roll 19 Thin film forming source 20 Shielding plate 21 Guide 22 Substrate 23 Thin film forming part 24 Gas introduction tube 25 Columnar particle 26 Projection on substrate 27 Longitudinal direction of substrate 30 Polar plate θ2 Maximum incident angle of thin film forming particle from thin film forming source to substrate θ3 Minimum incident angle of thin film forming particle from thin film forming source to substrate

Claims (7)

真空中で、長尺基板上に、薄膜を形成する薄膜形成装置であって、
前記基板を搬送させる搬送機構と、
前記搬送中の基板表面上に、薄膜を形成する薄膜形成源と、
前記基板をらせん状に複数回巻きつける冷却キャンと、
前記搬送機構と、前記薄膜源と、前記冷却キャンとを収容する真空容器と、
を有し、
前記冷却キャンの円周方向の装置断面において、第1の薄膜形成部と、第2の薄膜形成部とを有し、
前記第1の薄膜形成部の薄膜形成面および前記第2の薄膜形成部の薄膜形成面が、前記薄膜形成源の蒸発面の中心を通る法線の両側に配置される、
薄膜形成装置
A thin film forming apparatus for forming a thin film on a long substrate in a vacuum,
A transport mechanism for transporting the substrate;
A thin film forming source for forming a thin film on the surface of the substrate being transported;
A cooling can that spirally winds the substrate multiple times;
A vacuum vessel that houses the transport mechanism, the thin film source, and the cooling can;
Have
In the apparatus cross section in the circumferential direction of the cooling can, it has a first thin film forming portion and a second thin film forming portion,
The thin film forming surface of the first thin film forming portion and the thin film forming surface of the second thin film forming portion are disposed on both sides of a normal passing through the center of the evaporation surface of the thin film forming source,
Thin film forming equipment
真空中で、長尺基板上に、薄膜を形成する薄膜形成装置であって、
前記基板を搬送させる搬送機構と、
前記搬送中の基板表面上に、薄膜を形成する薄膜形成源と、
前記基板をらせん状に複数回巻きつける無終端帯と、
前記搬送機構と、前記薄膜形成源と、前記無終端帯とを収容する真空容器とを有し、
前記無終端帯の周方向の装置断面において、第1の薄膜形成部と、第2の薄膜形成部とを有し、
前記第1の薄膜形成部の薄膜形成面および前記第2の薄膜形成部の薄膜形成面が、前記薄膜形成源の蒸発面の中心を通る法線の両側に配置されることを特徴とする、
薄膜形成装置
A thin film forming apparatus for forming a thin film on a long substrate in a vacuum,
A transport mechanism for transporting the substrate;
A thin film forming source for forming a thin film on the surface of the substrate being transported;
An endless belt for spirally winding the substrate, and
The transport mechanism, the thin film forming source, and a vacuum vessel that houses the endless belt,
In the device cross section in the circumferential direction of the endless belt, it has a first thin film forming portion and a second thin film forming portion,
The thin film forming surface of the first thin film forming portion and the thin film forming surface of the second thin film forming portion are disposed on both sides of a normal passing through the center of the evaporation surface of the thin film forming source,
Thin film forming equipment
真空中で、長尺基板上に、薄膜を形成する薄膜形成装置であって、
前記長尺基板を搬送させる搬送機構と、
前記搬送中の基板表面上に、薄膜を形成する薄膜形成源と、
複数のキャンにより構成され、前記基板をらせん状に複数回巻きつける直線状の薄膜形成部と、
前記搬送機構と、前記薄膜形成源と、薄膜形成部とを収容する真空容器とを有し、
前記薄膜形成部が螺旋状に巻かれた基板の螺旋軸に垂直な装置断面において、第1の薄膜形成部と、第2の薄膜形成部との2つの薄膜形成部により構成され、
前記第1の薄膜形成部の薄膜形成面および前記第2の薄膜形成部の薄膜形成面が、前記薄膜形成源の蒸発面の中心を通る法線の両側に配置されることを特徴とする、
薄膜形成装置
A thin film forming apparatus for forming a thin film on a long substrate in a vacuum,
A transport mechanism for transporting the long substrate;
A thin film forming source for forming a thin film on the surface of the substrate being transported;
It is composed of a plurality of cans, and a linear thin film forming unit that spirally winds the substrate a plurality of times,
A vacuum container that houses the transport mechanism, the thin film forming source, and the thin film forming unit;
In the device cross section perpendicular to the spiral axis of the substrate on which the thin film forming portion is spirally wound, the thin film forming portion is composed of two thin film forming portions, a first thin film forming portion and a second thin film forming portion,
The thin film forming surface of the first thin film forming portion and the thin film forming surface of the second thin film forming portion are disposed on both sides of a normal passing through the center of the evaporation surface of the thin film forming source,
Thin film forming equipment
前記薄膜形成源の中心から前記基板を結ぶ直線と、前記直線が前記基板と交わる点の前記基板の薄膜形成部に立てた法線とでなす角度を入射角と定義する時、
前記入射角の範囲が45°から75°であることを特徴とする、
請求項1から3のいずれかに記載の薄膜形成装置。
When defining an angle formed by a straight line connecting the substrate from the center of the thin film forming source and a normal line standing at a thin film forming portion of the substrate at a point where the straight line intersects the substrate, as an incident angle,
The range of the incident angle is 45 ° to 75 °,
The thin film forming apparatus according to claim 1.
前記第1および第2の薄膜形成部において、基板の裏面に遮蔽板を備えることを特徴とした請求項3に記載の薄膜形成装置。   The thin film forming apparatus according to claim 3, wherein the first and second thin film forming units include a shielding plate on a back surface of the substrate. 前記遮蔽板が基板を冷却するための機構を備えることを特徴とした、請求項5に記載の薄膜形成装置。   The thin film forming apparatus according to claim 5, wherein the shielding plate includes a mechanism for cooling the substrate. 前記基板を冷却する機構として冷却した遮蔽板と基板との間にガスを導入する機構を備えることを特徴とした請求項3に記載の薄膜形成装置。   The thin film forming apparatus according to claim 3, further comprising a mechanism for introducing a gas between the cooled shielding plate and the substrate as a mechanism for cooling the substrate.
JP2008056100A 2008-03-06 2008-03-06 Thin film forming apparatus Pending JP2009209438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056100A JP2009209438A (en) 2008-03-06 2008-03-06 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056100A JP2009209438A (en) 2008-03-06 2008-03-06 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JP2009209438A true JP2009209438A (en) 2009-09-17

Family

ID=41182873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056100A Pending JP2009209438A (en) 2008-03-06 2008-03-06 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JP2009209438A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122987A1 (en) 2013-02-08 2014-08-14 日東電工株式会社 Method for producing transparent gas-barrier film, device for producing transparent gas-barrier film, and organic electroluminescence device
WO2015107755A1 (en) 2014-01-14 2015-07-23 日東電工株式会社 Organic electroluminescent device and method for manufacturing organic electroluminescent device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122987A1 (en) 2013-02-08 2014-08-14 日東電工株式会社 Method for producing transparent gas-barrier film, device for producing transparent gas-barrier film, and organic electroluminescence device
WO2015107755A1 (en) 2014-01-14 2015-07-23 日東電工株式会社 Organic electroluminescent device and method for manufacturing organic electroluminescent device

Similar Documents

Publication Publication Date Title
JP4324239B2 (en) Vapor deposition apparatus and film manufacturing method using vapor deposition apparatus
KR101226390B1 (en) Thin film forming apparatus and thin film forming method
US8697582B2 (en) Substrate conveying roller, thin film manufacturing device, and thin film manufacturing method
JP4369531B2 (en) Thin film forming apparatus and thin film forming method
EP2805358B1 (en) Systems for forming photovoltaic cells on flexible substrates
WO2012124246A1 (en) Thin-film production method and production device
KR101226287B1 (en) Thin film forming apparatus and forming method for thin film
US20150333289A1 (en) Method for producing transparent gas barrier film, apparatus for producing transparent gas barrier film, and organic electroluminescence device
KR20180024412A (en) method for sputtering using roll to roll deposition system
JP2011165403A5 (en)
JP2009209438A (en) Thin film forming apparatus
JP4899793B2 (en) Vacuum deposition equipment
JP2009179856A (en) Vacuum deposition system
JP2013008602A (en) Manufacturing apparatus and manufacturing method of negative electrode for lithium secondary battery
JP2023551406A (en) protective layer source
JP2008231454A (en) Vacuum vapor-deposition apparatus
JP3485297B2 (en) Thin film manufacturing method and manufacturing apparatus
TWI825433B (en) Nozzle assembly for guiding an evaporated material to a substrate, evaporation source and deposition system and method for depositing an evaporated material onto a substrate
JP2008195979A (en) Film deposition system and film deposition method
JPH06330319A (en) Thin film production system
JP2004218008A (en) Vapor deposition method, and vapor deposition system
CN117721434A (en) Evaporation winding mechanism and vacuum coating machine