JP2009208076A - Adsorbent, and water purifier using the same - Google Patents

Adsorbent, and water purifier using the same Download PDF

Info

Publication number
JP2009208076A
JP2009208076A JP2009119763A JP2009119763A JP2009208076A JP 2009208076 A JP2009208076 A JP 2009208076A JP 2009119763 A JP2009119763 A JP 2009119763A JP 2009119763 A JP2009119763 A JP 2009119763A JP 2009208076 A JP2009208076 A JP 2009208076A
Authority
JP
Japan
Prior art keywords
adsorbent
water purifier
water
particles
mother
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009119763A
Other languages
Japanese (ja)
Other versions
JP5429931B2 (en
Inventor
Naoya Kanno
直也 官野
Masahiko Taneike
昌彦 種池
Hatsubi Takeda
はつ美 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009119763A priority Critical patent/JP5429931B2/en
Publication of JP2009208076A publication Critical patent/JP2009208076A/en
Application granted granted Critical
Publication of JP5429931B2 publication Critical patent/JP5429931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent having excellent strength and adsorbing performance, and particularly suitable for a purifier, and to provide a water purifier using the same. <P>SOLUTION: Since the adsorbent in which child particles comprising either an aluminosilicate based inorganic ion exchanger or a titanium silicate based compound or a calcium phosphate based compound are fixed to the surface of a mother particle made of a thermoplastic resin is not subjected to high temperature heat history, while maintaining high adsorbing performance, its strength is excellent as well. Further, in the method for producing the adsorbent, there is no need of applying high temperature, then the adsorbent can be efficiently produced in simple equipment with high efficiency. Further, the water purifier using the adsorbent as a filter medium can obtain safe water free from harmful matter such as heavy metal over a long period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、強度及び吸着性能に優れ、特に浄水器用途に適した吸着剤と、これを用いた浄水器に関する。   The present invention relates to an adsorbent that is excellent in strength and adsorption performance, particularly suitable for water purifier applications, and a water purifier using the adsorbent.

鉛、鉄、銅、ニッケル、亜鉛、クロム、カドミウムなどの重金属類は、地中、配水管などから溶出し、井戸水、水道水中にイオンの形態として含まれている可能性がある。これらを除去する方法については様々な検討がなされている。   Heavy metals such as lead, iron, copper, nickel, zinc, chromium, and cadmium are eluted from the ground and distribution pipes and may be contained in the form of ions in well water and tap water. Various studies have been made on methods for removing these.

これら重金属類の吸着剤としては、例えば合成ゼオライト、非晶質のチタンケイ酸塩等が知られている(例えば特許文献1、特許文献2)。   As these heavy metal adsorbents, for example, synthetic zeolite, amorphous titanium silicate and the like are known (for example, Patent Document 1 and Patent Document 2).

一般に合成ゼオライト等の吸着剤は数十μm以下の微小結晶で合成されており、そのままの状態では通水時に圧力損失の増大を招くので、浄水器の吸着剤としての使用は難しい。従って、適度な粒径範囲に吸着剤を造粒することが行われている。   In general, adsorbents such as synthetic zeolite are synthesized with microcrystals of several tens of μm or less, and in that state, the pressure loss increases when water is passed through, so that it is difficult to use as an adsorbent for water purifiers. Therefore, the adsorbent is granulated in an appropriate particle size range.

造粒方法としては、バインダー、結合剤を用いて微粒子同士を結合し、粒径を増大させる方法が知られており、バインダーの例としてはベントナイト、ケイソウ土、コロイダルシリカ、セルロース類、アルギン酸塩等が用いられている(例えば特許文献3)。   As a granulation method, a method of binding fine particles with a binder and a binder to increase the particle size is known. Examples of the binder include bentonite, diatomaceous earth, colloidal silica, celluloses, alginates, and the like. Is used (for example, Patent Document 3).

ベントナイトやカオリン等の粘土鉱物と、合成ゼオライト微粒子と水を適当な配合割合で混合し、600〜800℃の高温で焼成すると、ベントナイトなどの粘土鉱物は700℃付近で焼結するので、合成ゼオライト微粒子の結合剤の役割を果たす。   When clay minerals such as bentonite and kaolin, synthetic zeolite fine particles and water are mixed at an appropriate blending ratio and calcined at a high temperature of 600 to 800 ° C., clay minerals such as bentonite sinter at around 700 ° C., so synthetic zeolite Acts as a binder for fine particles.

しかしながら、吸着剤を粘土鉱物と共に高い温度で加熱する方法は、吸着剤の構造の崩壊等により、吸着性能の低下が生じる可能性があった。   However, the method of heating the adsorbent together with the clay mineral at a high temperature may cause a decrease in the adsorption performance due to the collapse of the adsorbent structure.

また、Ca型及び/またはNa型のCMC(カルボキシメチルセルロース)を使用する
方法や、有機系重合体エマルジョンまたはラテックスを使用して造粒する方法も知られて
いる(例えば特許文献4、特許文献5)。
In addition, a method using Ca type and / or Na type CMC (carboxymethylcellulose) and a method of granulating using an organic polymer emulsion or latex are also known (for example, Patent Document 4 and Patent Document 5). ).

しかしながら、CMC等の有機物を用いた場合、高温での熱処理が要らない反面、有機化合物やその添加剤の溶出の可能性があり、浄水器用充填材としては適当でない場合がある。また、少量の有機系バインダーにより造粒した粉末ゼオライトは、浄水器に使用した場合、十分な強度が得られず微粒子に崩壊する場合もある。   However, when an organic substance such as CMC is used, heat treatment at a high temperature is not required, but there is a possibility that an organic compound or its additive may be eluted, and it may not be suitable as a filler for a water purifier. In addition, powdered zeolite granulated with a small amount of an organic binder, when used in a water purifier, may not have sufficient strength and may collapse into fine particles.

特開平7−204630号公報Japanese Patent Laid-Open No. 7-204630 特表平6−504714号公報JP-T 6-504714 特開昭60−14936号公報Japanese Patent Laid-Open No. 60-14936 特許第2756567号公報Japanese Patent No. 2756567 特開平7−144913号公報Japanese Patent Laid-Open No. 7-144913

本発明は、強度及び吸着性能に優れ、特に浄水器用途に適した吸着剤と、これを用いた浄水器を提供することを目的とする。   An object of the present invention is to provide an adsorbent which is excellent in strength and adsorption performance and is particularly suitable for water purifier applications, and a water purifier using the adsorbent.

即ち本発明の第一の要旨は、熱可塑性樹脂からなる母粒子の表面に、アルミノケイ酸塩系無機イオン交換体、ケイ酸チタニウム系化合物又はリン酸カルシウム系化合物のいずれかを含む子粒子が、母粒子の表面の溶融により接着又は圧着されてなる吸着剤である。   That is, the first gist of the present invention is that a child particle containing any one of an aluminosilicate inorganic ion exchanger, a titanium silicate compound, or a calcium phosphate compound on the surface of a mother particle made of a thermoplastic resin is a mother particle. The adsorbent is bonded or pressure-bonded by melting the surface of the adsorbent.

また、本発明の第二要旨は、上記吸着剤を濾材に用いた浄水器である。   The second gist of the present invention is a water purifier using the adsorbent as a filter medium.

本発明の吸着剤は、熱可塑性樹脂からなる母粒子の表面に、吸着性能を有する子粒子が固定化されていることから、高い吸着性能を維持しつつ、強度にも優れている。
また、本発明の吸着剤の製造方法は、極度に高い温度で造粒する必要が無いため、より簡便な設備で効率よく吸着剤を製造することができる。
また、本発明の吸着剤を濾材として用いた浄水器は、重金属等の有害物が除去された安全な水を長期に亘って得ることができる。
The adsorbent of the present invention is excellent in strength while maintaining high adsorption performance because child particles having adsorption performance are immobilized on the surface of mother particles made of a thermoplastic resin.
Moreover, since the manufacturing method of the adsorbent of this invention does not need to granulate at extremely high temperature, it can manufacture adsorbent efficiently with simpler equipment.
Moreover, the water purifier using the adsorbent of the present invention as a filter medium can obtain safe water from which harmful substances such as heavy metals have been removed over a long period of time.

本発明の浄水器の一例を示す模式図である。It is a schematic diagram which shows an example of the water purifier of this invention.

以下、本発明を詳しく説明する。
本発明の吸着剤は、熱可塑性樹脂であるポリオレフィン樹脂からなる母粒子の表面に、吸着性能を有する子粒子が固定化されてなる。ここで、ポリオレフィン樹脂の種類は特に限定はされず、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等が例として挙げられる。
中でも、ポリエチレン樹脂は融点が低く、従って低い加熱温度で造粒できるため好ましい。
The present invention will be described in detail below.
The adsorbent of the present invention is formed by immobilizing child particles having adsorption performance on the surface of mother particles made of a polyolefin resin, which is a thermoplastic resin. Here, the kind of polyolefin resin is not particularly limited, and examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, polyacrylonitrile resin, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer, and the like.
Among them, polyethylene resin is preferable because it has a low melting point and can be granulated at a low heating temperature.

本発明に使用する吸着性能を有する子粒子としては、重金属、中でも鉛の吸着性能が優れているアルミノケイ酸塩系無機イオン交換体、ケイ酸チタニウム系化合物、リン酸カルシウム系化合物の少なくとも1種類を含む。
本発明の吸着剤は、一つの母粒子に1種類の子粒子を固定化しても、複数種類の子粒子を固定化しても構わない。
The child particles having the adsorption performance used in the present invention include at least one of an aluminosilicate inorganic ion exchanger, a titanium silicate compound, and a calcium phosphate compound that are excellent in adsorption performance of heavy metals, especially lead.
In the adsorbent of the present invention, one kind of child particle may be fixed to one mother particle, or a plurality of kinds of child particles may be fixed.

アルミノケイ酸塩系無機イオン交換体としては、合成ゼオライトであるモレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5A、モレキュラーシーブ13X、フォージャサイト型ゼオライト、モルデナイト型ゼオライトが挙げられる。これら合成ゼオライトは重金属イオンの吸着能力が高く、特にモレキュラーシーブ5Aは、溶解性鉛イオンの吸着性に優れている。   Examples of the aluminosilicate inorganic ion exchanger include molecular sieve 3A, molecular sieve 4A, molecular sieve 5A, molecular sieve 13X, faujasite type zeolite, and mordenite type zeolite, which are synthetic zeolites. These synthetic zeolites have a high adsorption capacity for heavy metal ions. In particular, the molecular sieve 5A is excellent in the adsorption of soluble lead ions.

吸着性能を有する子粒子は、比表面積が100m/g以上であることが好ましい。特に比表面積が300m/g以上のものは、カルシウム、マグネシウム等の競合イオンの存在下においても、重金属の選択的吸着性能に優れているためより好ましい。 The child particles having adsorption performance preferably have a specific surface area of 100 m 2 / g or more. In particular, those having a specific surface area of 300 m 2 / g or more are more preferable because they have excellent heavy metal selective adsorption performance even in the presence of competing ions such as calcium and magnesium.

リン酸カルシウム系化合物としては、ヒドロキシアパタイト、リン酸三カルシウム、リン酸四カルシウム等が挙げられる。これらリン酸カルシウム系化合物は、リン酸塩水溶液とカルシウム塩水溶液を反応させることにより合成することができる。   Examples of calcium phosphate compounds include hydroxyapatite, tricalcium phosphate, and tetracalcium phosphate. These calcium phosphate compounds can be synthesized by reacting an aqueous phosphate solution and an aqueous calcium salt solution.

浄水器は通常、1〜5L/分程度の流量が要求される。このため、吸着剤を浄水器に使用する場合、この流量を配慮した大きさが必要であり、平均粒径30〜1500μmの顆粒状のものが好ましく用いられる。平均粒径が30μmより小さいと、濾過抵抗が上昇し通水性が低下する傾向にある。一方、平均粒径が1500μmより大きいと、粒子間の空隙が大きくなり、除去性能が低くなる傾向が見られる。吸着剤の平均粒径は50〜750μmの範囲がより好ましい。
なお、ここでいう吸着剤の平均粒径とは、母粒子に子粒子が固定化された状態での吸着剤全体の粒径をいうものであり、標準ふるいを用いて篩い分けを行うことによって求めることができる。
The water purifier usually requires a flow rate of about 1 to 5 L / min. For this reason, when using an adsorption agent for a water purifier, the magnitude | size which considered this flow volume is required, and the granular thing with an average particle diameter of 30-1500 micrometers is used preferably. When the average particle size is smaller than 30 μm, the filtration resistance increases and the water permeability tends to decrease. On the other hand, when the average particle size is larger than 1500 μm, the voids between the particles become large and the removal performance tends to be lowered. The average particle diameter of the adsorbent is more preferably in the range of 50 to 750 μm.
The average particle size of the adsorbent here refers to the particle size of the entire adsorbent in a state in which the child particles are immobilized on the mother particles, and by sieving using a standard sieve Can be sought.

母粒子の平均粒径は、大きすぎると吸着剤の粒径が大きくなりすぎるため、1300μm以下が好ましく、750μm以下がより好ましい。一方、小さすぎると表面に子粒子を固定化し難くなるため、20μm以上が好ましく、50μm以上がより好ましい。   If the average particle size of the mother particles is too large, the particle size of the adsorbent becomes too large, preferably 1300 μm or less, and more preferably 750 μm or less. On the other hand, if the particle size is too small, it becomes difficult to immobilize the child particles on the surface.

子粒子の平均粒径が大きすぎると、母粒子表面への固定化し難くなり、かつ吸着性能が低下する傾向にある。従って、子粒子の平均粒径は100μm以下が好ましく、50μm以下がより好ましい。一方、子粒子の平均粒径が小さすぎると、母粒子に対して固定化できる子粒子の量が減り、吸着剤の体積あたりの性能が低下する傾向にある。従って子粒子の平均粒径は5μm以上が好ましく、20μm以上がより好ましい。   If the average particle size of the child particles is too large, it will be difficult to fix to the surface of the mother particles, and the adsorption performance tends to be lowered. Therefore, the average particle size of the child particles is preferably 100 μm or less, and more preferably 50 μm or less. On the other hand, if the average particle size of the child particles is too small, the amount of child particles that can be immobilized with respect to the mother particles is reduced, and the performance per volume of the adsorbent tends to be reduced. Therefore, the average particle size of the child particles is preferably 5 μm or more, and more preferably 20 μm or more.

吸着剤全体の体積に対する母粒子の体積の割合は、少なすぎると子粒子を表面に固定化する結合力が弱くなる傾向にある。従って、母粒子の体積をA、子粒子の体積をBとしたとき、A/(A+B)が0.25以上であることが好ましく、0.40以上であることがより好ましい。   If the ratio of the volume of the mother particles to the total volume of the adsorbent is too small, the binding force for immobilizing the child particles on the surface tends to be weak. Therefore, when the volume of the mother particle is A and the volume of the child particle is B, A / (A + B) is preferably 0.25 or more, and more preferably 0.40 or more.

一方母粒子の体積の割合が多すぎると、母粒子に対して固定化できる子粒子の量が減り、吸着剤の体積あたりの性能が低下する傾向にある。従って、A/(A+B)が0.95以下であることが好ましく、0.90以下であることがより好ましい。   On the other hand, when the volume ratio of the mother particles is too large, the amount of child particles that can be immobilized on the mother particles decreases, and the performance per volume of the adsorbent tends to decrease. Therefore, A / (A + B) is preferably 0.95 or less, and more preferably 0.90 or less.

なお、母粒子及び子粒子の体積は、例えば以下の手順により求めることができる。
1.乾燥させた吸着剤の質量を測定する。
2.母粒子が燃焼し揮発する温度以上の強熱により吸着剤を加熱し、残った質量を測定して子粒子の質量とする。
3.加熱前の吸着剤の質量から子粒子の質量を差し引いて母粒子の質量とする。
4.母粒子及び子粒子それぞれについて、密度と質量から体積を算出する。
In addition, the volume of a mother particle and a child particle can be calculated | required with the following procedures, for example.
1. The mass of the dried adsorbent is measured.
2. The adsorbent is heated by high heat above the temperature at which the mother particles burn and volatilize, and the remaining mass is measured to obtain the mass of the child particles.
3. The mass of the child particles is subtracted from the mass of the adsorbent before heating to obtain the mass of the mother particles.
4). For each of the mother particles and the child particles, the volume is calculated from the density and mass.

吸着剤の微粒子同士を結合させる接着剤としてバインダーを使用していた従来技術では、吸着性能を有さないバインダーの配合割合をできるだけ少なくしていたため、造粒後の強度が不十分となりがちであった。これに対し本発明では、熱可塑性樹脂を母粒子として使用し、母粒子表面に、強度の低下を招くことなく吸着剤の子粒子を緻密に固定化させることが可能になる。従って、本発明の吸着剤は、十分な吸着性能を保ちつつ、十分な強度をも有している。   In the conventional technology that uses a binder as an adhesive for bonding adsorbent fine particles to each other, the blending ratio of the binder that does not have adsorption performance is reduced as much as possible, so the strength after granulation tends to be insufficient. It was. On the other hand, in this invention, it becomes possible to fix | immobilize the child particle | grains of an adsorbent precisely on the surface of a mother particle, without causing a fall of intensity | strength, using a thermoplastic resin as a mother particle. Therefore, the adsorbent of the present invention has sufficient strength while maintaining sufficient adsorption performance.

本発明の吸着剤の製造方法は、熱可塑性樹脂からなる母粒子の表面に吸着性能を有する子粒子を固定化するにあたって、溶融接着又は圧着により子粒子を固定化させるものである。
溶融接着を行う場合の方法としては、例えば熱風気流中に、母粒子と子粒子とを分散させながら加熱する方法が挙げられる。この方法は、母粒子表面に均一に子粒子を固定化できるため好ましい。この方法の製造装置としては、日本ニューマチック工業株式会社の型式SFS−3を例として挙げることができる。
The method for producing an adsorbent of the present invention is to immobilize child particles by fusion bonding or pressure bonding when immobilizing child particles having adsorption performance on the surface of mother particles made of a thermoplastic resin.
As a method for performing melt bonding, for example, a method of heating while dispersing the mother particles and the child particles in a hot air stream can be mentioned. This method is preferable because the child particles can be uniformly fixed on the surface of the mother particles. As a manufacturing apparatus of this method, model SFS-3 of Nippon Pneumatic Industry Co., Ltd. can be mentioned as an example.

加熱温度は、母粒子として使用する熱可塑性樹脂が結晶性の場合、その融点よりも10〜50℃高い温度で加熱すると、接着性が向上するため好ましい。一方、熱可塑性樹脂が非晶性の場合、Tgよりも10〜50℃高い温度で加熱するのが好ましい。   When the thermoplastic resin used as the mother particles is crystalline, heating is preferably performed at a temperature 10 to 50 ° C. higher than the melting point because the adhesiveness is improved. On the other hand, when the thermoplastic resin is amorphous, it is preferably heated at a temperature 10 to 50 ° C. higher than Tg.

圧着により子粒子を固定化させる場合の方法としては、例えば容器内に母粒子と子粒子を入れて、容器を回転させることによって遠心力を発生させる方法が挙げられる。具体的には、容器の内部にロータを配し、容器とロータの間に母粒子と子粒子とを分散させて、容器とロータとをそれぞれ反対方向に回転させる。このとき、容器及びロータの断面形状は共に楕円形が好ましい。   As a method for immobilizing the child particles by pressure bonding, for example, a method of generating centrifugal force by putting the mother particles and child particles in a container and rotating the container is mentioned. Specifically, a rotor is arranged inside the container, mother particles and child particles are dispersed between the container and the rotor, and the container and the rotor are rotated in opposite directions. At this time, the cross-sectional shapes of the container and the rotor are preferably elliptical.

この際の回転速度は、容器よりも楕円ロータを高速で回転させることが好ましい。容器の回転は、母粒子と子粒子を適度に分散させるために行うものであり、その回転速度は20〜250回転/分程度が好ましい。楕円ロータの回転は、容器と楕円ロータとの間に存在するそれぞれの粒子に圧縮力を加えるために行うものであり、その回転速度は1000〜5000回転/分程度が好ましい。
この方法は圧縮力を繰り返し加えることができるため、母粒子表面に均一に子粒子を固定化できる。この方法の製造装置としては、例えば株式会社徳寿工作所のシータ・コンポーザを挙げることができる。
In this case, the rotational speed of the elliptical rotor is preferably higher than that of the container. The container is rotated to disperse the mother particles and the child particles appropriately, and the rotation speed is preferably about 20 to 250 rotations / minute. The rotation of the elliptical rotor is performed to apply a compressive force to each particle existing between the container and the elliptical rotor, and the rotation speed is preferably about 1000 to 5000 rotations / minute.
Since this method can repeatedly apply a compressive force, the child particles can be uniformly immobilized on the surface of the mother particles. As a manufacturing apparatus of this method, for example, theta composer of Tokuju Corporation can be cited.

この他に、例えば母粒子と子粒子とを容器に入れ、撹拌しながら加熱する方法、容器を振盪させながら加熱する方法等によって製造することもできる。   In addition to this, for example, the mother particles and the child particles can be produced by putting them in a container and heating them with stirring, or heating them while shaking the containers.

本発明の吸着剤は、鉛吸着量が150mg/g以上とすること、圧縮強度が1.0N/mm以上とすることによって、浄水器に用いた際に十分な強度を備え、従って通水により破壊されたりすることなく、かつ良好な鉛吸着性能を付与できるため好ましい。なお、鉛の吸着量(mg/g)とは、鉛を含む水溶液に、吸着剤を24時間浸漬させた際に、吸着剤が1g当たり吸着する鉛の量をいう。
具体的には、例えば硝酸鉛水溶液を鉛濃度200mg/Lとなるように調製して三角フラスコに200ml分取し、吸着剤100mgを添加し、振とうさせた後、24時間後にフィルターで濾過し、濾液水中の残留鉛濃度を測定することによって鉛吸着量を求めることが出来る。
The adsorbent of the present invention has sufficient strength when used in a water purifier by having a lead adsorption amount of 150 mg / g or more and a compressive strength of 1.0 N / mm 2 or more. It is preferable because it can be imparted with good lead adsorption performance without being broken by. The lead adsorption amount (mg / g) refers to the amount of lead adsorbed per gram when the adsorbent is immersed in an aqueous solution containing lead for 24 hours.
Specifically, for example, an aqueous lead nitrate solution is prepared so as to have a lead concentration of 200 mg / L, and 200 ml is taken into an Erlenmeyer flask, 100 mg of adsorbent is added, shaken, and then filtered with a filter after 24 hours. The amount of lead adsorption can be determined by measuring the residual lead concentration in the filtrate water.

また、圧縮強度(N/mm)とは、平松、岡、木山:日本鉱業会誌,11,1024(1965)の方法を参考に、吸着剤を平板で圧縮する際に、吸着剤にかかる荷重から求めるものであり、圧縮強度;St(N/mm)、P;荷重(N)、d;粒子径(mm)としたとき、St=2.8P/πdの式から算出する。
吸着剤の圧縮強度は、1.3N/mm以上がより好ましく、1.5N/mm以上が
更に好ましい。
The compressive strength (N / mm 2 ) is the load applied to the adsorbent when the adsorbent is compressed with a flat plate with reference to the method of Hiramatsu, Oka, Kiyama: Journal of the Japan Mining Association, 11, 1024 (1965). The compression strength; St (N / mm 2 ), P; load (N), d; particle diameter (mm) is calculated from the formula of St = 2.8 P / πd 2 .
Compressive strength of the adsorbent is more preferably 1.3 N / mm 2 or more, 1.5 N / mm 2 or more is more preferable.

本発明の吸着剤を濾材として用いた浄水器は、重金属類を効率的に除去することが出来る。図1は、本発明の浄水器の一例を示す断面図である。図1の浄水器は、吸着剤を配した第一の浄化槽2と、多孔質中空糸膜を配した第二の浄化槽7を有する。また、第一の浄化槽2と第二の浄化槽7との間には、流量センサー9が配されている。水道水等の原水は、入口6から入って吸着剤や多孔質中空糸膜によって浄化された後、吐水口11から浄水として取り出される。
本発明の吸着剤を濾材として用いた浄水器は、併せて残留塩素、トリハロメタン、一般有機化学物質、消毒副生成物、農薬などを効率よく除去するためには、本発明の吸着剤に加えて、活性炭を用いるのが好ましい。活性炭は、除去能力は低いものの、重金属類も吸着し、吸着剤の吸着性能の長寿命化に寄与するため、活性炭と本発明の吸着剤を併用することがより好ましい。
The water purifier using the adsorbent of the present invention as a filter medium can efficiently remove heavy metals. Drawing 1 is a sectional view showing an example of the water purifier of the present invention. The water purifier of FIG. 1 has a first septic tank 2 in which an adsorbent is disposed and a second septic tank 7 in which a porous hollow fiber membrane is disposed. A flow rate sensor 9 is disposed between the first septic tank 2 and the second septic tank 7. Raw water such as tap water enters from the inlet 6 and is purified by an adsorbent or a porous hollow fiber membrane, and then is taken out from the water outlet 11 as purified water.
In addition to the adsorbent of the present invention, the water purifier using the adsorbent of the present invention as a filter medium can be used to efficiently remove residual chlorine, trihalomethane, general organic chemicals, disinfection by-products, agricultural chemicals and the like. It is preferable to use activated carbon. Although activated carbon has a low removal capability, it also adsorbs heavy metals and contributes to a longer life of the adsorption performance of the adsorbent. Therefore, it is more preferable to use activated carbon in combination with the adsorbent of the present invention.

活性炭としては、残留塩素、トリハロメタン、一般有機化学物質、消毒副生成物、農薬などの除去する目的に合致する性能を有しているものであれば特に限定されず、その形状は、粉末状、繊維状、或いは粒状のものなどを用いることができる。   The activated carbon is not particularly limited as long as it has performance that meets the purpose of removing residual chlorine, trihalomethane, general organic chemicals, disinfection by-products, agricultural chemicals, etc. A fibrous or granular material can be used.

また、活性炭の種類は必ずしも限定されず、ヤシ殻活性炭、骨炭、木炭等天然系活性炭、ピッチ系、石油コークス系、樹脂やゴム等の焼成賦活物或いは化学的賦活物等を用いることが出来るが、除去すべき物質はトリハロメタンなど比較的分子量の小さなものが多いため、経済性をも含めて考慮すると、水蒸気賦活ヤシ殻活性炭が実用的に最も好ましい。さらに、抗菌性を付与するために、銀等を添着しても構わない。   The type of activated carbon is not necessarily limited, and natural activated carbon such as coconut shell activated carbon, bone charcoal, charcoal, pitch-based, petroleum coke-based, fired activated material such as resin or rubber, or chemically activated material can be used. Since many substances having a relatively low molecular weight, such as trihalomethane, are to be removed, water vapor activated coconut shell activated carbon is most practically preferable in consideration of economy. Furthermore, silver or the like may be added to impart antibacterial properties.

本発明の浄水器としては、吸着剤と共に、多孔質膜を用いると鉄錆や、病原生物(一般細菌、大腸菌、大腸菌群)等の固形物を除去出来るためより好ましい。多孔質膜としては、平膜、中空糸膜、チューブラー膜等を用いることができるが、容積効率が高い中空糸膜を用いることがより好ましい。   As a water purifier of the present invention, it is more preferable to use a porous membrane together with an adsorbent because solid matter such as iron rust and pathogenic organisms (general bacteria, Escherichia coli, coliforms) can be removed. As the porous membrane, a flat membrane, a hollow fiber membrane, a tubular membrane or the like can be used, but it is more preferable to use a hollow fiber membrane having a high volumetric efficiency.

中空糸膜としては、例えば、セルロース系、ポリオレフィン系(ポリエチレン、ポリプロピレン)、ポリビニルアルコール系、エチレン・ビニルアルコール共重合体、ポリエーテル系、ポリメタクリル酸メチル(PMMA)系、ポリスルフォン系、ポリアクリロニトリル系、ポリ弗化エチレン(テフロン(登録商標))系、ポリカーボネート系、ポリエステル系、ポリアミド系、芳香族ポリアミド系等の各種材料からなるものを好適に使用できる。中でも、膜の強伸度や耐屈曲性、洗浄性、取扱性や耐薬品性の高さ等を考慮すると、ポリエチレンやポリプロピレン等のポリオレフィン系中空糸膜が好ましい。   Examples of the hollow fiber membrane include cellulose, polyolefin (polyethylene, polypropylene), polyvinyl alcohol, ethylene / vinyl alcohol copolymer, polyether, polymethyl methacrylate (PMMA), polysulfone, and polyacrylonitrile. A material made of various materials such as polyethylene, polyfluorinated ethylene (Teflon (registered trademark)), polycarbonate, polyester, polyamide, and aromatic polyamide can be suitably used. Of these, polyolefin hollow fiber membranes such as polyethylene and polypropylene are preferred in view of the high elongation, flexibility, detergency, handleability, and high chemical resistance of the membrane.

また、特に限定されるものではないが、中空糸の外径は20〜2000μm、孔径は0.01〜2μm、空孔率は20〜90%、膜厚は5〜300μmのものが好ましい。   Although not particularly limited, the hollow fiber preferably has an outer diameter of 20 to 2000 μm, a pore diameter of 0.01 to 2 μm, a porosity of 20 to 90%, and a film thickness of 5 to 300 μm.

浄水器に多孔質膜を使用する際には、他の濾材を水が通過した後の最終段に設けると、浄水出口からの菌逆汚染の懸念を最小限と出来るため好ましい。   When using a porous membrane for the water purifier, it is preferable to provide another filter medium in the final stage after the water has passed, since the concern about back-fouling of bacteria from the water purification outlet can be minimized.

吸着剤、活性炭については、どのような順序で配置してもよい。また、二者を混合して用いても差し支えない。また、活性炭に加えて、例えばイオン交換樹脂、亜硫酸カルシウム、コーラルサンド、麦飯石、医王石、トルマリン等他の成分を併用させても構わない。   The adsorbent and activated carbon may be arranged in any order. Also, a mixture of the two may be used. Further, in addition to activated carbon, other components such as ion exchange resin, calcium sulfite, coral sand, barley stone, Ioishi, tourmaline may be used in combination.

吸着剤、活性炭、並びに多孔質膜は、一つの容器内に収められていても、複数個の容器に収められこれらを組み合わせた形のものでも構わない。また、上記の組み合わせに更に一次フィルターを用いて粗ゴミを予め除去出来るようにすると好ましい。   The adsorbent, the activated carbon, and the porous membrane may be contained in a single container or may be a combination of these contained in a plurality of containers. Further, it is preferable to further remove coarse dust in advance by using a primary filter in the above combination.

以下、実施例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

子粒子として粒径10〜30μm、平均粒径20μmのケイ酸チタニウム(エンゲルハード社製、ATS powder standard)の微粒子を、母粒子として粒径100〜750μm、平均粒径420μmの熱可塑性樹脂ポリエチレン(日本ユニカー製、PES−20、添加剤フリー)を用いて、株式会社徳寿工作所製のシータ・コンポーザ装置を使用して、15分間、遠心力による加圧を行って母粒子の表面に子粒子を固定化させ、ケイ酸チタニウム60体積%、ポリエチレン40体積%の吸着剤を造粒した。得られた吸着剤の粒径は150〜800μmであり、平均粒径は500μmであった。   Fine particles of titanium silicate (ATS powder standard, manufactured by Engelhard Inc.) having a particle size of 10 to 30 μm and an average particle size of 20 μm as child particles, and thermoplastic resin polyethylene having a particle size of 100 to 750 μm and an average particle size of 420 μm as mother particles ( Using Nihon Unicar, PES-20, additive-free), using a theta composer device manufactured by Tokuju Kogyo Co., Ltd., pressurizing with centrifugal force for 15 minutes, the child particles on the surface of the mother particles Then, an adsorbent of 60 volume% titanium silicate and 40 volume% polyethylene was granulated. The obtained adsorbent had a particle size of 150 to 800 μm and an average particle size of 500 μm.

<鉛吸着試験>
得られた吸着剤を用いて、鉛吸着試験を以下のように実施した。
硝酸鉛水溶液を鉛濃度200mg/Lとなるようにを調製し、三角フラスコに200ml分取した。次に浄水器用吸着剤100mgを添加し、振とうさせた後、24時間後にポアサイズ0.22μmのセルロース製フィルターで濾過し、濾液水中の残留鉛濃度を測定した。結果を表1に示す。
<Lead adsorption test>
Using the obtained adsorbent, a lead adsorption test was performed as follows.
A lead nitrate aqueous solution was prepared to have a lead concentration of 200 mg / L, and 200 ml was collected in an Erlenmeyer flask. Next, 100 mg of an adsorbent for water purifier was added and shaken, and after 24 hours, it was filtered with a cellulose filter having a pore size of 0.22 μm, and the residual lead concentration in the filtrate water was measured. The results are shown in Table 1.

<浄水器通水試験>
図1に示した構成の浄水器において、第1の浄水槽2に、作成した吸着剤10gと活性炭40gとを混合した吸着剤積層物4を配置し、150メッシュのナイロン網を貼付した樹脂枠3及び5を設置して吸着剤積層物4が流出しないようにした。
<Water purifier water flow test>
In the water purifier having the configuration shown in FIG. 1, a resin frame in which an adsorbent laminate 4 in which 10 g of the adsorbent prepared and 40 g of activated carbon is mixed is disposed in the first water purifier 2 and a 150 mesh nylon net is pasted. 3 and 5 were installed so that the adsorbent laminate 4 would not flow out.

第2の浄水槽7には、親水化処理を施したポリエチレン製多孔質中空糸膜8を2液型ポリウレタン樹脂で固定し、一端を切断開放したものを配置し、第1の浄水槽2と第2の浄水槽7をつなぐ配水管12の途中に、流量センサー9を設置した。   In the second water purification tank 7, a polyethylene porous hollow fiber membrane 8 that has been subjected to a hydrophilic treatment is fixed with a two-component polyurethane resin, one end of which is cut open, and the first water purification tank 2. A flow rate sensor 9 was installed in the middle of the water distribution pipe 12 connecting the second water purification tank 7.

そして、水道水に硝酸鉛を添加し、鉛濃度として50μg/Lに調整した水を通水速度2L/分で入口6より通水した。通水した水のpHは6.6〜7.4の範囲とした。
通水開始から2m通水した時の流出水中の鉛濃度を測定した。結果を表1に示す。
Then, lead nitrate was added to the tap water, and water adjusted to a lead concentration of 50 μg / L was passed through the inlet 6 at a water flow rate of 2 L / min. The pH of the passed water was in the range of 6.6 to 7.4.
The lead concentration in the effluent at the time of 2m 3 water flow from the water passing start was measured. The results are shown in Table 1.

<比較例1>
粒径150〜800μm、平均粒径500μmのケイ酸チタニウム(エンゲルハード社製、ATS granules)の顆粒品について、実施例1と同様の条件にて鉛吸着試験、及び浄水器通水試験を行った。それぞれの結果を表1に示す。
<Comparative Example 1>
About the granule of titanium silicate (the Engelhard company make, ATS granules) with a particle size of 150-800 micrometers and an average particle diameter of 500 micrometers, the lead adsorption test and the water purifier water flow test were done on the same conditions as Example 1. . The results are shown in Table 1.

以上の結果のように、本発明の吸着剤は、鉛など重金属が除去された安全な水を長期に亘って得ることができる点で優れていることがわかる。   As can be seen from the above results, the adsorbent of the present invention is excellent in that it can obtain safe water from which heavy metals such as lead are removed over a long period of time.

1 外容器
2 第1の浄水槽
3、5 樹脂枠(ナイロン網)
4 吸着剤積層物
6 入口
7 第2の浄水槽
8 多孔質中空糸膜
9 流量センサー
11 吐水口
12 配水管
1 Outer container 2 First water purification tank 3, 5 Resin frame (nylon net)
4 Adsorbent laminate 6 Inlet 7 Second water purification tank 8 Porous hollow fiber membrane 9 Flow rate sensor 11 Water outlet 12 Water distribution pipe

Claims (6)

熱可塑性樹脂からなる母粒子の表面に、アルミノケイ酸塩系無機イオン交換体、ケイ酸チタニウム系化合物又はリン酸カルシウム系化合物のいずれかを含む子粒子が、母粒子の表面の溶融により接着又は圧着されてなる浄水器用吸着剤。   Child particles containing either an aluminosilicate inorganic ion exchanger, a titanium silicate compound, or a calcium phosphate compound are bonded or pressure-bonded to the surface of the mother particle made of a thermoplastic resin by melting the surface of the mother particle. Adsorbent for water purifier. 吸着剤全体の平均粒径が30〜1500μmである請求項1に記載の浄水器用吸着剤。   The adsorbent for water purifier according to claim 1, wherein the average particle diameter of the entire adsorbent is 30 to 1500 µm. 前記母粒子の平均粒径が20〜1300μmである請求項1又は2に記載の浄水器用吸着剤。   The adsorbent for water purifier according to claim 1 or 2, wherein the average particle diameter of the mother particles is 20 to 1300 µm. 前記子粒子の平均粒径が5〜100μmである請求項1〜3のいずれか一項に記載の浄水器用吸着剤。   The average particle diameter of the said child particle is 5-100 micrometers, Adsorbent for water purifiers as described in any one of Claims 1-3. 前記母粒子の体積をA、前記子粒子の体積をBとしたとき、0.25≦A/(A+B)≦0.95である浄水器用吸着剤。   An adsorbent for water purifiers where 0.25 ≦ A / (A + B) ≦ 0.95, where A is the volume of the mother particles and B is the volume of the child particles. 請求項1〜5のいずれか一項に記載の吸着剤を濾材に用いた浄水器。   A water purifier using the adsorbent according to any one of claims 1 to 5 as a filter medium.
JP2009119763A 2009-05-18 2009-05-18 Adsorbent and water purifier using the same Expired - Lifetime JP5429931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119763A JP5429931B2 (en) 2009-05-18 2009-05-18 Adsorbent and water purifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119763A JP5429931B2 (en) 2009-05-18 2009-05-18 Adsorbent and water purifier using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003362150A Division JP2005125199A (en) 2003-10-22 2003-10-22 Adsorbent, method for manufacturing the same, and water purifier using the same

Publications (2)

Publication Number Publication Date
JP2009208076A true JP2009208076A (en) 2009-09-17
JP5429931B2 JP5429931B2 (en) 2014-02-26

Family

ID=41181744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119763A Expired - Lifetime JP5429931B2 (en) 2009-05-18 2009-05-18 Adsorbent and water purifier using the same

Country Status (1)

Country Link
JP (1) JP5429931B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059717A (en) * 2011-09-12 2013-04-04 Toda Kogyo Corp Ion adsorbent and method for producing the same
JP2020163270A (en) * 2019-03-29 2020-10-08 株式会社クラレ Heavy metal removal agent, adsorbent using the same, molded body, and water purifier
WO2020203588A1 (en) * 2019-03-29 2020-10-08 株式会社クラレ Adsorbent, heavy metal removing agent, molded body using same, and water purifier
JP2020163269A (en) * 2019-03-29 2020-10-08 株式会社クラレ Adsorbent, molded body using the same, and water purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194970A (en) * 1993-10-05 1995-08-01 Asahi Optical Co Ltd Granular polymer composite and production thereof
JPH0919636A (en) * 1995-05-01 1997-01-21 Fujikura Kasei Co Ltd Polymer absorbing halogenated hydrocarbon solvent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194970A (en) * 1993-10-05 1995-08-01 Asahi Optical Co Ltd Granular polymer composite and production thereof
JPH0919636A (en) * 1995-05-01 1997-01-21 Fujikura Kasei Co Ltd Polymer absorbing halogenated hydrocarbon solvent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059717A (en) * 2011-09-12 2013-04-04 Toda Kogyo Corp Ion adsorbent and method for producing the same
JP2020163270A (en) * 2019-03-29 2020-10-08 株式会社クラレ Heavy metal removal agent, adsorbent using the same, molded body, and water purifier
WO2020203588A1 (en) * 2019-03-29 2020-10-08 株式会社クラレ Adsorbent, heavy metal removing agent, molded body using same, and water purifier
JP2020163269A (en) * 2019-03-29 2020-10-08 株式会社クラレ Adsorbent, molded body using the same, and water purifier
JP7264692B2 (en) 2019-03-29 2023-04-25 株式会社クラレ Heavy metal remover, and adsorbent, compact and water purifier using same
JP7264691B2 (en) 2019-03-29 2023-04-25 株式会社クラレ Adsorbent, molded article and water purifier using the same

Also Published As

Publication number Publication date
JP5429931B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US5904854A (en) Method for purifying water
US11602728B2 (en) Composite adsorbents and method of making them
EP2527023B1 (en) Complex filter for water purification
KR20170044672A (en) Granular filtration media mixture and uses in water purification
JP2011521775A (en) Filter material and water filtration system including the same
Putra et al. Entrapment of micro-sized zeolites in porous hydrogels: Strategy to overcome drawbacks of zeolite particles and beads for adsorption of ammonium ions
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
JP2012508646A (en) Adsorbent structures and their use
JP2004507339A (en) Formation of composite materials with expansive substances
JP2003507184A (en) Microbial water filter
US20130032529A1 (en) Rare earth-containing filter block and method for making and using the same
ZA200305966B (en) Compositions of insoluble magnesium containing minerals for use in fluid filtration.
JP5429931B2 (en) Adsorbent and water purifier using the same
WO2006082898A1 (en) Composite adsorbents, process for producing the same, and water-purifying material and water purifier
WO2005070182A2 (en) Carbon block filters
JPWO2003022425A1 (en) Composite granular material and method for producing the same
CN102294147B (en) Filtering medium and preparation method used for removing acrylamide in drinking water, and preparation method thereof
JP4210001B2 (en) Filtration filter and water purifier
JP2005125199A (en) Adsorbent, method for manufacturing the same, and water purifier using the same
JP2004504126A (en) Filter device and method using the same
JP6182819B2 (en) Water purification cartridge, water purifier
JP2003190942A (en) Adsorbent for water cleaner, method for manufacturing the same and water cleaner using the adsorbent
JP2002273417A (en) Filter for water treatment
JP2000342917A (en) Filter and water purifier
JP5037950B2 (en) Water purification agent and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R151 Written notification of patent or utility model registration

Ref document number: 5429931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term