JP2009205886A - Self-light-emitting element and display device - Google Patents

Self-light-emitting element and display device Download PDF

Info

Publication number
JP2009205886A
JP2009205886A JP2008045530A JP2008045530A JP2009205886A JP 2009205886 A JP2009205886 A JP 2009205886A JP 2008045530 A JP2008045530 A JP 2008045530A JP 2008045530 A JP2008045530 A JP 2008045530A JP 2009205886 A JP2009205886 A JP 2009205886A
Authority
JP
Japan
Prior art keywords
organic light
self
light
insulating substrate
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045530A
Other languages
Japanese (ja)
Other versions
JP5309388B2 (en
Inventor
Takahiro Nakayama
隆博 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008045530A priority Critical patent/JP5309388B2/en
Publication of JP2009205886A publication Critical patent/JP2009205886A/en
Application granted granted Critical
Publication of JP5309388B2 publication Critical patent/JP5309388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compensate for the change of chromaticity and intensity of display due to shifting of a resonance peak wavelength to short wavelength side, which is caused since the optical resonator length becomes shorter as the angle of observation direction becomes deeper from a front direction toward an oblique direction of an insulating substrate face. <P>SOLUTION: Other resonance peaks B', B" are generated additionally in a long wavelength part of, for example, blue spectrum A in an oblique direction (as represented by 30°, 45°) from the front direction (0°) of the insulating substrate face, and the long wavelength-side emission color is reinforced by shifting in the spectrum region 301 of the light-emission spectrum. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機発光素子からなる自発光画素およびこの自発光画素を用いて構成した表示装置に関する。   The present invention relates to a self-luminous pixel formed of an organic light-emitting element and a display device configured using the self-luminous pixel.

有機発光素子の発光前面に半透明反射鏡を設置し、反対側の反射鏡との間の、往復の光学的長さ(共振器全長)が所望の発光波長の整数倍になる光共振器(微小共振器、キャビティ)にすることにより、発光スペクトルの半値幅を小さくして所望の発光波長で単色化し、同時に発光ピーク強度をエンハンスすることが可能である(特許文献1、特許文献2)。光共振器構造に関係した物性については、非特許文献1に詳説されている。   An optical resonator in which a translucent reflecting mirror is installed on the light emitting front surface of the organic light emitting device, and the optical length (resonator total length) between the reflecting mirror on the opposite side is an integral multiple of the desired emission wavelength ( By using a microresonator or cavity), it is possible to reduce the half-value width of the emission spectrum to make it monochromatic at a desired emission wavelength and simultaneously enhance the emission peak intensity (Patent Document 1 and Patent Document 2). The physical properties related to the optical resonator structure are described in detail in Non-Patent Document 1.

赤色(R)、緑色(G)、青色(B)の画素を1カラー画素として配置した表示パネルを用いたフルカラーの表示装置(以下、表示装置をディスプレイとも称する)においては、光共振器構造として発光素子を最適化するためには、R、G、Bそれぞれの発光波長に合わせて光共振器全長を変えた構造をとっていた(特許文献4参照)。なお、フルカラー表示の場合はそれぞれの色の画素を副画素と呼ぶが、本発明のように自身が発光する副画素である場合には、赤色(R)、緑色(G)、青色(B)の画素(この場合は副画素)のそれぞれを自発光素子と称することもある。
特願平4―252526号公報 特願平5―059145号公報 特願2006―32327号公報 特願2005―116516号公報 T. Nakayama: "Organic luminescent devices with a microcavity structure", included in "Organic electroluminescent materials and devices ", edited by S. Miyata, published by Gorden & Breach Science Publisher (1997).
In a full-color display device using a display panel in which red (R), green (G), and blue (B) pixels are arranged as one color pixel (hereinafter, the display device is also referred to as a display), an optical resonator structure is used. In order to optimize the light emitting element, a structure was adopted in which the total length of the optical resonator was changed in accordance with the respective emission wavelengths of R, G, and B (see Patent Document 4). In the case of full-color display, each color pixel is referred to as a sub-pixel. However, in the case of a sub-pixel that emits light as in the present invention, red (R), green (G), and blue (B) Each of the pixels (in this case, subpixels) may be referred to as a self-luminous element.
Japanese Patent Application No. 4-252526 Japanese Patent Application No. 5-059145 Japanese Patent Application No. 2006-32327 Japanese Patent Application No. 2005-116516 T. Nakayama: "Organic luminescent devices with a microcavity structure", included in "Organic electroluminescent materials and devices", edited by S. Miyata, published by Gorden & Breach Science Publisher (1997).

共振器を備えた従来の自発光素子を用いた表示装置は、長波長成分の追加をはたす追加画素構造を副画素に追加する方法が提案されている(特許文献3)が、この方法では、副画素として用いられる面積分だけ、パネル全体としての発光効率低下を招き、高輝度化は困難である。共振器長(キャビティ長とも言う)が表示装置のパネルを構成する絶縁基板面の正面からの観察角度(視角)が正面方向から斜め方向に角度が深くなるに従って短くなるために、共振ピーク波長が短波長側にシフトする。その結果、表示の色度が青色方向にシフトし、同時に光の強度が変化し、表示品質が劣化するという特性があり、多人数が使用する等の表示パネルとしての解決課題となっていた。   In a display device using a conventional self-luminous element including a resonator, a method of adding an additional pixel structure for adding a long wavelength component to a sub-pixel has been proposed (Patent Document 3). The light emission efficiency of the entire panel is reduced by the area used as the sub-pixel, and it is difficult to increase the luminance. Since the observation angle (viewing angle) from the front of the insulating substrate surface constituting the panel of the display device becomes shorter as the resonator length (also referred to as the cavity length) becomes deeper from the front direction to the diagonal direction, the resonance peak wavelength is reduced. Shift to short wavelength side. As a result, the display chromaticity is shifted in the blue direction, the light intensity is changed at the same time, and the display quality is deteriorated, which is a problem to be solved as a display panel used by many people.

本発明の目的は、共振器構造を有する有機発光素子固有の視角依存性に起因する色度シフト、色相変化を改善し、高品質の自発光素子およびこれを用いた表示装置を提供することにある。   An object of the present invention is to provide a high-quality self-light-emitting element and a display device using the same, which improve chromaticity shift and hue change caused by viewing angle dependency inherent to an organic light-emitting element having a resonator structure. is there.

この色度シフト、強度変化を解決するには、本発明では、絶縁基板面に対して斜め方向でR、G、B各色のスペクトルの長波長部に、更に別の共振ピークを追加で発生させる構造の自発光素子とした。また、この自発光素子を用いて表示装置を構成した。   In order to solve this chromaticity shift and intensity change, in the present invention, another resonance peak is additionally generated in the long wavelength portion of the spectrum of each color of R, G, B in an oblique direction with respect to the insulating substrate surface. A self-luminous element having a structure was obtained. In addition, a display device was configured using this self-luminous element.

ここで、光共振器構造を有する有機発光素子について説明する。光共振器構造における光共振器長(以下、Lと表記)とは、光学的な共振強度振幅形状から決定される値である。Lは、反射面ではさまれた間のすべての薄膜iについて、実測される膜厚(di)にそれぞれの屈折率(ni)を掛け合わせて得られる光学的長さ(nii)をすべて足し合わせて往復の行路の分として2倍したもの(Σ2nii)に、反射鏡面上での反射による位相シフト分を長さに換算した値を加えたものにほぼ一致する。さらに正確には、帯電界面を光が通過する時に生じる位相シフト分を長さに換算した値などの補正値を加えたものからなる。 Here, an organic light emitting device having an optical resonator structure will be described. The optical resonator length (hereinafter referred to as L) in the optical resonator structure is a value determined from an optical resonance intensity amplitude shape. L is the optical length (n i d i ) obtained by multiplying the measured film thickness (d i ) by the respective refractive index (n i ) for all thin films i sandwiched between the reflecting surfaces. ) Are added together as a round trip route (Σ2n i d i ), and a value obtained by adding a value obtained by converting a phase shift due to reflection on the reflecting mirror surface to a length is substantially the same. More precisely, it consists of a correction value such as a value obtained by converting a phase shift generated when light passes through the charging interface into a length.

この光共振器全長にm個(mは1以上の自然数)の光の振幅が乗ったときには共振を強くする共振増強波長(共振増強特性のピーク波長)はL/mで得られる。たとえば、絶縁基板面に垂直な方向(正面方向)の角度(視角0°)において、Lが4500nm、mが10の時、共振増強波長は450nmである。さらに、このLに対してmが9の場合は500nmとなり、Lが4500nmの共振器の場合は、450nmと500nmに、同時に共振増強特性のピークを持つこととなる。   When m (m is a natural number of 1 or more) light amplitude is placed on the entire length of the optical resonator, the resonance enhancement wavelength (the peak wavelength of the resonance enhancement characteristic) that strengthens the resonance is obtained by L / m. For example, when L is 4500 nm and m is 10 at an angle (viewing angle 0 °) perpendicular to the insulating substrate surface (front direction), the resonance enhancement wavelength is 450 nm. Further, when m is 9 with respect to this L, it becomes 500 nm, and in the case of a resonator with L of 4500 nm, the resonance enhancement characteristics have peaks simultaneously at 450 nm and 500 nm.

また、逆に、特定の実作素子に対し光学的測定を行って光共振増強特性のピーク波長を得ることはむしろ容易であり、光共振増強特性のピークが450nmと500nmに実測されれば、Lは4500nm、mは10および9であると連立1次式解法から得ることができる。特定の素子構造に対して得たこの実測値を出発点として、反射鏡間の膜厚を調整して光学的長さ(Σ2nii)の部分の値を変え、所望の光共振増強特性のピーク波長を持つ素子を設計する、といった手順も光共振特性設計の現実的手法である。 Conversely, it is rather easy to obtain a peak wavelength of the optical resonance enhancement characteristic by performing optical measurement on a specific actual element, and if the peak of the optical resonance enhancement characteristic is actually measured at 450 nm and 500 nm, When L is 4500 nm and m is 10 and 9, it can be obtained from the simultaneous linear solution. Using this measured value obtained for a specific element structure as a starting point, the film thickness between the reflecting mirrors is adjusted to change the value of the optical length (Σ2n i d i ) portion, and the desired optical resonance enhancement characteristic The procedure of designing an element having a peak wavelength is also a practical method for designing optical resonance characteristics.

追加した共振ピークによる発光が絶縁基板面に対する斜め方向においては、発光スペクトルのスペクトル域内にシフトして長波長側発光色を増強させることにより、共振ピーク波長のシフトを低減、もしくは解消することができる。また、この追加した共振ピークにより、従来では利用されずに素子内部で熱となって消滅されていた発光スペクトル内の長波長部分の発光成分が利用されて取り出されるので、素子の光強度が増大し、発光効率が向上すると同時に、自発光素子の熱的劣化を緩和して素子の長寿命化を果たすことができる。   In the oblique direction with respect to the insulating substrate surface, the light emission due to the added resonance peak is shifted into the spectral region of the emission spectrum to enhance the long wavelength side emission color, thereby reducing or eliminating the shift of the resonance peak wavelength. . In addition, due to the added resonance peak, the light emission component of the long wavelength portion in the emission spectrum that has not been used in the past and has been extinguished as heat inside the device is used and extracted, thereby increasing the light intensity of the device. In addition, the luminous efficiency is improved, and at the same time, the thermal degradation of the self-luminous element can be alleviated and the lifetime of the element can be extended.

以下、有機発光素子で形成した本発明の自発光素子の構成をその光学特性の測定結果と共に実施例1として説明する。   Hereinafter, the structure of the self-light-emitting element of the present invention formed of an organic light-emitting element will be described as Example 1 together with the measurement results of its optical characteristics.

図1Aは、本発明の自発光素子の実施例を説明するための複数の共振強度ピークを持つ光共振器特性図である。図1Bは、本発明の自発光素子の実施例を構成する有機分子の発光スペクトルの説明図である。そして、図1Cは、絶縁基板面に対する視野角の違いにおける発光スペクトルの説明図であり、図1Cの(a)は0deg.、図1Cの(b)は30deg.、図1Cの(c)は60deg.における発光スペクトルを示す。   FIG. 1A is an optical resonator characteristic diagram having a plurality of resonance intensity peaks for explaining an embodiment of the self-luminous element of the present invention. FIG. 1B is an explanatory diagram of an emission spectrum of an organic molecule constituting an example of the self-luminous element of the present invention. FIG. 1C is an explanatory diagram of an emission spectrum with a difference in viewing angle with respect to the insulating substrate surface. FIG. 1C (a) is 0 deg., FIG. 1C (b) is 30 deg., And FIG. An emission spectrum at 60 deg. Is shown.

図1Aに示したように、同時に複数の(上記の例では視角0°において、450nmと500nmに)工共振増強特性のピーク(波長A0,B0)を持つ光共振器構造を有する有機発光素子で形成した自発光素子を図1Bに示した最小波長R1、最大波長R2の発光スペクトル成分を有する有機発光素子を用いて作製し、これについて測定を行った。ここで、R1<A0<R2〜B0、ただしR2<B0、とする。本実施例では、有機発光材料に、例えば420nm〜480nm付近に発光成分を有する有機発光分子からなる材料を用いた。   As shown in FIG. 1A, an organic light-emitting device having an optical resonator structure having a plurality of peaks (wavelengths A0, B0) of the process resonance enhancement characteristics at the same time (in the above example, at 450 nm and 500 nm at a viewing angle of 0 °). The formed self-luminous element was produced using an organic light-emitting element having an emission spectrum component of the minimum wavelength R1 and the maximum wavelength R2 shown in FIG. Here, R1 <A0 <R2 to B0, where R2 <B0. In this example, a material made of organic light emitting molecules having a light emitting component in the vicinity of 420 nm to 480 nm, for example, was used as the organic light emitting material.

なお、上記有機発光分子の発光スペクトルは、例えば、精製した粉末にUV光など、その発光よりも短波長の光を照射して測定するフォトルミネッセンス(PL)を用いる。本実施例で用いる発光は電界発光(エレクトロルミネッセンス、EL)であるため、発光素子に用いる他の分子や電界、電荷注入の影響、積層による光学的効果を追加で生じるため厳密には同一ではないが、近似的には同一と見なせる発光スペクトルになる。   For the emission spectrum of the organic light emitting molecule, for example, photoluminescence (PL) that is measured by irradiating the purified powder with light having a shorter wavelength than the emission, such as UV light, is used. Since the light emission used in this example is electroluminescence (electroluminescence, EL), other molecules used in the light emitting element, the influence of electric field, charge injection, and the optical effect due to stacking are additionally generated, so they are not exactly the same. However, the emission spectra can be regarded as approximately the same.

有機発光分子の発光スペクトルは、図1Bに示したように、もっとも単純な短波長側から長波長側に向けて0→最大→0といったR1からR2にかけてなだらかな単一ピークを示す形状の特性をもつものを用いるのが本実施例で高効率を得るためには理想的である。高効率に発光を取出すには、図1Bに示した有機発光分子の発光スペクトル最大値波長Q0が、発光素子が目的とするR、G、Bいずれかの最適色純度波長P0付近にあることが望ましく、光共振器波長A0が視角0°においてこの波長付近になるように光共振器全長Lを設計する。   As shown in FIG. 1B, the emission spectrum of the organic light-emitting molecule has a characteristic of a shape showing a gentle single peak from R1 to R2, such as 0 → maximum → 0 from the simplest short wavelength side to the long wavelength side. In order to obtain high efficiency in this embodiment, it is ideal to use one having the same. In order to extract light emission with high efficiency, the emission spectrum maximum wavelength Q0 of the organic light emitting molecule shown in FIG. 1B is in the vicinity of the optimum color purity wavelength P0 of any of R, G, and B intended by the light emitting element. Desirably, the total length L of the optical resonator is designed so that the optical resonator wavelength A0 is close to this wavelength at a viewing angle of 0 °.

光共振器構造を持つ有機発光素子である本実施例の自発光素子から取り出される発光スペクトルは、0次近似的には、発光スペクトル強度波形に光共振特性強度波形を掛け合わせたものとして得られる。以下では、隣り合う光共振増強特性のピークについて、共振ピークA(上記の例ではm=10の共振)、共振ピークB(上記の例ではm=9の共振)と呼び、共振ピークA及びBを有機分子の発光スペクトルに組み合わせた素子で得られる発光スペクトルのピークを発光ピークA、発光ピークBと呼ぶこととする。   The emission spectrum extracted from the self-light-emitting element of this embodiment, which is an organic light-emitting element having an optical resonator structure, is obtained by multiplying the emission spectrum intensity waveform by the optical resonance characteristic intensity waveform in a zero order approximation. . In the following, the peaks of the adjacent optical resonance enhancement characteristics are referred to as resonance peak A (resonance at m = 10 in the above example) and resonance peak B (resonance at m = 9 in the above example). The peak of the emission spectrum obtained by the device combining the emission spectrum of organic molecules with the organic molecule is referred to as emission peak A and emission peak B.

光共振器構造有機発光素子である自発光素子の基板面垂直方向(正面方向)からの角度(傾斜方向、視角)を0°、および30°、60°としたときの発光スペクトルが図1Cに示されたものである。まず、共振ピークAに由来する発光ピークAは、視角0°においては0°の光共振波長A0(上記の例では440nm付近)付近にあるが、視角増大に従って短波長側にシフトして色度の変化(ブルーシフト)と強度低下を起こす。これは、視角が大きくなるに従ってLが短くなるために共振ピークAの波長が短波長側にシフトする一方、有機分子の発光スペクトルは視角依存性がほとんどなく一定であるためである(詳しくは、非特許文献1参照)。   The emission spectrum when the angle (inclination direction, viewing angle) from the substrate surface vertical direction (front direction) of the self-luminous element which is an organic light emitting element having an optical resonator structure is 0 °, 30 °, and 60 ° is shown in FIG. 1C. It is shown. First, the emission peak A derived from the resonance peak A is near the optical resonance wavelength A0 (near 440 nm in the above example) at the viewing angle of 0 °, but shifts to the short wavelength side as the viewing angle increases, and the chromaticity Change (blue shift) and strength decrease. This is because the wavelength of the resonance peak A shifts to the short wavelength side because L becomes shorter as the viewing angle becomes larger, while the emission spectrum of the organic molecule has almost no viewing angle dependency and is constant (in detail, Non-patent document 1).

視角0°においては、共振ピークBは有機分子の発光スペクトル成分部の長波長外側であるため、発光ピークBを発生させず、(上記の例では440nm付近の)発光ピークAのみであるが、視角が30°、60°と大きくなるに従って、短波長側にシフトし、発光成分として発光ピークBを発生するようになる。その結果、視角増大に従って短波長側にシフトして色度の変化(ブルーシフト)と強度低下を起こす発光ピークAに対し、発光ピークBが発生し、色度と強度の変化を補正して小さくする機能を果たすことができる。   At a viewing angle of 0 °, the resonance peak B is outside the long wavelength of the emission spectrum component of the organic molecule, and therefore does not generate the emission peak B, but only the emission peak A (near 440 nm in the above example) As the viewing angle increases to 30 ° and 60 °, the wavelength shifts to the short wavelength side, and the emission peak B is generated as the emission component. As a result, the emission peak B is generated with respect to the emission peak A that shifts to the short wavelength side as the viewing angle increases and causes a change in chromaticity (blue shift) and intensity reduction, and the change in chromaticity and intensity is corrected to be small. Can fulfill the function.

本発明で言う所謂青色(青色領域)とは、多くの場合に用いられるように、CIE色度図におけるpurplish blue, blue, greenish blueを、所謂緑色(緑色領域)とはbluish green, green, yellowish greenを、所謂赤色(赤色領域)とはreddish orange, redの領域を指す。3原色光源については、NTSC,EBUなどの複数の工業規格があり、これらを自発光素子設計上の目安と見なすことができる。   The so-called blue (blue region) referred to in the present invention, as used in many cases, refers to purple blue, blue, greenish blue in the CIE chromaticity diagram, and so-called green (green region) refers to blueish green, green, yellowish. The so-called red (red region) of green indicates a reddish orange, red region. Regarding the three primary color light sources, there are a plurality of industrial standards such as NTSC, EBU, and the like, which can be regarded as a guideline for designing a self-luminous element.

NTSCであれば、R、G、Bの各単色波長としては、それぞれ610nm、540nm、470nm付近である。また、光共振器構造を用いる場合は、光共振器構造無しの発光スペクトルがそれぞれの代表的波長(B:470nm、G:540nm、R:610nm)を成分として含んでいれば、問題なくR、G、B表示板として用いることができる。色スペクトルや色度は、たとえばPhotoresearch社製の「PR705:分光光度輝度計」で測定することが可能である。この分光光度輝度計を用いた視角依存性などを含む自発光素子の特性測定法としては、画素内部に測定スポットが納まるようにして行なう方法と、測定スポットが自発光素子(画素)全体を入れるようにして、測定面積率で測定結果を補正する方法とがあり、両者は一長一短なので測定サンプルの形状や目的によって適宜使い分けるのが良い。   In the case of NTSC, the monochromatic wavelengths of R, G, and B are around 610 nm, 540 nm, and 470 nm, respectively. In the case of using the optical resonator structure, if the emission spectrum without the optical resonator structure includes the respective representative wavelengths (B: 470 nm, G: 540 nm, R: 610 nm) as components, R, It can be used as a G or B display panel. The color spectrum and chromaticity can be measured by, for example, “PR705: spectrophotometric luminance meter” manufactured by Photoresearch. As a method for measuring the characteristics of the self-luminous element including the viewing angle dependency using the spectrophotometric luminance meter, a method in which the measurement spot is accommodated in the pixel, and the measurement spot includes the entire self-luminous element (pixel). In this way, there is a method of correcting the measurement result with the measurement area ratio. Since both are advantages and disadvantages, it is preferable to use them appropriately according to the shape and purpose of the measurement sample.

上記した本発明の実施例1を説明する手法を用いての色度、色相の補正には、以下の物性が強度に寄与する。
1.有機分子の発光スペクトル
2.光共振器の共振特性
3.外付けの光フィルタ(デバイスの、外部への発光取り出し率を含む)
4.視覚の波長に対する感度(強度補正)
近似的には、以上の物性の、強度の波長依存性、視角依存性を考慮した積として発光の特性が得られ、上記1.〜3.のパラメータの調整により、ブルーシフトを小さくする補正をより精密なものとし、視覚依存性、波長依存性のない状態に近づけることが可能である。上記の4.は人体の視覚の属性であり変更不能である。一般的には、1.2.で可能な限り補正強度の最適化をしたものに対し、3.で最低限の微調整のみを行うようにすれば発光効率を上げるためには有利である。外付けの光フィルタは、視角依存性のない色素フィルタ系でもよいが、視角依存性のある干渉フィルタ系を用いれば、さらに視角特性を調整することも可能である。
The following physical properties contribute to the strength in correcting chromaticity and hue using the method described in the first embodiment of the present invention.
1. 1. Emission spectrum of organic molecules 2. Resonance characteristics of optical resonator External optical filter (including the emission extraction rate of the device to the outside)
4). Sensitivity to visual wavelength (intensity correction)
Approximately, light emission characteristics can be obtained as a product of the above physical properties in consideration of wavelength dependency and viewing angle dependency of intensity. ~ 3. By adjusting the parameters, it is possible to make the correction for reducing the blue shift more precise and to bring it closer to a state having no visual dependency or wavelength dependency. 4. above. Is a visual attribute of the human body and cannot be changed. In general, 1.2. 2. In the case where the correction intensity is optimized as much as possible in 3. Therefore, it is advantageous to increase the light emission efficiency if only the minimum fine adjustment is performed. The external optical filter may be a pigment filter system having no viewing angle dependency, but if an interference filter system having a viewing angle dependency is used, the viewing angle characteristics can be further adjusted.

さらに、5.光共振器全長を変えることにより実現される発光ピークAのみの発生する画素と、発光ピークA及びBが同時に発生する画素の両方を同時に用いて、表示パネル全体として発光ピークA及びBの比率を調整することも可能である。特に、この5.は、視感度がピークAで低くピークBで高い青色画素について有効と考えられる。なお、Rの場合は、人間の視感度曲線が長波長側で低下する特性を有するため、事実上のフィルタとして機能し、赤のフィルタが不要な場合もある。青と緑のフィルタのみを設けることにより、構造省略による作製プロセスの簡略化が図れ、コストが低減できる。   Furthermore, 5. The ratio of the light emission peaks A and B as the entire display panel is obtained by simultaneously using both the pixel in which only the light emission peak A, which is realized by changing the total length of the optical resonator, and the pixel in which the light emission peaks A and B are generated simultaneously. It is also possible to adjust. In particular, this 5. Is considered effective for blue pixels having low visibility at peak A and high at peak B. In the case of R, since the human visibility curve has a characteristic of decreasing on the long wavelength side, it functions as a de facto filter, and a red filter may not be necessary. By providing only the blue and green filters, the manufacturing process can be simplified by omitting the structure, and the cost can be reduced.

R、G、B3色のフルカラーディスプレイ設計の一般論として、色純度が最適になる波長と、効率が最適になる波長が異なる場合は、デバイスの用途、すなわちどれだけの色純度、効率や強度を求められるかで、両者の波長の間で妥協した波長が選択される。この点において、本発明も同じである。   As a general rule of R, G, B3 full-color display design, if the wavelength that optimizes color purity is different from the wavelength that optimizes efficiency, the application of the device, that is, how much color purity, efficiency, and intensity Depending on what is desired, a compromise wavelength is selected between the two wavelengths. In this respect, the present invention is the same.

有機発光分子の発光スペクトルの形状と、その自発光素子(画素)の目的とする(R、G、Bいずれかの)最適色純度波長P0との大小関係により、有機発光分子の発光スペクトルとその最大強度の波長Q0に対し、視角0°での共振ピーク波長A0,B0をどこに設計するかは同様に違ったものとなる。   The emission spectrum of an organic light-emitting molecule and its emission spectrum are determined by the magnitude relationship between the shape of the light-emitting spectrum of the organic light-emitting molecule and the optimum color purity wavelength P0 (any of R, G, and B) of the light-emitting element (pixel). The resonance peak wavelengths A0 and B0 at a viewing angle of 0 ° are designed differently with respect to the maximum intensity wavelength Q0.

図2は、有機発光分子の発光スペクトルと複数の光共振強度ピークを持つ光共振器特性の組合せを説明する図である。図3は、有機発光分子の発光スペクトルと複数の光共振強度ピークを持つ光共振器特性の他の組合せを説明する図である。図4は、有機発光分子の発光スペクトルと複数の光共振強度ピークを持つ光共振器特性のさらに他の組合せを説明する図である。例えば、図2に示したように、Q0がP0より短波長側にある場合は、A0をQ0の波長にとるときは、B0による発光が視角0°でもBの発光が混入してもこの画素の発光色に対してはマイナスではなく、むしろ画素の色純度を波長Pに近づける機能を果たすとみなすことができる。   FIG. 2 is a diagram illustrating a combination of the emission spectrum of organic light emitting molecules and the optical resonator characteristics having a plurality of optical resonance intensity peaks. FIG. 3 is a diagram for explaining another combination of optical resonator characteristics having an emission spectrum of organic light emitting molecules and a plurality of optical resonance intensity peaks. FIG. 4 is a diagram for explaining still another combination of the emission spectrum of organic light emitting molecules and the optical resonator characteristics having a plurality of optical resonance intensity peaks. For example, as shown in FIG. 2, when Q0 is on the shorter wavelength side than P0, when A0 is set to the wavelength of Q0, even if light emission by B0 is a viewing angle of 0 ° or B light emission is mixed, this pixel It can be considered that the color purity of the pixel is not negative but rather functions to bring the color purity of the pixel closer to the wavelength P.

また、図3に示したように、有機分子の発光スペクトルが複数の極大を持ち(波長Q1、Q2、ここでQ1<Q2とする)、複数の極小(波長R1、R2,R3ここでR1<R2<R3とする)を持ち、Q1がPに近い場合は、A0をQ1付近になるよう設計して発光ピークAを発生させると同時に、BはR2付近またはR3付近に来るように設計してQ1−R2、Q2−R3の間の有機分子の発光スペクトル成分を共振Bに重ねて生じる発光ピークBを発光ピークAのブルーシフトに対する補正とすることができる。   Further, as shown in FIG. 3, the emission spectrum of the organic molecule has a plurality of maxima (wavelengths Q1, Q2, where Q1 <Q2), and a plurality of minima (wavelengths R1, R2, R3, where R1 < R2 <R3), and Q1 is close to P, A0 is designed to be near Q1 to generate a light emission peak A, and B is designed to be near R2 or R3. The emission peak B generated by superimposing the emission spectrum component of the organic molecule between Q1-R2 and Q2-R3 on the resonance B can be corrected for the blue shift of the emission peak A.

複数の極大、極小を持つ場合でも、図4に示したように、波長Q1―R2−Q2の差が共振特性の半値幅に比べて十分小さくできる場合や、R2における強度の、隣接する極大からの低下が十分小さいとみなしうる場合は、有機分子の発光スペクトルのR2における変化がデバイスの色純度・強度設計の重大な支障にはならないため、Q1―R2−Q2の増減を無視して図1の手法で設計することもできる。   Even when there are a plurality of local maxima and minima, as shown in FIG. 4, when the difference between the wavelengths Q1-R2-Q2 can be made sufficiently smaller than the half-value width of the resonance characteristics, or from the adjacent maxima of the intensity at R2. 1 can be regarded as being sufficiently small, the change in R2 of the emission spectrum of the organic molecule does not become a significant hindrance to the color purity and intensity design of the device. Therefore, the increase / decrease in Q1-R2-Q2 is ignored. It is also possible to design with this method.

図5は、複数の共振強度ピークを持つ光共振器特性を有する本発明による自発光素子の各種の構成例を説明する模式断面図である。図5の(a)は図の下側から発光を取出す形式の自発光素子、図5の(b)は図の上側から発光を取出す形式の自発光素子、図5の(c)は図の上下両側から発光を取出す形式の自発光素子である。これらの自発光素子は、通常は、図5の下側に透明な絶縁基板を有する。図5の(a)では、透明な絶縁基板の裏面に色フィルタ109が設置され、図5の(b)では図の上側に透明な絶縁基板(封止缶とも称する)を有し、この絶縁基板に色フィルタ109が設置される。また、図5の(c)では、光共振器を一対の半透明反射鏡で構成し、上下に色フィルタ109が設置される。   FIG. 5 is a schematic cross-sectional view illustrating various configuration examples of the self-luminous element according to the present invention having the optical resonator characteristics having a plurality of resonance intensity peaks. 5A is a self-luminous element of a type that extracts light from the lower side of the figure, FIG. 5B is a self-luminous element of a type that extracts light from the upper side of the figure, and FIG. It is a self-luminous element that takes out light emission from the upper and lower sides. These self-luminous elements usually have a transparent insulating substrate on the lower side of FIG. In FIG. 5A, a color filter 109 is installed on the back surface of a transparent insulating substrate, and in FIG. 5B, a transparent insulating substrate (also referred to as a sealing can) is provided on the upper side of the drawing. A color filter 109 is installed on the substrate. In FIG. 5C, the optical resonator is composed of a pair of translucent reflecting mirrors, and the color filter 109 is installed above and below.

図5には、光共振器長の構成要素となる反射鏡間を矢印で示した。符号101は有機発光部に電界を印加する第一電極である金属電極兼全反射鏡、102は電子注入層、103は電子輸送層、104は発光層、105はホール輸送層、106,106aは有機発光部に電界を印加する第二電極である透明電極である。電子注入層102、電子輸送層103、発光層104、ホール輸送層105で有機発光部を構成する。また、符号107は透明誘電体薄膜、108は半透明反射鏡、109は該自発光素子(表示装置の場合は、所謂、画素)のR、G、Bいずれかの発光色のみを通過させ、同時にスペクトル波形の補正を行なう色フィルタである。   In FIG. 5, the distance between the reflecting mirrors, which are the constituent elements of the optical resonator length, is indicated by arrows. Reference numeral 101 denotes a metal electrode and total reflection mirror which is a first electrode for applying an electric field to the organic light emitting part, 102 denotes an electron injection layer, 103 denotes an electron transport layer, 104 denotes a light emitting layer, 105 denotes a hole transport layer, and 106 and 106a denote It is a transparent electrode which is a 2nd electrode which applies an electric field to an organic light emission part. The electron injection layer 102, the electron transport layer 103, the light emitting layer 104, and the hole transport layer 105 constitute an organic light emitting unit. Reference numeral 107 is a transparent dielectric thin film, 108 is a semitransparent reflecting mirror, 109 is a light-emitting element (so-called pixel in the case of a display device), and passes only one of the R, G, and B emission colors, It is a color filter that simultaneously corrects the spectral waveform.

この自発光素子の素子構造は、ガラスあるいはプラスチックの絶縁基板上に薄膜形成プロセスで上記の各層を順次積層して形成される。前記したように、絶縁基板は透明基板であれば図5の(a)、(b)、(c)それぞれの素子構造のどちら側(図5の上下)にあっても問題はない。絶縁基板に不透明な基板を用いる場合については、図5の(a)、(b)、(c)中に広い矢印で示された発光取り出し方向側に置くことは光を発光素子から取り出す目的にそぐわない。図5の(c)では、不透明な基板を用いた側からは発光が取り出されない素子となる。   The element structure of this self-luminous element is formed by sequentially laminating the above-described layers on a glass or plastic insulating substrate by a thin film formation process. As described above, if the insulating substrate is a transparent substrate, there is no problem regardless of which side (upper and lower sides in FIG. 5) of each element structure shown in FIGS. 5 (a), 5 (b), and 5 (c). In the case of using an opaque substrate as the insulating substrate, placing it on the light emission direction side indicated by the wide arrow in FIGS. 5A, 5B, and 5C for the purpose of extracting light from the light emitting element. Not right. In FIG. 5C, an element from which light emission is not extracted from the side using the opaque substrate is obtained.

また、電極分を含む電極間の電界発光構造部分(有機発光部を構成する電子注入層102、電子輸送層103、発光層104、ホール輸送層105、有機発光部に電界を印加する第二電極である透明電極106)については、これまでに報告されている材料、積層構造を使用可能である。以下、本発明の自発光素子の具体例について実施例2として説明する。   In addition, an electroluminescent structure portion between electrodes including an electrode portion (an electron injection layer 102, an electron transport layer 103, a light emitting layer 104, a hole transport layer 105, and a second electrode that applies an electric field to the organic light emitting portion). As for the transparent electrode 106), the materials and laminated structures reported so far can be used. Hereinafter, a specific example of the self-luminous element of the present invention will be described as Example 2.

図6は、図5の(a)に示した自発光素子の素子構造を用いて青色の自発光素子(所謂、青色画素)とした場合の構造を示す模式断面図である。符号201は金属電極兼全反射鏡(膜厚150nmのアルミニウム:Al)、202は電子注入層(同、LiF(1.0nm))、203は電子輸送層(同、ALQ(40nm))、204は発光層(ALQ:20%ジスチリルアリレン(DSA)(20nm))、205はホール輸送層(α‐NPD(40nm))、206は透明電極(ITO(Indium Tin Oxide)(160nm))、207は透明誘電体薄膜(SiO2((1400nm))、208は半透明反射鏡(TiO2‐SiO2(1/4波長厚計6積層、非特許文献1参照)、209は該当画素の青色のみを通過させ、同時にスペクトル波形の補正を行なう色フィルタである。有機膜の屈折率は約1.7、ITOの屈折率は約1.9で、SiO2の屈折率は約1.45である。 FIG. 6 is a schematic cross-sectional view showing a structure when a blue self-luminous element (so-called blue pixel) is formed using the element structure of the self-luminous element shown in FIG. Reference numeral 201 denotes a metal electrode / total reflection mirror (aluminum: Al with a film thickness of 150 nm), 202 denotes an electron injection layer (the same, LiF (1.0 nm)), 203 denotes an electron transport layer (the same, ALQ (40 nm)), 204 Is a light emitting layer (ALQ: 20% distyrylarylene (DSA) (20 nm)), 205 is a hole transport layer (α-NPD (40 nm)), 206 is a transparent electrode (ITO (Indium Tin Oxide) (160 nm)), 207 is a transparent dielectric thin film (SiO 2 ((1400 nm)), 208 is a translucent reflecting mirror (TiO 2 -SiO 2 (six quarter wave thickness gauge, see Non-Patent Document 1)), and 209 is the blue color of the corresponding pixel. This is a color filter that passes only the light and simultaneously corrects the spectral waveform, the refractive index of the organic film is about 1.7, the refractive index of ITO is about 1.9, and the refractive index of SiO 2 is about 1.45. is there.

図7Aは、図6に示した青色の自発光素子における発光層を構成する有機発光分子の発光スペクトルの説明図である。図7Bは、図6に示した青色の自発光素子により実現される共振強度特性図である。図7Cは、図6に示した青色の自発光素子の、絶縁基板面に対する0℃、30℃、45℃の各観察方向における色フィルタ透過前のスペクトルの説明図、図7Dは、図6に示した青色の自発光素子の、絶縁基板面に対する0℃、30℃、45℃の各観察方向における色フィルタ透過後のスペクトルの説明図である。そして、図7Eは、図6に示した青色の自発光素子における色フィルタの透過特性を説明する図である。   FIG. 7A is an explanatory diagram of an emission spectrum of organic light-emitting molecules constituting a light-emitting layer in the blue self-light-emitting element shown in FIG. FIG. 7B is a resonance intensity characteristic diagram realized by the blue light-emitting element shown in FIG. FIG. 7C is an explanatory diagram of a spectrum of the blue light-emitting element shown in FIG. 6 before transmission through a color filter in each observation direction of 0 ° C., 30 ° C., and 45 ° C. with respect to the insulating substrate surface, and FIG. It is explanatory drawing of the spectrum after the color filter permeation | transmission in each observation direction of 0 degreeC, 30 degreeC, and 45 degreeC with respect to the insulating substrate surface of the blue self-light-emitting element shown. FIG. 7E is a diagram for explaining the transmission characteristics of the color filter in the blue light-emitting element shown in FIG.

図7Cにおける符号301は、上記DSAの発光スペクトルで、そのピーク波長は460nmでNTSCの青色の規格の波長(470nm付近)に近いが、長波長の発光域が600nm以上にまであるため、発光スペクトルとしてはCIE色度図上の座標(x,y)=(0.148,0.143)であって、NTSCの青色より長波長領域寄りにある。本実施例では、これに共振器構造を組み合わせて分子発光スペクトルピーク波長付近に共振増強ピークを設定し、その波長で単色化することにより、NTSCの青色の規格を満足する青色発光とすることができる。   Reference numeral 301 in FIG. 7C denotes the emission spectrum of the DSA, which has a peak wavelength of 460 nm and is close to the wavelength of the NTSC blue standard (near 470 nm), but has a long wavelength emission region of 600 nm or more. Are coordinates (x, y) = (0.148, 0.143) on the CIE chromaticity diagram, which is closer to the longer wavelength region than the blue color of NTSC. In this embodiment, a resonator structure is combined with this to set a resonance enhancement peak in the vicinity of the molecular emission spectrum peak wavelength, and by making it monochromatic at that wavelength, blue light emission satisfying the NTSC blue standard can be obtained. it can.

分子発光スペクトル301を青用の光フィルタ(図7Eに示した特性)を透過させたときの発光スペクトル特性は図7Dに示したスペクトル302となる。光共振強度特性は、視角0°で図7Bに示したように450nm付近及び500nm付近にある。共振のピーク波長は、30°で96%、45°で93%(平均屈折率が1.7の場合)であるが、各視角の発光ピークの波長は有機発光分子の発光スペクトルの勾配の影響やそれぞれのパラメータの波長依存性の影響も受ける。   When the molecular emission spectrum 301 is transmitted through the blue light filter (characteristic shown in FIG. 7E), the emission spectral characteristic is the spectrum 302 shown in FIG. 7D. The optical resonance intensity characteristics are near 450 nm and 500 nm as shown in FIG. 7B at a viewing angle of 0 °. The resonance peak wavelength is 96% at 30 ° and 93% at 45 ° (when the average refractive index is 1.7). The wavelength of the emission peak at each viewing angle is affected by the gradient of the emission spectrum of the organic light emitting molecule. It is also affected by the wavelength dependence of each parameter.

視角の値が幾らまでを表示装置として用い、ブルーシフト補正の対象とするかは表示装置の用途から決定される。敢えて、ほぼ全視角で使用する理想的な用途を求めるなら、自発光素子においては視角0°の波長に対し最大約15%波長が短波長化するので(非特許文献1参照)、視角0°で、G、Bの各色に置く図7Cに示したそれぞれのピークAの波長に対し、補正の共振のピーク波長は15%前後長波長側にあることが適切である。このことは、mの値として9または8を用いることが最善であることを意味する。   How much the value of the viewing angle is used as a display device and whether or not to be subject to blue shift correction is determined by the use of the display device. If an ideal application for almost all viewing angles is sought, the self-luminous element has a maximum wavelength of about 15% shorter than the viewing angle of 0 ° (see Non-Patent Document 1). Therefore, it is appropriate that the peak wavelength of the resonance for correction is on the long wavelength side around 15% with respect to the wavelength of each peak A shown in FIG. 7C placed in each color of G and B. This means that it is best to use 9 or 8 as the value of m.

図5の(b)(c)に示した画素構造の場合は、透明電極106bの膜厚と半透明反射協との界面の移送シフト分が変化した分を透明誘電体薄膜107の膜厚に繰り入れて変更し、さらにその結果、素子全体の平均屈折率がわずかに変化した効果により視角依存性が変化した分を、例えば色フィルタ109の特性により微調整すれば図6での説明とほぼ同じ効果を得ることができる。   In the case of the pixel structure shown in FIGS. 5B and 5C, the thickness of the transparent dielectric thin film 107 is the amount of change in the transfer shift at the interface between the transparent electrode 106b and the semitransparent reflection cooperative. If the visual angle dependency is changed by the effect of slightly changing the average refractive index of the entire element as a result, if the fine adjustment is made by the characteristics of the color filter 109, for example, it is almost the same as the explanation in FIG. An effect can be obtained.

本発明の実施例3は表示装置に係るものである。前記した自発光素子の実施例1および実施例2で説明した青色画素(青色の自発光素子)や、同様に本発明の最適化設計を施した緑色(緑色の自発光素子)、赤色発光画素(赤色の自発光素子)をR、G、Bディスプレイ画素の一部もしくは全体に組み込むことにより、視角増大によるブルーシフトや効率・輝度変化を低減できる。従来使用していなかった各R、G、Bの自発光素子を構成する有機発光分子スペクトルの長波長側成分が利用されるため、従来に比べて高効率化・熱的劣化低減による長寿命化の効果が達成されるが、その効果はR、G、Bディスプレイのパネル内の画素(自発光素子)で本発明の画素をより多く用いるほど大きく、全画素に用いることが理想的である。   Example 3 of the present invention relates to a display device. The blue pixels (blue self-light-emitting elements) described in the first and second embodiments of the above-described self-light-emitting elements, and green (green self-light-emitting elements) and red light-emitting pixels that are similarly subjected to the optimization design of the present invention. By incorporating (red self-luminous elements) into some or all of the R, G, and B display pixels, it is possible to reduce blue shift and efficiency / luminance changes due to increased viewing angle. Long-wavelength side components of the organic light-emitting molecular spectrum that make up the R, G, and B self-luminous elements that were not used in the past are used, resulting in higher efficiency and longer lifetime due to reduced thermal degradation. However, the effect is larger as more pixels of the present invention are used in the pixels (self-luminous elements) in the panel of the R, G, B display, and ideally used for all pixels.

本発明の表示装置は、それぞれが赤色、緑色、青色に発光する3色の有機発光分子層と、該有機発光分子層の両側に配置されて該有機発光分子層に電位差を加える第一電極および第二電極を有する有機発光素子と、該有機発光素子を挟んで配置されて該有機発光素子の発光スペクトルの強度を変調する一対の半透明反射層からなる光共振器を備えた自発光素子を絶縁基板上に複数配列して表示領域とする。   The display device of the present invention includes three organic light-emitting molecular layers that emit red, green, and blue, respectively, a first electrode that is disposed on both sides of the organic light-emitting molecular layer, and applies a potential difference to the organic light-emitting molecular layer. A self-luminous element comprising an organic light-emitting element having a second electrode and an optical resonator composed of a pair of semi-transparent reflective layers arranged across the organic light-emitting element and modulating the intensity of the emission spectrum of the organic light-emitting element A plurality of arrays are arranged on an insulating substrate to form a display area.

そして、本発明の表示装置の特徴は、前記自発光素子の前記赤色、前記緑色、前記青色のいずれか1種以上について、前記自発光素子が、前記光共振器による前記有機発光分子層の発光の強度増強特性の前記基板面の正面方向における振幅のピークを、該有機発光分子層の発光スペクトル波長域内の赤、緑、青のいずれかの発光色に有すると共に、前記発光スペクトル波長域外の長波長部にも有し、前記基板面の正面方向において振幅のピークを持つ光による前記自発光素子の前記基板面の前記正面方向から斜め方向での観察光が、当該自発光素子を構成する前記有機発光分子層の発光のスペクトル波長域内にシフトしている点にある。   The display device of the present invention is characterized in that, for any one or more of the red light, the green light, and the blue light, the self light emitting element emits light from the organic light emitting molecular layer by the optical resonator. A peak of amplitude in the front direction of the substrate surface of the intensity enhancement characteristic of the organic light-emitting molecular layer has a light emission color of red, green, or blue within the emission spectrum wavelength range of the organic light-emitting molecular layer, and has a length outside the emission spectrum wavelength range. The observation light in the oblique direction from the front direction of the substrate surface of the self-luminous element due to light having an amplitude peak in the front direction of the substrate surface also having the wavelength portion constitutes the self-luminous element The organic light emitting molecular layer is shifted within the spectral wavelength range of light emission.

また、本発明の表示装置の特徴は、上記の有機発光分子層が前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ前記スペクトルの波長域内に、前記絶縁基板面の正面方向または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを少なくとも2つ有しており、それぞれの前記ピークの波長は、その1つは極小→極大内にあり、他の1つは極大→極小内にある。   The display device of the present invention is characterized in that the emission spectrum intensity of the organic light emitting molecular layer in the front direction of the insulating substrate surface is minimum → maximum, maximum → minimum from the short wavelength side to the long wavelength side. At least a peak of the amplitude of the intensity enhancement characteristic by the optical resonator observed in the front direction of the insulating substrate surface or in an oblique direction from the front direction within the wavelength range of the spectrum. There are two, and the wavelength of each of the peaks, one of which is within the minimum → maximum, and the other of which is within the maximum → minimum.

また、本発明の表示装置の特徴は、上記の有機発光分子層が前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ前記スペクトルの波長域内に、前記絶縁基板面の正面または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを当該斜め方向の角度で少なくとも2つずつ有しており、それぞれの前記ピークの波長は、その1つは極小→極大内にあり、他の1つは極大→極小内にある。   The display device of the present invention is characterized in that the emission spectrum intensity of the organic light emitting molecular layer in the front direction of the insulating substrate surface is minimum → maximum, maximum → minimum from the short wavelength side to the long wavelength side. And the peak of the amplitude of the intensity enhancement characteristic by the optical resonator observed obliquely from the front of the insulating substrate surface or from the front direction within the wavelength range of the spectrum. There are at least two directional angles, each of which has a wavelength within the minimum → maximum and the other within the maximum → minimum.

また、本発明の表示装置の特徴は、上記有機発光分子層が前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ前記スペクトルの波長域内に、前記絶縁基板面の正面または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを少なくとも2つ有しており、それぞれの前記ピークの波長は、その1つは0→極大内にあり、他の1つは極大→0内にある。   The display device of the present invention is characterized in that the emission spectrum intensity of the organic light emitting molecular layer in the front direction of the insulating substrate surface is minimum → maximum, maximum → minimum from the short wavelength side to the long wavelength side. And having at least two amplitude peaks of the intensity enhancement characteristic by the optical resonator observed in the front of the insulating substrate surface or in an oblique direction from the front direction within the wavelength region of the spectrum. And the wavelength of each said peak is within 0 → maximum and the other is within the maximum → 0.

なお、本発明の表示装置の特徴は、上記の自発光素子を前記表示装置の前記表示領域を構成する自発光素子総数の一部に用い、あるいは前記赤色、前記緑色、前記青色のいずれか1種以上を前記表示装置の前記表示領域を構成する自発光素子総数の全部に用いる。   Note that the display device of the present invention is characterized in that the self-light-emitting element is used as a part of the total number of self-light-emitting elements constituting the display area of the display device, or any one of the red, green, and blue colors. The seeds or more are used for the total number of the self-light-emitting elements constituting the display area of the display device.

また、本発明の表示装置では、前記絶縁基板上に形成される前記自発光素子が第一の電極である金属電極兼全反射鏡、電子注入層、電子輸送層、有機発光層、ホール輸送層、第二の電極である透明電極、透明誘電体層、半透明反射鏡を、この順で積層して構成されるか、第一の電極である第一の半透明反射鏡、電子注入層、電子輸送層、有機発光層、ホール輸送層、第二の電極である透明電極、透明誘電体層、第二の半透明反射鏡をこの順で積層される。   In the display device of the present invention, the self-luminous element formed on the insulating substrate is a metal electrode / total reflection mirror, which is a first electrode, an electron injection layer, an electron transport layer, an organic light emitting layer, a hole transport layer. The second electrode is a transparent electrode, a transparent dielectric layer, and a semitransparent reflector, which are stacked in this order, or the first electrode is a first semitransparent reflector, an electron injection layer, An electron transport layer, an organic light emitting layer, a hole transport layer, a transparent electrode as a second electrode, a transparent dielectric layer, and a second translucent reflecting mirror are laminated in this order.

また、本発明の表示装置では、前記金属電極兼全反射鏡の外側、または前記半透明反射鏡の外側、もしくは前記第一の半透明反射鏡の外側および前記第二の半透明反射鏡の外側のそれぞれに、前記有機発光分子層の発光のスペクトルの長波長域発光成分を低減する光フィルタを設ける。   In the display device of the present invention, the outside of the metal electrode / total reflection mirror, the outside of the semitransparent reflection mirror, the outside of the first semitransparent reflection mirror, and the outside of the second semitransparent reflection mirror. Each of these is provided with an optical filter for reducing the light emission component in the long wavelength region of the emission spectrum of the organic light emitting molecular layer.

また、可変色調照明パネルを初めとした、共振器構造を用いると視角依存性が問題となる発光デバイスにおいても、本発明により、同様にして視角増大によるブルーシフトや効率、輝度変化を低減でき、従来に比べて高効率・熱的劣化低減による高画質、かつ長寿命化が達成される。   In addition, even in a light emitting device in which viewing angle dependency becomes a problem when using a resonator structure, such as a variable color lighting panel, the present invention can similarly reduce blue shift, efficiency, and luminance change due to viewing angle increase, Compared with the conventional technology, high image quality and long life can be achieved by high efficiency and reduced thermal degradation.

本発明は、従来、共振器構造有機電界発光デバイスで取り出されていなかった有機分子発光スペクトルの長波長側成分を視角の大きい側で利用した結果として、デバイスから半空間に放出される全光量を増大させて効率を増大させ長寿命化する効果は、単色の表示パネルや光源に対する適用においても有用である。
同時に、フルカラーディスプレイ、フルカラー調色照明、プリンタの書き込みヘッドやスキャナーの読み取りセンサ、光伝送路のコネクタなどにおいて、使用上のマイナス要因となる視角によるブルーシフトを解消する手段として有効である。プリンタやスキャナの光ヘッド、光コネクションや照明装置の発光部として用いることにより、照射総光量の増大を図ることができる。また、光ヘッドや光コネクションでは、照射光波長特性の修正が可能であり、照明装置では角度依存による色調および強度変化の低減が可能である。
As a result of utilizing the long wavelength side component of the organic molecular emission spectrum, which has not been extracted by a conventional resonator-structure organic electroluminescent device, on the side with a large viewing angle, the present invention reduces the total amount of light emitted from the device into a half space. The effect of increasing the efficiency and extending the lifetime is also useful in applications to monochromatic display panels and light sources.
At the same time, it is effective as means for eliminating blue shift due to viewing angle, which is a negative factor in use, in full color displays, full color toned lighting, printer writing heads, scanner reading sensors, optical transmission line connectors, and the like. By using it as an optical head of a printer or a scanner, an optical connection, or a light emitting part of an illumination device, the total irradiation light quantity can be increased. In addition, in the optical head and the optical connection, the irradiation light wavelength characteristic can be corrected, and in the illumination device, the color tone and intensity change depending on the angle can be reduced.

本発明の自発光素子の実施例を説明するための複数の共振強度ピークを持つ光共振器特性図である。It is an optical resonator characteristic view with a plurality of resonance intensity peaks for explaining an example of a self-luminous element of the present invention. 本発明の自発光素子の実施例を構成する有機分子の発光スペクトルの説明図である。It is explanatory drawing of the emission spectrum of the organic molecule which comprises the Example of the self-light-emitting element of this invention. 絶縁基板面に対する視野角の違いにおける発光スペクトルの説明図である。It is explanatory drawing of the emission spectrum in the difference in the viewing angle with respect to the insulated substrate surface. 有機発光分子の発光スペクトルと複数の共振強度ピークを持つ光共振器特性の組合せを説明する図である。It is a figure explaining the combination of the optical resonator characteristic which has the emission spectrum of an organic light emitting molecule | numerator, and several resonance intensity peaks. 有機発光分子の発光スペクトルと複数の共振強度ピークを持つ光共振器特性の他の組合せを説明する図である。It is a figure explaining the other combination of the optical resonator characteristic which has the emission spectrum of an organic light emitting molecule | numerator, and several resonance intensity peaks. 有機発光分子の発光スペクトルと複数の共振強度ピークを持つ光共振器特性のさらに他の組合せを説明する図である。It is a figure explaining the further another combination of the emission spectrum of an organic light emitting molecule | numerator, and the optical resonator characteristic which has a some resonance intensity peak. 複数の共振強度ピークを持つ共振器特性を有する本発明による自発光素子の各種の構成例を説明する模式断面図である。It is a schematic cross-sectional view for explaining various configuration examples of the self-luminous element according to the present invention having resonator characteristics having a plurality of resonance intensity peaks. 図5の(a)に示した自発光素子の素子構造を用いて青色の自発光素子とした場合の構造を示す模式断面図である。It is a schematic cross section which shows the structure at the time of setting it as a blue self-light-emitting element using the element structure of the self-light-emitting element shown to (a) of FIG. 図6に示した青色の自発光素子における発光層を構成する有機発光分子の発光スペクトルの説明図である。It is explanatory drawing of the emission spectrum of the organic light emitting molecule | numerator which comprises the light emitting layer in the blue self-light-emitting element shown in FIG. 図6に示した青色の自発光素子により実現される光共振強度特性図である。FIG. 7 is an optical resonance intensity characteristic diagram realized by the blue self-luminous element shown in FIG. 6. 図6に示した青色の自発光素子の、絶縁基板面に対する0℃、30℃、45℃の各観察方向における色フィルタ透過前のスペクトルの説明図である。It is explanatory drawing of the spectrum before color filter permeation | transmission in each observation direction of 0 degreeC, 30 degreeC, and 45 degreeC with respect to the insulating substrate surface of the blue self-light emitting element shown in FIG. 図6に示した青色の自発光素子の、絶縁基板面に対する0℃、30℃、45℃の各観察方向における色フィルタ透過後のスペクトルの説明図である。It is explanatory drawing of the spectrum after the color filter permeation | transmission in each observation direction of 0 degreeC, 30 degreeC, and 45 degreeC with respect to the insulating substrate surface of the blue self-light emitting element shown in FIG. 図6に示した青色の自発光素子における色フィルタの透過特性を説明する図である。It is a figure explaining the permeation | transmission characteristic of the color filter in the blue self-light-emitting element shown in FIG.

符号の説明Explanation of symbols

101:金属電極兼全反射鏡、102:電子注入層、103:電子輸送層、104:発光層、105:ホール輸送層、106,106b:透明電極、107:透明誘電体薄膜、108:半透明反射鏡、109:色フィルタ、201:金属電極兼全反射鏡(Al)、202:電子注入層(LiF)、203:電子輸送層(ALQ)、204:発光層(ALQ:20%ジスチリルアリレン)、205:ホール輸送層(α‐NPD)、206:透明電極(ITO)、207:透明誘電体薄膜(SiO2)、208:半透明反射鏡(TiO2‐SiO2)、301:DSAの発光スペクトル、302:DSAの発光スペクトルを青用の光フィルタに通した発光スペクトル。 101: Metal electrode and total reflection mirror, 102: Electron injection layer, 103: Electron transport layer, 104: Light emitting layer, 105: Hole transport layer, 106, 106b: Transparent electrode, 107: Transparent dielectric thin film, 108: Translucent Reflector, 109: Color filter, 201: Metal electrode and total reflector (Al), 202: Electron injection layer (LiF), 203: Electron transport layer (ALQ), 204: Light emitting layer (ALQ: 20% distyryl ant) Ren), 205: hole transport layer (α-NPD), 206: transparent electrode (ITO), 207: transparent dielectric thin film (SiO 2 ), 208: translucent reflector (TiO 2 -SiO 2 ), 301: DSA , 302: an emission spectrum obtained by passing the DSA emission spectrum through a blue light filter.

Claims (14)

有機発光分子層と、該有機発光分子層の両側に配置されて該有機発光分子層に電位差を加える第一電極および第二電極を有し、該有機発光素子を挟んで配置されて該有機発光素子の発光スペクトルの強度を変調する反射層又は半透明反射層の何れかからなる光共振器を絶縁基板上に備えた自発光素子であって、
前記光共振器による前記有機発光分子層の発光の強度増強特性の前記絶縁基板面の正面方向における振幅のピークを、該有機発光分子層の発光スペクトル波長域内の発光色に有すると共に、当該発光スペクトル波長域外の長波長部にも有し、
前記絶縁基板面の正面方向において振幅のピークを持つ光による前記自発光素子の前記絶縁基板面の斜め方向での観察方向の光が、前記有機発光分子層の発光のスペクトル波長域内にシフトすることを特徴とする自発光素子。
An organic light-emitting molecular layer; and a first electrode and a second electrode disposed on both sides of the organic light-emitting molecular layer to apply a potential difference to the organic light-emitting molecular layer; A self-luminous element provided on an insulating substrate with an optical resonator composed of either a reflective layer or a semitransparent reflective layer that modulates the intensity of the emission spectrum of the element,
The light emission intensity enhancement characteristic of the organic light emitting molecular layer by the optical resonator has an amplitude peak in the front direction of the insulating substrate surface in the emission color within the emission spectrum wavelength region of the organic light emitting molecular layer, and the emission spectrum. Also in the long wavelength part outside the wavelength range,
Light in an observation direction in an oblique direction of the insulating substrate surface of the self-luminous element due to light having an amplitude peak in the front direction of the insulating substrate surface is shifted within a spectral wavelength range of light emission of the organic light emitting molecular layer. Self-luminous element characterized by.
請求項1において、
前記絶縁基板面の正面方向における観察方向に、該絶縁基板面の正面方向の前記有機発光分子層の発光のスペクトルの長波長域発光成分を低減する光フィルタを設けたことを特徴とする自発光素子。
In claim 1,
A self-light-emitting device provided with an optical filter for reducing a long-wavelength light-emitting component of the emission spectrum of the organic light-emitting molecular layer in the front direction of the insulating substrate surface in the observation direction in the front direction of the insulating substrate surface element.
請求項1において、
前記絶縁基板面の正面方向における観察方向に、該観察方向が前記正面方向から斜め方向の角度における発光の色度を当該有機発光分子層の発光に近づける波長特性を有するカラーフィルタを設けたことを特徴とする自発光素子。
In claim 1,
A color filter having a wavelength characteristic is provided in the observation direction in the front direction of the insulating substrate surface so that the chromaticity of light emission when the observation direction is oblique from the front direction is close to the light emission of the organic light emitting molecular layer. A self-luminous element characterized.
それぞれが赤色、緑色、青色に発光する3色の有機発光分子層と、該有機発光分子層の両側に配置されて該有機発光分子層に電位差を加える第一電極および第二電極を有する有機発光素子と、該有機発光素子を挟んで配置されて該有機発光素子の発光スペクトルの強度を変調する一対の半透明反射層からなる光共振器を備えた自発光素子を絶縁基板上に複数配列して表示領域とした表示装置であって、
前記自発光素子の前記赤色、前記緑色、前記青色のいずれか1種以上について、
前記自発光素子が、
前記光共振器による前記有機発光分子層の発光の強度増強特性の前記基板面の正面方向における振幅のピークを、該有機発光分子層の発光スペクトル波長域内の赤、緑、青のいずれかの発光色に有すると共に、前記発光スペクトル波長域外の長波長部にも有し、
前記基板面の正面方向において振幅のピークを持つ光による前記自発光素子の前記基板面の前記正面方向から斜め方向での観察光が、当該自発光素子を構成する前記有機発光分子層の発光のスペクトル波長域内にシフトしていることを特徴とする表示装置。
Organic light-emitting device comprising three organic light-emitting molecular layers that emit red, green, and blue, respectively, and a first electrode and a second electrode that are disposed on both sides of the organic light-emitting molecular layer and apply a potential difference to the organic light-emitting molecular layer A plurality of self-emitting elements each including an element and an optical resonator composed of a pair of translucent reflective layers that are arranged with the organic light emitting element interposed therebetween and modulate the intensity of the emission spectrum of the organic light emitting element are arranged on an insulating substrate. Display device as a display area,
About one or more of the red, green, and blue of the self-luminous element,
The self-luminous element is
The peak of the amplitude in the front direction of the substrate surface of the intensity enhancement characteristic of light emission of the organic light emitting molecular layer by the optical resonator is emitted in any one of red, green, and blue within the emission spectrum wavelength region of the organic light emitting molecular layer. In addition to having a color, also has a long wavelength portion outside the emission spectrum wavelength range,
Observation light obliquely from the front direction of the substrate surface of the self-luminous element by light having an amplitude peak in the front direction of the substrate surface is emitted from the organic light-emitting molecular layer constituting the self-luminous element. A display device that is shifted within a spectral wavelength range.
請求項4において、
前記有機発光分子層は、前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ
前記スペクトルの波長域内に、前記絶縁基板面の正面方向または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを少なくとも2つ有しており、それぞれの前記ピークの波長は、その1つは極小→極大内にあり、他の1つは極大→極小内にあることを特徴とする表示装置。
In claim 4,
The organic light-emitting molecular layer has a spectrum of a characteristic part in which the emission spectrum intensity in the front direction of the insulating substrate surface is a minimum → maximum, a maximum → minimum from the short wavelength side toward the long wavelength side, And having at least two amplitude peaks of intensity enhancement characteristics by the optical resonator observed in a front direction of the insulating substrate surface or in an oblique direction from the front direction within the wavelength range of the spectrum, One of the wavelengths is within the minimum → maximum, and the other is within the maximum → minimum.
請求項4において、
前記有機発光分子層は、前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ
前記スペクトルの波長域内に、前記絶縁基板面の正面または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを当該斜め方向の角度で少なくとも2つずつ有しており、それぞれの前記ピークの波長は、その1つは極小→極大内にあり、他の1つは極大→極小内にあることを特徴とする表示装置。
In claim 4,
The organic light-emitting molecular layer has a spectrum of a characteristic part in which the emission spectrum intensity in the front direction of the insulating substrate surface is a minimum → maximum, a maximum → minimum from the short wavelength side toward the long wavelength side, And having at least two amplitude peaks of the intensity enhancement characteristic by the optical resonator observed in the oblique direction from the front or front direction of the insulating substrate surface within the wavelength range of the spectrum at an angle in the oblique direction. One of the wavelengths of the respective peaks is within the minimum → maximum, and the other is within the maximum → minimum.
請求項4において、
前記有機発光分子層は、前記絶縁基板面の正面方向の前記発光スペクトル強度が、その短波長側から長波長側に向って極小→極大、極大→極小となる特性の部分のスペクトルを有し、かつ
前記スペクトルの波長域内に、前記絶縁基板面の正面または正面方向から斜め方向で観測される前記光共振器による強度増強特性の振幅のピークを少なくとも2つ有しており、それぞれの前記ピークの波長は、その1つは0→極大内にあり、他の1つは極大→0内にあることを特徴とする表示装置。
In claim 4,
The organic light-emitting molecular layer has a spectrum of a characteristic part in which the emission spectrum intensity in the front direction of the insulating substrate surface is a minimum → maximum, a maximum → minimum from the short wavelength side toward the long wavelength side, And having at least two amplitude peaks of the intensity enhancement characteristic by the optical resonator observed in front of the insulating substrate surface or in an oblique direction from the front direction within the wavelength range of the spectrum, One of the wavelengths is in the range of 0 → maximum, and the other is in the range of the maximum → 0.
請求項5,6,7の何れかにおいて、
前記自発光素子を前記表示装置の前記表示領域を構成する自発光素子総数の一部に用いたことを特徴とする表示装置。
In any one of Claims 5, 6, and 7,
A display device, wherein the self-light-emitting element is used as a part of a total number of self-light-emitting elements constituting the display region of the display device.
請求項5,6,7の何れかにおいて、
前記自発光素子の前記赤色、前記緑色、前記青色のいずれか1種以上を前記表示装置の前記表示領域を構成する自発光素子総数の全部に用いたことを特徴とする表示装置。
In any one of Claims 5, 6, and 7,
One or more of the red light, the green light, and the blue light of the self light emitting elements are used for the total number of self light emitting elements constituting the display area of the display device.
請求項5,6,7の何れかにおいて、
前記絶縁基板上に形成される前記自発光素子は、第一の電極である金属電極兼全反射鏡、電子注入層、電子輸送層、有機発光層、ホール輸送層、第二の電極である透明電極、透明誘電体層、半透明反射鏡を、この順で積層されていることを特徴とする表示装置。
In any one of Claims 5, 6, and 7,
The self-luminous element formed on the insulating substrate is a metal electrode and total reflection mirror as a first electrode, an electron injection layer, an electron transport layer, an organic light emitting layer, a hole transport layer, and a transparent as a second electrode. A display device comprising an electrode, a transparent dielectric layer, and a translucent reflecting mirror laminated in this order.
請求項10において、
前記金属電極兼全反射鏡の外側に、前記有機発光分子層の発光のスペクトルの長波長域発光成分を低減する光フィルタを設けたことを特徴とする表示装置。
In claim 10,
A display device, wherein an optical filter for reducing a light emission component in a long wavelength region of a light emission spectrum of the organic light emitting molecular layer is provided outside the metal electrode / total reflection mirror.
請求項10において、
前記半透明反射鏡の外側に、前記有機発光分子層の発光のスペクトルの長波長域発光成分を低減する光フィルタを設けたことを特徴とする表示装置。
In claim 10,
A display device, wherein an optical filter for reducing a light emission component in a long wavelength region of an emission spectrum of the organic light emitting molecular layer is provided outside the translucent reflecting mirror.
請求項5,6,7の何れかにおいて、
前記絶縁基板上に形成される前記自発光素子は、第一の電極である第一の半透明反射鏡、電子注入層、電子輸送層、有機発光層、ホール輸送層、第二の電極である透明電極、透明誘電体層、第二の半透明反射鏡をこの順で積層されていることを特徴とする表示装置。
In any one of Claims 5, 6, and 7,
The self-luminous element formed on the insulating substrate is a first translucent reflector, which is a first electrode, an electron injection layer, an electron transport layer, an organic light emitting layer, a hole transport layer, and a second electrode. A display device, wherein a transparent electrode, a transparent dielectric layer, and a second translucent reflecting mirror are laminated in this order.
請求項13において、
前記第一の半透明反射鏡の外側および前記第二の半透明反射鏡の外側のそれぞれに、前記有機発光分子層の発光のスペクトルの長波長域発光成分を低減する光フィルタを設けたことを特徴とする表示装置。
In claim 13,
An optical filter for reducing a long wavelength region emission component of the emission spectrum of the organic light emitting molecular layer is provided on each of the outer side of the first translucent reflecting mirror and the outer side of the second translucent reflecting mirror. Characteristic display device.
JP2008045530A 2008-02-27 2008-02-27 Self-luminous element and display device Expired - Fee Related JP5309388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045530A JP5309388B2 (en) 2008-02-27 2008-02-27 Self-luminous element and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045530A JP5309388B2 (en) 2008-02-27 2008-02-27 Self-luminous element and display device

Publications (2)

Publication Number Publication Date
JP2009205886A true JP2009205886A (en) 2009-09-10
JP5309388B2 JP5309388B2 (en) 2013-10-09

Family

ID=41147966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045530A Expired - Fee Related JP5309388B2 (en) 2008-02-27 2008-02-27 Self-luminous element and display device

Country Status (1)

Country Link
JP (1) JP5309388B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214365A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd Organic el display device and organic el display device color change correction filter
JP2014013684A (en) * 2012-07-04 2014-01-23 Panasonic Corp Light emitting element and display device
JP2016039151A (en) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic equipment, and luminaire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
JPH11224783A (en) * 1998-02-04 1999-08-17 Toyota Central Res & Dev Lab Inc Organic electroluminescence element
JPH11288786A (en) * 1998-02-04 1999-10-19 Toyota Central Res & Dev Lab Inc Optical resonance type organic electroluminescence element
JP2003123987A (en) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc Optical resonator
JP2005100939A (en) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd Full-color organic light-emitting device having color adjustment layer
JP2006032327A (en) * 2004-06-18 2006-02-02 Sanyo Electric Co Ltd Electroluminescent panel
JP2007122969A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Light emitting device and electronic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
JPH11224783A (en) * 1998-02-04 1999-08-17 Toyota Central Res & Dev Lab Inc Organic electroluminescence element
JPH11288786A (en) * 1998-02-04 1999-10-19 Toyota Central Res & Dev Lab Inc Optical resonance type organic electroluminescence element
JP2003123987A (en) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc Optical resonator
JP2005100939A (en) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd Full-color organic light-emitting device having color adjustment layer
JP2006032327A (en) * 2004-06-18 2006-02-02 Sanyo Electric Co Ltd Electroluminescent panel
JP2007122969A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Light emitting device and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214365A (en) * 2012-03-30 2013-10-17 Dainippon Printing Co Ltd Organic el display device and organic el display device color change correction filter
JP2014013684A (en) * 2012-07-04 2014-01-23 Panasonic Corp Light emitting element and display device
JP2016039151A (en) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, electronic equipment, and luminaire

Also Published As

Publication number Publication date
JP5309388B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5073842B2 (en) EL device
KR101056679B1 (en) Organic light emitting device and display device
US8350281B2 (en) Display device, display apparatus and method of adjusting a color shift of white light in same
JP5008486B2 (en) Display device
JP4588603B2 (en) Electroluminescent device
KR101990312B1 (en) Organic Light Emitting Diode Display Device and Method for Manufacturing The Same
TWI538193B (en) Organic light emitting device and fabricating method thereof
US8487335B2 (en) Light emitting device, illumination apparatus and display apparatus
JP4732991B2 (en) EL device
KR101528242B1 (en) White organic light emitting device and color display apparatus employing the same
JP2011159433A (en) Light-emitting device, lighting system, and display device
KR20100087707A (en) Led device having complementary colour subpixel
US8946684B2 (en) Light-emitting device, illumination apparatus, and display apparatus
US10205126B2 (en) Light emission device including light extraction plane and a plurality of reflection interfaces, display apparatus including the light emission device, and illumination apparatus including the light emission device
JP2012028064A5 (en)
JP4454354B2 (en) Luminescent display device
US8809882B2 (en) Light emitting element, illumination device, and display apparatus
JP5309388B2 (en) Self-luminous element and display device
US10756303B2 (en) Light emitting device
JP2013145700A (en) Organic el element and display device using the same
JP4626967B2 (en) Surface light emitting device and manufacturing method thereof
US10909915B2 (en) Light emitting device
JP4843627B2 (en) Organic light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees