JP2009204388A - Defect inspection method - Google Patents

Defect inspection method Download PDF

Info

Publication number
JP2009204388A
JP2009204388A JP2008045741A JP2008045741A JP2009204388A JP 2009204388 A JP2009204388 A JP 2009204388A JP 2008045741 A JP2008045741 A JP 2008045741A JP 2008045741 A JP2008045741 A JP 2008045741A JP 2009204388 A JP2009204388 A JP 2009204388A
Authority
JP
Japan
Prior art keywords
inspection
defect
light
unevenness
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008045741A
Other languages
Japanese (ja)
Inventor
Hirosuke Takehara
裕輔 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2008045741A priority Critical patent/JP2009204388A/en
Publication of JP2009204388A publication Critical patent/JP2009204388A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect inspection method with the effects of imaging conditions, lighting conditions, design conditions for cyclic patterns, etc., removed therefrom as far as possible. <P>SOLUTION: In this defect inspection method for detecting streaky irregularities on an inspected body having cyclic patterns, intensity distribution of refracted light on the inspected body caused by illumination from a light source is acquired at a plurality of lighting angles to compare a plurality of inspection images of different lighting angles with a plurality of inspection images of different lighting angles to the inspected body, with the intensity distribution of the refracted light at the respective lighting angles acquired as inspection images. Streaky irregularities with their positions changing according to a light application angle to the inspected body and streaky irregularities with their positions unchanging are extracted to classify the streaky irregularities with their positions changing as pseudo defects which are not regarded as defects in inspection. As to the streaky irregularities with their positions unchanging classified as defects in inspection, defect scale is evaluated based on respective maximum luminances and pattern pitch normalized areas. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、周期性パターンを有する製品においてパターンのムラを検査するための方法に係わる。なお周期性パターンとは、一定の間隔を有するパターンの集合体を称し、例えば、パターンが所定の周期(ピッチ)で配列したストライプ状の周期性パターン、又は開口部のパターンが所定の周期で2次元的に配列したマトリクス状のパターン等である。例えば、カラーフィルタ、ブラックマトリクス、フォトマスク等がこれに当たる。   The present invention relates to a method for inspecting pattern unevenness in a product having a periodic pattern. Note that the periodic pattern refers to an aggregate of patterns having a constant interval. For example, a striped periodic pattern in which patterns are arranged at a predetermined period (pitch) or an opening pattern is 2 at a predetermined period. A dimensionally arranged matrix pattern or the like. For example, a color filter, a black matrix, a photomask, and the like correspond to this.

周期性パターンにおけるムラ欠陥は、通常微細なパターンズレが規則的に配列していることが多いため、個々のパターン検査では発見することが困難であるが、周期性パターンを全体として見たとき、他の正常部とは異なる状態となって顕在化される欠陥である。   The irregularity pattern in the periodic pattern is usually difficult to find by individual pattern inspection because fine pattern deviations are often regularly arranged, but when looking at the periodic pattern as a whole, It is a defect that is manifested in a different state from other normal parts.

ムラ欠陥の検査として目視検査が広く行われてきた。例えば、被検査体の周期性パターン面に対し斜方向等からの透過光又は反射光を通して周期性パターンを観察することでムラを目視で捉えることができる。   Visual inspection has been widely performed as an inspection for mura defects. For example, the unevenness can be visually recognized by observing the periodic pattern through transmitted light or reflected light from an oblique direction or the like with respect to the periodic pattern surface of the object to be inspected.

しかし、目視検査は作業員の習熟度によって検査結果にばらつきが出るという問題があるため、例えば特許文献1又は特許文献2のようなムラ検査装置が考案されている。これらのムラ検査装置では撮像カメラと同軸の透過照明や平面照明を用いて透過率画像を撮像し、各々の画像での光の強度(明るさ)を比べてムラの検出を行っている。つまり、周期性パターンにおいては元々ムラ部と正常部の光強度差の少ない、すなわちコントラストの低い画像を、その強度差の処理方法を工夫することで、差を拡大してムラ部を抽出し、検査を行っている。   However, since the visual inspection has a problem that the inspection result varies depending on the proficiency level of the worker, for example, a nonuniformity inspection apparatus such as Patent Document 1 or Patent Document 2 has been devised. In these unevenness inspection apparatuses, a transmittance image is captured using transmission illumination or plane illumination coaxial with the imaging camera, and the unevenness is detected by comparing the intensity (brightness) of light in each image. In other words, in the periodic pattern, originally, the light intensity difference between the uneven portion and the normal portion is small, that is, the image with low contrast is devised by processing the intensity difference to extract the uneven portion by expanding the difference. We are inspecting.

しかし、上記従来技術においては、格子状の周期性パターンのムラ、特に開口部の大きい周期性パターンのムラの撮像において、ムラ部と正常部のコントラスト向上が望めず、強度差の処理の工夫をしたとしても、元画像のコントラストが低い画像の場合の検査では、目視での官能検査よりも低い検査能力しか達成できていないという問題がある。   However, in the above prior art, in the imaging of the irregularity of the lattice-like periodic pattern, particularly the irregularity of the periodic pattern having a large opening, it is not possible to improve the contrast between the uneven part and the normal part. Even in such a case, the inspection in the case of an image having a low contrast of the original image has a problem that only an inspection ability lower than the visual sensory inspection can be achieved.

一方、微細な表示と明るい画面の電子部品の増加により、前記周期性パターンでは微細化、又は開口比上昇の傾向が続いている。将来、更に開口部の大きい、より微細形状のブラックマトリクス用に周期性パターンのムラ検査の方法及び装置が必要となる。すなわち、従来の光の振幅による光の強度(明るさ)の強弱のみに依る検査では限界である。   On the other hand, due to the increase in fine display and bright electronic components, the periodic pattern continues to tend to be finer or have an increased aperture ratio. In the future, a method and apparatus for inspecting periodic pattern irregularity will be required for a black matrix having a larger opening and a finer shape. That is, the conventional inspection based only on the intensity (brightness) of light based on the amplitude of light is a limit.

そこで、周期性パターンのムラを安定的、高精度に撮像、検出可能な周期性ムラ検査装置を提供することを目的として、照明光が被検査体に照射され、周期性パターンによって生じる透過回折光を画像検査する検査装置が提案された。周期性パターンの正常部では開口部の形状・ピッチが一定となるために互いに干渉し一定の方向に強い回折光を生じる。それに対し、ムラ部では開口部の形状、ピッチが不安定になるために、形状、ピッチに応じて色々な方向に、種々の強さで回折光が生じる。この検査装置は回折光のコントラストの違いから、ムラ部を検出している。しかし、回折光に依る正常部とムラ部のコントラストの違いは非常に僅差であることも少なくない。さらに、回折強度は照明光の照射角度、照明光の波長及び開口部の形状、ピッチ等に依存し変化する。   Therefore, for the purpose of providing a periodic unevenness inspection apparatus capable of capturing and detecting periodic pattern unevenness stably and with high accuracy, transmitted diffracted light generated by the periodic pattern is irradiated with illumination light. An inspection device has been proposed for image inspection. In the normal part of the periodic pattern, since the shape and pitch of the openings are constant, they interfere with each other and generate strong diffracted light in a certain direction. On the other hand, since the shape and pitch of the opening are unstable in the uneven portion, diffracted light is generated with various intensities in various directions according to the shape and pitch. This inspection apparatus detects uneven portions from the difference in contrast of diffracted light. However, the difference in contrast between the normal portion and the uneven portion due to the diffracted light is often very small. Further, the diffraction intensity varies depending on the irradiation angle of the illumination light, the wavelength of the illumination light, the shape of the opening, the pitch, and the like.

ところで、周期パターンを有する被検査体の検査装置では、本来、無欠陥であるにもかかわらず欠陥だと判定されてしまう箇所があり、この箇所のことを擬似欠陥という。従来の検査装置では、周期性パターンの透過回折光の強度分布を取得する際に、光の多重反射
による映り込み(ゴースト)も同時に捉えてしまい、それが擬似欠陥として検査画像に現れ検査精度を大幅に低下させてしまうという問題がある。検査画像中の擬似欠陥と本来の欠陥の見分けは非常に困難であり、人間の目視であってもその判別は容易ではない。
By the way, in the inspection apparatus for an object to be inspected having a periodic pattern, there is a place where it is determined that it is a defect even though it is originally defect-free, and this place is called a pseudo defect. In the conventional inspection device, when acquiring the intensity distribution of the transmitted diffracted light of the periodic pattern, the reflection (ghost) due to the multiple reflection of light is also captured at the same time, and this appears as a pseudo defect on the inspection image, thereby improving the inspection accuracy. There is a problem that it is greatly reduced. It is very difficult to distinguish a pseudo defect from an original defect in an inspection image, and it is not easy to discriminate it even by human visual inspection.

従来の欠陥検査方法では、照射方向が180度異なる2枚の検査画像を合成して擬似欠陥を除去する方法が提案されている(特許文献3参照)。しかしながら照射方向が180度異なる検査画像を取得するために、倍の検査時間を要してしまうという問題がある。   In the conventional defect inspection method, a method of removing a pseudo defect by combining two inspection images with different irradiation directions by 180 degrees has been proposed (see Patent Document 3). However, there is a problem that it takes twice the inspection time in order to acquire inspection images whose irradiation directions are different by 180 degrees.

そこで、特許文献4の様な、被検査画像上のムラ部の面積又は輝度値でムラの程度を評価する方法が提案された。しかしながら、ムラ部の面積や輝度は撮像条件(撮像倍率、ワーキングディスタンスなど)や照明条件(照明の波長、照明角度、照明の明るさなど)によって容易に変化し得る値である。また、昨今の周期性パターンのパターンピッチは数ミクロン〜数ナノと非常に幅広い。したがって、たとえスジ状ムラの面積に依るムラ評価値が同程度であったとしても、10μmの周期性パターンに現れた場合と、10nmの周期性パターンに現れた場合とでは、その瑕疵程度は大きく異なるのに、それが適切に評価されていなかった。   Therefore, a method for evaluating the degree of unevenness based on the area or luminance value of the uneven portion on the image to be inspected as in Patent Document 4 has been proposed. However, the area and brightness of the unevenness are values that can easily change depending on the imaging conditions (imaging magnification, working distance, etc.) and illumination conditions (illumination wavelength, illumination angle, illumination brightness, etc.). Moreover, the pattern pitch of the recent periodic pattern is very wide, from several microns to several nanometers. Therefore, even if the unevenness evaluation values depending on the area of the stripe-shaped unevenness are approximately the same, the degree of wrinkles is large when appearing in the periodic pattern of 10 μm and when appearing in the periodic pattern of 10 nm. Although it was different, it was not properly evaluated.

以下に公知文献を記す。
特開2002−148210号公報 特開2002−350361号公報 特開2006−275609号公報 特願2007−315556
The known literature is described below.
JP 2002-148210 A JP 2002-350361 A JP 2006-275609 A Japanese Patent Application No. 2007-315556

本発明は上記課題を解決するものであって、被検査体の周期性パターンにおけるムラの有無を判定するものであり、撮像条件、照明条件、周期性パターンの設計条件などの影響をできる限り排除して数値化を行うことを課題とする。   The present invention solves the above-described problem, and determines the presence or absence of unevenness in the periodic pattern of the object to be inspected, and eliminates effects such as imaging conditions, illumination conditions, and periodic pattern design conditions as much as possible. The task is to perform quantification.

本発明において上記課題を解決するために、まず請求項1の発明では、周期性パターンを有する被検査体のスジ状ムラを検出するための欠陥検査方法であって、
被検査体に光源からの光を照射することで生じる回折光の強度分布の取得を複数の照明角度で行い、各照明角度における回折光の強度分布を検査画像として取得する撮像工程と、
前記撮像工程によって取得された被検査体への照明角度が異なる複数枚の検査画像に対し、照明角度の異なる複数の検査画像を比較し、前記被検査体への照射角度に応じて位置が変化するスジ状ムラと変化しないスジ状ムラとを抽出し、その変化するスジ状ムラを検査の際に欠陥としない擬似欠陥とし、その変化しないスジ状ムラを検査の際に欠陥として選別する擬似欠陥抽出工程と、
前記擬似欠陥抽出工程によって欠陥として選別されたスジ状ムラに対し、それぞれの最大輝度とパターンピッチ正規化面積に基づいて欠陥規模の評価を行うスジ状ムラ欠陥評価工程と、
を含むことを特徴とする欠陥検査方法を提供するものである。
In order to solve the above-mentioned problem in the present invention, first, in the invention of claim 1, a defect inspection method for detecting streak-like unevenness of an inspection object having a periodic pattern,
An imaging step of obtaining an intensity distribution of diffracted light generated by irradiating light from a light source to an object to be inspected at a plurality of illumination angles, and acquiring an intensity distribution of diffracted light at each illumination angle as an inspection image;
A plurality of inspection images with different illumination angles are compared with a plurality of inspection images with different illumination angles to the object to be inspected acquired in the imaging step, and the position changes according to the irradiation angle to the object to be inspected. Pseudo defects that extract the streak-like unevenness that does not change and the streak-like unevenness that does not change as a pseudo defect that does not become a defect at the time of inspection, and the non-changed streak-like unevenness is selected as a defect at the time of inspection An extraction process;
For the stripe-shaped unevenness selected as a defect by the pseudo-defect extraction step, a stripe-shaped uneven defect evaluation step for evaluating the defect scale based on the respective maximum luminance and pattern pitch normalized area;
It is intended to provide a defect inspection method characterized by including:

また請求項2の発明では、前記被検査体へ照明するための光が、光源から照射された平行光もしくは平行光に近い方向性をもった光であることを特徴とする請求項1記載の欠陥検査方法を提供するものである。   According to a second aspect of the present invention, the light for illuminating the object to be inspected is parallel light emitted from a light source or light having directionality close to parallel light. A defect inspection method is provided.

また請求項3の発明では、前記平行光もしくは平行光に近い光の波長帯を一定範囲に制
限する波長選択工程を含むことを特徴とする請求項2記載の欠陥検査方法を提供するものである。
According to a third aspect of the present invention, there is provided a defect inspection method according to the second aspect, further comprising a wavelength selection step of limiting a wavelength band of the parallel light or light close to parallel light to a certain range. .

また請求項4の発明では、前記被検査体へ照射される光からの照射光量分布が画像内で均一になるように、前記検査画像の輝度を補正する工程を含むことを特徴とする請求項1〜3の何れか1項に記載の欠陥検査方法を提供するものである。   The invention of claim 4 further includes a step of correcting the luminance of the inspection image so that the distribution of the amount of light emitted from the light irradiated to the object to be inspected is uniform in the image. The defect inspection method according to any one of 1 to 3 is provided.

また請求項5の発明では、前記撮像工程において、光源から照射された平行光もしくは平行光に近い方向性をもった光のみを検査画像として取得することを特徴とする請求項1〜4の何れか1項に記載の欠陥検査方法を提供するものである。   According to a fifth aspect of the present invention, in the imaging step, only parallel light emitted from a light source or light having directionality close to parallel light is acquired as an inspection image. The defect inspection method according to claim 1 is provided.

また請求項6の発明では、前記検査画像における白色孤立点を除去する画像処理工程を含むことを特徴とする請求項1〜5の何れか1項に記載の欠陥検査方法を提供するものである。   The invention according to claim 6 provides the defect inspection method according to any one of claims 1 to 5, further comprising an image processing step of removing white isolated points in the inspection image. .

また請求項7の発明では、前記スジ状ムラ評価工程において、前記被検査体への照射角度の異なる複数の検査画像を比較し、前記被検査体への照射角度に応じて位置が変化するスジ状ムラと変化しないスジ状ムラとを抽出する擬似欠陥抽出工程を有することを特徴とする請求項1〜6何れか1項記載の欠陥検査方法を提供するものである。   In the invention according to claim 7, in the streak-like unevenness evaluation step, a plurality of inspection images having different irradiation angles to the object to be inspected are compared, and a line whose position changes in accordance with the irradiation angle to the object to be inspected. The defect inspection method according to claim 1, further comprising a pseudo defect extraction step for extracting unevenness and streak-like unevenness that does not change.

また請求項8の発明では、前記スジ状ムラ評価工程で評価されたスジ状ムラの位置と最大輝度とパターンピッチ正規化面積を同時に表示する表示方法を備えることを特徴とする請求項1〜7何れか1項記載の欠陥検査方法を提供するものである。   The invention according to claim 8 further comprises a display method for simultaneously displaying the position, maximum luminance, and pattern pitch normalized area of the stripe unevenness evaluated in the stripe unevenness evaluation step. The defect inspection method according to any one of the above items is provided.

請求項1の発明によれば、検査の際に擬似欠陥をスジ状ムラと分離することが可能であるため、高精度な周期性パターンのスジ状ムラの検査が可能となるだけではなく、周期性パターンのスジ状ムラ評価における撮像条件、照明条件やパターンピッチの影響を低減させることが可能であるため、高精度な周期性パターンのスジ状ムラ検査が可能となる。   According to the first aspect of the present invention, since it is possible to separate the pseudo defect from the stripe-shaped unevenness at the time of the inspection, it is possible not only to inspect the stripe-shaped unevenness of the periodic pattern with high accuracy, but also the period. Since it is possible to reduce the influence of imaging conditions, illumination conditions, and pattern pitches in the evaluation of streak-like unevenness of periodic patterns, it becomes possible to inspect the streaky unevenness of periodic patterns with high accuracy.

請求項2〜6記載の発明によれば、請求項1記載の検査方法において、正常部と欠陥部のSN比を高める効果があるため、スジ状ムラ欠陥の顕在化をより際立たせることができる。   According to the invention described in claims 2 to 6, in the inspection method described in claim 1, since there is an effect of increasing the SN ratio between the normal part and the defect part, the manifestation of the stripe-like unevenness defect can be made more conspicuous. .

請求項7記載の発明によれば、請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6記載の発明において、検査の際に被検査体への照射角度に応じて位置が変化するスジ状ムラと変化しないスジ状ムラとを抽出することにより、変化するスジ状ムラを擬似欠陥とすることで、変化しないスジ状ムラのみ分離することが可能であるため、周期性パターンのスジ状ムラ検査精度をより高めることができる。   According to the invention described in claim 7, in the invention described in claim 1, claim 2, claim 3, claim 4, claim 5 or claim 6, the irradiation angle to the object to be inspected is determined during the inspection. By extracting the streak-like unevenness whose position changes in response and the streak-like unevenness that does not change, by making the changing streaky unevenness a pseudo defect, it is possible to separate only the streak-like unevenness that does not change, It is possible to further improve the accuracy of inspecting the stripe-shaped unevenness of the periodic pattern.

請求項8記載の発明によれば、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7記載の発明において抽出されたスジ状ムラ欠陥の位置と瑕疵程度を目視により状況を即座に判断可能な表示させることできる。   According to the invention described in claim 8, the position of the stripe-shaped unevenness defect extracted in the inventions described in claim 1, claim 2, claim 3, claim 4, claim 5, claim 6 and claim 7 is provided. It is possible to display the degree of wrinkles so that the situation can be immediately judged visually.

本発明の実施形態を以下に図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に本発明に係わる検査方法を実施する検査装置の一例を示す。周期性パターンを有する被検査体13への照明手段として光源11(用いる光源としては例えばメタルハライドランプ、ハロゲンランプ、キセノンランプ等が挙げられる。)を有する。被検査体13
からの回折光を受光するための撮像手段として、撮像手段14(例えばCCDエリアカメラ、CCDラインカメラ等が挙げられる。)を有する。撮像手段14は画像処理手段15に接続されており、この画像処理手段15は、擬似欠陥抽出手段、ムラ欠陥評価手段を実現するための演算を行う。また検査画像は表示画面16に表示出力する。
FIG. 1 shows an example of an inspection apparatus that performs an inspection method according to the present invention. A light source 11 (as a light source to be used, for example, a metal halide lamp, a halogen lamp, a xenon lamp, etc.) is used as an illuminating means for the inspection object 13 having a periodic pattern. Inspected object 13
As an image pickup means for receiving the diffracted light from the image pickup means 14, there is an image pickup means 14 (for example, a CCD area camera, a CCD line camera, etc.). The imaging unit 14 is connected to an image processing unit 15, and the image processing unit 15 performs calculations for realizing a pseudo defect extraction unit and a mura defect evaluation unit. The inspection image is displayed and output on the display screen 16.

メタルハライドランプ、ハロゲンランプ、キセノンランプ等のような光源は、光が拡散されて照射されるため、同じ被検査領域内であっても照射部分に依って照射エネルギーにばらつきが生じ、検査画像SN比低下の原因となる。そこで、光源から平行光もしくは平行光に近い光を照射することによって、光の照射エネルギーを維持したまま、照射部分における光量分布のばらつきを抑制することができる。   Light sources such as metal halide lamps, halogen lamps, and xenon lamps are irradiated with diffused light. Therefore, even within the same region to be inspected, the irradiation energy varies depending on the irradiated portion, and the inspection image SN ratio Causes a drop. Therefore, by irradiating parallel light or light close to parallel light from the light source, it is possible to suppress variation in the light amount distribution in the irradiated portion while maintaining the light irradiation energy.

また、光源11から照射される光の波長を、バンドパスフィルタ等を用いて選択的に制限することで、正常部からの回折角をより特定方向に制限することが可能となるため、正常部とムラ部とのコントラストをより強調することができる。   In addition, by selectively limiting the wavelength of light emitted from the light source 11 using a bandpass filter or the like, it becomes possible to limit the diffraction angle from the normal part to a specific direction. And the contrast between the uneven portions can be further emphasized.

さらに、拡散反射率が一様な白色板に照明光を当てたときの画像を予め撮像しておき、その画像の輝度値をオフセットとして前記検査画像の輝度値を補正することで(シェーディング補正)、検査画像中の照明強度もばらつきを抑制することができる。   Furthermore, by previously capturing an image when illumination light is applied to a white plate having a uniform diffuse reflectance, and correcting the luminance value of the inspection image using the luminance value of the image as an offset (shading correction) Also, variation in the illumination intensity in the inspection image can be suppressed.

光源11から被検査体13に照射された光は、照射角度によって投光波長、周期性パターンのパターンピッチ、及び周期性パターンの開口比率等に依存した強度の回折光を生じる。この回折光の強度分布を撮像手段14によって撮像し、検査画像を得る。光の照射角度を一定角度ずつ変化させ、その都度回折光の強度分布を撮像し、各々の照明角度における検査画像を取得する。   The light irradiated from the light source 11 onto the object 13 generates diffracted light having an intensity depending on the projection wavelength, the pattern pitch of the periodic pattern, the aperture ratio of the periodic pattern, and the like depending on the irradiation angle. The intensity distribution of this diffracted light is imaged by the imaging means 14 to obtain an inspection image. The light irradiation angle is changed by a certain angle, and the intensity distribution of the diffracted light is imaged each time, and an inspection image at each illumination angle is acquired.

またその際、斜め方法からの回折光も撮像してしまうと、撮像面内の明るさが不均一になるためSN比が低下する原因となる。そこで、平行光もしくは平行光に近い光のみを撮像することによって、撮像時の面内の明るさを均一に保つことができる。   At that time, if the diffracted light from the oblique method is also imaged, the brightness in the imaging surface becomes non-uniform, which causes the SN ratio to decrease. Therefore, by capturing only parallel light or only light that is close to parallel light, the in-plane brightness at the time of imaging can be kept uniform.

図2に検査画像の概略図を示す。検査画像21中において周期性パターンが占める領域が被検査領域22である。上記撮像の際、光源11の照射光量、乃至撮像手段14の露光設定を調節し、各々の検査画像中の被検査領域における輝度値の平均値が一律になるように撮像する。   FIG. 2 shows a schematic diagram of the inspection image. A region occupied by the periodic pattern in the inspection image 21 is an inspection region 22. At the time of imaging, the amount of light emitted from the light source 11 or the exposure setting of the imaging unit 14 is adjusted so that the average value of the luminance values in the inspected areas in each inspection image is uniform.

本発明に係わる検査方法で検出すべきスジ状ムラの他に、検査環境によっては塵等が被検査体に付着し、それらがノイズとして検査画像21の中に現れることもある。前記ノイズは検査画像21において白色孤立点として現れることが多い。前記白色孤立点を被検査領域22から除去するには、各角度における検査画像に対し画素の膨張・収縮法を行う方法等が有効である。また、被検査領域中の輝度値の分布が正規分布であると仮定すると被検査領域22の輝度値の平均値に、被検査領域22の輝度値の標準偏差の3倍を加算した値以上の輝度を有する画素を除去することで上記ノイズを軽減できる。また、本発明に係わる被検査体はクリーンルーム等の無塵環境で生産されることが多く、したがって本発明に係わる検査方法も無塵環境にて実施されることが望ましい。   In addition to the stripe-shaped unevenness to be detected by the inspection method according to the present invention, dust or the like may adhere to the object to be inspected depending on the inspection environment, and they may appear in the inspection image 21 as noise. The noise often appears as a white isolated point in the inspection image 21. In order to remove the white isolated point from the region to be inspected 22, a method of performing pixel expansion / contraction on the inspection image at each angle is effective. Assuming that the distribution of luminance values in the inspection region is a normal distribution, the average value of the luminance values of the inspection region 22 is equal to or greater than a value obtained by adding three times the standard deviation of the luminance value of the inspection region 22. The noise can be reduced by removing pixels having luminance. In many cases, the object to be inspected according to the present invention is produced in a dust-free environment such as a clean room. Therefore, it is desirable that the inspection method according to the present invention is also carried out in a dust-free environment.

周期性パターンの正常部では開口部の形状・ピッチが一定となるために互いに干渉し一定の方向に強い回折光を生じるのに対し、ムラ部では開口部の形状・ピッチが不安定になるために、形状・ピッチに応じて様々な方向に、種々の強さで回折光が生じる。検査画像では、この不安定な回折光がスジ状のムラとなって現れる。   In the normal part of the periodic pattern, since the shape and pitch of the opening are constant, they interfere with each other and generate strong diffracted light in a certain direction, whereas in the uneven part, the shape and pitch of the opening become unstable. In addition, diffracted light is generated with various intensities in various directions according to the shape and pitch. In the inspection image, this unstable diffracted light appears as streaky irregularities.

検査画像中のスジ状ムラのコントラストを向上させるために、各照明角度における検査
画像においてエッジ強調処理を行う。被検査体がストライプ状、又は格子状の周期性パターンであれば、スジ状ムラは検査画像のX軸、Y軸のどちらかに平行して現れるので、一般的なSobelフィルタ、ラプラシアンフィルタなどを利用すれば容易に強調処理を行うことができる。
In order to improve the contrast of the stripe-shaped unevenness in the inspection image, edge enhancement processing is performed on the inspection image at each illumination angle. If the object to be inspected is a striped or grid-like periodic pattern, streaky irregularities appear in parallel with either the X-axis or the Y-axis of the inspection image, so a general Sobel filter, Laplacian filter, etc. Emphasis processing can be easily performed if used.

検査画像中からスジ状ムラを抽出するために、各照明角度における検査画像に対しプロジェクション処理を行う。検査画像のX軸、Y軸のそれぞれに対し輝度値を積算していく。スジ状ムラ部は正常部との輝度値の差異がプロジェクション処理によって強調され、容易にスジ状ムラを検出することができる。   In order to extract streak-like unevenness from the inspection image, a projection process is performed on the inspection image at each illumination angle. Luminance values are accumulated for each of the X axis and Y axis of the inspection image. In the streaky uneven portion, the difference in luminance value from the normal portion is emphasized by projection processing, and the streaky uneven portion can be easily detected.

上記プロジェクション処理により、例えば積算値が予め設定された閾値以上であれば、その箇所にスジ状ムラが存在するということにすることも可能できる。   For example, if the integrated value is equal to or greater than a preset threshold value by the projection process, it is possible to determine that streaky unevenness exists at that location.

抽出されたスジ状ムラ箇所の外節矩形領域を、スジ状ムラ領域とする。それぞれのスジ状ムラ領域を区別するために、各照明角度における検査画像に対しラベリング処理を行う。   The extracted outer rectangular region of the streaky uneven portion is defined as a streaky uneven region. In order to distinguish each stripe-shaped uneven region, a labeling process is performed on the inspection image at each illumination angle.

次に擬似欠陥の発生原理について説明する。   Next, the principle of generation of pseudo defects will be described.

図3に擬似欠陥発生原理の概略図を示す。擬似欠陥の正体はガラス底面からの多重反射光の映り込み(ゴースト)であることがわかっている。検査光33が周期性パターンに入射すると、撮像手段14の撮像素子の結像面32にパターンの実像が結像する。一方、パターンからの底面反射光が被検査体の断面31の底面によって再度反射され、この多重反射が結像面32上に影として現れる。この映り込みによる擬似欠陥35は本来のスジ状ムラ34と非常に見分けがつきにくく、検査精度を低下させる一因となっている。   FIG. 3 shows a schematic diagram of the pseudo defect generation principle. It is known that the true defect is a reflection (ghost) of multiple reflected light from the bottom of the glass. When the inspection light 33 is incident on the periodic pattern, a real image of the pattern is formed on the imaging surface 32 of the imaging device of the imaging means 14. On the other hand, the bottom surface reflected light from the pattern is reflected again by the bottom surface of the cross section 31 of the object to be inspected, and this multiple reflection appears as a shadow on the imaging surface 32. The pseudo defect 35 due to the reflection is very difficult to distinguish from the original stripe-shaped unevenness 34, which is a cause of lowering the inspection accuracy.

擬似欠陥は照射光の多重反射によって生じるため、照射光の入射角度に依って現れる位置が変化する。つまり照明角度の異なる複数枚の検査画像を比較したとき、どの角度でも位置が変化しなければスジ状ムラは擬似ではなく本物のムラだと判断できる。一方、照明角度の変化に合わせて出現位置が変化しているスジ状ムラは擬似欠陥だと考えることができる。本発明ではこの原理を利用して検査画像中のスジ状ムラから擬似欠陥と本物の欠陥の分離を行う。   Since the pseudo defect is generated by the multiple reflection of the irradiation light, the position where it appears depends on the incident angle of the irradiation light. That is, when a plurality of inspection images having different illumination angles are compared, if the position does not change at any angle, it can be determined that the stripe-like unevenness is not a pseudo unevenness but a real unevenness. On the other hand, streaky unevenness whose appearance position changes in accordance with the change in illumination angle can be considered as a pseudo defect. In the present invention, this principle is used to separate a pseudo defect and a real defect from streaky irregularities in an inspection image.

次に図5を用いて、擬似欠陥抽出工程で実行する擬似欠陥抽出方法について説明する。   Next, a pseudo defect extraction method executed in the pseudo defect extraction step will be described with reference to FIG.

図5において照明角度がθ1のときスジ状ムラM1、M2が確認できたとする。θ1から照明角度をΔθだけ変化させたとき、スジ状ムラM1の位置は変化したが、M2の方には変化は見られなかった。したがってM1の方が擬似でM2の方が本物の欠陥であると判定できる。   In FIG. 5, it is assumed that streaky irregularities M1 and M2 are confirmed when the illumination angle is θ1. When the illumination angle was changed by Δθ from θ1, the position of the stripe-shaped unevenness M1 changed, but no change was seen in the direction of M2. Therefore, it can be determined that M1 is pseudo and M2 is a real defect.

照明角度を時間として置き換えると、時系列画像におけるスジ状ムラの動きベクトルを検出するパターンマッチング問題に帰着して考えることができる。照明角度がθ1のときのスジ状ムラ領域M1、M2を含むテンプレート画像を生成し、その前後の角度(θ1+Δθ、θ1−Δθ、θ1+2Δθ、θ1−2Δθ・・・・・θ1+NΔθ、θ1−NΔθ)の検査画像においてM1、M2に対応するスジ状ムラの位置をパターンマッチングによって算出する。スジ状ムラに入射角度θに依存した動きがなければ、それは本物の欠陥であると判定し、θに依存して一定方向への変移が認められれば擬似欠陥であると判定することができる。また上記処理によって、異なる照射角度の検査画像間で対応するスジ状ムラを紐付けすることができる。以上の処理は動画像におけるオブジェクト追跡と同様の方法である。   Replacing the illumination angle as time can be considered as a pattern matching problem for detecting a motion vector of streaky irregularities in a time-series image. A template image including streaky uneven regions M1 and M2 when the illumination angle is θ1 is generated, and angles before and after that (θ1 + Δθ, θ1-Δθ, θ1 + 2Δθ, θ1-2Δθ... Θ1 + NΔθ, θ1-NΔθ) are generated. In the inspection image, the positions of streaky irregularities corresponding to M1 and M2 are calculated by pattern matching. If there is no movement depending on the incident angle θ in the stripe-shaped unevenness, it is determined that it is a genuine defect, and if a shift in a certain direction is recognized depending on θ, it can be determined that it is a pseudo defect. In addition, by the above processing, corresponding streaky unevenness can be associated between inspection images having different irradiation angles. The above processing is the same method as object tracking in a moving image.

次にムラ欠陥評価手段が実行するスジ状ムラ欠陥の評価方法について説明する。   Next, a method for evaluating streaky mura defects performed by the mura defect evaluation means will be described.

擬似欠陥抽出手段により選別された、擬似欠陥ではない本来のスジ状ムラ欠陥の瑕疵程度を評価するために、各検査画像において、全てのスジ状ムラ領域内の最大輝度とパターンピッチ正規化面積を算出し、それによりスジ状ムラ評価をする。   In order to evaluate the degree of wrinkles of the original stripe-shaped unevenness that is not a pseudo-defect selected by the pseudo-defect extraction means, in each inspection image, the maximum brightness and the pattern pitch normalized area in all the stripe-shaped unevenness regions are determined. It is calculated, and thereby stripe-like unevenness is evaluated.

なお、このパターンピッチ正規化面積I1とは、被検査体のパターンピッチで正規化されたムラの面積のことで、パターンピッチ正規化面積I1=(画像上のムラ面積)/(画像上のパターンピッチ)であるが、容易にI1=(実空間上でのムラ面積)/(実空間上でのパターンピッチ)と近似できるので、実際はこの式を用いる。なぜなら、この場合の画像上のパターンピッチ及び実空間上でのムラ面積は、検査画像と撮像倍率が分かれば容易に算出することが可能であるからである。   The pattern pitch normalized area I1 is an area of unevenness normalized by the pattern pitch of the object to be inspected, and the pattern pitch normalized area I1 = (uneven area on the image) / (pattern on the image) However, since this can be easily approximated as I1 = (uneven area in real space) / (pattern pitch in real space), this formula is actually used. This is because the pattern pitch on the image and the uneven area on the real space in this case can be easily calculated if the inspection image and the imaging magnification are known.

パターンピッチ正規化面積I1に加え、スジ状ムラ領域内の最大輝度値I2を算出する。照射角度の異なる複数の検査画像において同一のムラが現れている場合には、最大輝度値が最大であるものを代表最大輝度値とする。   In addition to the pattern pitch normalized area I1, the maximum luminance value I2 in the stripe-shaped uneven region is calculated. When the same unevenness appears in a plurality of inspection images having different irradiation angles, the maximum maximum luminance value is set as the representative maximum luminance value.

パターンピッチ正規化面積と最大輝度(I1、I2)に対し各々閾値(T1、T2)設定する。パターンピッチ正規化面積と最大輝度(I1、I2)が閾値(T1、T2)を超えているムラが少なくとも一つでもある場合、その被検査体は欠陥サンプルであると判定する。   Threshold values (T1, T2) are set for the pattern pitch normalized area and the maximum luminance (I1, I2), respectively. If there is at least one unevenness in which the pattern pitch normalized area and the maximum luminance (I1, I2) exceed the threshold values (T1, T2), it is determined that the object to be inspected is a defective sample.

次に、スジ状ムラの表示方法を図6の模式図を用いて説明する。   Next, a method for displaying streaky unevenness will be described with reference to the schematic diagram of FIG.

パターンピッチ正規化面積と最大輝度(I1、I2)が閾値(T1、T2)を越えているスジ状ムラを、被検査体の2次元モデル上に重畳させて表示する。その際、パターンピッチ正規化面積をスジ状ムラの幅として、最大輝度をスジ状ムラの色情報若しくは濃淡情報に変換して表示する。例えば高温を赤、低温を青で表示する温度表示方法のように、ムラの瑕疵程度が大きければ赤、ムラの瑕疵程度が小さければ青といったような表示方法である。図6では最大輝度を色の濃淡情報に変換して表示している例である。図6においてM1は、パターンピッチ正規化面積は大きいが最大輝度の値は比較的小さいスジ状ムラで、一方M2は、パターンピッチ正規化面積は小さいが最大輝度の値は比較的大きいスジ状ムラであるといえる。   Striped unevenness in which the pattern pitch normalized area and the maximum luminance (I1, I2) exceed the threshold values (T1, T2) is displayed superimposed on the two-dimensional model of the object to be inspected. At that time, the pattern pitch normalized area is set as the width of the stripe unevenness, and the maximum luminance is converted into color information or shading information of the stripe unevenness and displayed. For example, as in a temperature display method in which high temperature is displayed in red and low temperature is displayed in blue, the display method is red when the degree of unevenness is large and blue when the degree of unevenness is small. FIG. 6 shows an example in which the maximum luminance is converted into color shading information and displayed. In FIG. 6, M1 is a stripe-shaped unevenness with a large pattern pitch normalized area but a relatively small maximum luminance value, while M2 is a stripe-shaped unevenness with a small pattern pitch normalized area but a relatively large maximum luminance value. You can say that.

以上の工程を機械で自動化すれば、被検査体のパターンピッチや面付け数にもよるが、凡そ数分〜数十分のタクトタイムで完了することが可能になった。その間、オペレータの操作は最初の撮像設定、照明設定の部分のみであり、検査結果がオペレータの熟練度に左右される余地はほとんどなくなった。   If the above process is automated by a machine, it can be completed in about several minutes to several tens of minutes depending on the pattern pitch and the number of impositions of the object to be inspected. Meanwhile, the operator's operation is only for the initial imaging setting and illumination setting, and there is almost no room for the inspection result to be affected by the skill level of the operator.

最後に、上記検査装置で実施される本発明に係わる検査方法の手順を、図4にまとめて示す。   Finally, FIG. 4 shows the procedure of the inspection method according to the present invention performed by the inspection apparatus.

本発明によれば、ブラックマトリクス、カラーフィルタまたはフォトマスクなどの周期性パターンを有するガラス基板におけるスジ状ムラ欠陥の検査の際に、多重反射起因の擬似欠陥を欠陥として判定せずに精度よく検査を行うことができ、また、照明条件、撮像条件及び周期性パターンの設計パラメータの影響を低減した精度の良い検査を行うことが可能となる。また、異なる撮像条件および照明条件で検査された複数サンプルのムラの比較も容易に行なうことが可能となる。   According to the present invention, when inspecting streaky uneven defects in a glass substrate having a periodic pattern such as a black matrix, a color filter, or a photomask, a pseudo defect caused by multiple reflections is inspected accurately without being determined as a defect. In addition, it is possible to perform a highly accurate inspection with reduced influence of illumination conditions, imaging conditions, and periodic pattern design parameters. In addition, it is possible to easily compare the unevenness of a plurality of samples inspected under different imaging conditions and illumination conditions.

本発明に係わる検査方法を実施する検査装置の一例示す図である。It is a figure which shows an example of the inspection apparatus which enforces the inspection method concerning this invention. 本発明に係わる検査画像の概観を示す図である。It is a figure which shows the external appearance of the test | inspection image concerning this invention. 多重反射光による擬似欠陥の発生原理を説明するための図である。It is a figure for demonstrating the generation | occurrence | production principle of the pseudo defect by multiple reflected light. 本発明に係わる検査方法の実施の手順を示す図である。It is a figure which shows the procedure of implementation of the inspection method concerning this invention. 本発明に係わる擬似欠陥抽出手段を説明する模式図である。It is a schematic diagram explaining the pseudo defect extraction means concerning this invention. 本発明に係わる欠陥表示方法の実施の一例を示す図である。It is a figure which shows an example of implementation of the defect display method concerning this invention.

符号の説明Explanation of symbols

11…光源
12…ステージ
13…被検査体
14…撮像手段
15…画像処理装置
16…表示画面
21…検査画像
22…被検査領域
23…スジ状ムラ
31…被検査体の断面
32…撮像素子の結像面
33…検査光
34…スジ状ムラ欠陥
35…擬似欠陥
51…照明角度がθ1のときの検査画像
52…照明角度がθ1からΔθだけ変化したときの検査画像
61…被検査体の被検査領域
62…瑕疵程度が小さいスジ状ムラ
63…瑕疵程度が大きいスジ状ムラ
DESCRIPTION OF SYMBOLS 11 ... Light source 12 ... Stage 13 ... Inspected object 14 ... Imaging means 15 ... Image processing device 16 ... Display screen 21 ... Inspection image 22 ... Inspected area 23 ... Striped unevenness 31 ... Cross section 32 of inspecting object ... Imaging surface 33 ... Inspection light 34 ... Striped uneven defect 35 ... Pseudo defect 51 ... Inspection image 52 when illumination angle is .theta.1 ... Inspection image 61 when illumination angle changes from .theta.1 to .DELTA..theta. Inspection area 62 ... stripe-like unevenness with small wrinkles 63 ... stripe-like unevenness with large wrinkles

Claims (8)

周期性パターンを有する被検査体のスジ状ムラを検出するための欠陥検査方法であって、
被検査体に光源からの光を照射することで生じる回折光の強度分布の取得を複数の照明角度で行い、各照明角度における回折光の強度分布を検査画像として取得する撮像工程と、
前記撮像工程によって取得された被検査体への照明角度が異なる複数枚の検査画像に対し、照明角度の異なる複数の検査画像を比較し、前記被検査体への照射角度に応じて位置が変化するスジ状ムラと変化しないスジ状ムラとを抽出し、その変化するスジ状ムラを検査の際に欠陥としない擬似欠陥とし、その変化しないスジ状ムラを検査の際に欠陥として選別する擬似欠陥抽出工程と、
前記擬似欠陥抽出工程によって欠陥として選別されたスジ状ムラに対し、それぞれの最大輝度とパターンピッチ正規化面積に基づいて欠陥規模の評価を行うスジ状ムラ欠陥評価工程と、
を含むことを特徴とする欠陥検査方法。
A defect inspection method for detecting streak-like unevenness of an inspection object having a periodic pattern,
An imaging step of obtaining an intensity distribution of diffracted light generated by irradiating light from a light source to an object to be inspected at a plurality of illumination angles, and acquiring an intensity distribution of diffracted light at each illumination angle as an inspection image;
A plurality of inspection images with different illumination angles are compared with a plurality of inspection images with different illumination angles to the object to be inspected acquired in the imaging step, and the position changes according to the irradiation angle to the object to be inspected. Pseudo defects that extract the streak-like unevenness that does not change and the streak-like unevenness that does not change as a pseudo defect that does not become a defect at the time of inspection, and the non-changed streak-like unevenness is selected as a defect at the time of inspection An extraction process;
For the stripe-shaped unevenness selected as a defect by the pseudo-defect extraction step, a stripe-shaped uneven defect evaluation step for evaluating the defect scale based on the respective maximum luminance and pattern pitch normalized area;
A defect inspection method comprising:
前記被検査体へ照明するための光が、光源から照射された平行光もしくは平行光に近い方向性をもった光であることを特徴とする請求項1記載の欠陥検査方法。   2. The defect inspection method according to claim 1, wherein the light for illuminating the object to be inspected is parallel light irradiated from a light source or light having a directionality close to parallel light. 前記平行光もしくは平行光に近い光の波長帯を一定範囲に制限する波長選択工程を含むことを特徴とする請求項2記載の欠陥検査方法。   The defect inspection method according to claim 2, further comprising a wavelength selection step of limiting a wavelength range of the parallel light or light close to parallel light to a certain range. 前記被検査体へ照射される光からの照射光量分布が画像内で均一になるように、前記検査画像の輝度を補正する工程を含むことを特徴とする請求項1〜3の何れか1項に記載の欠陥検査方法。   4. The method according to claim 1, further comprising a step of correcting a luminance of the inspection image so that an irradiation light amount distribution from light applied to the inspection object is uniform in the image. The defect inspection method described in 1. 前記撮像工程において、光源から照射された平行光もしくは平行光に近い方向性をもった光のみを検査画像として取得することを特徴とする請求項1〜4の何れか1項に記載の欠陥検査方法。   5. The defect inspection according to claim 1, wherein in the imaging step, only parallel light emitted from a light source or light having directionality close to parallel light is acquired as an inspection image. Method. 前記検査画像における白色孤立点を除去する画像処理工程を含むことを特徴とする請求項1〜5の何れか1項に記載の欠陥検査方法。   The defect inspection method according to claim 1, further comprising an image processing step of removing white isolated points in the inspection image. 前記スジ状ムラ評価工程において、前記被検査体への照射角度の異なる複数の検査画像を比較し、前記被検査体への照射角度に応じて位置が変化するスジ状ムラと変化しないスジ状ムラとを抽出する擬似欠陥抽出工程を有することを特徴とする請求項1〜6何れか1項記載の欠陥検査方法。   In the streak-like unevenness evaluation step, a plurality of inspection images having different irradiation angles to the object to be inspected are compared, and the streaky unevenness whose position changes according to the irradiation angle to the object to be inspected and the streak-like unevenness that does not change The defect inspection method according to claim 1, further comprising a pseudo-defect extraction step for extracting. 前記スジ状ムラ評価工程で評価されたスジ状ムラの位置と最大輝度とパターンピッチ正規化面積を同時に表示する表示方法を備えることを特徴とする請求項1〜7何れか1項記載の欠陥検査方法。   The defect inspection according to any one of claims 1 to 7, further comprising a display method for simultaneously displaying the position, maximum luminance, and pattern pitch normalized area of the stripe unevenness evaluated in the stripe unevenness evaluation step. Method.
JP2008045741A 2008-02-27 2008-02-27 Defect inspection method Withdrawn JP2009204388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045741A JP2009204388A (en) 2008-02-27 2008-02-27 Defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045741A JP2009204388A (en) 2008-02-27 2008-02-27 Defect inspection method

Publications (1)

Publication Number Publication Date
JP2009204388A true JP2009204388A (en) 2009-09-10

Family

ID=41146827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045741A Withdrawn JP2009204388A (en) 2008-02-27 2008-02-27 Defect inspection method

Country Status (1)

Country Link
JP (1) JP2009204388A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058029A (en) * 2010-09-07 2012-03-22 Toppan Printing Co Ltd Periodic pattern inspection device
CN102971619A (en) * 2010-01-08 2013-03-13 3M创新有限公司 Optical web-based defect detection using intrasensor uniformity correction
JP2013527909A (en) * 2010-01-07 2013-07-04 デ ラ ルー ノース アメリカ インコーポレイテッド System and method for detecting optically variable materials
KR101294915B1 (en) * 2010-01-15 2013-08-08 가부시키가이샤 히다치 하이테크놀로지즈 Micro-mirror device sorting method, micro-mirror device sorting apparatus, and maskless exposure apparatus
JPWO2017170402A1 (en) * 2016-03-31 2019-01-24 パナソニックIpマネジメント株式会社 Inspection method, inspection system, manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527909A (en) * 2010-01-07 2013-07-04 デ ラ ルー ノース アメリカ インコーポレイテッド System and method for detecting optically variable materials
CN102971619A (en) * 2010-01-08 2013-03-13 3M创新有限公司 Optical web-based defect detection using intrasensor uniformity correction
CN102971619B (en) * 2010-01-08 2015-08-12 3M创新有限公司 Uniformity calibration in sensor is used to carry out the method and system detected based on the optical defect of web
KR101294915B1 (en) * 2010-01-15 2013-08-08 가부시키가이샤 히다치 하이테크놀로지즈 Micro-mirror device sorting method, micro-mirror device sorting apparatus, and maskless exposure apparatus
JP2012058029A (en) * 2010-09-07 2012-03-22 Toppan Printing Co Ltd Periodic pattern inspection device
JPWO2017170402A1 (en) * 2016-03-31 2019-01-24 パナソニックIpマネジメント株式会社 Inspection method, inspection system, manufacturing method

Similar Documents

Publication Publication Date Title
JP6507653B2 (en) Inspection apparatus and control method of inspection apparatus
TWI497032B (en) Defect inspection apparatus
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
JP2001013085A (en) Flow inspection apparatus
JP2015148447A (en) Automatic visual inspection apparatus
JP3875648B2 (en) Gray-tone mask defect inspection method
JPH0875661A (en) Defect detecting equipment
JP2006284471A (en) Pattern inspection method, pattern inspection device and pattern inspecting program
KR101203210B1 (en) Apparatus for inspecting defects
JPWO2007132925A1 (en) Surface inspection device
JP2009204388A (en) Defect inspection method
JP4949928B2 (en) Pattern defect inspection method, pattern defect inspection apparatus, photomask product manufacturing method, and display device substrate manufacturing method
KR20050110005A (en) Detection of macro-defects using micro-inspection inputs
JP2006242759A (en) Method for inspecting unevenness in periodic pattern
JP2006258713A (en) Method and apparatus for detecting stain defect
JP2010078514A (en) Inspection condition setting method in apparatus for inspecting irregularity of periodic pattern and inspection apparatus
JP2014102208A (en) Appearance inspection device, and appearance inspection method
JP2007003376A (en) Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2009139209A (en) Defect inspection method
JP7125576B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2011075310A (en) Method and apparatus for inspecting unevenness
JP2005140655A (en) Method of detecting stain flaw, and stain flaw detector
JP7362324B2 (en) Inspection method, manufacturing method and inspection device for image display device
JP4609089B2 (en) Periodic pattern unevenness inspection apparatus and periodic pattern imaging method
JP5135899B2 (en) Periodic pattern unevenness inspection method and unevenness inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20110315

Free format text: JAPANESE INTERMEDIATE CODE: A761