JP2009203521A - Heat deformation straightening method of annular body, and its hardening method - Google Patents

Heat deformation straightening method of annular body, and its hardening method Download PDF

Info

Publication number
JP2009203521A
JP2009203521A JP2008046721A JP2008046721A JP2009203521A JP 2009203521 A JP2009203521 A JP 2009203521A JP 2008046721 A JP2008046721 A JP 2008046721A JP 2008046721 A JP2008046721 A JP 2008046721A JP 2009203521 A JP2009203521 A JP 2009203521A
Authority
JP
Japan
Prior art keywords
annular body
outer diameter
deformation
quenching
correcting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008046721A
Other languages
Japanese (ja)
Inventor
Yuji Miyamoto
祐司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008046721A priority Critical patent/JP2009203521A/en
Publication of JP2009203521A publication Critical patent/JP2009203521A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method of correcting the heat deformation of an annular body capable of easily correcting the annular body in a perfect circular shape, and to provide its hardening method. <P>SOLUTION: In the heat deformation correcting method, the deformation caused when performing the heating treatment of an annular body 10 formed of steel is straightened. After the annular body 10 is subjected to gas soft-nitriding or salt-bath nitriding treatment, the annular body 10 is heated to the temperature equal to or higher than the A<SB>c1</SB>transformation point in such a state that its outside diameter is restrained by an outside diameter restraining die 20. Any distortion or deformation of the annular body 10 before it is heated is completely removed, and the shape of the annular body 10 can be easily corrected to the shape close to the perfect circular shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、転がり軸受の内外輪などをはじめとした様々な機械部品に用いられる鋼製の環状体の加熱変形矯正方法および焼入れ方法に関するものである。   The present invention relates to a method for correcting heat deformation and quenching of a steel annular body used for various machine parts such as inner and outer rings of a rolling bearing.

現在、鋼からなる金属部品の殆どは、機械的強度や耐摩耗性などを向上させるために所定の熱処理が施されているが、この熱処理に際しては素材の変形が問題となってくる。
熱処理に伴う鋼材の変形が発生する要因としては、例えば、旋削、鍛造などの前加工による歪みが熱によって顕在化する他、浸炭や浸炭窒化処理による歪みが加熱時に開放されて変形が発生したり、また、一次焼入れによって変形が発生する場合もある。また、熱処理時における不均一加熱や不均一冷却も局所的な内部応力が発生するため、変形を招く大きな要因となっている。
Currently, most metal parts made of steel are subjected to a predetermined heat treatment in order to improve mechanical strength, wear resistance, etc., but deformation of the material becomes a problem during this heat treatment.
Factors that cause deformation of steel materials due to heat treatment include, for example, distortion due to pre-processing such as turning and forging, and distortion due to carburizing and carbonitriding treatment is released during heating and deformation occurs. Also, deformation may occur due to primary quenching. In addition, non-uniform heating and non-uniform cooling during heat treatment are also a major factor causing deformation because local internal stress is generated.

熱処理に伴う鋼材の変形に対しては、その使用される部品の種類や目的などの応じてその許容度に差があり、使用目的によっては殆ど問題がないケースもあるが、使用目的が精密機械用の部品、例えば、転がり軸受の内外輪などを構成する環状体として用いる場合にあっては、熱処理時の変形に伴う真円度の悪化や反りの発生が大きな問題となる。
そのため、このような環状体の熱処理時に発生する変形に対しては、従来から種々の技術が提案されており、例えば以下に示すような「冷却矯正焼入れ方法」と「焼戻し矯正方法」が知られている。
There is a difference in tolerance for the deformation of steel material due to heat treatment depending on the type and purpose of the parts used, and there are cases where there is almost no problem depending on the purpose of use. When used as an annular body constituting a part for use, for example, an inner and outer ring of a rolling bearing, the deterioration of roundness and the occurrence of warpage accompanying deformation during heat treatment become a serious problem.
For this reason, various techniques have been proposed for the deformation that occurs during the heat treatment of the annular body. For example, the following “cooling and quenching method” and “tempering and correcting method” are known. ing.

前者の方法としては、例えば、以下の特許文献1や2などには、軸受鋼において焼入れ冷却時に環状体の外径を矯正しながら焼き入れる変形矯正技術が開示されている。この技術によれば、オーステナイトの収縮やマルテンサイトの変態時に適切なタイミングで加工することで環状体を真円形に仕上げることができるとの記述がある。また、以下の特許文献3には、中炭素鋼の膨張収縮特性を利用し、収縮時に内径を、膨張時に外径をそれぞれ矯正する技術が開示され、また、以下の特許文献4には、環状体を誘導加熱した後にその内径および外径を矯正して良好な真円度を得ようとする手法が開示されている。   As the former method, for example, the following Patent Documents 1 and 2 disclose a deformation correction technique in which the outer diameter of the annular body is corrected while quenching and cooling the bearing steel. According to this technique, there is a description that an annular body can be finished into a perfect circle by processing at an appropriate timing during austenite shrinkage or martensite transformation. Patent Document 3 below discloses a technique for correcting the inner diameter at the time of contraction and the outer diameter at the time of expansion by utilizing the expansion and contraction characteristics of medium carbon steel. A technique is disclosed in which after the body is induction-heated, its inner and outer diameters are corrected to obtain good roundness.

後者の方法としては、例えば、以下の特許文献5には、焼戻し時のマルテンサイトの分解を利用して環状体の矯正を行うようにした手法が開示されている。また、以下の特許文献6には、熱間加工による矯正方法が開示されており、薄肉の環状体において、上下端面型加圧しながら誘導加熱することでその変形を防止するようにした手法が開示されている。   As the latter method, for example, the following Patent Document 5 discloses a method of correcting an annular body by utilizing the decomposition of martensite at the time of tempering. Further, Patent Document 6 below discloses a correction method by hot working, and discloses a technique for preventing deformation of a thin annular body by induction heating while pressing the upper and lower end surfaces. Has been.

他方、鋼の焼入れ処理時に生成される残留オーステナイトは、マルテンサイト組織に比べて軟らかくて粘い組織であることから、母材(鋼)中にある程度の量で存在することにより、歯車の歯当たり性の向上や軸受などの転動疲労寿命が長くなることが知られている。
鋼中の残留オーステナイト量を増加させる方法としては、焼入れ温度を高くするなどといった焼入れ処理を工夫する他に、浸炭あるいは浸炭窒化によって高温での固溶炭素あるいは固溶窒素を増加させる方法が知られている。
On the other hand, the retained austenite generated during the quenching process of steel is a soft and viscous structure compared to the martensite structure, and therefore presents in a certain amount in the base material (steel). It is known that the rolling fatigue life of bearings and the like is improved.
As a method of increasing the amount of retained austenite in steel, in addition to devising a quenching process such as increasing the quenching temperature, a method of increasing solute carbon or solute nitrogen at high temperature by carburizing or carbonitriding is known. ing.

この浸炭あるいは浸炭窒化は、ガス軟窒化や塩浴軟窒化などによってオーステナイト状態の鋼の表面に侵入型合金を拡散させる処理であり、鋼中の残留オーステナイト量を増加させると同時に、その鋼材の表面に硬い浸炭層または浸炭窒化層を形成することで、その表面の耐摩耗性などを向上(表面硬化)させるようにしている。
特許2860481号明細書 特開平5−33059号公報 特許3586888号明細書 特開2005−320609号公報 特開平11−181830号公報 特開2005−330543号公報
This carburizing or carbonitriding is a treatment that diffuses interstitial alloys on the surface of austenitic steel by gas soft nitriding, salt bath soft nitriding, etc., increasing the amount of retained austenite in the steel and at the same time By forming a hard carburized layer or carbonitrided layer, the wear resistance of the surface is improved (surface hardening).
Japanese Patent No. 2860481 JP-A-5-33059 Japanese Patent No. 3586888 JP-A-2005-320609 Japanese Patent Laid-Open No. 11-181830 JP 2005-330543 A

ところで、前記特許文献1,2などに開示されているような方法では、マルテンサイト変態膨張を利用するため、炭素含有量が多い鋼では膨張量が大きく容易に矯正できるが、炭素含有量が少ないと変形を矯正するのに必要な膨張量が得られなくなる。したがって従来方式では、限られた材質範囲のみでしか高い矯正効果が得られない。また、前記特許文献3に開示されている方法では、冷却速度の遅い肉厚品には最適であるが、薄肉品となると瞬時のうちに矯正方式を変更する必要があるため、適用に限界がある。また、前記特許文献4に開示されている方法では、同様に2回の矯正条件の管理を厳しく行う必要があり、適用に限界がある。   By the way, in the methods as disclosed in Patent Documents 1 and 2 and the like, since martensitic transformation expansion is utilized, steel with a large carbon content can be easily corrected with a large expansion amount, but the carbon content is small. The amount of expansion necessary to correct the deformation cannot be obtained. Therefore, in the conventional method, a high correction effect can be obtained only with a limited material range. In addition, the method disclosed in Patent Document 3 is optimal for a thick product with a slow cooling rate, but when it becomes a thin product, it is necessary to change the correction method instantly, so there is a limit to application. is there. Further, in the method disclosed in Patent Document 4, it is necessary to strictly manage the correction conditions twice, and the application is limited.

一方、前記特許文献5に開示されている方法では、変形能が小さく、矯正能力に限界があった。また、前記特許文献6に開示されている方法では、反りを発生させないことは可能であるが、真円形に矯正することは不可能であった。
他方、前記のように浸炭あるいは浸炭窒化によって鋼中の残留オーステナイト量を増加させる方法の場合には、一般に大きな熱処理変形を伴うことから、予めその変形を見込んだ取りしろの設定が必要となる。そのため、この浸炭あるいは浸炭窒化時に際しては、必要以上に深い浸炭層(浸炭窒化層)を形成しなければならず、そのための処理時間や手間が係るという不都合がある。
On the other hand, in the method disclosed in Patent Document 5, the deformability is small and the correction capability is limited. Further, in the method disclosed in Patent Document 6, it is possible to prevent warping, but it is impossible to correct it into a perfect circle.
On the other hand, in the case of the method of increasing the amount of retained austenite in steel by carburizing or carbonitriding as described above, since it generally involves a large heat treatment deformation, it is necessary to set an allowance in advance for the deformation. Therefore, at the time of carburizing or carbonitriding, a carburized layer (carbonitriding layer) that is deeper than necessary must be formed, and there is an inconvenience that processing time and labor are required.

また、この鋼材表面の浸炭窒化層の窒素濃度が1.0%を超える高濃度であれば、その表面の耐摩耗性が向上し、特に軸受などの場合では転動疲労特性が大幅に向上することが知られている。しかしながら、例えば、浸炭窒化処理方法として従来から多用されているガス軟窒化や塩浴軟窒化などによって形成される浸炭窒化層の窒素濃度分布は、非常に急勾配であるため、完成品の形状を整えるためにその表面が研磨によって除去された場合には、十分な窒素濃度層を完成品表面に残すことができず、その機能が十分に発揮できないといった問題がある。   Moreover, if the nitrogen concentration of the carbonitrided layer on the surface of the steel material exceeds 1.0%, the wear resistance of the surface is improved, and particularly in the case of a bearing or the like, the rolling fatigue characteristics are greatly improved. It is known. However, for example, the nitrogen concentration distribution of the carbonitriding layer formed by gas soft nitriding or salt bath soft nitriding, which has been widely used as a carbonitriding method, has a very steep slope. When the surface is removed by polishing for preparation, there is a problem that a sufficient nitrogen concentration layer cannot be left on the surface of the finished product, and the function cannot be sufficiently exhibited.

そこで、本発明は前記のような問題点を解決するために案出されたものであり、その主な目的は、容易に真円形に矯正できる新規な環状体の加熱変形矯正方法および焼入れ方法を提供するものである。
また、本発明の他の目的は、熱処理方法および表面窒素濃度ならびに残留オーステナイト量をコントロールすることで従来よりも大幅に長寿命な環状体が得られる新規な環状体の加熱変形矯正方法および焼入れ方法を提供するものである。
Therefore, the present invention has been devised to solve the above-mentioned problems, and its main purpose is to provide a novel annular deformation heating deformation correction method and quenching method that can be easily corrected to a perfect circle. It is to provide.
In addition, another object of the present invention is to provide a novel ring-shaped heating deformation correction method and quenching method in which a ring-shaped body having a significantly longer life than the conventional one can be obtained by controlling the heat treatment method, the surface nitrogen concentration and the amount of retained austenite. Is to provide.

前記課題を解決するために本発明の環状体の加熱変形矯正方法は、
鋼からなる環状体を加熱処理する際に生ずる変形を矯正する方法であって、前記環状体をガス軟窒化あるいは塩浴窒化処理した後、外径拘束型によってその外径を拘束した状態で当該環状体をAC1変態点以上の温度に加熱することを特徴とする環状体の加熱変形矯正方法である。
また、鋼からなる環状体を加熱処理する際に生ずる変形を矯正する方法であって、前記環状体をガス軟窒化あるいは塩浴窒化処理した後、外径拘束型によってその外径を拘束した状態で当該環状体全面がオーステナイト組織になるまで加熱することを特徴とする環状体の加熱変形矯正方法。
In order to solve the above-mentioned problem, the method for correcting deformation of an annular body by heating according to the present invention comprises:
A method of correcting deformation caused when heat-treating an annular body made of steel, wherein the annular body is subjected to gas soft nitriding or salt bath nitriding treatment, and then the outer diameter is restrained by an outer diameter restraining die. An annular body heating deformation correction method comprising heating an annular body to a temperature equal to or higher than an AC1 transformation point.
Also, a method of correcting deformation that occurs when heat-treating an annular body made of steel, in which the annular body is subjected to gas soft nitriding or salt bath nitriding, and then the outer diameter is constrained by an outer diameter restraining mold And heating the annular body until the entire surface of the annular body has an austenite structure.

また、これらの環状体の加熱変形矯正方法において、前記環状体に転動体が転動するための軌道面を有するときは、少なくとも当該軌道面の窒素濃度が1.0〜3.0質量%、残留オーステナイト量が20〜50体積%となるように前記環状体を前記ガス軟窒化あるいは塩浴窒化処理することが望ましい。
また、これらの環状体の加熱変形矯正方法において、前記環状体の加熱方法として誘導加熱を用いることが望ましい。
Moreover, in these methods for correcting heat deformation of an annular body, when the annular body has a raceway surface for rolling elements to roll, at least the nitrogen concentration of the raceway surface is 1.0 to 3.0 mass%, The annular body is preferably subjected to the gas soft nitriding or salt bath nitriding treatment so that the amount of retained austenite is 20 to 50% by volume.
In addition, in these methods of correcting deformation of a ring body by heating, it is desirable to use induction heating as a method of heating the ring body.

また、本発明の環状体の焼入れ方法は、
これらの加熱変形矯正方法で処理された環状体を焼入れする方法であって、前記加熱処理後の環状体を前記外径拘束型から取り外した後、当該環状体を回転させながらその表面に冷却剤を噴射して当該環状体を臨界冷却速度以上の速度で冷却することを特徴とする環状体の焼入れ方法である。
また、この環状体の焼入れ方法において、前記環状体の冷却中に、その環状体の内径または外径をそれぞれの拘束型で拘束することが望ましい。
Moreover, the quenching method of the annular body of the present invention,
It is a method of quenching an annular body treated by these heating deformation correction methods, and after removing the annular body after the heat treatment from the outer diameter restraining mold, a coolant is applied to the surface of the annular body while rotating the annular body. In which the annular body is cooled at a speed equal to or higher than the critical cooling rate.
Moreover, in this quenching method of the annular body, it is desirable that the inner diameter or the outer diameter of the annular body is constrained by the respective restraining molds during the cooling of the annular body.

本発明によれば、環状体をガス軟窒化あるいは塩浴窒化処理した後、外径拘束型によってその外径を拘束した状態で加熱するようにしたことから、その環状体が外径方向に向かって膨張する力とその外径を拘束する外径拘束型による抗力とによって、その環状体の加熱前の歪みや変形が全て取り除かれてその環状体が真円形に近い形状に矯正されることになる。   According to the present invention, after the annular body is subjected to gas soft nitriding or salt bath nitriding treatment, the annular body is heated in a state in which the outer diameter is constrained by the outer diameter constraining die. The ring body is corrected to a shape close to a perfect circle by removing all the distortion and deformation of the ring body before heating by the force of the outer diameter restraining type that constrains the outer diameter of the ring body. Become.

また、このような加熱膨張は変態膨張に比べ膨張量が大きいため、熱処理前の変形が大きくても真円形に加工することができる。
これによって、環状体表面の取りしろが殆ど不要(例えば、数μm程度)となるため、窒素を高濃度に含む窒化層などを完成品表面に残すことができる。この結果、鋼材表面に必要以上に深い浸炭層(浸炭窒化層)を形成する必要がなくなるため、その処理時間や手間を省略することが可能となる。
Further, since such heat expansion has a larger expansion amount than transformation expansion, it can be processed into a perfect circle even if the deformation before heat treatment is large.
This eliminates the need for an allowance on the surface of the annular body (for example, about several μm), so that a nitride layer containing nitrogen at a high concentration can be left on the finished product surface. As a result, it is not necessary to form a carburized layer (carbonitriding layer) that is deeper than necessary on the surface of the steel material, so that the processing time and labor can be omitted.

また、この環状体をAC1変態点以上の温度に加熱することによって後の焼入れ処理が可能となる。
また、この環状体の加熱に際してAC1変態点の温度を超えてさらに環状体全面がオーステナイト組織になるまで加熱すれば、環状体の延性が高くなって変形抵抗が低くなるため、より効果的に真円形に近い環状体を得ることが可能となる。
また、さらにその環状体の加熱方法として誘導加熱方法を用いれば、拘束型より環状体の温度を高くすることができるため、より顕著な矯正効果を得ることができる。
Further, the subsequent quenching process can be performed by heating the annular body to a temperature equal to or higher than the AC1 transformation point.
Further, when heating the annular body until the temperature of the AC1 transformation point is exceeded and the entire surface of the annular body becomes an austenite structure, the ductility of the annular body is increased and the deformation resistance is lowered, so that An annular body close to a perfect circle can be obtained.
Further, if an induction heating method is used as the method for heating the annular body, the temperature of the annular body can be made higher than that of the constraining type, so that a more remarkable correction effect can be obtained.

また、環状体を回転させながらその表面に冷却剤を噴射して当該環状体を臨界冷却速度以上の速度で冷却すれば、真円形に近い形状に矯正された後の環状体をむらなく均一に冷却できるため、その形状を維持したまま焼入れ処理を行うことができる。
また、前記環状体の冷却中に、その環状体の内径または外径をそれぞれの拘束型で拘束すれば、焼入れ時の変形も確実に防止することができる。
また、環状体を拘束型で拘束する時に、浸漬焼入れを用いることも可能である。
In addition, if the annular body is rotated at a speed equal to or higher than the critical cooling rate by rotating the annular body while rotating the annular body, the annular body after being corrected to a shape close to a perfect circle is uniformly distributed. Since it can be cooled, it can be quenched while maintaining its shape.
Further, if the inner diameter or outer diameter of the annular body is constrained by the respective constraining type during cooling of the annular body, deformation during quenching can be reliably prevented.
It is also possible to use immersion quenching when restraining the annular body with a restraint type.

また、軸受の内外輪などのようにその環状体に転動体が転動するための軌道面を有するときは、少なくともその軌道面の窒素濃度が1.0〜3.0質量%、残留オーステナイト量が20〜50体積%となるようにその環状体をガス軟窒化あるいは塩浴窒化処理すれば、転動疲労寿命を大幅に延ばすことができる。
すなわち、後に詳述するように残留オーステナイト量が20体積%〜50体積%の範囲であれば、硬さが低下せず、十分な転動疲労寿命を得ることができる。また、窒素濃度が増加するに伴って残留オーステナイトは安定し、長寿命化されるが、反対に多すぎると硬さが低下するため、十分な転動疲労寿命を得るためには、表面窒化濃度が1.0〜3.0質量%の範囲が好ましい。
Further, when the ring body has a raceway surface for rolling the rolling element, such as the inner and outer rings of the bearing, at least the nitrogen concentration of the raceway surface is 1.0 to 3.0% by mass, the amount of retained austenite If the annular body is subjected to gas soft nitriding or salt bath nitriding treatment so that the amount becomes 20 to 50% by volume, the rolling fatigue life can be greatly extended.
That is, as will be described in detail later, if the amount of retained austenite is in the range of 20% by volume to 50% by volume, the hardness does not decrease and a sufficient rolling fatigue life can be obtained. In addition, as the nitrogen concentration increases, the retained austenite stabilizes and prolongs the life, but on the contrary, if it is too much, the hardness decreases, so in order to obtain a sufficient rolling fatigue life, the surface nitridation concentration Is preferably in the range of 1.0 to 3.0 mass%.

次に、本発明に係る環状体の加熱変形矯正方法および焼入れ方法の実施の一形態を添付図面を参照しながら詳細に説明する。
図1は、本発明方法を実施するための熱処理装置100の実施の一形態を示したものである。
図において符号10は、軸受の内外輪などを構成すべく素材の炭素(C)含有量が約0.1〜1.2%の鋼からなる断面矩形状の環状体である。そして、この環状体10は、加熱処理時においては、同じくリング状の外径拘束型20の内側に嵌め込まれてその外径が拘束される状態で取り付けられるようになっている。
Next, an embodiment of an annular body heating deformation correction method and quenching method according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an embodiment of a heat treatment apparatus 100 for carrying out the method of the present invention.
In the figure, reference numeral 10 denotes an annular body having a rectangular cross section made of steel having a carbon (C) content of about 0.1 to 1.2% for constituting inner and outer rings of the bearing. And this annular body 10 is attached to the inside of the ring-shaped outer diameter constraining mold 20 in the same manner during the heat treatment, and the outer diameter is constrained.

また、この外径拘束型20の外側には、誘導加熱コイル30が一定の隙間を隔ててこれを囲繞するように設けられており、この外径拘束型20に拘束された環状体10を少なくともそのAC1変態点(約730℃)以上の温度に誘導加熱できるようになっている。
なお、この外径拘束型20は、少なくとも環状体10を構成する鋼よりも十分に融点が高い耐熱性の非磁性材料、例えば、セラミックや非磁性金属などからなっており、より好ましくは窒化珪素系のセラミックなどから形成されている。また、この外径拘束型20の内径は真円形となっており、その真円度、すなわち内径の最長径と最短径との差は、100μm以下(より好ましくは50μm以下、理想的には10μm以下)となっている。そして、この外径拘束型20は、型支持部材21によって誘導加熱コイル30内に支持されている。
In addition, an induction heating coil 30 is provided outside the outer diameter constraining mold 20 so as to surround the outer diameter constraining mold 20 with a certain gap, and at least the annular body 10 constrained by the outer diameter constraining mold 20 is provided. It has to be induction heated to the a C1 transformation point (about 730 ° C.) or higher.
The outer diameter constraining die 20 is made of a heat-resistant nonmagnetic material having a melting point sufficiently higher than that of the steel constituting the annular body 10, such as ceramic or nonmagnetic metal, and more preferably silicon nitride. It is made of a series ceramic. The inner diameter of the outer diameter constraining mold 20 is a perfect circle, and the roundness, that is, the difference between the longest diameter and the shortest diameter is 100 μm or less (more preferably 50 μm or less, ideally 10 μm). Below). The outer diameter constraining die 20 is supported in the induction heating coil 30 by a die support member 21.

また、この外径拘束型20の上下にはそれぞれ上下方向に出没自在なピストン40と、同じく昇降自在な回転土台50とが設けられており、ピストン40によってこの外径拘束型20に拘束された環状体10を下方に押し下げて回転土台50上に取り外すと共に、この回転土台50が降下してその下方に位置する冷却ジャケット60内にこの環状体10を位置させることができるようになっている。   In addition, a piston 40 that can be raised and lowered in the vertical direction and a rotary base 50 that can also be raised and lowered are provided on the upper and lower sides of the outer diameter restricting die 20, and are restricted by the outer diameter restricting die 20 by the piston 40. The annular body 10 is pushed down to be removed on the rotary base 50, and the rotary base 50 is lowered so that the annular body 10 can be positioned in the cooling jacket 60 positioned below the annular base 50.

この冷却ジャケット60は、この環状体10をその回転土台50と共に囲繞するようなリング状の本体の内面側に多数のノズル(図示せず)を備えたものであり、図2に示すようにこのノズルから所定量の冷却剤(冷却液)を噴射してその回転土台50上の環状体10を臨界冷却速度以上の速度で冷却して焼入れ処理をするようになっている。
なお、この冷却ジャケット60には図示しない冷却剤ポンプなどが付設されており所定の時期に任意量の冷却材を任意の時間供給できるようになっている。また、前記ピストン40は、図示しない油圧シリンダなどによって制御されるようになっている。さらに、前記誘導加熱コイル30にも図示しない制御回路が付設されており、任意のタイミングでこの誘導加熱コイル30を制御するようになっている。
The cooling jacket 60 is provided with a number of nozzles (not shown) on the inner surface side of a ring-shaped main body that surrounds the annular body 10 together with the rotary base 50. As shown in FIG. A predetermined amount of coolant (coolant) is sprayed from the nozzle, and the annular body 10 on the rotary base 50 is cooled at a speed equal to or higher than the critical cooling speed for quenching.
The cooling jacket 60 is provided with a coolant pump (not shown) so that an arbitrary amount of coolant can be supplied for an arbitrary time at a predetermined time. The piston 40 is controlled by a hydraulic cylinder (not shown). Furthermore, the induction heating coil 30 is also provided with a control circuit (not shown), and the induction heating coil 30 is controlled at an arbitrary timing.

次に、このような構成をした熱処理装置100を用いた本発明方法の一例を説明する。
先ず、熱処理対象となる環状体10(ワーク)を予め500〜600℃でガス軟窒化あるいは塩浴窒化処理を行ってから、図1に示すように、その環状体10を外径拘束型20に嵌入して加熱時にその外径を拘束するように取り付けた後、誘導加熱コイル30に通電してその環状体10を誘導加熱する。
Next, an example of the method of the present invention using the heat treatment apparatus 100 having such a configuration will be described.
First, the annular body 10 (workpiece) to be heat-treated is preliminarily subjected to gas soft nitriding or salt bath nitriding treatment at 500 to 600 ° C., and then the annular body 10 is changed to an outer diameter constraining die 20 as shown in FIG. After inserting and attaching so that the outer diameter is restrained at the time of a heating, it supplies with electricity to the induction heating coil 30, and the annular body 10 is induction-heated.

すると、この環状体10の素材温度が上昇し始め、その昇温に伴ってその全体が径方向外方および軸方向に熱膨張するが、その周囲は外径拘束型20によって拘束されているため、その環状体10が外径方向に向かって膨張する力とその外径を拘束する外径拘束型20による抗力とによって、その環状体10の加熱前の歪みや変形が全て取り除かれてその環状体10が真円形に近い形状に矯正されることになる。   Then, the material temperature of the annular body 10 starts to rise, and as the temperature rises, the whole thermally expands radially outward and axially, but the periphery thereof is constrained by the outer diameter restraining die 20. By the force of the annular body 10 expanding toward the outer diameter direction and the drag by the outer diameter restraining mold 20 that restrains the outer diameter, all distortions and deformations before the heating of the annular body 10 are removed. The body 10 is corrected to a shape close to a perfect circle.

すなわち、処理前の環状体10は、加工歪みやガス軟窒化あるいは塩浴窒化処理などによって既定値通りの真円形ではなくある程度歪んだ(変形)状態となっている。そのため、これを外径拘束型20に嵌入してその外面を拘束するように取り付けた状態では、その環状体10の外面が外径拘束型20の内面に完全に密着している状態ではなく、所々または全周に隙間が生じている状態となっているが、この誘導加熱による熱膨張によってその環状体10の外面が外径拘束型20の内面に完全に密着すると共に、その過程で内在する歪みや変形が全て取り除かれてその外径拘束型20の内径と同じ、ほぼ真円形に近い形状に矯正されることになる。   That is, the ring-shaped body 10 before processing is not distorted to a certain degree due to processing strain, gas soft nitriding or salt bath nitriding, but is distorted (deformed) to some extent. Therefore, in a state where the outer surface of the annular body 10 is fitted to the outer diameter restraining mold 20 and is restrained so that the outer surface thereof is restrained, the outer surface of the annular body 10 is not completely in contact with the inner surface of the outer diameter restraining mold 20, There are gaps in some places or around the entire circumference, but the outer surface of the annular body 10 is completely brought into close contact with the inner surface of the outer diameter constraining mold 20 due to thermal expansion by this induction heating, and is inherent in the process. All distortions and deformations are removed, and the shape is corrected to a shape close to a perfect circle, which is the same as the inner diameter of the outer diameter restraining mold 20.

そして、このような加熱膨張は、変態膨張に比べて膨張量が大きいため、熱処理前の変形が大きい場合であっても容易に真円形に矯正加工することができる。
また、この加熱温度としては、少なくともその環状体10を構成する鋼素材のAC1変態点(約730℃)以上の温度に加熱する必要があり、より好ましくはその環状体10の全面がオーステナイト組織(固溶体)になる温度まで加熱する。
すなわち、Fe−C系平行状態図などからも明らかなように、鋼は炭素含有量によってオーステナイト組織化温度が異なってくるため、環状体10の全面がオーステナイト組織にするには、少なくとも約800℃以上、より好ましくは850℃以上の温度まで昇温加熱することが望ましいからである。
And since such a thermal expansion has a large expansion amount compared with transformation expansion, even if it is a case where the deformation | transformation before heat processing is large, it can correct to a perfect circle easily.
Further, as the heating temperature, at least the A C1 transformation point of the steel material constituting the annular member 10 (about 730 ° C.) must be heated to a temperature above, more preferably the entire surface austenitic structure of the annular body 10 Heat to a temperature at which it becomes a (solid solution).
That is, as is clear from the Fe-C parallel phase diagram and the like, steel has an austenite organization temperature that varies depending on the carbon content. Therefore, in order for the entire surface of the annular body 10 to have an austenite structure, at least about 800 ° C. This is because it is desirable to raise and heat to a temperature of 850 ° C. or higher.

そして、このようにこの環状体10を少なくともその環状体10を構成する鋼素材のAC1変態点(約730℃)以上の温度に加熱することによって後の焼入れ処理が可能になると共に、さらに環状体10の全面がオーステナイト組織になるまで加熱すれば、環状体10の素材の延性が高くなって変形抵抗が低くなるため、より確実に真円形に近い環状体10に矯正することが可能となる。また、環状体10と外径拘束型20と型支持部材21と回転土台50を回転させながら加熱を行えばより均一な加熱が可能になる。 And thus with allowing quenching after by heating the annular body 10 at least on the A C1 transformation point of the steel material constituting the annular member 10 (about 730 ° C.) or higher, further annular If heating is performed until the entire surface of the body 10 has an austenite structure, the ductility of the material of the annular body 10 is increased and the deformation resistance is lowered, so that the annular body 10 can be more reliably corrected to a nearly circular shape. . Further, if heating is performed while rotating the annular body 10, the outer diameter restricting die 20, the die support member 21, and the rotary base 50, more uniform heating is possible.

次に、このようにして環状体10を焼入れ可能状態まで加熱すると共に、その形状を真円形に矯正したならば、図2に示すように、直ちにピストン40によってこの外径拘束型20に拘束された環状体10を下方に押し下げて回転土台50上に取り外すと共に、この回転土台50を降下させてその下方に位置する冷却ジャケット60内にこの環状体10を位置させる。   Next, when the annular body 10 is heated to a quenchable state in this way and its shape is corrected to a perfect circle, it is immediately restrained by the outer diameter restraining die 20 by the piston 40 as shown in FIG. The annular body 10 is pushed down to be removed on the rotary base 50, and the rotary base 50 is lowered to place the annular body 10 in the cooling jacket 60 positioned below the rotary base 50.

そして、この回転土台50をその軸を中心として回転させながら、その冷却ジャケット60の図示しないノズルから冷却剤を噴射してその回転土台50上の環状体10の表面に吹き付けてその環状体10を臨界冷却速度以上の速度で冷却する。
これによって、加熱段階で真円形に近い形状に矯正された後の環状体10をむらなく均一に冷却できるため、真円形状を維持したまま焼入れ処理を行うことができる。
Then, while rotating the rotary base 50 around its axis, a coolant is sprayed from a nozzle (not shown) of the cooling jacket 60 and sprayed onto the surface of the annular body 10 on the rotary base 50 to thereby remove the annular body 10. Cool at a rate higher than the critical cooling rate.
Thereby, since the annular body 10 after being corrected to a shape close to a perfect circle in the heating stage can be uniformly cooled, the quenching process can be performed while maintaining the perfect circle shape.

このように本発明方法は、従来のマルテンサイト変態膨張を利用した冷却矯正方法に対し、加熱膨張を利用したものであることから、膨張量を多く稼ぐことが可能となる。したがって、処理前の歪みが変形が大きくても容易にこれを除去して真円形に矯正することが可能となる。特に、300℃以下の過冷オーステナイトからマルテンサイト変態完了を利用した矯正に比べ、800℃を超えるようなオーステナイト域での加工は変形抵抗が小さいため、矯正効果が大きい。   As described above, the method of the present invention uses heating expansion as compared to the conventional cooling correction method using martensitic transformation expansion, and thus can increase the amount of expansion. Therefore, even if the distortion before processing is large, it can be easily removed and corrected to a perfect circle. In particular, as compared with correction using supercooled austenite at 300 ° C. or lower to completion of martensite transformation, processing in the austenite region exceeding 800 ° C. has a small deformation resistance and thus has a large correction effect.

そして、このように加熱段階で環状体10を真円形に矯正されていれば、その後に前述したような方法でこの環状体10を均一に冷却すれば、その真円形を維持したまま焼入れ処理を行うことができる。
これによって、環状体表面の取りしろが殆ど不要(例えば、数μm程度)となるため、窒素を高濃度に含む窒化層などを完成品表面に残すことができる。この結果、鋼材表面に必要以上に深い浸炭層(浸炭窒化層)を形成する必要がなくなるため、その処理時間や手間を省略することも可能となる。
If the annular body 10 is corrected to a perfect circle in the heating step as described above, then the annular body 10 can be uniformly cooled by the method described above, and the quenching process can be performed while maintaining the true circle. It can be carried out.
This eliminates the need for an allowance on the surface of the annular body (for example, about several μm), so that a nitride layer containing nitrogen at a high concentration can be left on the finished product surface. As a result, it is not necessary to form a carburized layer (carbonitriding layer) that is deeper than necessary on the surface of the steel material, and the processing time and labor can be omitted.

ここで、熱処理対象となる環状体10(ワーク)を予め500〜600℃でガス軟窒化あるいは塩浴窒化処理するのは、700℃を超える高温での浸炭窒化処理あるいは浸窒処理では、1.0%を超えるような高濃度の窒素を鋼表面に付与することは不可能であるため、700℃以下のガス中、塩浴で行われる軟窒化処理を実施しなければならないからである。   Here, the gas soft nitriding or salt bath nitriding treatment of the annular body 10 (work) to be heat-treated in advance at 500 to 600 ° C. is performed in the case of carbonitriding or nitriding treatment at a high temperature exceeding 700 ° C. This is because it is impossible to apply a high concentration of nitrogen exceeding 0% to the steel surface, and therefore soft nitriding treatment performed in a salt bath must be performed in a gas of 700 ° C. or lower.

また、ガス軟窒化あるいは塩浴窒化処理としては、従来公知の処理方法をそのまま採用できる。例えば、ガス軟窒化としては、環状体10にRXガス、NH3ガスおよびエアーを含む混合気を送りながら所定の条件で加熱する方法を用いることができる。また、塩浴窒化処理としては、シアン酸ソーダ(NaCNO)またはシアン酸カリ(KCNO)を20〜70%含む混合塩を用い、500〜620%に溶解した塩浴中に環状体10を浸漬し処理するものであって、処理時間は10分〜2時間程度が普通である。   As the gas soft nitriding or salt bath nitriding treatment, a conventionally known treatment method can be employed as it is. For example, as gas soft nitriding, a method of heating the annular body 10 under a predetermined condition while feeding an air-fuel mixture containing RX gas, NH 3 gas, and air can be used. Further, as the salt bath nitriding treatment, a mixed salt containing 20 to 70% sodium cyanate (NaCNO) or potassium cyanate (KCNO) is used, and the annular body 10 is immersed in a salt bath dissolved in 500 to 620%. The processing time is usually about 10 minutes to 2 hours.

また、この環状体10の焼入れ方法としては前述した方法に加え、さらに図3および図4に示すような方法を用いれば、その処理時における変形をより確実に防止することができる。すなわち、図3および図4に示すように加熱後の環状体10を載置する回転土台50上に凸状の内径拘束型70または第2の外径拘束型20aを設けておき、その環状体10の冷却中にその環状体10の内径または外径を拘束しておくようにすれば、焼入れ時の変形をより確実に防止することができる。   Further, in addition to the above-described method as a quenching method for the annular body 10, deformation during the processing can be more reliably prevented by using a method as shown in FIGS. That is, as shown in FIGS. 3 and 4, a convex inner diameter restraining mold 70 or a second outer diameter restraining mold 20a is provided on the rotary base 50 on which the heated annular body 10 is placed, and the annular body is provided. If the inner diameter or outer diameter of the annular body 10 is constrained during the cooling of 10, the deformation during quenching can be prevented more reliably.

また、このように内径拘束型70または第2の外径拘束型20aを用いれば、図4に示すように冷却方法として油中への浸漬焼入れなどを用いることも可能となる。
なお、図4に示すように冷却時に第2の外径拘束型20aを用いる場合には、矯正効果を得るためにその外径拘束型20aの内径は加熱時に用いる外径拘束型20の内径よりも小さいことが好ましく、環状体10がオーステナイト状態のうちにその外径拘束型20aに圧入することが望ましい。また、図4にて環状体10などを回転させながら冷却すればより均一で早い冷却が可能となる。
Further, when the inner diameter restraint type 70 or the second outer diameter restraint type 20a is used as described above, it is possible to use immersion quenching in oil as a cooling method as shown in FIG.
As shown in FIG. 4, when the second outer diameter restricting mold 20a is used at the time of cooling, the inner diameter of the outer diameter restricting mold 20a is larger than the inner diameter of the outer diameter restricting mold 20 used at the heating in order to obtain a correction effect. Is preferably small, and it is desirable that the annular body 10 is press-fitted into the outer diameter constraining die 20a in the austenite state. Moreover, if it cools, rotating the annular body 10 etc. in FIG. 4, more uniform and quick cooling will be attained.

また、本発明方法の処理対象となる環状体10のサイズは、特に限定されるものではないが、肉厚(径方向)と幅(軸方向)との関係は、肉厚/幅が「1.0」以下であることが好ましい。
また、本発明方法の処理対象となる環状体10は、前述したように転がり軸受(玉軸受)の内外輪やその軌道面、軌道を有する軸、複雑形状を有する円錐ころ軸受の内外輪などに加え、あらゆる機械部品などに適用することができる。
Further, the size of the annular body 10 to be processed by the method of the present invention is not particularly limited, but the relationship between the thickness (radial direction) and the width (axial direction) is that the thickness / width is “1”. 0.0 "or less.
Further, as described above, the annular body 10 to be processed by the method of the present invention is applied to the inner and outer rings of the rolling bearing (ball bearing), its raceway surface, the shaft having the raceway, the inner and outer rings of the tapered roller bearing having a complicated shape, and the like. In addition, it can be applied to all machine parts.

また、誘導加熱コイル30を環状体10の端面や内面側に設け、その方向から環状体10を加熱するようにしても良い。
また、冷却時に内径拘束型70を用いる場合には、図3に示すように内径拘束型70の頂部をテーパー状に窄めておけば、環状体10を嵌め込みやすくなる。さらに、このような形状の内径拘束型70を用いた場合には、ピストン40の外周下面に押し治具41などを突出させて設ければ、より確実に環状体10を嵌め込むことができる。
Further, the induction heating coil 30 may be provided on the end face or inner surface side of the annular body 10 and the annular body 10 may be heated from that direction.
Further, when the inner diameter constraining mold 70 is used at the time of cooling, the annular body 10 can be easily fitted by constricting the top of the inner diameter constraining mold 70 in a tapered shape as shown in FIG. Furthermore, when the inner diameter restraining die 70 having such a shape is used, the annular body 10 can be more securely fitted by providing the pushing jig 41 or the like so as to protrude from the outer peripheral lower surface of the piston 40.

次に、本発明方法に係る具体的実施例を説明する。
(実施例1〜3)
本発明に係る実施例1〜3として、図5に示すように中炭素鋼からなる外径70mm×肉厚5mm×幅10mmの環状体を用い、これを580〜600℃×3〜5時間(hr)の条件でガス軟窒化処理してから、その外径を外径拘束型20で拘束して加熱(最高温度860℃)した後、第2の外径拘束型20aを用いてその外径を拘束しながら矯正焼入れ処理を行った。
そして、これら焼入れ処理後、各環状体の表面をそれぞれ5μmの厚さで研削除去してから転動疲労試験を行った。転動疲労試験方法としては、その環状体を軸受の外輪として用い、その表面に剥離が発生するまでのL10寿命を求め、以下に示す比較例1を基準と(1)としてその比を示した
Next, specific examples according to the method of the present invention will be described.
(Examples 1-3)
As Examples 1 to 3 according to the present invention, as shown in FIG. 5, an annular body made of medium carbon steel having an outer diameter of 70 mm, a thickness of 5 mm, and a width of 10 mm was used. hr), after the gas soft nitriding treatment is performed, the outer diameter is constrained by the outer diameter constraining mold 20 and heated (maximum temperature 860 ° C.), and then the outer diameter is constrained using the second outer diameter constraining mold 20a. The straightening and quenching treatment was performed while restraining.
Then, after these quenching treatments, the surface of each annular body was ground and removed to a thickness of 5 μm, and then a rolling fatigue test was performed. As a rolling fatigue test method, the annular body is used as an outer ring of a bearing, the L 10 life until peeling occurs on the surface is obtained, and the ratio is shown by using Comparative Example 1 shown below as a reference (1). The

(比較例1、2)
一方、本発明の条件を満たさない比較例1として、図5に示すように840℃×3時間の条件で浸炭窒化処理した後、加熱時の外径矯正を行うことなく矯正焼入れ処理を行った他は、実施例1〜3と同じ条件で矯正焼入れ処理を行った。
また、同じく本発明の条件を満たさない比較例2として、図5に示すように窒化処理を一切行わずにそのまま実施例1〜3と同じ条件で矯正焼入れ処理を行った。
そして、これらの焼入れ処理後、各環状体の表面をそれぞれ5μmの厚さで研削除去してから実施例1〜3と同じ条件で転動疲労試験を行った。
(Comparative Examples 1 and 2)
On the other hand, as Comparative Example 1 not satisfying the conditions of the present invention, as shown in FIG. 5, after carbonitriding under conditions of 840 ° C. × 3 hours, straightening and quenching was performed without correcting the outer diameter during heating. The others were subjected to straightening and quenching treatment under the same conditions as in Examples 1 to 3.
Similarly, as Comparative Example 2 that does not satisfy the conditions of the present invention, as shown in FIG. 5, the straightening and quenching treatment was directly performed under the same conditions as in Examples 1 to 3 without performing any nitriding treatment.
Then, after these quenching treatments, the surface of each annular body was ground and removed at a thickness of 5 μm, and then a rolling fatigue test was performed under the same conditions as in Examples 1 to 3.

この結果、図5に示すように、先ず比較例1の場合は、焼入れ処理後の熱変形が大きく、真円形にするための切削取りしろが極端に大きくなってしまった(100μm)。また、表面窒化濃度も0.4%と低く、また、残留オーステナイト量も25体積%と低くなってしまい、十分な転動疲労寿命を得ることができなかった。
また、窒化処理を行わない比較例2の場合は、熱処理変形量が小さく研削取りしろも殆ど不要であったが、表面窒素濃度は、検出できない程度の殆どゼロであり、また、残留オーステナイト量も僅か体積%と低くなってしまい、転動疲労寿命も比較例1の約1/5と極端に短くなってしまった。
As a result, as shown in FIG. 5, first, in the case of the comparative example 1, the thermal deformation after the quenching process was large, and the cutting allowance for making a perfect circle became extremely large (100 μm). Further, the surface nitriding concentration was as low as 0.4%, and the amount of retained austenite was also as low as 25% by volume, so that a sufficient rolling fatigue life could not be obtained.
Further, in the case of Comparative Example 2 in which no nitriding treatment was performed, the amount of heat treatment deformation was small and grinding was almost unnecessary, but the surface nitrogen concentration was almost undetectable and the residual austenite amount was also low. As a result, the rolling fatigue life was extremely shortened to about 1/5 that of Comparative Example 1.

一方、本発明に係る実施例1〜3の場合は、いずれも優れた真円度を有し、表面窒素濃度や残留オーステナイト量も比較例に比べて高かった。このため、いずれの転動疲労寿命も比較例1に比べて約2倍以上となり、特に実施例2にあっては、約5倍以上の優れた転動疲労寿命を発揮した。
このように、熱処理方法および表面窒素濃度ならびに残留オーステナイト量を本発明に規定するようにコントロールすることで従来よりも大幅に長寿命な転がり軸受などの環状体を提供することができる。
On the other hand, Examples 1 to 3 according to the present invention all had excellent roundness, and the surface nitrogen concentration and the amount of retained austenite were also higher than those of the comparative examples. For this reason, each rolling fatigue life was about twice or more that of Comparative Example 1, and particularly in Example 2, an excellent rolling fatigue life of about 5 times or more was exhibited.
As described above, by controlling the heat treatment method, the surface nitrogen concentration, and the retained austenite amount as defined in the present invention, it is possible to provide an annular body such as a rolling bearing having a significantly longer life than the conventional one.

本発明方法を実施するための熱処理装置100の実施の一形態を示す概念図である。It is a conceptual diagram which shows one Embodiment of the heat processing apparatus 100 for implementing this invention method. 本発明方法に係る冷却工程を示す概念図である。It is a conceptual diagram which shows the cooling process which concerns on this invention method. 本発明方法に係る冷却工程の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the cooling process which concerns on this invention method. 本発明方法に係る冷却工程の他の例を示す概念図である。It is a conceptual diagram which shows the other example of the cooling process which concerns on this invention method. 本実施例の結果を示す表図である。It is a table | surface figure which shows the result of a present Example.

符号の説明Explanation of symbols

100…熱処理装置
10…環状体
20…外径拘束型
20a…第2外径拘束型
30…誘導加熱コイル
40…ピストン
50…回転土台
60…冷却ジャケット
70…内径拘束型
DESCRIPTION OF SYMBOLS 100 ... Heat processing apparatus 10 ... Ring body 20 ... Outer diameter restraint type 20a ... 2nd outer diameter restraint type 30 ... Induction heating coil 40 ... Piston 50 ... Rotation base 60 ... Cooling jacket 70 ... Inner diameter restraint type

Claims (6)

鋼からなる環状体を加熱処理する際に生ずる変形を矯正する方法であって、
前記環状体をガス軟窒化あるいは塩浴窒化処理した後、外径拘束型によってその外径を拘束した状態で当該環状体をAC1変態点以上の温度に加熱することを特徴とする環状体の加熱変形矯正方法。
A method of correcting deformation that occurs when an annular body made of steel is heat-treated,
The annular body is subjected to gas soft nitriding or salt bath nitriding treatment, and then the annular body is heated to a temperature equal to or higher than the AC1 transformation point in a state where the outer diameter is restrained by an outer diameter restraining mold. Heat deformation correction method.
鋼からなる環状体を加熱処理する際に生ずる変形を矯正する方法であって、
前記環状体をガス軟窒化あるいは塩浴窒化処理した後、外径拘束型によってその外径を拘束した状態で当該環状体全面がオーステナイト組織になるまで加熱することを特徴とする環状体の加熱変形矯正方法。
A method of correcting deformation that occurs when an annular body made of steel is heat-treated,
The annular body is subjected to gas soft nitriding or salt bath nitriding treatment, and then heated until the entire surface of the annular body has an austenite structure in a state in which the outer diameter is constrained by an outer diameter restraining mold. Correction method.
請求項1または2に記載の環状体の加熱変形矯正方法において、
前記環状体に転動体が転動するための軌道面を有するときは、
少なくとも当該軌道面の窒素濃度が1.0〜3.0質量%、残留オーステナイト量が20〜50体積%となるように前記環状体を前記ガス軟窒化あるいは塩浴窒化処理することを特徴とする環状体の加熱変形矯正方法。
In the method for correcting heat deformation of an annular body according to claim 1 or 2,
When the annular body has a raceway surface for rolling elements to roll,
The annular body is subjected to the gas soft nitriding or salt bath nitriding treatment so that at least the nitrogen concentration on the raceway surface is 1.0 to 3.0% by mass and the amount of retained austenite is 20 to 50% by volume. A method for correcting heat deformation of an annular body.
請求項1〜3のいずれか1項に記載の環状体の加熱変形矯正方法において、
前記環状体の加熱方法として誘導加熱を用いることを特徴とする環状体の加熱変形矯正方法。
In the heating deformation correction method of the annular body according to any one of claims 1 to 3,
An induction heating method for an annular body, wherein induction heating is used as the annular body heating method.
請求項1〜4のいずれか1項に記載の加熱変形矯正方法で処理された環状体を焼入れする方法であって、
前記加熱処理後の環状体を前記外径拘束型から取り外した後、当該環状体を回転させながらその表面に冷却剤を噴射して当該環状体を臨界冷却速度以上の速度で冷却することを特徴とする環状体の焼入れ方法。
A method for quenching an annular body treated by the method for correcting heat deformation according to any one of claims 1 to 4,
The annular body after the heat treatment is removed from the outer diameter constraining mold, and then the annular body is rotated at a speed equal to or higher than the critical cooling rate by injecting a coolant onto the surface of the annular body while rotating the annular body. A method for quenching an annular body.
請求項5に記載の環状体の焼入れ方法において、
前記環状体の冷却中に、その環状体の内径または外径をそれぞれの拘束型で拘束することを特徴とする環状体の焼入れ方法。
In the quenching method of the annular body according to claim 5,
A quenching method for an annular body, characterized in that, during cooling of the annular body, an inner diameter or an outer diameter of the annular body is constrained by each restraint type.
JP2008046721A 2008-02-27 2008-02-27 Heat deformation straightening method of annular body, and its hardening method Pending JP2009203521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046721A JP2009203521A (en) 2008-02-27 2008-02-27 Heat deformation straightening method of annular body, and its hardening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046721A JP2009203521A (en) 2008-02-27 2008-02-27 Heat deformation straightening method of annular body, and its hardening method

Publications (1)

Publication Number Publication Date
JP2009203521A true JP2009203521A (en) 2009-09-10

Family

ID=41146077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046721A Pending JP2009203521A (en) 2008-02-27 2008-02-27 Heat deformation straightening method of annular body, and its hardening method

Country Status (1)

Country Link
JP (1) JP2009203521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067335A (en) * 2010-09-21 2012-04-05 Nsk Ltd Heat treatment deformation correcting device of annular work
CN109290740A (en) * 2018-10-18 2019-02-01 重庆文理学院 A kind of process controlling plunger thermal deformation in particular during a heating process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067335A (en) * 2010-09-21 2012-04-05 Nsk Ltd Heat treatment deformation correcting device of annular work
CN109290740A (en) * 2018-10-18 2019-02-01 重庆文理学院 A kind of process controlling plunger thermal deformation in particular during a heating process

Similar Documents

Publication Publication Date Title
JP5045491B2 (en) Large rolling bearing
JP2009197312A (en) Method for correcting deformation of annular member
JP5433932B2 (en) Annular deformation correction method
JP4178980B2 (en) Method for heat treatment of annular member
JP5380812B2 (en) Quenching method for annular body
JP6089513B2 (en) Method of quenching annular workpiece and quenching apparatus used therefor
WO2021140853A1 (en) Rolling bearing raceway ring and method for manufacturing same
JP5446410B2 (en) Heat treatment method for annular workpiece
JP2009203525A (en) Production line for rolling bearing
JP2009203521A (en) Heat deformation straightening method of annular body, and its hardening method
JP2008231451A (en) Heat treatment method for annular body, and annular body sizing tool
JP2007239837A (en) Tripod type constant velocity universal joint and its manufacturing method
JPH08225851A (en) Quenching distortion straightening of annular body
JP2005113213A (en) Heat treatment system
JP2009203522A (en) Method for manufacturing race ring of rolling bearing
JP2009270172A (en) Method for manufacturing bearing ring for rolling bearing
JP2005133212A (en) Heat treatment system
JP4176501B2 (en) Method for heat treatment of annular member
JP7328032B2 (en) rolling bearing rings
JP2005133214A (en) Heat treatment system
JP2005076111A (en) Method for quenching annular member made of steel
JP7515673B2 (en) Rolling bearing races and rolling bearings
JP7370141B2 (en) Raceway members and rolling bearings
WO2021100746A1 (en) Raceway member, rolling bearing, bearing ring for rolling bearing, and method for manufacturing bearing ring for rolling bearing
JP3327386B2 (en) Manufacturing method of cylinder block for hydraulic pump / motor