JP2009202257A - Evaluation method for simultaneous multi-spindle control - Google Patents

Evaluation method for simultaneous multi-spindle control Download PDF

Info

Publication number
JP2009202257A
JP2009202257A JP2008045401A JP2008045401A JP2009202257A JP 2009202257 A JP2009202257 A JP 2009202257A JP 2008045401 A JP2008045401 A JP 2008045401A JP 2008045401 A JP2008045401 A JP 2008045401A JP 2009202257 A JP2009202257 A JP 2009202257A
Authority
JP
Japan
Prior art keywords
axis
reference member
shape
measurement
outline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045401A
Other languages
Japanese (ja)
Other versions
JP5151545B2 (en
Inventor
Hideki Iwai
英樹 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008045401A priority Critical patent/JP5151545B2/en
Publication of JP2009202257A publication Critical patent/JP2009202257A/en
Application granted granted Critical
Publication of JP5151545B2 publication Critical patent/JP5151545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating precision of a machining device used for simultaneous multi-spindle control such as simultaneous 5-spindle control, simultaneous 6-spindle control or the like. <P>SOLUTION: This method comprises: a reference member mounting process for providing a measurement reference member S having a nonaxisymmetric shape at a workpiece mounting position 14 of the machining device 2; a probe mounting process for mounting a probe 24 of a dimension measuring device at a machining tool mounting position 20 of the machining device 2; and a reference member shape-measuring process for moving the probe 24 along a circular-arc external line OL formed by the predetermined cross section DM having a nonaxisymmetric shape and a surface and having fixed curvature to measure the shape of the measurement reference member S by simultaneously controlling operation of orthogonal 3-spindles and a rotary shaft. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超精密加工機における同時多軸制御の精度を評価する方法に関する。   The present invention relates to a method for evaluating the accuracy of simultaneous multi-axis control in an ultraprecision machine.

従来、光通信などの情報通信機器、デジタルカメラ、カメラ付携帯電話などの撮像装置、DVD・CDなどのAV機器、内視鏡などの医療機器において高性能なレンズが用いられている。これらのレンズを成形する金型には形状精度100nm以下、表面粗さ10nm以下の厳しい精度が要求されるようになった。そして、これらの光学レンズ等、非軸対称非球面を精密加工するため、複数の移動軸と複数の回転軸とを同時に制御してミクロンオーダ以下の分解能で加工できる工作機械が製作されるようになった。そして、その加工精度を評価して調整する方法として、非特許文献1に記載の評価方法がある。この非特許文献1によると、図15に示すように、主軸100に球形の基準面を有する基準部材102を取付けるとともに、図略の刃物台に静電容量センサ104を取付け、主軸100に刃物台が接近する方向であるZ軸、Z軸に直角な方向であるX軸、X軸及びZ軸に直角なY軸(垂直方向)を設ける。そして、Y軸回りの回転であるB軸中心で回転するB軸テーブル106に前記刃物台を設定している。そして、図15に示す、前端部SPより、図16に示す、B軸が90度回転する位置まで、前記基準面上の測定線に沿って静電容量センサ104を移動させるX軸・Z軸・B軸の同時3軸制御を行ったときの、軌跡精度により加工精度を評価するものである。このとき静電容量センサ104と基準部材102の基準面との距離の変化量が同時3軸制御の誤差となって検出され、同時3軸制御の精度評価を行うことができる。
機械と工具2005年8月号29頁乃至35頁
Conventionally, high-performance lenses have been used in information communication equipment such as optical communication, imaging devices such as digital cameras and camera-equipped mobile phones, AV equipment such as DVD / CD, and medical equipment such as endoscopes. Metal molds for molding these lenses are required to have strict accuracy with a shape accuracy of 100 nm or less and a surface roughness of 10 nm or less. In order to precisely machine non-axisymmetric aspheric surfaces such as these optical lenses, a machine tool capable of machining with a resolution of submicron order by simultaneously controlling a plurality of moving axes and a plurality of rotating axes is manufactured. became. As a method for evaluating and adjusting the processing accuracy, there is an evaluation method described in Non-Patent Document 1. According to Non-Patent Document 1, as shown in FIG. 15, a reference member 102 having a spherical reference surface is attached to a main shaft 100, a capacitance sensor 104 is attached to a tool post (not shown), and a tool post is attached to the main shaft 100. Z-axis that is the direction in which the X-axis approaches, X-axis that is perpendicular to the Z-axis, X-axis, and Y-axis (vertical direction) perpendicular to the Z-axis. The tool post is set on a B-axis table 106 that rotates about the B-axis, which is rotation about the Y-axis. Then, the X axis / Z axis for moving the capacitance sensor 104 along the measurement line on the reference plane from the front end SP shown in FIG. 15 to the position shown in FIG. -The machining accuracy is evaluated by the trajectory accuracy when simultaneous B-axis 3-axis control is performed. At this time, the amount of change in the distance between the capacitance sensor 104 and the reference surface of the reference member 102 is detected as an error in the simultaneous triaxial control, and the accuracy of the simultaneous triaxial control can be evaluated.
Machines and tools August 2005, pages 29-35

近年の非軸対称非球面等を精密に加工するため、同時4軸制御以上の同時5軸制御や同時6軸制御が行われるようになった。しかし、上記非特許文献1の同時3軸制御を評価する手法において、例えば前記Z軸回りの回転であるC軸は、球形の基準部材では、該C軸回りに球形を回転させながら前記測定線上を測定しても、測定線からずれたことによる静電容量センサ104と基準部材102の基準面との距離の変化を生じないので、かかるずれが検出できない。そのため、同時4軸以上の制御として同時5軸制御・同時6軸制御の加工精度を評価することができなかった。また、基準部材102に製作誤差がある場合に、1軸だけを作動させて製作誤差を測定することが考えられたが、従来の静電容量センサ104(測定子)では、基準部材102の球面状の測定面と静電容量センサ104(測定子)とが成す測定角度の変化によって、精度のよい測定ができなかった。   In order to precisely machine non-axisymmetric aspheric surfaces in recent years, simultaneous 5-axis control and simultaneous 6-axis control more than simultaneous 4-axis control have been performed. However, in the method for evaluating the simultaneous three-axis control of Non-Patent Document 1, for example, the C-axis that is the rotation around the Z-axis is the reference line having a spherical shape, while the sphere is rotated around the C-axis on the measurement line. Is not detected because the distance between the capacitance sensor 104 and the reference surface of the reference member 102 does not change due to the deviation from the measurement line. Therefore, the machining accuracy of simultaneous 5-axis control / simultaneous 6-axis control cannot be evaluated as simultaneous control of four axes or more. Further, when there is a manufacturing error in the reference member 102, it has been considered to measure the manufacturing error by operating only one axis. However, in the conventional capacitance sensor 104 (measuring element), the spherical surface of the reference member 102 is considered. Due to the change in the measurement angle formed by the measurement surface and the electrostatic capacitance sensor 104 (measuring element), accurate measurement could not be performed.

本発明は係る従来の問題点に鑑みてなされたものであり、同時5軸制御・同時6軸制御等の同時多軸制御における加工装置の加工精度を評価できる手法を提供するものである。   The present invention has been made in view of the related problems, and provides a method capable of evaluating the machining accuracy of a machining apparatus in simultaneous multi-axis control such as simultaneous 5-axis control and simultaneous 6-axis control.

上述した課題を解決するために、請求項1に係る発明の構成上の特徴は、被加工物及び加工工具を直交する3軸方向に相対移動させる直交3軸と、前記被加工物及び加工工具を前記3軸のうちの少なくとも2軸の回りに相対回転させる回転軸と、を有し、かつこれらの直交3軸及び回転軸の動作の同時制御が可能な制御装置を有する加工装置において、前記加工装置の被加工物の取付位置に非軸対称形状の測定基準部材を設ける基準部材取付工程と、前記加工装置の加工工具取付位置に寸法測定装置の測定子を取付ける測定子取付工程と、前記直交3軸及び前記回転軸の動作を同時制御することにより、前記非軸対称形状の所定断面及び表面が形成する曲率一定の円弧状外形線に沿って前記測定子を移動させ、前記測定基準部材の形状を測定する基準部材形状測定工程と、を備えていることである。   In order to solve the above-mentioned problem, the structural feature of the invention according to claim 1 is that three workpieces and a machining tool are relatively moved in a three-axis direction perpendicular to the workpiece and the machining tool, and the workpiece and the machining tool. A rotating shaft that relatively rotates around at least two of the three axes, and a control device capable of simultaneously controlling the operations of the three orthogonal axes and the rotating shaft. A reference member mounting step of providing a measurement reference member having a non-axisymmetric shape at a mounting position of a workpiece of a processing apparatus, a measuring element mounting step of mounting a measuring element of a dimension measuring device at a processing tool mounting position of the processing apparatus, By simultaneously controlling the operations of the three orthogonal axes and the rotating shaft, the measuring member is moved along an arcuate outline having a constant curvature formed by the predetermined cross section and surface of the non-axisymmetric shape, and the measurement reference member Measure the shape of A reference member shape measurement process that is that it is provided with.

請求項2に係る発明の構成上の特徴は、請求項1において、前記測定子は、前記測定基準部材の測定面に対する角度に影響されない測定子であり、前記基準部材形状測定工程の前又は後の工程として、前記直交3軸及び前記回転軸の同時制御を停止させた状態で、前記被加工物取付位置の回転軸に直交し、かつ前記円弧状外形線を形成する所定断面に含まれる所定直交1軸を動作させることにより前記円弧状外形線に沿って前記測定子を移動させて前記測定基準部材の円弧状外形線の形状を測定する外形線形状測定工程を設け、前記基準部材形状測定工程及び前記外形線形状測定工程の後に、前記基準部材形状測定工程で測定された測定データを、前記外形線形状測定工程で測定された測定データと比較するデータ修正工程を設けたことである。   The structural feature of the invention according to claim 2 is that, in claim 1, the probe is a probe that is not influenced by an angle of the measurement reference member with respect to the measurement surface, and before or after the reference member shape measurement step. As the step, in a state in which the simultaneous control of the three orthogonal axes and the rotating shaft is stopped, the predetermined section included in the predetermined section that is orthogonal to the rotating shaft at the workpiece attachment position and forms the arcuate outline. An external line shape measuring step is provided for measuring the shape of the arcuate outline of the measurement reference member by moving the measuring element along the arcuate outline by operating one orthogonal axis, and measuring the reference member shape After the step and the outline shape measurement step, a data correction step is provided for comparing the measurement data measured in the reference member shape measurement step with the measurement data measured in the outline shape measurement step. .

請求項3に係る発明の構成上の特徴は、請求項1又は2において、前記基準部材取付工程は、前記被加工物取付位置の前記回転軸の軸心と直交する所定直交1軸とが前記所定断面に含まれ、かつ前記軸心が前記円弧状外形線の円弧中心を通過するように、前記測定基準部材を取り付けるものであり、前記基準部材形状測定工程は、前記測定基準部材を前記被加工物取付位置の回転軸回りに回転させるとともに前記直交3軸及び前記回転軸の動作を同時制御することにより、前記円弧状外形線に沿って前記測定子を移動させ、前記測定子と前記円弧状外形線の円弧中心との距離の変化を測定することにより前記測定子の移動軌跡の前記円弧状外形線に対するずれを測定するものであることである。   According to a third aspect of the present invention, in the first or second aspect of the invention, the reference member attaching step includes a predetermined orthogonal one axis orthogonal to an axis of the rotating shaft at the workpiece attaching position. The measurement reference member is attached such that the measurement reference member is included in a predetermined cross section and the axis passes through the arc center of the arcuate outline, and the reference member shape measurement step includes attaching the measurement reference member to the cover. By rotating the workpiece mounting position around the rotation axis and simultaneously controlling the operations of the three orthogonal axes and the rotation shaft, the measuring element is moved along the arcuate outline, and the measuring element and the circle are moved. By measuring the change in the distance of the arcuate outline from the arc center, the displacement of the movement locus of the probe relative to the arcuate outline is measured.

請求項4に係る発明の構成上の特徴は、請求項1乃至3のいずれか1項において、前記測定基準部材は、シリンドリカル形状であることである。   A structural feature of the invention according to claim 4 is that, in any one of claims 1 to 3, the measurement reference member has a cylindrical shape.

請求項5に係る発明の構成上の特徴は、請求項2乃至4のいずれか1項において、前記測定子は、球面プローブであることである。   A structural feature of the invention according to claim 5 is that, in any one of claims 2 to 4, the measuring element is a spherical probe.

請求項1に係る発明によると、被加工物の取付位置に測定基準部材を設け、加工工具取付位置に測定子を取付けることにより、実際の加工作業での同時多軸制御状態を作り出すことができる。そして加工測定基準部材として非軸対称形状を使用するので、曲率一定の円弧状外形線から制御誤差により測定子が外れると、円弧形状から外れた形状を精度誤差として検出して精度評価を行うことができる。   According to the first aspect of the present invention, it is possible to create a simultaneous multi-axis control state in an actual machining operation by providing a measurement reference member at a workpiece attachment position and attaching a probe to the machining tool attachment position. . And since a non-axisymmetric shape is used as the machining measurement reference member, if the stylus deviates due to a control error from an arc-shaped outline with a constant curvature, the shape deviated from the arc shape is detected as an accuracy error and accuracy evaluation is performed Can do.

請求項2に係る発明によると、被加工物取付位置の回転軸の軸心に直交し、かつ円弧状外形線を形成する所定断面に含まれる所定直交1軸の方向に、測定基準部材と測定子を相対移動させて測定基準部材の円弧状外形線を測定すると、同時多軸制御による誤差の影響をなくした状態で、円弧状外形線の円弧形状を測定することができる。そして、正しい円弧形状から外れた形状の変化は、測定基準部材の製作誤差と考えられる。そのため、測定基準部材に製作誤差が生じていた場合において、基準部材形状測定工程で測定された測定データには該製作誤差が含まれることになるが、基準部材形状測定工程で測定された測定データを、外形線形状測定工程で測定された測定データと比較することにより、同時多軸制御による誤差だけを算出して精度評価を行うことができる。   According to the second aspect of the present invention, the measurement reference member and the measurement are performed in the direction of a predetermined orthogonal axis included in a predetermined cross section that is orthogonal to the axis of the rotation axis of the workpiece attachment position and that forms an arcuate outline. By measuring the arcuate outline of the measurement reference member by relatively moving the child, the arcuate shape of the arcuate outline can be measured in a state where the influence of the error due to simultaneous multi-axis control is eliminated. A change in the shape deviating from the correct arc shape is considered to be a manufacturing error of the measurement reference member. For this reason, in the case where a manufacturing error has occurred in the measurement reference member, the measurement data measured in the reference member shape measurement process includes the production error, but the measurement data measured in the reference member shape measurement process. Is compared with the measurement data measured in the outline shape measurement step, it is possible to calculate the accuracy only by calculating the error due to the simultaneous multi-axis control.

請求項3に係る発明によると、被加工物取付位置の回転軸回りに測定基準部材を回転させても、円弧状外形線から測定子の軌跡が外れない限り、被加工物取付位置の回転軸の回転中心と測定子の距離とが変わらないようにするため、回転軸が円弧状外形線を形成する断面上にあり、かつ円弧状外形線の円弧中心を通過するように、測定基準部材を被加工物の取付位置に取り付ける。   According to the invention of claim 3, even if the measurement reference member is rotated around the rotation axis of the workpiece attachment position, the rotation axis of the workpiece attachment position is provided as long as the locus of the tracing stylus does not deviate from the arcuate outline. In order that the distance between the center of rotation and the stylus does not change, the measurement reference member is arranged so that the rotation axis is on the cross section forming the arc-shaped outline and passes through the arc center of the arc-shaped outline. Attach to work piece attachment position.

そして、前記非軸対称形状の所定断面及び表面が形成する曲率一定の円弧状外形線に沿って測定子を移動させる際に、被加工物取付位置の回転軸回りに測定基準部材を回転させながら同時多軸制御を行うと、同時多軸制御の誤差動によって測定子の軌跡が円弧状外形線から外れた場合、球面と違って非軸対称形状では測定子と円弧状外形線の円弧中心との距離が変化するので、測定されたこの距離の変化量を同時多軸制御における精度誤差として精度評価を行うことができる。このように2点間の距離として誤差を求めることで、直線軸上のデータとするので、制御誤差をより捉え易くかつ該誤差の発生をわかりやすくすることができる。   Then, when moving the measuring element along the arcuate outline having a constant curvature formed by the predetermined cross section and the surface of the non-axisymmetric shape, while rotating the measurement reference member around the rotation axis of the workpiece attachment position When simultaneous multi-axis control is performed, if the trajectory of the probe deviates from the arc-shaped outline due to the error movement of the simultaneous multi-axis control, unlike the spherical surface, the non-axisymmetric shape is different from the arc center of the probe and the arc-shaped outline. Therefore, the accuracy evaluation can be performed by using the measured change amount of the distance as an accuracy error in the simultaneous multi-axis control. Since the error is obtained as the distance between the two points in this way, the data on the linear axis is obtained, so that the control error can be easily grasped and the occurrence of the error can be easily understood.

請求項4に係る発明によると、測定基準部材を精密な製作が比較的容易な非軸対称形状のシリンドリカル形状とすることで、簡単に同時多軸制御の誤差を求めて精度評価を行うことができる。   According to the invention of claim 4, by making the measurement reference member a non-axisymmetric cylindrical shape that is relatively easy to manufacture precisely, it is possible to easily obtain an error in simultaneous multi-axis control and evaluate the accuracy. it can.

請求項5に係る発明によると、測定子を球面状とすることで、被測定物の測定面に対する角度に影響されないで、形状測定を行うことができるとともに、容易に製作できる球面とすることで、安価な製作コストで同時多軸制御の誤差を求めて精度評価を行うことができる。   According to the invention which concerns on Claim 5, by making a measuring element into spherical shape, it is not influenced by the angle with respect to the measuring surface of a to-be-measured object, but it can be shape-measured and it can be made into a spherical surface which can be manufactured easily. Therefore, accuracy can be evaluated by obtaining errors in simultaneous multi-axis control at a low manufacturing cost.

本発明に係るNC加工機の実施形態を図面に基づいて以下に説明する。図1はNC加工機の構造を示した平面概念図であり、図2は非軸対称形状のシリンドリカル形状を示す斜視図である。このNC加工機は特許請求の範囲における加工装置に対応する。   An embodiment of an NC processing machine according to the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual plan view showing the structure of an NC machine, and FIG. 2 is a perspective view showing a non-axisymmetric cylindrical shape. This NC processing machine corresponds to the processing apparatus in the claims.

NC加工機2は、加工機2の正面より加工工具と被加工物の相対運動が左右方向となる移動軸をX軸とし、同じく加工工具と被加工物の相対運動が上下方向になる移動軸をY軸とし、同じく加工工具と被加工物の相対運動が前後方向になる移動軸をZ軸とする。そして、Y軸回りの回転軸としてB軸、Z軸回りの回転軸としてC軸を加えた5軸を制御する同時5軸制御加工装置である。また、X・Y・Zの3軸は夫々直交している。   The NC machine 2 has a movement axis in which the relative motion between the machining tool and the workpiece is in the left-right direction from the front of the machining machine 2, and the movement axis in which the relative movement between the machining tool and the workpiece is also in the vertical direction. Is the Y axis, and similarly, the movement axis in which the relative motion between the machining tool and the workpiece is the front-rear direction is the Z axis. And it is a simultaneous 5-axis control processing apparatus which controls 5 axis | shafts which added the B axis | shaft as a rotating shaft around a Y axis, and the C axis as a rotating shaft around a Z axis. The three axes X, Y, and Z are orthogonal to each other.

このNC加工機2は、図1に示すように、主軸4をC軸回りに回転させるスピンドルモータ6を組み込んだ主軸台8と、主軸4の長手方向であるZ軸方向に移動可能なZ軸テーブル10と、後述するX軸方向及びZ軸方向に直交するY軸方向(垂直方向)に沿って主軸台8を移動可能に支持する縦支持部材12と、主軸4の先端に設けられたチャック(被加工物の取付位置に対応)14と、チャック14に保持される測定基準部材Sと対向する位置に設置され、Z軸方向及びY軸方向に直交するX軸方向(図1において左右方向)に移動可能なX軸テーブル15と、X軸テーブル15に載置され、Y軸方向(垂直方向)に平行なB軸回りに回動可能なターンテーブル16と、ターンテーブル16に設けられた刃物台18と、直交する前記X・Y・Zの3軸とB・C2つの回転軸の動作を制御する制御装置19から構成されている。前記測定基準部材Sは、図2に示すように、非軸対称形状であるシリンドリカル形状のマスターである。   As shown in FIG. 1, the NC machine 2 includes a headstock 8 incorporating a spindle motor 6 that rotates the spindle 4 about the C axis, and a Z axis that is movable in the Z axis direction that is the longitudinal direction of the spindle 4. A table 10, a longitudinal support member 12 that movably supports the headstock 8 along a Y-axis direction (vertical direction) orthogonal to the X-axis direction and the Z-axis direction, which will be described later, and a chuck provided at the tip of the spindle 4 (Corresponding to the attachment position of the workpiece) 14 and the X-axis direction (left-right direction in FIG. 1) installed at a position facing the measurement reference member S held by the chuck 14 and perpendicular to the Z-axis direction and the Y-axis direction ) Movable on the X-axis table 15, a turntable 16 mounted on the X-axis table 15 and rotatable about the B-axis parallel to the Y-axis direction (vertical direction), and the turntable 16 The tool post 18 and the X · - and a 3 axis and B-C2 one control device 19 for controlling the operation of the rotary shaft of the Z. As shown in FIG. 2, the measurement reference member S is a cylindrical master having a non-axisymmetric shape.

主軸台8は背面にY軸方向(垂直方向)の一対のスライダ7が設けられ、スライダ7は縦支持部材12に設けられた一対のガイドレール9に摺動可能に嵌合されている。主軸台8はY軸リニアモータ5により、縦支持部材12に対してY軸方向(垂直方向)に移動可能に構成されている。縦支持部材12はZ軸テーブル10上に固定され、Z軸テーブル10は、図略のリニアモータによりベース1上にZ軸方向に配設されたZ軸ガイド13に沿って移動するようになっている。   The headstock 8 is provided with a pair of sliders 7 in the Y-axis direction (vertical direction) on the back surface, and the sliders 7 are slidably fitted to a pair of guide rails 9 provided on the vertical support member 12. The headstock 8 is configured to be movable in the Y-axis direction (vertical direction) with respect to the vertical support member 12 by the Y-axis linear motor 5. The vertical support member 12 is fixed on the Z-axis table 10, and the Z-axis table 10 is moved along a Z-axis guide 13 disposed in the Z-axis direction on the base 1 by a linear motor (not shown). ing.

X軸テーブル15は、図略のリニアモータによりベース1上にX軸方向に設置されたX軸ガイド11に沿って移動する。X軸テーブル15上に載置されたターンテーブル16にはそのテーブル16の周囲にターンテーブルリニアモータ17がリング状に配置されている。このターンテーブルリニアモータ17は、X軸テーブル15にターンテーブル16を囲うように設けられた図略の複数のマグネットと、該コイルに複数個所で対向するようターンテーブル16の外周に設けられた図略の複数のコイルとから構成されている。   The X-axis table 15 is moved along an X-axis guide 11 installed in the X-axis direction on the base 1 by a linear motor (not shown). A turntable linear motor 17 is arranged in a ring shape around the turntable 16 placed on the X-axis table 15. The turntable linear motor 17 includes a plurality of unillustrated magnets provided on the X-axis table 15 so as to surround the turntable 16 and a diagram provided on the outer periphery of the turntable 16 so as to face the coil at a plurality of locations. And a plurality of substantially coiled coils.

また、前記主軸台8のチャック14は、工作物Sを保持して前記スピンドルモータ6によりZ軸に平行なC軸回りに回転するようになっている。また、図略のリニアエンコーダにより主軸台8のY軸方向の移動位置、X軸テーブル15及びZ軸テーブル10の移動位置が検知され、また、図略のロータリエンコーダにより主軸4及びターンテーブル16の回転位置が検知される。これらの移動位置及び回転位置の信号に基づき制御装置19によってY軸リニアモータ5、前記リニアモータ、スピンドルモータ6及びターンテーブルリニアモータ17の作動が制御される。   Further, the chuck 14 of the headstock 8 holds the workpiece S and rotates around the C axis parallel to the Z axis by the spindle motor 6. Further, the movement position of the headstock 8 in the Y-axis direction and the movement positions of the X-axis table 15 and the Z-axis table 10 are detected by a linear encoder (not shown), and the spindle 4 and the turntable 16 are detected by a rotary encoder (not shown). The rotational position is detected. The operation of the Y-axis linear motor 5, the linear motor, the spindle motor 6, and the turntable linear motor 17 is controlled by the control device 19 based on these movement position and rotation position signals.

刃物台18は、ターンテーブル16上に固定された基枠(図略)に囲まれたスライダベース(図略)に対してZ軸方向に摺動可能に配設されたスライダ(図略)と、スライダの先端側(図1において上側)に組み付けられる工具ホルダ(加工工具の取付位置に対応)20と、スライダの基端側に配設される(図略)光学式リニアスケールと、前記スライダと前記スライダベースの間に配設された図略のリニアモータとから構成される。工具ホルダ20には、測定子として先端が球形の接触部を持つ球面プローブ24が円筒状の支持部24aにおいてZ軸方向に平行に保持されている。この支持部24aは、図示はしないが2段の筒状体により構成され、図略のばね部材により進出方向に付勢されるとともに、例えば5mm程度の範囲で出入り可能なストロークを有している。この球面プローブ24は、例えばプローブの球形中心cと測定基準部材Sの円弧状外形線の円弧中心Cとの距離Lcを測定することにより(図3又は図4参照)、接触する被測定物の測定面に対する角度に影響されないで測定が可能となっている。なお、円弧中心Cは、例えば円弧状外形線OL上の複数の点の形状データより円弧中心座標を算出することで求められ、この円弧中心座標とプローブの球形中心cが示す位置座標より距離Lcが求められる。この球面プローブ24により測定された寸法は、電気信号としてアンプ装置22により増幅され、アンプ装置22より制御装置19内に設けられた図略の記録装置に送信されて記録される。これらの球面プローブ24、アンプ装置22及び記録装置により寸法測定装置が構成される。   The tool post 18 includes a slider (not shown) disposed to be slidable in the Z-axis direction with respect to a slider base (not shown) surrounded by a base frame (not shown) fixed on the turntable 16. A tool holder (corresponding to the mounting position of the processing tool) 20 assembled on the front end side (upper side in FIG. 1) of the slider, an optical linear scale (not shown) disposed on the base end side of the slider, and the slider And a linear motor (not shown) disposed between the slider bases. In the tool holder 20, a spherical probe 24 having a spherical contact portion as a measuring element is held parallel to the Z-axis direction in a cylindrical support portion 24a. Although not shown, the support portion 24a is composed of a two-stage cylindrical body, and is biased in the advancing direction by a spring member (not shown), and has a stroke that can enter and exit within a range of, for example, about 5 mm. . The spherical probe 24 measures, for example, a distance Lc between the spherical center c of the probe and the arc center C of the arcuate outline of the measurement reference member S (see FIG. 3 or FIG. 4). Measurement is possible without being affected by the angle to the measurement surface. The arc center C is obtained, for example, by calculating arc center coordinates from the shape data of a plurality of points on the arc-shaped outline OL, and the distance Lc from the arc center coordinates and the position coordinates indicated by the spherical center c of the probe. Is required. The dimension measured by the spherical probe 24 is amplified by the amplifier device 22 as an electrical signal, and is transmitted from the amplifier device 22 to a recording device (not shown) provided in the control device 19 and recorded. These spherical probe 24, amplifier device 22 and recording device constitute a dimension measuring device.

上記のように構成されたNC加工機2の同時5軸制御の評価方法を以下に説明する。まず、刃物台18の工具ホルダ20に、球面プローブ24の支持部24aをZ軸に平行にして取り付ける(測定子取付工程)。次に、Z軸回りの回転軸であるC軸(被加工物取付位置の回転軸)が、円弧状外形線OLを形成する断面DM上にあり、かつ円弧状外形線OLの円弧中心Cを通過するように、測定基準部材Cをチャック(被加工物の取付位置)14に取り付ける(測定基準部材取付工程)。このように測定基準部材Sを取り付けることにより、C軸回りに測定基準部材Sを回転させても、円弧状外形線OLから球面プローブ24の軌跡が外れない限り、C軸の回転中心と球面プローブ24の距離とが変わらないようにする。そして、Z軸テーブル10をZ軸方向に移動させて刃物台18に測定基準部材Sを接近させ、図2及び図3に示すように、円弧部分の中央の端部に球面プローブ24を接触させてスタート位置SPとして確認する。そして、X軸テーブル15のリニアモータのみを駆動させて、X軸(所定直交1軸)方向(図1において右側)にX軸テーブル15を移動させて、球面プローブ24を円弧面の端部EPまで移動させる。この移動は、図2及び図3に示すように、シリンドリカル形状の平らな断面(所定断面)DMと円弧状表面とが形成する曲率一定の円弧状外形線OLに沿って球面プローブ24を移動させることとなる。そして、その移動していく間の円弧状外形線OLの中心Cと球面プローブ24の球形中心cとの間の距離Lcの変化を測定する(外形線形状測定工程)。このX軸方向だけの移動によって、プローブ全体とシリンドリカルの円弧面とが成す測定角度は変化するが、プローブの先端が球面である球面プローブ24であることにより、測定角度に影響されず高い精度で、円弧状外形線OLの中心Cと球面プローブ24の球形中心cとの間の距離Lcを測定することができる。   An evaluation method for simultaneous 5-axis control of the NC machine 2 configured as described above will be described below. First, the support portion 24a of the spherical probe 24 is attached to the tool holder 20 of the tool post 18 in parallel with the Z axis (measuring element attaching step). Next, the C axis (rotation axis at the workpiece attachment position), which is the rotation axis around the Z axis, is on the cross section DM forming the arc-shaped outline OL, and the arc center C of the arc-shaped outline OL is defined. The measurement reference member C is attached to the chuck (workpiece attachment position) 14 so as to pass (measurement reference member attachment step). By attaching the measurement reference member S in this way, even if the measurement reference member S is rotated around the C axis, the center of rotation of the C axis and the spherical probe can be used as long as the locus of the spherical probe 24 does not deviate from the arcuate outline OL. The distance of 24 is not changed. Then, the Z-axis table 10 is moved in the Z-axis direction to bring the measurement reference member S closer to the tool post 18, and as shown in FIGS. 2 and 3, the spherical probe 24 is brought into contact with the center end of the arc portion. Confirm as the start position SP. Then, only the linear motor of the X-axis table 15 is driven to move the X-axis table 15 in the X-axis (predetermined orthogonal 1 axis) direction (right side in FIG. 1), and the spherical probe 24 is moved to the end EP of the arc surface. To move. 2 and 3, the spherical probe 24 is moved along an arcuate outline OL having a constant curvature formed by a cylindrical flat cross section (predetermined cross section) DM and an arcuate surface, as shown in FIGS. It will be. Then, a change in the distance Lc between the center C of the arc-shaped outline OL and the spherical center c of the spherical probe 24 during the movement is measured (outline shape measurement step). The movement only in the X-axis direction changes the measurement angle formed by the entire probe and the cylindrical circular arc surface. However, since the probe tip is a spherical probe 24 having a spherical surface, the measurement angle is not affected by the measurement angle with high accuracy. The distance Lc between the center C of the arcuate outline OL and the spherical center c of the spherical probe 24 can be measured.

このとき例えば、図11に示すグラフのような軌跡が得られる。このグラフは、縦軸が測定値である距離Lcと測定基準部材Sの設計上の設定値との差すなわち測定基準部材Sの製作上の誤差を示し、横軸が球面プローブ24の測定基準部材S上の移動距離を示している。(測定基準部材Sの形状が設計通りならば、原点を通る水平な軌跡のグラフとなる。)このようにC,c2点間の距離として誤差を求めることで、直線軸上のデータとなるので、制御誤差をより捉え易くかつ該誤差の発生をわかりやすくすることができる。   At this time, for example, a trajectory like the graph shown in FIG. 11 is obtained. This graph shows the difference between the distance Lc whose measured value is measured on the vertical axis and the design setting value of the measurement reference member S, that is, the error in manufacturing the measurement reference member S, and the horizontal axis is the measurement reference member of the spherical probe 24. The moving distance on S is shown. (If the shape of the measurement reference member S is as designed, it becomes a graph of a horizontal trajectory passing through the origin.) Thus, by obtaining the error as the distance between the points C and c, the data on the linear axis is obtained. Therefore, it is possible to more easily grasp the control error and to easily understand the occurrence of the error.

次に、図4、図5及び図6に示すように、同時5軸制御により前記基準位置においてスタート位置SPから球面プローブ24を円弧状外形線OLに沿って移動させる。この際、制御装置19によりスピンドルモータ6を回転させることにより主軸4をC軸回りに回転させ、同時にターンテーブル16をB軸回りに回転させ、同時にX軸、Y軸、Z軸方向のリニアモータ5等の駆動による移動を制御することにより、球面プローブ24を円弧状外形線OLに沿ってスタート位置SPから円弧面の端部EPまで移動させる(図7、図8及び図9参照)。本実施形態では、スタート位置SPから円弧面の端部EPまで球面プローブ24を移動させる間にC軸回りに90度、B軸回りに90度夫々回転させて行う(図10参照)。前記曲率一定の円弧状外形線OLに沿って球面プローブ24を移動させる際に、球面プローブ24の軌跡が円弧状外形線OLからずれると、球面と違ってシリンドリカル形状では球面プローブ24(球形の中心c)と円弧状外形線の中心Cとの距離Lcが離れるので、この距離の変化量を同時制御における精度誤差として検出する(基準部材形状測定工程)。   Next, as shown in FIGS. 4, 5, and 6, the spherical probe 24 is moved from the start position SP along the arcuate outline OL at the reference position by simultaneous 5-axis control. At this time, the spindle motor 6 is rotated by the control device 19 to rotate the main shaft 4 about the C axis, and at the same time, the turntable 16 is rotated about the B axis, and at the same time, linear motors in the X, Y, and Z axis directions. The spherical probe 24 is moved from the start position SP to the end portion EP of the arc surface along the arcuate outline OL by controlling the movement by driving 5 or the like (see FIGS. 7, 8, and 9). In the present embodiment, the spherical probe 24 is rotated 90 degrees around the C axis and 90 degrees around the B axis while moving the spherical probe 24 from the start position SP to the end EP of the circular arc surface (see FIG. 10). When the spherical probe 24 is moved along the arcuate outline OL having a constant curvature, if the locus of the spherical probe 24 deviates from the arcuate outline OL, the spherical probe 24 (the center of the sphere) has a cylindrical shape unlike the spherical surface. Since the distance Lc between c) and the center C of the arcuate outline is separated, the amount of change in this distance is detected as an accuracy error in the simultaneous control (reference member shape measuring step).

このとき例えば、図12に示すグラフのような軌跡が得られる。このグラフの縦軸は、上記と同様に、測定値である距離Lcと測定基準部材Sの設計上の設定値との差を示しているが、同時5軸制御による精度誤差に、図11に示される測定基準部材S自体の製作誤差が含まれる。そのため、図12に示す測定データと図11に示す測定データとを比較してその差を求めることにより、図13に示すように、同時5軸制御による精度誤差のみを算出する(データ修正工程)。   At this time, for example, a trajectory like the graph shown in FIG. 12 is obtained. The vertical axis of this graph shows the difference between the measured distance Lc and the design set value of the measurement reference member S, as described above. The accuracy error due to simultaneous 5-axis control is shown in FIG. The manufacturing error of the shown measurement reference member S itself is included. Therefore, by comparing the measurement data shown in FIG. 12 with the measurement data shown in FIG. 11 and obtaining the difference, only the accuracy error due to the simultaneous 5-axis control is calculated as shown in FIG. 13 (data correction step). .

なお、X軸(所定直交1軸)方向にX軸テーブル15だけを移動させて、前記距離Lcの変化を測定する外形線形状測定工程は、前記基準部材形状測定工程の後から行ってもよい。また、測定基準部材Sと球面プローブ24との接触点はB軸の回転中心に一致させて回転させる。実際の加工においてバイトにより切削点となる先端がB軸の回転中心とほぼ一致されることにより、工作物の曲面に合わせて一定の角度(すくい角)で切削が可能となるので、曲面に対して均一な超精密切削仕上げが可能となる。このように実際の加工条件に合わせて、同時制御の精度を測定することができる。   Note that the outline shape measurement step of measuring the change in the distance Lc by moving only the X axis table 15 in the X axis (predetermined orthogonal 1 axis) direction may be performed after the reference member shape measurement step. . Further, the contact point between the measurement reference member S and the spherical probe 24 is rotated in accordance with the rotation center of the B axis. In the actual machining, the tip that becomes the cutting point by the cutting tool is almost coincident with the center of rotation of the B axis, so that cutting can be performed at a constant angle (rake angle) according to the curved surface of the workpiece. And uniform ultra-precise cutting finish. Thus, the accuracy of simultaneous control can be measured in accordance with actual processing conditions.

上記実施形態における評価方法によると、NC加工装置2のチャック14に取り付けられたシリンドリカル形状の測定基準部材Sと、NC加工機2の工具ホルダ20に取り付けられた球面プローブ24とを、NC加工機2の直交する3軸(X軸・Y軸・Z軸)及び前記直交3軸のうちの2軸の回りに回転する回転軸(B軸、C軸)で相対移動させる同時5軸制御により測定基準部材Sの円弧状外形線に沿った円弧中心Cと球面プローブ24の球形中心cの距離Lcの変化の寸法測定を行う。   According to the evaluation method in the above embodiment, the cylindrical-shaped measurement reference member S attached to the chuck 14 of the NC processing device 2 and the spherical probe 24 attached to the tool holder 20 of the NC processing machine 2 are used as an NC processing machine. Measured by simultaneous 5-axis control that moves relative to two orthogonal three axes (X-axis, Y-axis, Z-axis) and rotating axes (B-axis, C-axis) that rotate around two of the three orthogonal axes The dimension measurement of the change in the distance Lc between the arc center C along the arc-shaped outline of the reference member S and the spherical center c of the spherical probe 24 is performed.

そして、前記シリンドリカル形状の円弧状外形線OLに沿って球面プローブ24を移動させる際に、C軸回りに測定基準部材Sを回転させながら同時5軸制御を行うと、同時5軸制御の誤差動によって球面プローブ24の軌跡が円弧状外形線OLから外れた場合、上述のように球面と違ってシリンドリカル形状では球面プローブ24(球状中心c)と円弧状外形線OLの円弧中心Cとの距離Lcが変化するので、測定されたこの距離Lcの変化量を同時5軸制御における精度誤差として精度評価を行うことができる。   When the spherical probe 24 is moved along the cylindrical arcuate outline OL, if simultaneous 5-axis control is performed while the measurement reference member S is rotated around the C-axis, error movement of the simultaneous 5-axis control will occur. When the trajectory of the spherical probe 24 deviates from the arcuate outline OL, the distance Lc between the spherical probe 24 (spherical center c) and the arc center C of the arcuate outline OL is different from the spherical shape in the cylindrical shape as described above. Therefore, the accuracy evaluation can be performed with the measured change amount of the distance Lc as an accuracy error in the simultaneous 5-axis control.

また、所定断面DMに含まれるX軸(所定直交1軸)方向だけを動作させて測定基準部材Sの円弧状外形線OLを測定すると5軸の同時制御による誤差の影響を除いて、測定基準部材Sの円弧状外形線OLの半径寸法を測定することができる。そのため、例え測定基準部材Sに製作誤差が生じていた場合においても、前記直交3軸(X軸・Y軸・Z軸)及び前記回転軸(B軸、C軸)の動作を同時制御して球面プローブ24の球形中心cと円弧状外形線OLの円弧中心Cとの距離Lcを測定した測定データを、X軸だけを動かして測定された製作誤差を示す測定データと比較して差を求めることにより、同時5軸制御の誤差だけを求めることができる。   Further, when the arcuate outline OL of the measurement reference member S is measured by operating only the X-axis (predetermined orthogonal one axis) direction included in the predetermined cross section DM, the measurement reference is eliminated except for the influence of the error due to the simultaneous control of five axes. The radial dimension of the arcuate outline OL of the member S can be measured. Therefore, even if there is a manufacturing error in the measurement reference member S, the operations of the three orthogonal axes (X axis, Y axis, Z axis) and the rotation axes (B axis, C axis) are controlled simultaneously. The measurement data obtained by measuring the distance Lc between the spherical center c of the spherical probe 24 and the arc center C of the arcuate outline OL is compared with the measurement data indicating the manufacturing error measured by moving only the X axis to obtain a difference. Thus, only the error of the simultaneous 5-axis control can be obtained.

また、測定基準部材Sを精密な製作が比較的容易なシリンドリカル形状とすることで、簡単に同時5軸制御の誤差を求めて精度評価を行うことができる。また、測定子を球面プローブ24とすることで、被測定物の測定面に対する角度に影響されないで、形状測定を行うことができるとともに、容易に製作できる球面とすることで、安価な製作コストで同時多軸制御の誤差を求めて精度評価を行うことができる。   In addition, since the measurement reference member S has a cylindrical shape that is relatively easy to manufacture precisely, it is possible to easily obtain an error in simultaneous 5-axis control and evaluate the accuracy. Further, by using the spherical probe 24 as the measuring element, the shape can be measured without being influenced by the angle of the object to be measured with respect to the measuring surface, and the spherical surface which can be easily manufactured can be manufactured at low cost. Accuracy can be evaluated by obtaining errors in simultaneous multi-axis control.

なお、上記実施形態においては、非軸対称形状としてシリンドリカル形状としたが、これに限定されず、例えば、図14に示すような、トロイダル形状など公知の非軸対称形状の測定基準部材2Sであれば使用することができる。この場合、破線50又は1点鎖線52で示す円弧状外形線に沿って測定することで、精度評価を行うことができる。   In the above embodiment, the cylindrical shape is used as the non-axisymmetric shape. However, the present invention is not limited to this. For example, the measurement reference member 2S having a known non-axisymmetric shape such as a toroidal shape as shown in FIG. Can be used. In this case, accuracy can be evaluated by measuring along the arcuate outline indicated by the broken line 50 or the one-dot chain line 52.

また、上記実施形態では、同時5軸制御による精度評価を行ったが、同時5軸制御評価に限定されず、例えば、X軸回りの回転軸であるA軸を加えた同時6軸制御の精度評価や同時4軸制御の精度評価を行うことができる。また、所定直交1軸としてX軸としたが、これに限定されず、例えばY軸でもよい。   In the above embodiment, the accuracy evaluation by the simultaneous 5-axis control is performed. However, the accuracy is not limited to the simultaneous 5-axis control evaluation. For example, the accuracy of the simultaneous 6-axis control including the A axis that is the rotation axis around the X axis is added. Evaluation and accuracy evaluation of simultaneous 4-axis control can be performed. In addition, although the X axis is the predetermined orthogonal one axis, the present invention is not limited to this. For example, the Y axis may be used.

また、C軸回りに90度、B軸回りに90度夫々回転させて精度評価を行ったが、これに限定されず、例えばC軸回りに60度、B軸回りに30度回転させて精度評価を行ってもよい。   In addition, the accuracy was evaluated by rotating 90 degrees around the C axis and 90 degrees around the B axis, but the present invention is not limited to this. For example, the accuracy is measured by rotating 60 degrees around the C axis and 30 degrees around the B axis. An evaluation may be performed.

また、測定子を接触式の球面プローブとしたが、これに限定されず、例えば原子間力プローブやオートフォーカスプローブのような測定子が測定面の法線方向からでなくても測定できるプローブであればよい。   In addition, the contact point is a contact-type spherical probe, but the present invention is not limited to this. For example, an probe such as an atomic force probe or an autofocus probe can be used without measuring from the normal direction of the measurement surface. I just need it.

本発明に係る実施形態に使用するNC加工機の平面概要図。The plane schematic diagram of the NC processing machine used for the embodiment concerning the present invention. 同シリンドリカル形状を示す斜視図。The perspective view which shows the cylindrical shape. 測定子のX軸方向の移動により円弧状外形線に沿って形状を測定する方法を示す概要図。The schematic diagram which shows the method of measuring a shape along a circular-arc-shaped outline by the movement of an X-axis direction of a measuring element. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する方法を示す平面図。The top view which shows the method of measuring a shape along a circular arc-shaped outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する方法を示す側面図。The side view which shows the method of measuring a shape along a circular-arc outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する方法を示す正面図。The front view which shows the method of measuring a shape along a circular-arc outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する過程を示す平面図。The top view which shows the process of measuring a shape along a circular-arc-shaped outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する過程を示す側面図。The side view which shows the process of measuring a shape along a circular-arc outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する過程を示す正面図。The front view which shows the process in which a shape is measured along a circular-arc outline using simultaneous 5-axis control. 同時5軸制御を使用して円弧状外形線に沿って形状を測定する最後の位置を示す正面図。The front view which shows the last position which measures a shape along a circular arc-shaped outline using simultaneous 5-axis control. 測定基準部材の製作誤差を示すグラフ。The graph which shows the manufacture error of a measurement reference member. 同時5軸制御を使用した測定誤差を示すグラフ。The graph which shows the measurement error using simultaneous 5-axis control. 同時5軸制御を使用した測定誤差から製作誤差を引いた同時5軸制御のみの誤差を示すグラフ。The graph which shows the error of only simultaneous 5-axis control which subtracted the production error from the measurement error using simultaneous 5-axis control. 測定基準部材の別例を示す斜視図。The perspective view which shows another example of a measurement reference member. 従来技術の例を示す概要図。The schematic diagram which shows the example of a prior art. 従来技術の例を示す概要図。The schematic diagram which shows the example of a prior art.

符号の説明Explanation of symbols

2…NC加工機、14…被加工物取付位置(チャック)、19…制御装置、20…加工工具取付位置(工具ホルダ)、22…寸法測定装置(アンプ装置)、24…測定子・寸法測定装置(球面プローブ)、50……円弧状外形線、52…円弧状外形線、C…円弧中心、C軸…被加工物取付位置の回転軸・軸心、DM…所定断面(断面)、OL…円弧状外形線、S…測定基準部材、2S…測定基準部材、X軸…所定直交1軸。
DESCRIPTION OF SYMBOLS 2 ... NC processing machine, 14 ... Workpiece attachment position (chuck), 19 ... Control apparatus, 20 ... Processing tool attachment position (tool holder), 22 ... Dimension measurement apparatus (amplifier apparatus), 24 ... Measuring element and dimension measurement Apparatus (spherical probe), 50... Arc-shaped outline, 52... Arc-shaped outline, C... Arc center, C-axis ... rotation axis and axis of work piece mounting position, DM ... predetermined section (section), OL ... Arc-shaped outline, S ... Measurement reference member, 2S ... Measurement reference member, X-axis ... A predetermined orthogonal axis.

Claims (5)

被加工物及び加工工具を直交する3軸方向に相対移動させる直交3軸と、前記被加工物及び加工工具を前記3軸のうちの少なくとも2軸の回りに相対回転させる回転軸と、を有し、かつこれらの直交3軸及び回転軸の動作の同時制御が可能な制御装置を有する加工装置において、
前記加工装置の被加工物の取付位置に非軸対称形状の測定基準部材を設ける基準部材取付工程と、
前記加工装置の加工工具取付位置に寸法測定装置の測定子を取付ける測定子取付工程と、
前記直交3軸及び前記回転軸の動作を同時制御することにより、前記非軸対称形状の所定断面及び表面が形成する曲率一定の円弧状外形線に沿って前記測定子を移動させ、前記測定基準部材の形状を測定する基準部材形状測定工程と、
を備えていることを特徴とする同時多軸制御の評価方法。
There are three orthogonal axes that relatively move the workpiece and the machining tool in three orthogonal axes, and a rotation axis that relatively rotates the workpiece and the machining tool around at least two of the three axes. And a machining apparatus having a control device capable of simultaneously controlling the operations of the three orthogonal axes and the rotation axis,
A reference member attachment step of providing a non-axisymmetric measurement reference member at the attachment position of the workpiece of the processing apparatus;
A probe attachment step of attaching a probe of a dimension measuring device to a machining tool attachment position of the machining device;
By simultaneously controlling the operations of the three orthogonal axes and the rotating shaft, the measuring element is moved along an arc-shaped contour line having a constant curvature formed by the predetermined cross section and surface of the non-axisymmetric shape, and the measurement reference A reference member shape measuring step for measuring the shape of the member;
A simultaneous multi-axis control evaluation method characterized by comprising:
請求項1において、前記測定子は、前記測定基準部材の測定面に対する角度に影響されない測定子であり、
前記基準部材形状測定工程の前又は後の工程として、前記直交3軸及び前記回転軸の同時制御を停止させた状態で、前記被加工物取付位置の回転軸に直交し、かつ前記円弧状外形線を形成する所定断面に含まれる所定直交1軸を動作させることにより前記円弧状外形線に沿って前記測定子を移動させて前記測定基準部材の円弧状外形線の形状を測定する外形線形状測定工程を設け、
前記基準部材形状測定工程及び前記外形線形状測定工程の後に、前記基準部材形状測定工程で測定された測定データを、前記外形線形状測定工程で測定された測定データと比較するデータ修正工程を設けた
ことを特徴とする同時多軸制御の評価方法。
In Claim 1, the said measuring element is a measuring element which is not influenced by the angle with respect to the measurement surface of the said measurement reference member,
As a step before or after the reference member shape measuring step, with the simultaneous control of the three orthogonal axes and the rotating shaft being stopped, the arc-shaped outer shape is orthogonal to the rotating shaft of the workpiece mounting position. An outline shape for measuring the shape of the arcuate outline of the measurement reference member by moving the measuring element along the arcuate outline by operating a predetermined orthogonal axis included in a predetermined section forming a line Establish a measurement process,
After the reference member shape measurement step and the outline shape measurement step, a data correction step is provided for comparing the measurement data measured in the reference member shape measurement step with the measurement data measured in the outline shape measurement step. An evaluation method for simultaneous multi-axis control, characterized by
請求項1又は2において、前記基準部材取付工程は、前記被加工物取付位置の前記回転軸の軸心と直交する所定直交1軸とが前記所定断面に含まれ、かつ前記回転軸の軸心が前記円弧状外形線の円弧中心を通過するように、前記測定基準部材を取り付けるものであり、
前記基準部材形状測定工程は、前記測定基準部材を前記被加工物取付位置の回転軸回りに回転させるとともに前記直交3軸及び前記回転軸の動作を同時制御することにより、前記円弧状外形線に沿って前記測定子を移動させ、前記測定子と前記円弧状外形線の円弧中心との距離の変化を測定することにより前記測定子の移動軌跡の前記円弧状外形線に対するずれを測定するものであることを特徴とする同時多軸制御の評価方法。
3. The reference member attachment step according to claim 1, wherein the reference member attachment step includes a predetermined orthogonal one axis orthogonal to an axis of the rotation shaft at the workpiece attachment position in the predetermined cross section, and an axis of the rotation shaft. Is to attach the measurement reference member so that passes through the arc center of the arcuate outline.
In the reference member shape measuring step, the measurement reference member is rotated around the rotation axis of the workpiece attachment position, and the operations of the three orthogonal axes and the rotation axis are simultaneously controlled, so that the arc-shaped outline is formed. The displacement of the moving locus of the measuring element with respect to the arc-shaped outline is measured by moving the measuring element along the line and measuring the change in the distance between the measuring element and the arc center of the arc-shaped outline. An evaluation method for simultaneous multi-axis control, characterized in that:
請求項1乃至3のいずれか1項において、前記測定基準部材は、シリンドリカル形状であることを特徴とする同時多軸制御の評価方法。   4. The simultaneous multi-axis control evaluation method according to claim 1, wherein the measurement reference member has a cylindrical shape. 5. 請求項2乃至4のいずれか1項において、前記測定子は、球面プローブであることを特徴とする同時多軸制御の評価方法。
5. The simultaneous multi-axis control evaluation method according to claim 2, wherein the measuring element is a spherical probe.
JP2008045401A 2008-02-27 2008-02-27 Simultaneous multi-axis control evaluation method Expired - Fee Related JP5151545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045401A JP5151545B2 (en) 2008-02-27 2008-02-27 Simultaneous multi-axis control evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045401A JP5151545B2 (en) 2008-02-27 2008-02-27 Simultaneous multi-axis control evaluation method

Publications (2)

Publication Number Publication Date
JP2009202257A true JP2009202257A (en) 2009-09-10
JP5151545B2 JP5151545B2 (en) 2013-02-27

Family

ID=41145043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045401A Expired - Fee Related JP5151545B2 (en) 2008-02-27 2008-02-27 Simultaneous multi-axis control evaluation method

Country Status (1)

Country Link
JP (1) JP5151545B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255442A (en) * 2010-06-08 2011-12-22 Jtekt Corp Reference position detecting device and reference position detecting method of machine tool
CN109015110A (en) * 2018-08-22 2018-12-18 大连理工大学 A kind of machine tool rotary shaft position error modeling and discrimination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121134A (en) * 2001-10-16 2003-04-23 Canon Inc Measuring method for geometric accuracy of motion
JP2005061834A (en) * 2003-08-08 2005-03-10 Toyoda Mach Works Ltd Error calculation method for working machine having rotary shaft
JP2006043779A (en) * 2004-07-30 2006-02-16 Toshiba Mach Co Ltd Free curved surface shape measuring method
JP2007044802A (en) * 2005-08-09 2007-02-22 Okuma Corp Swivel axis center measuring method in multi-axis machine tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121134A (en) * 2001-10-16 2003-04-23 Canon Inc Measuring method for geometric accuracy of motion
JP2005061834A (en) * 2003-08-08 2005-03-10 Toyoda Mach Works Ltd Error calculation method for working machine having rotary shaft
JP2006043779A (en) * 2004-07-30 2006-02-16 Toshiba Mach Co Ltd Free curved surface shape measuring method
JP2007044802A (en) * 2005-08-09 2007-02-22 Okuma Corp Swivel axis center measuring method in multi-axis machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255442A (en) * 2010-06-08 2011-12-22 Jtekt Corp Reference position detecting device and reference position detecting method of machine tool
CN109015110A (en) * 2018-08-22 2018-12-18 大连理工大学 A kind of machine tool rotary shaft position error modeling and discrimination method

Also Published As

Publication number Publication date
JP5151545B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US10073435B2 (en) Reducing errors of a rotatory device, in particular for the determination of coordinates of a workpiece or the machining of a workpiece
US6973738B2 (en) Measuring method and device, machine tool having such device, and work processing method
JP6622216B2 (en) Calibration of measuring probe
JP6419575B2 (en) Machine tool and workpiece measurement method
JP5235284B2 (en) Measuring method and machine tool
JPH05256602A (en) Calibrating and measuring apparatus
JP2016083729A (en) Geometric error identification system, and geometric error identification method
JP2013503380A (en) Calibration method for machine tools
JPH0525626B2 (en)
JP5330219B2 (en) Multifunctional in-machine measuring device for processing machine
JP5444590B2 (en) Workpiece reference point on-machine detection method and machining apparatus using the method
JP2006349388A (en) Measuring method and measuring instrument for rotation center
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
JP5151545B2 (en) Simultaneous multi-axis control evaluation method
JP2015064235A (en) Roundness measuring machine
JP5716427B2 (en) Roundness measuring device and method of correcting misalignment
JP5297749B2 (en) Automatic dimension measuring device
JP2004042188A (en) Working method of die
JP7261206B2 (en) Processing machine and manufacturing method of workpiece
JP4799836B2 (en) Free-form surface measurement method
JPS63289410A (en) Three-dimensional measuring instrument
JP4545501B2 (en) Tool centering method and tool measuring method
JPH10103905A (en) Measurement method
JP5463091B2 (en) Automatic workpiece centering device
JP5491098B2 (en) Calibration method for touch probe of machine tool and machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees