JP2009202091A - Halogen-containing compound degrading agent - Google Patents

Halogen-containing compound degrading agent Download PDF

Info

Publication number
JP2009202091A
JP2009202091A JP2008046304A JP2008046304A JP2009202091A JP 2009202091 A JP2009202091 A JP 2009202091A JP 2008046304 A JP2008046304 A JP 2008046304A JP 2008046304 A JP2008046304 A JP 2008046304A JP 2009202091 A JP2009202091 A JP 2009202091A
Authority
JP
Japan
Prior art keywords
halogen
containing compound
decomposition
catalyst
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008046304A
Other languages
Japanese (ja)
Other versions
JP5642337B2 (en
Inventor
Hideki Inagaki
秀樹 稲垣
Akihiro Takeuchi
章浩 竹内
Kenji Suzuki
憲司 鈴木
Daisuke Hirabayashi
大介 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Chubu Electric Power Co Inc
Original Assignee
Nagoya University NUC
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Chubu Electric Power Co Inc filed Critical Nagoya University NUC
Priority to JP2008046304A priority Critical patent/JP5642337B2/en
Publication of JP2009202091A publication Critical patent/JP2009202091A/en
Application granted granted Critical
Publication of JP5642337B2 publication Critical patent/JP5642337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a halogen-containing compound degrading agent capable of degrading a halogen-containing compound at a remarkably lowered temperature as compared with that before in dry treatment without using water. <P>SOLUTION: The halogen-containing compound degrading agent contains a solid alkaline agent to which at least one of oxide type catalysts and mineral type catalysts showing solid acidity. The solid alkaline agent is preferably at least one compound selected from among oxides, hydroxides, and carbonates of alkali metals and alkaline earth metals. The oxide type catalysts are preferably at least one compound selected from among metal oxides showing solid acidity (that is, SiO<SB>2</SB>, TiO<SB>2</SB>, Al<SB>2</SB>O<SB>3</SB>, ZrO<SB>2</SB>, La<SB>2</SB>O<SB>3</SB>, Y<SB>2</SB>O<SB>3</SB>, Cr<SB>2</SB>O<SB>3</SB>, ZnO, Sn<SB>2</SB>O<SB>3</SB>, V<SB>2</SB>O<SB>5</SB>, and WO<SB>3</SB>). Further, it is also preferable to select at least one compound from zeolite type minerals and clay type minerals showing solid acidity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、含ハロゲン化合物分解剤に関する。   The present invention relates to a halogen-containing compound decomposer.

近年、オゾン層破壊低減のためにフロン類の生産・使用規制が始まる前に生産された冷蔵庫や冷房装置(エアコン)が廃棄されつつある。また、フロン類、ハロン類は、工業製品等の洗浄に多用されている。それらの含ハロゲン化合物は、高い温暖化係数を示す温室効果ガスとして、又、フロン類はさらにオゾン層破壊ガスとしても知られている。以下、フロン類、ハロン類のハロゲンを含む化合物や、ハロゲンガス等を総称して「含ハロゲン化合物」という。   In recent years, refrigerators and cooling devices (air conditioners) produced before the start of restrictions on the production and use of chlorofluorocarbons for the purpose of reducing ozone layer destruction are being discarded. In addition, chlorofluorocarbons and halocarbons are frequently used for cleaning industrial products and the like. These halogen-containing compounds are known as greenhouse gases exhibiting a high warming potential, and chlorofluorocarbons are further known as ozone-depleting gases. Hereinafter, chlorofluorocarbons, halogen compounds such as halogens, halogen gas, and the like are collectively referred to as “halogen-containing compounds”.

このため、使用済みの回収した廃棄含ハロゲン化合物を、効率的に分解処理する方法及び装置が要望されている。そこで、当該要望に応えるべく分解処理装置が、例えば、特許文献1、特許文献2が提案されている。
特開2004−261726号公報 特開2001−79344号公報
Therefore, there is a demand for a method and apparatus for efficiently decomposing used recovered halogen-containing compounds. Thus, for example, Patent Document 1 and Patent Document 2 have been proposed as decomposition processing apparatuses in order to meet the demand.
JP 2004-261726 A JP 2001-79344 A

ところで、含ハロゲン化合物のなかでも、ハロン、SF、CFC12等は分解温度が高く、乾式で分解する場合には、高温(800〜900℃程度)が必要となり、この高温処理によって装置劣化の懸念が大きいことから、安定的かつ多量に分解することが難しい。 By the way, among halogen-containing compounds, halon, SF 6 , CFC 12 and the like have high decomposition temperatures, and when they are decomposed dry, a high temperature (about 800 to 900 ° C.) is required. Because of its large size, it is difficult to decompose stably and in large quantities.

又、従来、触媒を用いて含ハロゲン化合物を分解する場合には、水蒸気を添加する必要があるため、分解時に有害で腐食性の高いハロゲン化水素が発生して装置の劣化が著しく、大規模な排ガス・廃液処理設備が必要なため、高コストになり、安全かつ経済的な含ハロゲン化合物の分解に課題があつた。   Conventionally, when a halogen-containing compound is decomposed using a catalyst, it is necessary to add water vapor. Therefore, harmful and highly corrosive hydrogen halide is generated at the time of decomposition, resulting in a significant deterioration of the apparatus. This requires high-quality exhaust gas and waste liquid treatment equipment, resulting in high costs and a problem in the safe and economical decomposition of halogen-containing compounds.

本発明の目的は、従来に比して大幅に低温で、かつ水を用いない乾式処理で含ハロゲン化合物を分解できる含ハロゲン化合物分解剤を提供することにある。   An object of the present invention is to provide a halogen-containing compound decomposing agent capable of decomposing a halogen-containing compound by a dry treatment at a significantly lower temperature than in the prior art and without using water.

上記問題点を解決するために、本発明の含ハロゲン化合物分解剤は、固体アルカリ剤に、固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなることを特徴としている。ここで、固体酸性とは、固体でありながらブレンステッド酸またはルイス酸の特性を示すものをいう。   In order to solve the above problems, the halogen-containing compound decomposing agent of the present invention is characterized in that the solid alkaline agent contains at least one of an oxide-based catalyst and a mineral-based catalyst exhibiting solid acidity. Yes. Here, the solid acidity means a solid acid that exhibits the characteristics of Bronsted acid or Lewis acid.

本発明によれば、固体アルカリ剤に固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなる含ハロゲン化合物分解剤を使用すると、含ハロゲン化合物を乾式で分解する場合、従来に比して400〜600℃の温度において分解が可能となり、この低温処理によって装置劣化を抑制することができ、安定的かつ多量に分解することができる。   According to the present invention, when a halogen-containing compound decomposing agent containing at least one of an oxide-based catalyst and a mineral-based catalyst exhibiting solid acidity in a solid alkaline agent is used, the halogen-containing compound is decomposed in a dry process. Decomposition is possible at a temperature of 400 to 600 ° C. as compared with the prior art, and this low-temperature treatment can suppress the deterioration of the apparatus, and can be decomposed stably and in large quantities.

又、本発明では、従来触媒反応で必要であった水蒸気添加を行う必要がないため、大規模な排ガス・廃液処理が不要となる効果がある。又、水蒸気の添加が必要ないため、含ハロゲン化合物の分解時に有害で腐食性の高いハロゲン化水素が発生しにくく、装置の腐食劣化が少ないという効果がある。   Further, in the present invention, it is not necessary to perform water vapor addition which has been necessary in the conventional catalytic reaction, so that there is an effect that a large-scale exhaust gas / waste liquid treatment becomes unnecessary. Further, since it is not necessary to add water vapor, it is difficult to generate hydrogen halide which is harmful and highly corrosive at the time of decomposition of the halogen-containing compound, and there is an effect that the corrosion deterioration of the apparatus is small.

本発明での含ハロゲン化合物は、フロン類、ハロン類、SF、ハロゲン化炭素(例えば、CCl等)、ハロゲン化窒素(例えばNF等)を含む。
ここで、前記固体アルカリ剤が、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、炭酸化物の中から少なくとも1種が選ばれていることが好ましい。
The halogen-containing compound in the present invention includes chlorofluorocarbons, halones, SF 6 , halogenated carbon (for example, CCl 4 ), and nitrogen halide (for example, NF 3 ).
Here, it is preferable that the solid alkali agent is at least one selected from alkali metal, alkaline earth metal oxide, hydroxide, and carbonate.

又、固体酸性を示す前記酸化物系触媒は、金属酸化物、すなわち、SiO,TiO,Al,ZrO,La,Y,Cr,ZnO,Sn,V,WOの中から少なくとも1種が選ばれていることが好ましい。 The oxide catalyst showing solid acidity is a metal oxide, that is, SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Cr 2 O 3 , ZnO, It is preferable that at least one selected from Sn 2 O 3 , V 2 O 5 , and WO 3 is selected.

前記金属酸化物の中で、チタニア(TiO)にはアナターゼ型及びルチル型を含む。又、アルミナ(Al)はγ−アルミナ等の高比表面積アルミナが好ましい。ここで、前記金属酸化物において、少なくとも1種とは、2種以上の金属酸化物を排除するものではなく、すなわち、多元酸化物を含んでいてもよく、さらには、他の第3成分を含めてもよい。 Among the metal oxides, titania (TiO 2 ) includes anatase type and rutile type. The alumina (Al 2 O 3 ) is preferably high specific surface area alumina such as γ-alumina. Here, in the metal oxide, at least one kind does not exclude two or more kinds of metal oxides, that is, it may contain a multi-element oxide, and further includes another third component. May be included.

一方、鉱物系触媒は、固体酸性を示すゼオライト系鉱物及び粘土系鉱物の中から少なくとも1種が選ばれていることが好ましい。 ここで、前記固体アルカリ剤が、例えば、焼成カルサイトの場合、固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなる触媒によって、含ハロゲン化合物のハロゲンが反応剤の成分であるCaO(酸化カルシウム)と反応し、腐食性がなく安定な固体化合物になる。例えば、フッ素はCaF(フッ化カルシウム)、臭素はCaBr(臭化カルシウム)、塩素はCaCl(塩化カルシウム)等となる。 On the other hand, it is preferable that at least one mineral-based catalyst is selected from zeolite-based minerals and clay-based minerals that exhibit solid acidity. Here, when the solid alkali agent is, for example, calcined calcite, the halogen of the halogen-containing compound is reacted with a catalyst containing at least one of an oxide catalyst and a mineral catalyst exhibiting solid acidity. It reacts with CaO (calcium oxide), which is a component of, and becomes a stable solid compound without corrosiveness. For example, fluorine is CaF 2 (calcium fluoride), bromine is CaBr 2 (calcium bromide), chlorine is CaCl 2 (calcium chloride), and the like.

又、前記固体アルカリ剤が、焼成マグネサイトの場合、固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなる触媒により、含ハロゲン化合物のハロゲンが反応剤の成分であるMgO(酸化マグネシウム)と反応し、腐食性がなく安定な固体化合物になる。例えば、フッ素はMgF(フッ化マグネシウム)、臭素はMgBr(臭化マグネシウム)、塩素はMgCl(塩化マグネシウム)等となる。 When the solid alkali agent is calcined magnesite, the halogen of the halogen-containing compound is a component of the reactant by a catalyst containing at least one of an oxide catalyst and a mineral catalyst exhibiting solid acidity. It reacts with certain MgO (magnesium oxide) and becomes a stable solid compound without corrosiveness. For example, fluorine is MgF 2 (magnesium fluoride), bromine is MgBr 2 (magnesium bromide), chlorine is MgCl 2 (magnesium chloride), and the like.

前記固体アルカリ剤が、焼成ドロマイトの場合、その成分であるCaO、MgOが、固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなる触媒により、含ハロゲン化合物のハロゲンと反応し、腐食性がなく安定な固体化合物になる。例えば、フッ素はCaF(フッ化カルシウム)、MgF(フッ化マグネシウム)、臭素はCaBr(臭化カルシウム)、MgBr(臭化マグネシウム)、塩素はCaCl(塩化カルシウム)、MgCl(塩化マグネシウム)等となる。 When the solid alkaline agent is calcined dolomite, the component CaO, MgO is a halogen-containing compound halogenated by a catalyst containing at least one of an oxide-based catalyst and a mineral-based catalyst exhibiting solid acidity. It becomes a solid compound that is not corrosive and stable. For example, fluorine is CaF 2 (calcium fluoride), MgF 2 (magnesium fluoride), bromine is CaBr 2 (calcium bromide), MgBr 2 (magnesium bromide), chlorine is CaCl 2 (calcium chloride), MgCl 2 ( Magnesium chloride) and the like.

(実施例1)
次に、実施例を説明する。実施例1及び比較例1において、含ハロゲン化合物としてハロン1301の分解をそれぞれ行い、分解率30%での温度を測定した。実施例1と比較例1で使用した条件は、下記の通りである。
Example 1
Next, examples will be described. In Example 1 and Comparative Example 1, Halon 1301 was decomposed as a halogen-containing compound, and the temperature at a decomposition rate of 30% was measured. The conditions used in Example 1 and Comparative Example 1 are as follows.

(実施例1)
含ハロゲン分解剤としては、固体アルカリ剤と酸化物系触媒を使用した例である。
固体アルカリ剤 :焼成ドロマイト
触媒 :γ−アルミナ(γ−Al
固体アルカリ剤と触媒の混合割合: 50:50
(比較例1)
比較例1は、固体アルカリ剤のみを使用した比較例である。
Example 1
As the halogen-containing decomposition agent, a solid alkaline agent and an oxide catalyst are used.
Solid alkali agent: calcined dolomite Catalyst: γ-alumina (γ-Al 2 O 3 )
Mixing ratio of solid alkali agent and catalyst: 50:50
(Comparative Example 1)
Comparative Example 1 is a comparative example using only a solid alkaline agent.

固体アルカリ剤 :焼成ドロマイトのみ
(実施例1及び比較例1の測定条件)
連続流通式反応装置の固定床に、前記含ハロゲン分解剤の試料粒を1.0g充填し、4.2vol/%の濃度のハロン1301を乾きガス流量50ml/minで、前記固定床に対してSV(空間速度)=2000(1/h)で通過させ、ハロン1301が30%分解したときの固定床の温度を測定した。なお、実施例1及び比較例1とも、水蒸気は無添加、すなわち無加湿で行った。
Solid alkali agent: only calcined dolomite (measurement conditions of Example 1 and Comparative Example 1)
A fixed bed of a continuous flow reactor is filled with 1.0 g of the halogen-containing decomposing agent sample grains, and Halon 1301 having a concentration of 4.2 vol /% is dried and a gas flow rate of 50 ml / min is applied to the fixed bed. SV (space velocity) = 2000 (1 / h) was passed, and the temperature of the fixed bed was measured when 30% of Halon 1301 was decomposed. In both Example 1 and Comparative Example 1, water vapor was added without addition, that is, without humidification.

実施例1では、ハロン1301の30%の分解時の温度は470℃であったのに対して、比較例1では、720℃であった。この結果、実施例1では、比較例1よりも250℃も分解温度が低下し、ハロン1301の分解を水蒸気(すなわち、水)を無添加で行った乾きガス流で行えることが確認できた。   In Example 1, the 30% decomposition temperature of Halon 1301 was 470 ° C., whereas in Comparative Example 1, it was 720 ° C. As a result, in Example 1, the decomposition temperature was lowered by 250 ° C. compared to Comparative Example 1, and it was confirmed that the decomposition of halon 1301 could be performed with a dry gas flow without addition of water vapor (that is, water).

(分解生成物の確認)
次に、焼成ドロマイトとγ−アルミナからなる含ハロゲン化合物分解剤を使用してハロン1301を分解し、X線回折分析により分解生成物の確認を行った(図1(a)参照)。なお、このときの測定条件は、分解温度を600℃とし、分解温度以外は、上記実施例1の測定条件と同じガス流量、SV(空間速度)とした。
(Confirmation of decomposition products)
Next, Halon 1301 was decomposed using a halogen-containing compound decomposer composed of calcined dolomite and γ-alumina, and the decomposition product was confirmed by X-ray diffraction analysis (see FIG. 1A). The measurement conditions at this time were a decomposition temperature of 600 ° C., and the gas flow rate and SV (space velocity) were the same as the measurement conditions of Example 1 except for the decomposition temperature.

図1(a)に示すように、分解時の温度を600℃としたときにはハロン1301の分解生成物としてCaFが生成されていることが確認できた。なお、この例は実施例2となる。 As shown in FIG. 1A, it was confirmed that CaF 2 was produced as a decomposition product of halon 1301 when the temperature during decomposition was 600 ° C. This example is Example 2.

図1(b)には、焼成ドロマイトのみを使用して、温度600℃とし、温度以外は、上記実施例1の測定条件と同じとした場合のX線回折分析により分解生成物の確認を行った結果を示す。この比較例では、ハロン1301が分解していないため、図1(a)と異なり、CaFが生成していないことが確認された。この例は比較例2となる。 In FIG. 1 (b), the decomposition product is confirmed by X-ray diffraction analysis when only the calcined dolomite is used and the temperature is 600 ° C. and the measurement conditions are the same as in Example 1 except for the temperature. The results are shown. In this comparative example, since halon 1301 was not decomposed, it was confirmed that CaF 2 was not generated unlike FIG. This example is Comparative Example 2.

図1(c)にはハロン1301分解に使用される前の焼成ドロマイトのX線回折分析の結果を示す。図1(c)の結果は図1(b)と同じ結果であることが確認された。
なお、図1(a)〜(c)及び図2(a)〜(c)において、「□」はCaO、「▽」はMgO、「○」はCaCO、「△」はCaFのピークを示している。
FIG. 1 (c) shows the result of X-ray diffraction analysis of the calcined dolomite before being used for decomposition of halon 1301. It was confirmed that the result of FIG.1 (c) is the same result as FIG.1 (b).
In FIGS. 1A to 1C and FIGS. 2A to 2C, “□” is CaO, “▽” is MgO, “◯” is CaCO 3 , and “Δ” is CaF 2 peak. Is shown.

同様に、図2(a)〜(c)には、図1(a)〜(c)との例とは温度のみを変更して、同様にX線回折分析をかけた結果を示す。
すなわち、この例では焼成ドロマイトとγ−アルミナからなる含ハロゲン化合物分解剤を使用してハロン1301を分解し、X線回折分析により分解生成物の確認を図2(a)に示す。なお、このときの測定条件は、分解温度を400℃とし、分解温度以外は、上記実施例1の測定条件と同じガス流量、SV(空間速度)とした。なお、この例は、実施例1の分解生成物をX線回折分析としたものとなる。
Similarly, FIGS. 2A to 2C show results of X-ray diffraction analysis performed in the same manner as in the examples of FIGS. 1A to 1C except that only the temperature is changed.
That is, in this example, Halon 1301 is decomposed using a halogen-containing compound decomposing agent composed of calcined dolomite and γ-alumina, and confirmation of the decomposition product by X-ray diffraction analysis is shown in FIG. The measurement conditions at this time were a decomposition temperature of 400 ° C., and the gas flow rate and SV (space velocity) were the same as the measurement conditions of Example 1 except for the decomposition temperature. In this example, the decomposition product of Example 1 is an X-ray diffraction analysis.

図2(a)に示すように、分解時の温度を400℃としたときにはハロン1301の分解生成物としてCaFが生成されていることが確認できた。この例は、実施例1の分解生成物をX線回折分析としたものとなる。 As shown in FIG. 2A, it was confirmed that CaF 2 was produced as a decomposition product of halon 1301 when the temperature during decomposition was 400 ° C. In this example, the decomposition product of Example 1 is obtained by X-ray diffraction analysis.

図2(b)には、焼成ドロマイトのみを使用して、温度400℃とし、温度以外は、上記実施例1の測定条件と同じとした場合において、X線回折分析により分解生成物の確認を行った結果を示す。この比較例では、ハロン1301が分解していないため、図2(a)と異なり、CaFが生成していないことが確認された。この例は比較例1となる。 In FIG. 2 (b), when only the baked dolomite is used and the temperature is 400 ° C., and the measurement conditions are the same as those in Example 1 except for the temperature, the decomposition product is confirmed by X-ray diffraction analysis. The results are shown. In this comparative example, since halon 1301 was not decomposed, it was confirmed that CaF 2 was not generated unlike FIG. This example is Comparative Example 1.

図2(c)には、ハロン1301分解に使用する前の焼成ドロマイトのX線回折分析の結果を示す。図2(c)の結果は図2(b)と同じで結果であることが確認された。
(触媒と水蒸気との関係)
次に、触媒と水蒸気との関係の有無の確認試験を行った。従来は、700〜900℃の高温の分解温度下で、含ハロゲン化合物を水蒸気共存下で分解している。この水蒸気を入れることにより、含ハロゲン化合物は分解し無害な無機物と強酸が生成されるため、装置の腐食の原因となっている。
FIG. 2 (c) shows the result of X-ray diffraction analysis of the calcined dolomite before being used for decomposition of halon 1301. The result of FIG.2 (c) was the same as FIG.2 (b), and it was confirmed that it is a result.
(Relationship between catalyst and water vapor)
Next, a test for confirming whether or not there is a relationship between the catalyst and water vapor was performed. Conventionally, halogen-containing compounds are decomposed in the presence of water vapor at a high decomposition temperature of 700 to 900 ° C. By adding water vapor, the halogen-containing compound is decomposed to produce harmless inorganic substances and strong acids, which causes corrosion of the apparatus.

図3のA〜Fは、γ−アルミナ単独、焼成ドロマイト単独、及びγ−アルミナと焼成ドロマイト(混合比は50:50)のそれぞれにおいて、水蒸気の分量を変えて、ハロン1301の分解率を見たものである。なお、測定条件は下記の通りであり、温度600℃で行った。又、水蒸気を導入する場合はハロン1301のガスとともに水蒸気を導入した。   3A to 3F show the decomposition rate of halon 1301 by changing the amount of water vapor in each of γ-alumina alone, calcined dolomite alone, and γ-alumina and calcined dolomite (mixing ratio is 50:50). It is a thing. The measurement conditions were as follows, and the measurement was performed at a temperature of 600 ° C. When water vapor was introduced, the water vapor was introduced together with the gas of the halon 1301.

(測定条件)
連続流通式反応装置の固定床に前記含ハロゲン化合物分解剤のうち、固体アルカリ剤又は触媒のうち少なくともいずれか一方の試料粒を1.0g充填し、4.2vol/%の濃度のハロン1301を、ガス流量50ml/minで、前記固定床に対してSV(空間速度)=2000(1/h)で通過させ、ハロン1301の分解率を測定した。なお、水蒸気を入れる場合は水蒸気を下記の量分を入れた上で、測定した。
(Measurement condition)
A fixed bed of a continuous flow reactor is filled with 1.0 g of at least one of a solid alkali agent or a catalyst among the halogen-containing compound decomposing agents, and Halon 1301 having a concentration of 4.2 vol /% is added. At a gas flow rate of 50 ml / min, the fixed bed was passed at SV (space velocity) = 2000 (1 / h), and the decomposition rate of halon 1301 was measured. In addition, when adding water vapor | steam, it measured, after adding water vapor | steam for the following quantity.

なお、図3中、A〜Fは、下記の通りである。
A: γ−アルミナ(γ−Al) 水蒸気 1.5ml/hr
B: 焼成ドロマイト 水蒸気 1.5ml/hr
C: γ−アルミナ+焼成ドロマイト 水蒸気 なし
D: γ−アルミナ+焼成ドロマイト 水蒸気 1.0ml/hr
E: γ−アルミナ+焼成ドロマイト 水蒸気 1.5ml/hr
F: γ−アルミナ+焼成ドロマイト 水蒸気 2.0ml/hr
図3に示すように、「γ−アルミナ+焼成ドロマイト」の場合、水蒸気を導入したD〜Fと、水蒸気を導入しないCとを比較しても、水蒸気の導入の有無による合理的な規則性がなく、水蒸気は分解反応に関係しておらず、ハロン1301の分解率が変わるものとはならないといえる。
In FIG. 3, A to F are as follows.
A: γ-alumina (γ-Al 2 O 3 ) Water vapor 1.5 ml / hr
B: calcined dolomite water vapor 1.5 ml / hr
C: γ-alumina + calcined dolomite without water vapor D: γ-alumina + calcined dolomite water vapor 1.0 ml / hr
E: γ-alumina + calcined dolomite Water vapor 1.5 ml / hr
F: γ-alumina + calcined dolomite water vapor 2.0 ml / hr
As shown in FIG. 3, in the case of “γ-alumina + calcined dolomite”, even if D to F into which water vapor is introduced and C to which water vapor is not introduced are compared, rational regularity depending on whether or not water vapor is introduced. In other words, water vapor is not related to the decomposition reaction, and it can be said that the decomposition rate of halon 1301 does not change.

(他の実施例と比較例)
次に、ハロン分解率と反応温度と関係を下記の実施例3〜7と比較例3〜7で説明する。
(Other examples and comparative examples)
Next, the relationship between the halon decomposition rate and the reaction temperature will be described in Examples 3 to 7 and Comparative Examples 3 to 7 below.

実施例3〜7は、焼成ドロマイトに下記の触媒を混合比50:50で混合し、下記の測定条件で、ハロン1301の分解を行ったものである。
実施例3の触媒:γ−アルミナ(γ−Al,3mm顆粒状)
実施例4の触媒:チタニア(TiO:アナターゼ型,2〜4mm粒状)
実施例5の触媒:チタニア(TiO:ルチル型,2〜4mm粒状)
実施例6の触媒:セピオライト(粘土,4mm顆粒状)
実施例7の触媒:石炭灰ゼオライト(3〜4mm顆粒状)
なお、図4では、実施例3〜7は、J,K,L,O,Pで示されている。
In Examples 3 to 7, the following catalyst was mixed with the calcined dolomite at a mixing ratio of 50:50, and the decomposition of Halon 1301 was performed under the following measurement conditions.
Catalyst of Example 3: γ-alumina (γ-Al 2 O 3 , 3 mm granular)
Catalyst of Example 4: Titania (TiO 2 : anatase type, 2-4 mm granular)
Catalyst of Example 5: Titania (TiO 2 : rutile type, 2 to 4 mm granular)
Example 6 catalyst: Sepiolite (clay, 4 mm granular)
Catalyst of Example 7: Coal ash zeolite (3-4 mm granular form)
In FIG. 4, Examples 3 to 7 are indicated by J, K, L, O, and P.

比較例では、ブランク、硫酸カルシウムのみ、リン酸アルミニウムのみ、焼成カルサイトのみ、焼成ドロマイトのみで分解を行ったものである。
比較例3 :ブランク(アルミナウールのみ)
比較例4 :CaSO(2〜4mm粒状)
比較例5 :AlPO(2〜4mm粒状)
比較例6 :CaO(焼成カルサイトのみ,2〜4mm粒状)
比較例7 :CaO・MgO(軽焼ドロマイトのみ,2〜4mm粒状)
なお、図4では、比較例3〜7は、G,H,I,M,Nで示されている。
In the comparative example, decomposition was performed only with a blank, calcium sulfate, only aluminum phosphate, only calcined calcite, and only calcined dolomite.
Comparative Example 3: Blank (only alumina wool)
Comparative Example 4: CaSO 4 (2-4 mm granular)
Comparative Example 5: AlPO 4 (2 to 4 mm granular)
Comparative Example 6: CaO (only calcined calcite, 2 to 4 mm granular)
Comparative Example 7: CaO · MgO (lightly burned dolomite only, 2 to 4 mm granular)
In FIG. 4, Comparative Examples 3 to 7 are indicated by G, H, I, M, and N.

(測定条件)
ハロン1301を含ハロゲン化合物として使用する。なお、ハロン1301は、分解しにくいことが知られており、このハロン1301が分解できれば、他の含ハロゲン化合物に対しても、同様に有効に分解できることとなる。
(Measurement condition)
Halon 1301 is used as the halogen-containing compound. In addition, it is known that halon 1301 is difficult to decompose, and if this halon 1301 can be decomposed, it can be effectively decomposed to other halogen-containing compounds as well.

連続流通式反応装置の固定床に、実施例並びに比較例で記載した試料粒を10〜20mmの試料層高として用意し、4.2vol/%の濃度のハロン1301を、ガス流量50ml/min(ドライガス)で、かつ、水蒸気を1.5ml/hr入れて、前記固定床に対してSV(空間速度)=1331〜2663(1/h)で通過させ、ハロン1301の分解率を測定した。   Sample grains described in Examples and Comparative Examples are prepared on a fixed bed of a continuous flow reactor as a sample layer height of 10 to 20 mm, and Halon 1301 having a concentration of 4.2 vol /% is supplied at a gas flow rate of 50 ml / min ( Dry gas) and 1.5 ml / hr of water vapor were added and passed through the fixed bed at SV (space velocity) = 1331-2663 (1 / h), and the decomposition rate of halon 1301 was measured.

なお、本実施例3〜7においても、水蒸気を導入したのは、比較例3〜7と測定条件を同じにするためである。しかし、前述したように、実施例3〜7で導入した水蒸気は、実施例では触媒があるため、何らハロンの分解反応に関係するものではない。   In Examples 3-7, water vapor was introduced to make the measurement conditions the same as in Comparative Examples 3-7. However, as described above, the water vapor introduced in Examples 3 to 7 is not related to the decomposition reaction of halon because there is a catalyst in the Examples.

(測定結果)
図4に示すように、実施例3〜7では、温度が400〜550℃辺りから、分解率が急上昇して、分解反応が急速に進むことが分かる。それに対して、比較例3〜7では、400〜550℃では、分解反応率がいずれも数%程度であり、極端に低いことが分かる。又、TiOのアナターゼ型では、350℃辺りから分解反応が急速に進むことがわかる。
(Measurement result)
As shown in FIG. 4, in Examples 3 to 7, it can be seen that the decomposition rate rapidly increases from about 400 to 550 ° C., and the decomposition reaction proceeds rapidly. On the other hand, in Comparative Examples 3 to 7, it can be seen that the decomposition reaction rate is about several percent at 400 to 550 ° C., which is extremely low. It can also be seen that the decomposition reaction proceeds rapidly from around 350 ° C. in the anatase type of TiO 2 .

なお、分解率が30%を越える場合、実用的であることが知られていることから、本実施例3〜7では、400〜600℃の範囲という従来よりも低い温度範囲で分解ができ、実用性の高い、含ハロゲン化合物分解剤となる。   In addition, since it is known that it is practical when the decomposition rate exceeds 30%, in Examples 3 to 7, decomposition can be performed in a temperature range lower than the conventional range of 400 to 600 ° C. It is a highly practical halogen-containing compound decomposer.

(a)は、焼成ドロマイトとγ−アルミナの混合物における600℃で行われたハロン1301の分解生成物のX線回折分析のチャート、(b)は、焼成ドロマイト単独の反応後のX線回折分析のチャート、(c)は、焼成ドロマイト単独の反応前のX線回折分析のチャート。(A) is a chart of X-ray diffraction analysis of a decomposition product of halon 1301 performed at 600 ° C. in a mixture of calcined dolomite and γ-alumina, and (b) is an X-ray diffraction analysis after reaction of calcined dolomite alone. (C) is a chart of X-ray diffraction analysis before reaction of calcined dolomite alone. (a)は、焼成ドロマイトとγ−アルミナの混合物における400℃で行われたハロン1301の分解生成物のX線回折分析のチャート、(b)は、焼成ドロマイト単独の反応後のX線回折分析のチャート、(c)は、焼成ドロマイト単独の反応前のX線回折分析のチャート。(A) is a chart of X-ray diffraction analysis of a decomposition product of halon 1301 performed at 400 ° C. in a mixture of calcined dolomite and γ-alumina, and (b) is an X-ray diffraction analysis after reaction of calcined dolomite alone. (C) is a chart of X-ray diffraction analysis before reaction of calcined dolomite alone. 600℃におけるハロン1301の分解率の経時変化のグラフ。The graph of the time-dependent change of the decomposition | disassembly rate of halon 1301 in 600 degreeC. 実施例3〜7、比較例3〜7のハロン分解率と温度の関係を示すグラフ。The graph which shows the relationship between the halon decomposition rate of Examples 3-7 and Comparative Examples 3-7 and temperature.

Claims (4)

固体アルカリ剤に、固体酸性を示す酸化物系触媒及び鉱物系触媒のうち少なくとも1種が含有されてなることを特徴とする含ハロゲン化合物分解剤。   A halogen-containing compound decomposing agent, wherein the solid alkali agent contains at least one of an oxide catalyst and a mineral catalyst exhibiting solid acidity. 前記固体アルカリ剤が、アルカリ金属、アルカリ土類金属の酸化物、水酸化物、炭酸化物の中から少なくとも1種が選ばれていることを特徴とする請求項1に記載の含ハロゲン化合物分解剤。   2. The halogen-containing compound decomposing agent according to claim 1, wherein the solid alkali agent is at least one selected from an alkali metal, alkaline earth metal oxide, hydroxide, and carbonate. 3. . 前記酸化物系触媒が、固体酸性を示す金属酸化物、すなわち、SiO,TiO,Al,ZrO,La,Y,Cr,ZnO,Sn,V,WOの中から少なくとも1種が選ばれていることを特徴とする請求項1又は請求項2に記載の含ハロゲン化合物分解剤。 The oxide catalyst is a metal oxide showing solid acidity, that is, SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , La 2 O 3 , Y 2 O 3 , Cr 2 O 3 , ZnO, Sn 2. The halogen-containing compound decomposing agent according to claim 1 or 2, wherein at least one selected from O 3 , V 2 O 5 , and WO 3 is selected. 前記鉱物系触媒が、固体酸性を示すゼオライト系鉱物及び粘土系鉱物の中から少なくとも1種が選ばれていることを特徴とする請求項1又は請求項2に記載の含ハロゲン化合物分解剤。   3. The halogen-containing compound decomposing agent according to claim 1, wherein the mineral catalyst is at least one selected from a zeolite mineral and a clay mineral exhibiting solid acidity.
JP2008046304A 2008-02-27 2008-02-27 Halogen-containing compound decomposer Active JP5642337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046304A JP5642337B2 (en) 2008-02-27 2008-02-27 Halogen-containing compound decomposer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046304A JP5642337B2 (en) 2008-02-27 2008-02-27 Halogen-containing compound decomposer

Publications (2)

Publication Number Publication Date
JP2009202091A true JP2009202091A (en) 2009-09-10
JP5642337B2 JP5642337B2 (en) 2014-12-17

Family

ID=41144893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046304A Active JP5642337B2 (en) 2008-02-27 2008-02-27 Halogen-containing compound decomposer

Country Status (1)

Country Link
JP (1) JP5642337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055836A (en) * 2010-09-09 2012-03-22 Chubu Electric Power Co Inc Method of treating gas
CN104069874A (en) * 2014-06-11 2014-10-01 河南省科学院能源研究所有限公司 Method for preparing SO4<2->/TiO2-SiO2 solid superacid by taking wollastonite as raw material
JP2015033678A (en) * 2013-08-09 2015-02-19 学校法人 関西大学 Decomposition treatment method of fluorocarbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910554A (en) * 1995-06-30 1997-01-14 Toshiba Corp Treatment of substance containing halogenated hydrocarbon, treatment agent and treatment device
JP2001190959A (en) * 1999-04-28 2001-07-17 Showa Denko Kk Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon
JP2002370013A (en) * 2001-06-15 2002-12-24 Japan Pionics Co Ltd Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP2003305336A (en) * 2002-04-15 2003-10-28 Jfe Engineering Kk Adsorbent packed-bed device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910554A (en) * 1995-06-30 1997-01-14 Toshiba Corp Treatment of substance containing halogenated hydrocarbon, treatment agent and treatment device
JP2001190959A (en) * 1999-04-28 2001-07-17 Showa Denko Kk Reactant for decomposition of fluorine compound, decomposition method and its usage
JP2002224565A (en) * 2000-12-01 2002-08-13 Japan Pionics Co Ltd Agent and method for decomposing fluorocarbon
JP2002370013A (en) * 2001-06-15 2002-12-24 Japan Pionics Co Ltd Decomposition treatment agent of sulfur fluoride and decomposition treatment method using the same
JP2003305336A (en) * 2002-04-15 2003-10-28 Jfe Engineering Kk Adsorbent packed-bed device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055836A (en) * 2010-09-09 2012-03-22 Chubu Electric Power Co Inc Method of treating gas
JP2015033678A (en) * 2013-08-09 2015-02-19 学校法人 関西大学 Decomposition treatment method of fluorocarbon
CN104069874A (en) * 2014-06-11 2014-10-01 河南省科学院能源研究所有限公司 Method for preparing SO4<2->/TiO2-SiO2 solid superacid by taking wollastonite as raw material

Also Published As

Publication number Publication date
JP5642337B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP3977887B2 (en) Treatment method for fluorine compound-containing gas
MX2010012555A (en) A process for dehydrochlorinating 1,1,1,2-tetrafluoro-2-chloropro pane to 2,3,3,3-tetrafluoropropene in the presence of an alkali metal-doped magnesium oxyfluoride catalyst and methods for making the catalyst.
TWI406702B (en) Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
CN1043118A (en) The purification of saturated halocarbons
JP3789277B2 (en) Reagent for decomposing fluorine compounds, decomposing method and use thereof
EP0793995A1 (en) A method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP6975537B2 (en) Halogen gas remover, its manufacturing method, halogen gas removing method using it, and halogen gas removing system
JP5642337B2 (en) Halogen-containing compound decomposer
KR20020056936A (en) Process for vinyl chloride manufacture from ethane and ethylene with secondary reactive consumption of reactor effluent HCl
Han et al. Catalytic hydrolysis of trifluoromethane over alumina
JPH06177B2 (en) Method for treating exhaust gas containing C1F (bottom 3)
JP2004249285A (en) Method of decomposing fluoride compound
JP6256938B2 (en) Fluorocarbon decomposition method
EP0667180B1 (en) Process for the disposal of halogenated hydrocarbons
JP5016616B2 (en) Method for treating exhaust gas containing fluorine compound and reaction tank for treatment
JP5366479B2 (en) Fluorine selective separating agent for dry treatment and dry treatment method of fluorine-containing compound
JP5423594B2 (en) Method for removing fluorine-containing compound gas
KR102235569B1 (en) Method for Decomposing HFCs with Adsorbents in Catalyst Layer
JP2012055836A (en) Method of treating gas
JP2009226398A (en) Decomposition agent
JP5297208B2 (en) Fluorine-containing compound treating agent and exhaust gas treating method
KR101392805B1 (en) Absorption material for removing PFC and acid gas
WO2018230121A1 (en) Fluorine-containing gas decomposing/removing agent, method for producing same, and fluorine-containing gas removing method and fluorine resource recovery method each using same
JP5074439B2 (en) Halogen gas treating agent, method for producing the same, and detoxification method using the same
KR100968089B1 (en) Low temperature Adsorption treatment Agent for Fluorine Compound gas, Method of treating for Fluorine compound gas Using thereof, And Apparatus For Treatment of Fluorine compound gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130827

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5642337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250