JP2009202058A - Hydrogen storage material, and method of preparing the same - Google Patents

Hydrogen storage material, and method of preparing the same Download PDF

Info

Publication number
JP2009202058A
JP2009202058A JP2008044765A JP2008044765A JP2009202058A JP 2009202058 A JP2009202058 A JP 2009202058A JP 2008044765 A JP2008044765 A JP 2008044765A JP 2008044765 A JP2008044765 A JP 2008044765A JP 2009202058 A JP2009202058 A JP 2009202058A
Authority
JP
Japan
Prior art keywords
hydrogen
storage material
hydrogen storage
lithium
ion conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008044765A
Other languages
Japanese (ja)
Other versions
JP5050920B2 (en
Inventor
Shuichi Naito
周弌 内藤
Toshihiro Miyao
敏広 宮尾
Shuhei Kono
秀平 河野
Kazuhiko Tsuneyoda
和彦 常世田
Toyoyuki Kubokawa
豊之 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Kanagawa University
Original Assignee
Taiheiyo Cement Corp
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Kanagawa University filed Critical Taiheiyo Cement Corp
Priority to JP2008044765A priority Critical patent/JP5050920B2/en
Publication of JP2009202058A publication Critical patent/JP2009202058A/en
Application granted granted Critical
Publication of JP5050920B2 publication Critical patent/JP5050920B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material capable of suppressing the rise of its hydrogen-discharge temperature and of preventing the deterioration of its characteristics, and a method of preparing the same. <P>SOLUTION: The hydrogen storage material is a nano-composite comprised of magnesium amide and hydrogenated lithium with a lithium-ion conductor distributed therein. The hydrogen storage material can suppress the rise of its hydrogen discharge temperature and can prevent the deterioration of its characteristics thanks to it that the primary particles of the hydrogen storage material hardly grows larger by virtue of an action of the lithium-ion conductor, even if hydrogen is repeatedly stored and discharged. The constitution of the hydrogen storage material is specified in its hydrogen-storing state, and the hydrogen storage material may contain magnesium nitride and lithium amide depending on the degree of hydrogen discharge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素放出温度の高温化を抑制できる水素貯蔵材料およびその製造方法に関する。   The present invention relates to a hydrogen storage material that can suppress an increase in hydrogen release temperature and a method for producing the same.

従来、水素放出温度の高温化を抑制するためにナノ粒子からなる触媒を混合した水素貯蔵材料が知られている(たとえば、特許文献1参照)。特許文献1記載の水素貯蔵材料は、金属水素化物と金属アミド化合物と水素吸放出能を高める触媒とを含む混合物または複合化物から構成され、この触媒としてナノ粒子からなるものを用いている。これにより、水素発生反応温度を低温側へシフトさせ、水素の放出温度を低温化させている。触媒には、チタンのナノ粒子、チタニアのナノ粒子等が挙げられている。
特開2006−7064号公報
Conventionally, a hydrogen storage material in which a catalyst composed of nanoparticles is mixed in order to suppress an increase in the hydrogen release temperature is known (see, for example, Patent Document 1). The hydrogen storage material described in Patent Document 1 is composed of a mixture or composite containing a metal hydride, a metal amide compound, and a catalyst that enhances the ability to absorb and desorb hydrogen, and the catalyst is made of nanoparticles. Thereby, the hydrogen generation reaction temperature is shifted to the low temperature side, and the hydrogen release temperature is lowered. Examples of the catalyst include titanium nanoparticles and titania nanoparticles.
JP 2006-7064 A

しかしながら、水素貯蔵材料は水素の吸蔵および放出を繰り返す条件下で使用され、その際に水素貯蔵材料の結晶化が進行し一次粒子が粗大化する。そして、一次粒子の粗大化により水素貯蔵材料の機能が低下し、水素放出のピーク温度が高くなる。上記の触媒は、このような実際の使用条件下において水素の吸蔵および放出の特性劣化を阻止できているとはいえない。   However, the hydrogen storage material is used under the conditions of repeated occlusion and release of hydrogen. At this time, the crystallization of the hydrogen storage material proceeds and the primary particles become coarse. And the function of a hydrogen storage material falls by coarsening of a primary particle, and the peak temperature of hydrogen discharge | release becomes high. The above-mentioned catalyst cannot be said to prevent deterioration of hydrogen storage and release characteristics under such actual use conditions.

本発明は、このような事情に鑑みてなされたものであり、水素放出温度の高温化を抑制し、特性劣化を阻止できる水素貯蔵材料およびその製造方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the hydrogen storage material which can suppress the high temperature of hydrogen discharge | release temperature, and can prevent characteristic degradation, and its manufacturing method.

(1)上記の目的を達成するため、本発明に係る水素貯蔵材料は、マグネシウムアミドと水素化リチウムの複合体にリチウムイオン伝導体が混合され、ナノ複合体としてなることを特徴としている。リチウムイオン伝導体の作用により、水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなり、水素の放出温度の高温化を抑止し、特性劣化を防止できる。なお、上記の水素貯蔵材料の構成は、水素吸蔵状態におけるものを特定しており、水素の放出の程度により、本発明に係る水素貯蔵材料は、窒化マグネシウムおよびリチウムアミドを含みうる。   (1) In order to achieve the above object, the hydrogen storage material according to the present invention is characterized in that a lithium ion conductor is mixed with a composite of magnesium amide and lithium hydride to form a nanocomposite. The action of the lithium ion conductor makes it difficult for the primary particles of the hydrogen storage material to be coarsened even if hydrogen is occluded and released repeatedly, thereby preventing the hydrogen release temperature from becoming high and preventing the deterioration of characteristics. In addition, the structure of said hydrogen storage material has specified the thing in a hydrogen occlusion state, and the hydrogen storage material which concerns on this invention may contain magnesium nitride and lithium amide by the grade of discharge | release of hydrogen.

(2)また、本発明に係る水素貯蔵材料は、前記リチウムイオン伝導体として、リチウムランタンチタネートが混合されてなることを特徴としている。混合されたリチウムランタンチタネートが、水素貯蔵材料の一次粒子の粗大化を防止し、水素放出温度の高温化および特性劣化を防止できる。   (2) The hydrogen storage material according to the present invention is characterized in that lithium lanthanum titanate is mixed as the lithium ion conductor. The mixed lithium lanthanum titanate can prevent coarsening of the primary particles of the hydrogen storage material, and can prevent an increase in hydrogen release temperature and deterioration of characteristics.

(3)また、本発明に係る水素貯蔵材料は、前記マグネシウムアミドと水素化リチウムの複合体に対して、前記リチウムイオン伝導体が10重量%以上40重量%以下混合されてなることを特徴としている。リチウムイオン伝導体が10重量%以上混合されていることにより、その作用により水素貯蔵材料の一次粒子の粗大化が防止される。一方、混合されているリチウムイオン伝導体が40重量%以下であることにより、マグネシウムアミドと水素化リチウムの複合体による水素の吸蔵および放出量が十分に維持される。   (3) The hydrogen storage material according to the present invention is characterized in that the lithium ion conductor is mixed in an amount of 10 wt% to 40 wt% with respect to the composite of magnesium amide and lithium hydride. Yes. When 10% by weight or more of the lithium ion conductor is mixed, the action prevents the primary particles of the hydrogen storage material from becoming coarse. On the other hand, when the mixed lithium ion conductor is 40% by weight or less, the amount of hydrogen absorbed and released by the composite of magnesium amide and lithium hydride is sufficiently maintained.

(4)また、本発明に係る水素貯蔵材料の製造方法は、マグネシウムアミドと水素化リチウムとの複合体にリチウムイオン伝導体を添加する添加工程と、前記リチウムイオン伝導体添加後の複合体を高エネルギーのミリング処理により混合する混合工程と、を含み、ナノ複合体としてなる水素貯蔵材料を製造することを特徴としている。リチウムイオン伝導体を高エネルギーのミリング処理で混合することで十分な混合が達成され、混合されたリチウムイオン伝導体により水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなる。その結果、製造される水素貯蔵材料について水素放出温度の高温化および特性劣化を防止できる。   (4) Moreover, the method for producing a hydrogen storage material according to the present invention includes an addition step of adding a lithium ion conductor to a composite of magnesium amide and lithium hydride, and a composite after addition of the lithium ion conductor. And a mixing step of mixing by a high energy milling process, characterized in that a hydrogen storage material as a nanocomposite is produced. Thorough mixing is achieved by mixing lithium ion conductors with high-energy milling treatment, and primary particles of hydrogen storage materials are not easily coarsened even if hydrogen is occluded and released repeatedly by the mixed lithium ion conductors. . As a result, it is possible to prevent an increase in the hydrogen release temperature and deterioration of characteristics of the produced hydrogen storage material.

(5)本発明に係る水素貯蔵材料の製造方法は、金属マグネシウムとリチウムアミドとの複合体にリチウムイオン伝導体を添加する添加工程と、前記リチウムイオン伝導体添加後の複合体を高エネルギーのミリング処理により混合する混合工程と、前記混合後の複合体を加圧水素雰囲気下で、加熱する水素化工程と、前記水素化後の複合体を再度高エネルギーのミリング処理により混合する再混合工程と、を含み、ナノ複合体としてなる水素貯蔵材料を製造することを特徴としている。リチウムイオン伝導体を高エネルギーのミリング処理で混合することで水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなる。その結果、製造される水素貯蔵材料について水素放出温度の高温化および特性劣化を防止できる。また、金属マグネシウムおよびリチウムアミドは、入手しやすいため、簡易な設備により短い時間で水素貯蔵材料を製造することができる。   (5) The method for producing a hydrogen storage material according to the present invention includes an addition step of adding a lithium ion conductor to a composite of magnesium metal and lithium amide, and a high-energy composite after the addition of the lithium ion conductor. A mixing step of mixing by milling, a hydrogenation step of heating the mixed complex in a pressurized hydrogen atmosphere, and a remixing step of mixing the complex after hydrogenation again by high energy milling , And is characterized by producing a hydrogen storage material as a nanocomposite. By mixing lithium ion conductors with a high energy milling process, primary particles of the hydrogen storage material are not easily coarsened even if hydrogen is occluded and released repeatedly. As a result, it is possible to prevent an increase in the hydrogen release temperature and deterioration of characteristics of the produced hydrogen storage material. Moreover, since metal magnesium and lithium amide are easy to obtain, a hydrogen storage material can be manufactured in a short time with simple equipment.

本発明によれば、リチウムイオン伝導体の作用により、水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなり、水素貯蔵材料の水素放出温度の高温化および特性劣化を防止できる。   According to the present invention, the action of the lithium ion conductor makes it difficult for the primary particles of the hydrogen storage material to become coarse even after repeated occlusion and release of hydrogen, thereby preventing the hydrogen storage temperature of the hydrogen storage material from being increased and the characteristics from being deteriorated. it can.

[水素貯蔵材料の構成]
本発明に係る水素貯蔵材料は、マグネシウムアミド(Mg(NH)と水素化リチウム(LiH)のナノ複合体にリチウムイオン伝導体が混合されており、ナノ複合体として形成されている。マグネシウムアミドと水素化リチウムのナノ複合体では、マグネシウムアミドと水素化リチウムとがナノメートルサイズで微細に相互分散しつつ、安定な組織が形成されている。水素貯蔵材料は、混合物中の3Mg(NH+8LiH⇔Mg+4LiNH+8Hという反応により水素を吸蔵および放出する。上記の式で、右向きが水素の放出反応、左向きが水素の吸蔵反応である。
[Composition of hydrogen storage material]
The hydrogen storage material according to the present invention is formed as a nanocomposite in which a lithium ion conductor is mixed with a nanocomposite of magnesium amide (Mg (NH 2 ) 2 ) and lithium hydride (LiH). In the nanocomposite of magnesium amide and lithium hydride, a stable structure is formed while magnesium amide and lithium hydride are finely dispersed in a nanometer size. The hydrogen storage material occludes and releases hydrogen by a reaction of 3Mg (NH 2 ) 2 + 8LiH⇔Mg 3 N 2 + 4Li 2 NH + 8H 2 in the mixture. In the above formula, the hydrogen release reaction is on the right and the hydrogen storage reaction is on the left.

また、混合量としては、マグネシウムアミドと水素化リチウムの複合体に対して、リチウムイオン伝導体が10重量%以上40重量%以下混合されていることが好ましい。リチウムイオン伝導体が10重量%以上混合されていることにより、その作用により水素貯蔵材料の一次粒子の粗大化が防止される。一方、混合されているリチウムイオン伝導体が40重量%以下であることにより、マグネシウムアミドと水素化リチウムの複合体による水素の吸蔵および放出量が十分に維持される。   The mixing amount is preferably such that the lithium ion conductor is mixed in an amount of 10 wt% to 40 wt% with respect to the composite of magnesium amide and lithium hydride. When 10% by weight or more of the lithium ion conductor is mixed, the action prevents the primary particles of the hydrogen storage material from becoming coarse. On the other hand, when the mixed lithium ion conductor is 40% by weight or less, the amount of hydrogen absorbed and released by the composite of magnesium amide and lithium hydride is sufficiently maintained.

本発明に係る水素貯蔵材料を含め、一般的に水素貯蔵材料の水素放出がピークとなる温度は、製造直後のものよりも水素の放出および吸蔵を経験したものの方が高くなる。これは水素の放出および吸蔵により、水素貯蔵材料の一次粒子が粗大化することが影響している。一次粒子が粗大化すると、水素の吸蔵および放出の機能が低下し、水素放出のピーク温度が高温側にシフトする。本発明に係る水素貯蔵材料は、混合されたリチウムイオン伝導体の作用により、水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなり、水素放出温度の高温化および特性劣化を防止できる。   In general, the temperature at which the hydrogen release of the hydrogen storage material has a peak, including the hydrogen storage material according to the present invention, is higher when the hydrogen is released and occluded than immediately after production. This is because the primary particles of the hydrogen storage material become coarse due to the release and occlusion of hydrogen. When the primary particles are coarsened, the function of occlusion and release of hydrogen is lowered, and the peak temperature of hydrogen release is shifted to the high temperature side. The hydrogen storage material according to the present invention makes it difficult for the primary particles of the hydrogen storage material to be coarsened even by repeated occlusion and release of hydrogen due to the action of the mixed lithium ion conductor. Can be prevented.

水素貯蔵材料には、水素を吸蔵した状態のものおよび水素を放出した状態のものの両方が含まれる。すなわち、マグネシウムアミド(Mg(NH)と水素化リチウム(LiH)の複合体にリチウムイオン伝導体が混合された混合物が水素を吸蔵した状態の水素貯蔵材料である。また、窒化マグネシウム(Mg)とリチウムイミド(LiNH)の複合体にリチウムイオン伝導体が混合された混合物が水素を放出した状態の水素貯蔵材料である。吸蔵状態または放出状態の構成を特定すれば、一つの水素貯蔵材料を特定することができる。反応途中においては、水素貯蔵材料にマグネシウムアミド(Mg(NH)、水素化リチウム(LiH)、窒化マグネシウム(Mg)、およびリチウムイミド(LiNH)が含まれる。 Hydrogen storage materials include both those in which hydrogen has been occluded and those in which hydrogen has been released. That is, a hydrogen storage material in a state where a mixture of a magnesium amide (Mg (NH 2 ) 2 ) and lithium hydride (LiH) mixed with a lithium ion conductor occludes hydrogen. Moreover, it is a hydrogen storage material in a state where a mixture of a lithium ion conductor mixed with a composite of magnesium nitride (Mg 3 N 2 ) and lithium imide (Li 2 NH) releases hydrogen. If the configuration of the occlusion state or the release state is specified, one hydrogen storage material can be specified. During the reaction, magnesium amide (Mg (NH 2 ) 2 ), lithium hydride (LiH), magnesium nitride (Mg 3 N 2 ), and lithium imide (Li 2 NH) are included in the hydrogen storage material.

水素貯蔵材料には、リチウムイオン伝導体として、リチウムランタンチタネート(Li0.35La0.5TiO)が混合されていることが好ましい。混合されたリチウムランタンチタネートが、水素貯蔵材料の一次粒子の粗大化を防止し、水素放出温度の高温化を抑止することが可能となる。なお、リチウムイオン伝導体には、リチウムニオベート(LiNbO)も含まれる。リチウムランタンチタネート(Li0.35La0.5TiO)およびリチウムニオベート(LiNbO)の添加についての検証結果については後述する。 In the hydrogen storage material, lithium lanthanum titanate (Li 0.35 La 0.5 TiO 3 ) is preferably mixed as a lithium ion conductor. The mixed lithium lanthanum titanate can prevent the primary particles of the hydrogen storage material from becoming coarse and suppress the increase in the hydrogen release temperature. The lithium ion conductor also includes lithium niobate (LiNbO 3 ). The verification results regarding the addition of lithium lanthanum titanate (Li 0.35 La 0.5 TiO 3 ) and lithium niobate (LiNbO 3 ) will be described later.

[水素貯蔵材料の製造方法]
上記のような水素貯蔵材料の製造方法を説明する。まず、リチウムイオン伝導体を準備する。リチウムイオン伝導体は、原料を溶媒中で混合攪拌し、混合されたものを仮焼および本焼することで得られる。次に、マグネシウムアミドと水素化リチウムの複合体にリチウムイオン伝導体を所定量添加する。このとき、マグネシウムアミドと水素化リチウムの複合体に対して、リチウムイオン伝導体が10重量%以上40重量%以下添加することが好ましい。
[Method for producing hydrogen storage material]
A method for producing the hydrogen storage material as described above will be described. First, a lithium ion conductor is prepared. The lithium ion conductor can be obtained by mixing and stirring the raw materials in a solvent, and calcining and firing the mixture. Next, a predetermined amount of lithium ion conductor is added to the composite of magnesium amide and lithium hydride. At this time, the lithium ion conductor is preferably added in an amount of 10 wt% to 40 wt% with respect to the composite of magnesium amide and lithium hydride.

次に、リチウムイオン伝導体添加後の複合体を、不活性ガス雰囲気または水素雰囲気で高エネルギーのミリング処理により混合する。不活性ガス雰囲気または水素雰囲気とするのは、酸化等による水素貯蔵材料の特性劣化を防止するためである。高エネルギーのミリング処理は、たとえば回転数500rpm以上で遊星型ボールミルにより8時間以上混合することにより行うことができる。高エネルギーのミリング処理により、混合物のメカノケミカル反応が進行する。このようにしてナノ複合体として構成される本発明の水素貯蔵材料を製造することができる。なお、上記の例では、混合に遊星型ボールミルを用いるが、振動ミル、ローラーミル、内外筒回転型ミル、アトライター、インナーピース型ミル、気流粉砕型ミル等を用いてもよい。また、不活性ガスとしては、たとえばアルゴンガス、窒素ガス、ヘリウムガス等を用いることができる。   Next, the composite after addition of the lithium ion conductor is mixed by a high energy milling process in an inert gas atmosphere or a hydrogen atmosphere. The reason why an inert gas atmosphere or a hydrogen atmosphere is used is to prevent deterioration of characteristics of the hydrogen storage material due to oxidation or the like. The high energy milling process can be performed, for example, by mixing for 8 hours or more with a planetary ball mill at a rotation speed of 500 rpm or more. The mechanochemical reaction of the mixture proceeds by high energy milling. Thus, the hydrogen storage material of this invention comprised as a nanocomposite can be manufactured. In the above example, a planetary ball mill is used for mixing, but a vibration mill, a roller mill, an inner / outer cylinder rotating mill, an attritor, an inner piece mill, an airflow grinding mill, or the like may be used. Moreover, as inert gas, argon gas, nitrogen gas, helium gas etc. can be used, for example.

このように、リチウムイオン伝導体を高エネルギーのミリング処理で混合することで十分な混合が達成され、混合されたリチウムイオン伝導体により水素の吸蔵および放出を繰り返しても水素貯蔵材料の一次粒子が粗大化し難くなる。その結果、製造される水素貯蔵材料について水素放出温度の高温化および特性劣化を防止できる。   In this way, sufficient mixing is achieved by mixing lithium ion conductors by high-energy milling treatment, and primary particles of the hydrogen storage material can be obtained even if hydrogen absorption and release are repeated by the mixed lithium ion conductors. It becomes difficult to become coarse. As a result, it is possible to prevent an increase in the hydrogen release temperature and deterioration of characteristics of the produced hydrogen storage material.

なお、上記の水素貯蔵材料の製造方法では、水素吸蔵状態の水素貯蔵材料を製造しているが、水素放出状態の水素貯蔵材料を製造してもよい。すなわち、所定比で混合された金属マグネシウム(Mg)とリチウムアミド(LiNH)との複合体にリチウムイオン伝導体を添加して混合し、水素化、再混合して水素貯蔵材料を製造してもよい。 In the above method for producing a hydrogen storage material, a hydrogen storage material in a hydrogen storage state is produced, but a hydrogen storage material in a hydrogen release state may be produced. That is, a lithium ion conductor is added to and mixed with a composite of metallic magnesium (Mg) and lithium amide (Li 2 NH) mixed at a predetermined ratio, and hydrogenated and remixed to produce a hydrogen storage material. May be.

この場合の最初の混合工程および再混合工程では、上記と同様に高エネルギーのミリング処理を行う。水素化工程では、水素を放出できる状態に混合物を変化させる。たとえば、処理温度140℃〜250℃で、水素ガスの圧力(分圧)を数十kPa以上にして水素化を行う。水素ガスの圧力は、0.1MPa以上であることが好ましい。処理温度が低すぎたり、水素ガスの圧力が低すぎたりすると反応が十分に進まない。一方、処理温度を所定温度より高くするには、設備負担が大きくなる。なお、熱処理の時間に制限はないが、温度に応じて水素化するためには所定時間以上をかける必要がある。   In the first mixing step and remixing step in this case, a high-energy milling process is performed in the same manner as described above. In the hydrogenation step, the mixture is changed to a state where hydrogen can be released. For example, hydrogenation is performed at a treatment temperature of 140 ° C. to 250 ° C. and a hydrogen gas pressure (partial pressure) of several tens of kPa or more. The pressure of hydrogen gas is preferably 0.1 MPa or more. If the treatment temperature is too low or the hydrogen gas pressure is too low, the reaction will not proceed sufficiently. On the other hand, in order to make the processing temperature higher than the predetermined temperature, the equipment burden increases. Although there is no limitation on the heat treatment time, it is necessary to take a predetermined time or more in order to hydrogenate depending on the temperature.

このようにして、水素放出状態の水素貯蔵材料を経由して水素吸蔵後の水素貯蔵材料を製造することも可能である。マグネシウムやリチウムアミドは、市販されているため、この方法により水素貯蔵材料の製造にかかる時間を短縮し、設備を簡略化することができる。   In this way, it is also possible to manufacture a hydrogen storage material after occlusion of hydrogen via the hydrogen storage material in a hydrogen-released state. Since magnesium and lithium amide are commercially available, this method can reduce the time required for producing the hydrogen storage material and simplify the equipment.

次に、本発明に係る水素貯蔵材料の作製および使用を行った実験結果を説明する。   Next, the experimental results of making and using the hydrogen storage material according to the present invention will be described.

[試料の作製]
まず、リチウムランタンチタネートを準備する。リチウムランタンチタネートの準備は、LiCO、LaおよびTiOを1:1:2となるように秤量し、エタノール中で混合攪拌する。その後、5℃/minで室温から800℃まで加熱し、800℃で4時間維持して第1の仮焼を行う。そして、5℃/minで室温から1150℃まで加熱し、12時間維持して第2の仮焼を行い、5℃/minで室温から1250℃まで加熱し、6時間維持して本焼を行う。
[Preparation of sample]
First, lithium lanthanum titanate is prepared. Lithium lanthanum titanate is prepared by weighing Li 2 CO 3 , La 2 O 3 and TiO 2 at 1: 1: 2 and mixing and stirring in ethanol. Thereafter, the first calcination is performed by heating from room temperature to 800 ° C. at 5 ° C./min and maintaining at 800 ° C. for 4 hours. Then, it is heated from room temperature to 1150 ° C. at 5 ° C./min, maintained for 12 hours and second calcined, heated from room temperature to 1250 ° C. at 5 ° C./min, and maintained for 6 hours. .

次に、モル比3:8のマグネシウムアミドと水素化リチウムの混合物にリチウムランタンチタネートを添加した。マグネシウムアミドと水素化リチウムの複合体に対して、それぞれ5wt%、10wt%、20wt%、30wt%、40wt%に相当するリチウムランタンチタネートを添加した混合物を作製した。   Next, lithium lanthanum titanate was added to a mixture of magnesium amide and lithium hydride in a molar ratio of 3: 8. A mixture was prepared by adding lithium lanthanum titanate corresponding to 5 wt%, 10 wt%, 20 wt%, 30 wt%, and 40 wt% to the composite of magnesium amide and lithium hydride, respectively.

そして、各混合物を回転数500prmで8時間、ボールミリングで混合した。このようにして、リチウムイオン伝導体としてリチウムランタンチタネートを添加した水素貯蔵材料を作製した。また、同様に、リチウムイオン伝導体としてリチウムニオベートを添加した水素貯蔵材料を作製した。   Then, each mixture was mixed by ball milling for 8 hours at 500 rpm. Thus, the hydrogen storage material which added lithium lanthanum titanate as a lithium ion conductor was produced. Similarly, a hydrogen storage material to which lithium niobate was added as a lithium ion conductor was produced.

[昇温脱離ガス分析]
リチウムイオン伝導体としてリチウムランタンチタネートおよびリチウムニオベートを添加した水素貯蔵材料のそれぞれについて、昇温脱離ガス分析(TPD)を行った。昇温脱離ガス分析は、対象物の昇温速度を制御しつつ、ガスの放出量を測定する分析方法である。試料には、リチウムランタンチタネートおよびリチウムニオベートの添加量がそれぞれ30wt%の試料を用いた。ボールミリングによる混合後の試料を5℃/分で昇温し、350℃を16時間維持して加熱し試料の温度に対する水素の放出量を測定した。なお、測定された放出量は、所定温度間隔ごとに測定される水素貯蔵材料の単位質量あたりの水素の放出量(μmol/g)である。
[Temperature desorption gas analysis]
Thermal desorption gas analysis (TPD) was performed on each of the hydrogen storage materials to which lithium lanthanum titanate and lithium niobate were added as lithium ion conductors. Thermal desorption gas analysis is an analysis method in which the amount of gas released is measured while controlling the rate of temperature increase of an object. As the sample, a sample in which the addition amount of lithium lanthanum titanate and lithium niobate was 30 wt% was used. The sample after mixing by ball milling was heated at 5 ° C./min, heated at 350 ° C. for 16 hours, and the amount of hydrogen released relative to the sample temperature was measured. The measured release amount is the hydrogen release amount (μmol / g) per unit mass of the hydrogen storage material measured at predetermined temperature intervals.

次に、上記の通り混合後に加熱排気した試料に、10MPaで水素を吸蔵させた。このとき、試料の温度を5℃/分で昇温し、200℃に12時間維持した。このようにして水素を吸蔵させた水素貯蔵材料を加熱し、試料の温度に対する水素の放出量を測定した。水素の放出がピークとなる温度は、混合後の試料よりも混合後に一度加熱排気し水素を吸蔵させたものの方が高くなるが、それぞれの試料についてこれらのピーク温度差を測定した。   Next, hydrogen was occluded at 10 MPa in the sample heated and exhausted after mixing as described above. At this time, the temperature of the sample was increased at 5 ° C./min and maintained at 200 ° C. for 12 hours. The hydrogen storage material in which hydrogen was occluded in this way was heated, and the amount of hydrogen released relative to the temperature of the sample was measured. The temperature at which hydrogen release reaches a peak is higher when the sample is heated and exhausted once after mixing and occluded hydrogen than the sample after mixing. The peak temperature difference was measured for each sample.

図1(a)〜(c)は、水素貯蔵材料の昇温脱離ガス分析の結果を示すグラフである。図1(a)は、リチウムイオン伝導体が混合されていない水素貯蔵材料について、混合後の試料a1および水素の再吸蔵後の試料a2の昇温脱離ガス分析結果を示すグラフである。図1(b)は、リチウムランタンチタネートが30wt%混合された水素貯蔵材料について、混合後の試料b1および水素の再吸蔵後の試料b2の昇温脱離ガス分析結果を示すグラフである。図1(c)は、リチウムニオベートが30wt%混合された水素貯蔵材料について、混合後の試料c1および水素の再吸蔵後の試料c2の昇温脱離ガス分析結果を示すグラフである。図2は、水素貯蔵材料の昇温脱離ガス分析の結果を示す表である。図2は、混合後の各試料a1、b1、c1の水素放出のピーク温度、再吸蔵後の各試料a2、b2、c2の水素放出のピーク温度、およびそれぞれのピーク温度差を示している。   1A to 1C are graphs showing the results of temperature programmed desorption gas analysis of a hydrogen storage material. FIG. 1 (a) is a graph showing the results of thermal desorption gas analysis of a sample a1 after mixing and a sample a2 after re-storage of hydrogen for a hydrogen storage material not mixed with a lithium ion conductor. FIG. 1B is a graph showing the temperature-programmed desorption gas analysis results of the sample b1 after mixing and the sample b2 after re-storage of hydrogen for the hydrogen storage material mixed with 30 wt% of lithium lanthanum titanate. FIG.1 (c) is a graph which shows the thermal desorption gas analysis result of the sample c1 after mixing, and the sample c2 after re-storage of hydrogen about the hydrogen storage material with which lithium niobate was mixed 30 wt%. FIG. 2 is a table showing the results of thermal desorption gas analysis of the hydrogen storage material. FIG. 2 shows the hydrogen release peak temperature of each sample a1, b1, c1 after mixing, the hydrogen release peak temperature of each sample a2, b2, c2 after re-occlusion, and the respective peak temperature differences.

図1、図2に示すように、リチウムイオン伝導体を添加していない試料の水素放出のピーク温度より、リチウムランタンチタネートまたはリチウムニオベートを添加した試料のピーク温度の方が小さいことが分かる。したがって、リチウムイオン伝導体の添加により、水素貯蔵材料の結晶化が抑制され、水素放出の温度を低温化することが分かった。また、リチウムイオン伝導体を添加した試料では、混合後試料の水素放出のピーク温度と再吸蔵後試料の水素放出のピーク温度との差が小さいことが分かった。したがって、リチウムイオン伝導体を添加した水素貯蔵材料の方が、繰り返しの使用による水素吸蔵および放出の機能が損なわれ難いことが分かった。特にリチウムランタンチタネートを添加した試料では、ピーク温度差が18℃であり、最も小さく、添加なしの場合の約半分である。   As shown in FIGS. 1 and 2, it can be seen that the peak temperature of the sample added with lithium lanthanum titanate or lithium niobate is lower than the peak temperature of hydrogen release of the sample not added with the lithium ion conductor. Therefore, it has been found that the addition of the lithium ion conductor suppresses the crystallization of the hydrogen storage material and lowers the temperature of hydrogen release. Further, it was found that in the sample to which the lithium ion conductor was added, the difference between the peak hydrogen release temperature of the sample after mixing and the peak hydrogen release temperature of the sample after re-occlusion was small. Accordingly, it has been found that the hydrogen storage material to which the lithium ion conductor is added is less likely to impair the function of hydrogen storage and release by repeated use. In particular, in the sample to which lithium lanthanum titanate was added, the peak temperature difference was 18 ° C., which was the smallest and about half that without the addition.

[粉末X線回折]
混合後に一度加熱排気し水素を吸蔵させた水素貯蔵材料の試料に対して、粉末X線回折を行いマグネシウムアミドと水素化リチウムの結晶化、すなわち一次粒子の粗大化の程度を検証した。図3は、水素貯蔵材料のX線回折ピークを示す図である。グラフの横軸は、回折角2θ、縦軸はX線強度を示している。試料には、添加なしのものとリチウムランタンチタネートを添加したものを使用した。
[Powder X-ray diffraction]
After mixing, a sample of a hydrogen storage material once heated and exhausted to occlude hydrogen was subjected to powder X-ray diffraction to verify the degree of crystallization of magnesium amide and lithium hydride, that is, the coarsening of primary particles. FIG. 3 is a diagram showing an X-ray diffraction peak of the hydrogen storage material. The horizontal axis of the graph indicates the diffraction angle 2θ, and the vertical axis indicates the X-ray intensity. Samples with no addition and those with lithium lanthanum titanate added were used.

プロファイルA、Bは、それぞれマグネシウムアミドと水素化リチウムの複合体に何も添加していない試料を250rpm、500rpmで混合したもののX線回折プロファイルである。プロファイルC、Dは、それぞれマグネシウムアミドと水素化リチウムの複合体にリチウムランタンチタネートを28wt%添加した試料を250rpm、500rpmで混合したもののX線回折プロファイルである。   Profiles A and B are X-ray diffraction profiles of samples prepared by adding nothing to the composite of magnesium amide and lithium hydride at 250 rpm and 500 rpm, respectively. Profiles C and D are X-ray diffraction profiles of samples prepared by adding 28 wt% of lithium lanthanum titanate to a composite of magnesium amide and lithium hydride at 250 rpm and 500 rpm, respectively.

図3に示すように、2θ=45°付近でプロファイルA、Bに表れているピークが、プロファイルC、Dには、表れていないことが分かる。これは結晶構造に基づくピークであると考えられ、リチウムランタンチタネートの添加により結晶化が抑制されていることが分かる。これは、試料中に高分散したリチウムランタンチタネートが水素吸蔵時における水素放出物質の結晶成長を抑制できることを示唆している。   As shown in FIG. 3, it can be seen that peaks appearing in profiles A and B near 2θ = 45 ° do not appear in profiles C and D. This is considered to be a peak based on the crystal structure, and it can be seen that crystallization is suppressed by the addition of lithium lanthanum titanate. This suggests that lithium lanthanum titanate highly dispersed in the sample can suppress the crystal growth of the hydrogen-releasing material during hydrogen storage.

[添加量依存性の実験]
次に、リチウムランタンチタネートの添加量の異なる試料について、混合後に一度加熱排気し水素を吸蔵させ、上記と同様に昇温脱離ガス分析を行い、水素放出のピーク温度を測定した。図4は、それぞれ各添加量の水素貯蔵材料について温度に対する水素放出量を示すグラフ、図5は、水素放出のピーク温度を示す表である。図中のp、q、r、s、tおよびuの記号は、リチウムランタンチタネートの添加量が、それぞれ0、5、10、20、30および40wt%の試料を示している。
[Addition Dependency Experiment]
Next, samples with different amounts of lithium lanthanum titanate were heated and exhausted once after mixing to occlude hydrogen, and temperature-programmed desorption gas analysis was performed in the same manner as described above to measure the peak temperature of hydrogen release. FIG. 4 is a graph showing the hydrogen release amount with respect to temperature for each hydrogen storage material of each addition amount, and FIG. 5 is a table showing the peak temperature of hydrogen release. The symbols p, q, r, s, t, and u in the figure indicate samples with 0, 5, 10, 20, 30, and 40 wt% of the addition amount of lithium lanthanum titanate, respectively.

図4、図5に示すように、リチウムランタンチタネートの添加量が増加するにつれて、水素放出のピーク温度が低温側にシフトしていることが分かる。添加量が5wt%のときは、無添加の場合と大きく異ならないが、添加量が10wt%以上では、水素放出温度のピークが低温側にシフトしているのが明かである。一方で、添加量が増加するにつれて、水素放出量が減少しており、無添加試料の水素放出量の積分値が、最初の水素貯蔵材料の5.7wt%であるのに対し、リチウムランタンチタネートを40wt%添加した試料の水素放出量の積分値は、3.1wt%であった。これより添加量を増加させた場合には、水素の吸蔵および放出の量が無添加のものの半分以下に減少するため、リチウムランタンチタネートの添加量は40wt%以下であることが好ましいと分かった。なお、上記の水素放出量の積分値は、実測値に(マグネシウムアミドと水素化リチウムの複合体の重量)/(水素貯蔵材料全体の重量)を掛けた補正値である。   As shown in FIGS. 4 and 5, it can be seen that the peak temperature of hydrogen release shifts to the low temperature side as the addition amount of lithium lanthanum titanate increases. When the addition amount is 5 wt%, it is not significantly different from the case of no addition, but when the addition amount is 10 wt% or more, it is clear that the peak of the hydrogen release temperature is shifted to the low temperature side. On the other hand, as the addition amount increases, the hydrogen release amount decreases, and the integral value of the hydrogen release amount of the non-added sample is 5.7 wt% of the initial hydrogen storage material, whereas lithium lanthanum titanate. The integrated value of the hydrogen release amount of the sample to which 40 wt% was added was 3.1 wt%. From this, when the addition amount was increased, the amount of occlusion and release of hydrogen was reduced to less than half that of the non-added one, and it was found that the addition amount of lithium lanthanum titanate is preferably 40 wt% or less. The integral value of the hydrogen release amount is a correction value obtained by multiplying the actually measured value by (weight of the composite of magnesium amide and lithium hydride) / (weight of the entire hydrogen storage material).

(a)〜(c)水素貯蔵材料の昇温脱離ガス分析の結果を示すグラフである。(A)-(c) It is a graph which shows the result of the temperature-programmed desorption gas analysis of a hydrogen storage material. 水素貯蔵材料の昇温脱離ガス分析の結果を示す表である。It is a table | surface which shows the result of the temperature-programmed desorption gas analysis of a hydrogen storage material. 水素貯蔵材料のX線回折ピークを示す図である。It is a figure which shows the X-ray-diffraction peak of a hydrogen storage material. 各添加量の水素貯蔵材料について温度に対する水素放出量を示すグラフである。It is a graph which shows the hydrogen release amount with respect to temperature about the hydrogen storage material of each addition amount. 各添加量の水素貯蔵材料について水素放出のピーク温度を示す表である。It is a table | surface which shows the peak temperature of hydrogen discharge | release about the hydrogen storage material of each addition amount.

Claims (5)

マグネシウムアミドと水素化リチウムの複合体にリチウムイオン伝導体が混合され、ナノ複合体としてなることを特徴とする水素貯蔵材料。   A hydrogen storage material comprising a composite of magnesium amide and lithium hydride mixed with a lithium ion conductor to form a nanocomposite. 前記リチウムイオン伝導体として、リチウムランタンチタネートが混合されてなることを特徴とする請求項1記載の水素貯蔵材料。   The hydrogen storage material according to claim 1, wherein lithium lanthanum titanate is mixed as the lithium ion conductor. 前記マグネシウムアミドと水素化リチウムの複合体に対して、前記リチウムイオン伝導体が10重量%以上40重量%以下混合されてなることを特徴とする請求項1または請求項2記載の水素貯蔵材料。   3. The hydrogen storage material according to claim 1, wherein the lithium ion conductor is mixed in an amount of 10 wt% to 40 wt% with respect to the composite of magnesium amide and lithium hydride. マグネシウムアミドと水素化リチウムとの複合体にリチウムイオン伝導体を添加する添加工程と、
前記リチウムイオン伝導体添加後の複合体を高エネルギーのミリング処理により混合する混合工程と、を含み、
ナノ複合体としてなる水素貯蔵材料を製造することを特徴とする水素貯蔵材料の製造方法。
An addition step of adding a lithium ion conductor to the composite of magnesium amide and lithium hydride;
Mixing the composite after addition of the lithium ion conductor by high energy milling, and
A method for producing a hydrogen storage material, comprising producing a hydrogen storage material as a nanocomposite.
金属マグネシウムとリチウムアミドとの複合体にリチウムイオン伝導体を添加する添加工程と、
前記リチウムイオン伝導体添加後の複合体を高エネルギーのミリング処理により混合する混合工程と、
前記混合後の複合体を加圧水素雰囲気下で、加熱する水素化工程と、
前記水素化後の複合体を再度高エネルギーのミリング処理により混合する再混合工程と、を含み、
ナノ複合体としてなる水素貯蔵材料を製造することを特徴とする水素貯蔵材料の製造方法。
An addition step of adding a lithium ion conductor to a composite of magnesium metal and lithium amide;
A mixing step of mixing the composite after addition of the lithium ion conductor by high energy milling;
A hydrogenation step of heating the composite after mixing in a pressurized hydrogen atmosphere;
Remixing the hydrogenated composite again by high energy milling, and
A method for producing a hydrogen storage material, comprising producing a hydrogen storage material as a nanocomposite.
JP2008044765A 2008-02-26 2008-02-26 Hydrogen storage material and method for producing the same Expired - Fee Related JP5050920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044765A JP5050920B2 (en) 2008-02-26 2008-02-26 Hydrogen storage material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044765A JP5050920B2 (en) 2008-02-26 2008-02-26 Hydrogen storage material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009202058A true JP2009202058A (en) 2009-09-10
JP5050920B2 JP5050920B2 (en) 2012-10-17

Family

ID=41144862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044765A Expired - Fee Related JP5050920B2 (en) 2008-02-26 2008-02-26 Hydrogen storage material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5050920B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804019A (en) * 2022-05-19 2022-07-29 重庆大学 Lithium niobate-doped modified Mg-based hydrogen storage material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008446A (en) * 2004-06-25 2006-01-12 Toyota Central Res & Dev Lab Inc Hydrogen storage method, hydrogen storage material, and fuel cell system using the same
JP2006007064A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Hydrogen storage material and manufacturing method thereof
JP2006247511A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305486A (en) * 2004-05-14 2006-11-09 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2006007064A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Hydrogen storage material and manufacturing method thereof
JP2006008446A (en) * 2004-06-25 2006-01-12 Toyota Central Res & Dev Lab Inc Hydrogen storage method, hydrogen storage material, and fuel cell system using the same
JP2006247511A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Hydrogen storage material, method for producing the same and method for releasing/absorbing hydrogen from/in the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804019A (en) * 2022-05-19 2022-07-29 重庆大学 Lithium niobate-doped modified Mg-based hydrogen storage material and preparation method thereof

Also Published As

Publication number Publication date
JP5050920B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
Simičić et al. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying
Simi? i? et al. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying
JP2017137571A (en) Metal hydride alloy having improved activation and high rate performance
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
KR101442813B1 (en) Porous carbon and method for preparing the same
US10364148B1 (en) Nanocomposite system for solid hydrogen storage
WO2006104079A1 (en) Hydrogen-storing materials and process for production of the same
JP4986101B2 (en) Hydrogen storage material and method for producing the same
Rounaghi et al. Mechanochemical synthesis of nanostructured metal nitrides, carbonitrides and carbon nitride: a combined theoretical and experimental study
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP5910242B2 (en) Method for producing lanthanum hexaboride fine particles, lanthanum hexaboride fine particles, lanthanum hexaboride sintered body, lanthanum hexaboride film, and organic semiconductor device
JP2006305486A (en) Hydrogen storage material and its manufacturing method
JP5050920B2 (en) Hydrogen storage material and method for producing the same
JP2009195903A (en) Destabilized catalytic borohydride for reversibly adsorbing hydrogen
JP2007117989A (en) Hydrogen storage material and its production method
KR101759720B1 (en) Porous carbon and method for preparing the same
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
Hazrati et al. Intrinsic defects and dopants in LiNH 2: a first-principles study
JP2011137207A (en) Hydrogen storage material and method for producing the same
JP2015526373A (en) Porous carbon and method for producing the same
JP4762579B2 (en) Hydrogen storage material, production method thereof, and hydrogen storage method
Zou et al. Enhancing the cycling stability of MgH 2 using nitrogen modified titanate
JP6322218B2 (en) Oxygen storage material and method for producing the same
CN113881880A (en) High-capacity Gd-Mg-Ni-based composite hydrogen storage material doped with fluoride and preparation method thereof
JP4575866B2 (en) Method for producing hydrogen storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees