JP2009200428A - Layered product, and its manufacturing method - Google Patents

Layered product, and its manufacturing method Download PDF

Info

Publication number
JP2009200428A
JP2009200428A JP2008043266A JP2008043266A JP2009200428A JP 2009200428 A JP2009200428 A JP 2009200428A JP 2008043266 A JP2008043266 A JP 2008043266A JP 2008043266 A JP2008043266 A JP 2008043266A JP 2009200428 A JP2009200428 A JP 2009200428A
Authority
JP
Japan
Prior art keywords
soft magnetic
ribbons
resin
laminate
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008043266A
Other languages
Japanese (ja)
Inventor
Hiromitsu Itabashi
弘光 板橋
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008043266A priority Critical patent/JP2009200428A/en
Publication of JP2009200428A publication Critical patent/JP2009200428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered product capable of preventing or restraining degradation of a magnetic characteristic when manufacturing the layered product becoming a magnetism application product using a soft magnetic thin strip having a nano-crystal structure; and its manufacturing method. <P>SOLUTION: This layered product is formed by laminating soft thin strips each having a nano-crystal structure by using a resin as an adhesive. In the layered product, the resin is solidified to form an organic SOG film. In the layered product, the space factor is not smaller than 80%; and B (80)/Bs being the ratio of magnetic flux density B (80) to saturated magnetic flux density Bs in an applied magnetic field 80 A/m in a D.C. magnetization characteristic measurement device is not smaller than 90%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁性積層体およびその製造方法に関し、特に、磁性材料からなる薄板と樹脂を用いて作製した磁性積層体であって、磁気応用製品、例えば、チョークコイル、高周波トランス、低周波トランス、リアクトル、パルストランス、昇圧トランス、ノイズフィルタ変圧器用トランス等、磁気センサ、磁気ヘッド、電磁気シ−ルド、電波吸収体、モ−タ、磁気ディスク、磁気応用搬送システム、マグネット、プリント配線基板、等に好適に用いられる磁性積層体およびその製造方法に関する。   The present invention relates to a magnetic laminate and a method for manufacturing the same, and in particular, a magnetic laminate produced using a thin plate made of a magnetic material and a resin, and a magnetic application product such as a choke coil, a high-frequency transformer, a low-frequency transformer, For reactors, pulse transformers, step-up transformers, transformers for noise filter transformers, etc., magnetic sensors, magnetic heads, electromagnetic shields, radio wave absorbers, motors, magnetic disks, magnetic application transport systems, magnets, printed wiring boards, etc. The present invention relates to a magnetic laminate suitably used and a method for producing the same.

近年、ノートパソコンや、PDA等の携帯機器等の普及、及び携帯機器の高性能化に伴い、携帯機器の小型化、薄型化、高効率化が求められている。このような機器において数多く使用されるトランス機器においては、さらなる高効率化および、さらなる薄型化が強く望まれている。   In recent years, with the spread of portable devices such as notebook personal computers and PDAs and the enhancement of the performance of portable devices, there has been a demand for smaller, thinner, and more efficient portable devices. In transformer devices that are frequently used in such devices, further higher efficiency and thinner thickness are strongly desired.

従来の小型のトランス機器に使用される磁性コアは、渦電流損失を減らすため、フェライト系の材料が用いられてきた。しかしながら、更なる薄型化を達成するためにフェライト系の材料よりも飽和磁束密度の大きな材料が望まれており、ナノ結晶の組織を持つ軟磁性材料を用いた磁性コアが使用されている。ところで、ナノ結晶の軟磁性材料を用いた磁気コアの製造方法をみると、軟磁性薄帯から打抜き、エッチングなどによって加工された薄板を積層し、それぞれ磁性材料の最適熱処理を行った後、これらに樹脂を含浸・硬化して作製している。
また、特許文献1や特許文献2などには、軟磁性薄帯に樹脂を塗布してアンテナなどの積層体とすることが記載されている。
Ferrite-based materials have been used for magnetic cores used in conventional small transformer devices in order to reduce eddy current loss. However, in order to achieve further reduction in thickness, a material having a saturation magnetic flux density larger than that of a ferrite-based material is desired, and a magnetic core using a soft magnetic material having a nanocrystalline structure is used. By the way, when looking at the manufacturing method of the magnetic core using the soft magnetic material of the nanocrystal, after laminating thin plates punched out from the soft magnetic ribbon and processed by etching, etc., each of these was subjected to the optimal heat treatment of the magnetic material. It is made by impregnating and curing resin.
Patent Documents 1 and 2 describe that a soft magnetic ribbon is coated with a resin to form a laminated body such as an antenna.

特開2007−329143号公報JP 2007-329143 A 特開2004−356468号公報JP 2004-356468 A

このように、従来においては、磁性材料を用いて製品を作製する場合には、いずれも最適熱処理を施した後に磁性材料の樹脂による含浸・熱硬化プロセスを経ているので、最適熱処理によって良好な磁気特性を持つようになった磁性材料であっても、その後の含浸・熱硬化プロセスによって、透磁率や鉄損等の磁気特性が劣化してしまうという問題がある。   Thus, in the past, when making a product using a magnetic material, the magnetic material is subjected to an impregnation / thermosetting process with the resin after being subjected to the optimum heat treatment. Even a magnetic material having properties has a problem that magnetic properties such as magnetic permeability and iron loss are deteriorated by the subsequent impregnation / thermosetting process.

したがって、本発明の主な目的は、ナノ結晶の組織を持つ軟磁性薄帯を用いて磁気応用製品となる積層体を製造する際に、磁気特性が劣化するのを防止または抑制できる積層体およびその製造方法を提供することにある。   Therefore, the main object of the present invention is to provide a laminate capable of preventing or suppressing the deterioration of magnetic properties when producing a laminate as a magnetic application product using a soft magnetic ribbon having a nanocrystalline structure. It is in providing the manufacturing method.

このような課題を解決するために、磁気応用製品となる軟磁性薄帯の積層体を製造するプロセスについて、従来からの樹脂の含浸・熱硬化プロセス、接着剤塗布プロセス等の加工プロセス等を見直した。その結果、軟磁性薄帯に磁性材料のナノ結晶化の熱処理に耐える耐熱性樹脂を用いて積層体を作成することにより、耐熱性樹脂を付与した後に軟磁性薄帯の熱処理を行えるようになる。その結果、熱硬化、切断等の歪みがかかる接着工程を先に行った後に、応力フリーの状態で軟磁性薄帯のナノ結晶化熱処理を行えるので、磁気特性を改善することができるようになり、製品の歩留まりや生産効率を向上させ、製造コストを減少させるに到った。   In order to solve these problems, we have reviewed the conventional processes such as resin impregnation / thermosetting process and adhesive coating process for the manufacturing process of soft magnetic ribbons, which are magnetic products. It was. As a result, it is possible to heat-treat the soft magnetic ribbon after applying the heat-resistant resin by making a laminate using a heat-resistant resin that can withstand the heat treatment for nanocrystallization of the magnetic material on the soft magnetic ribbon. . As a result, after performing the bonding process that is subject to distortion such as thermosetting and cutting, the nanocrystalline heat treatment of the soft magnetic ribbon can be performed in a stress-free state, so that the magnetic properties can be improved. This has led to improved product yield and production efficiency and reduced manufacturing costs.

本発明は、このような知見に基づくものであり、本発明の第1の態様によれば、ナノ結晶の組織を有する軟磁性薄帯が積層された積層体であって、薄帯間に樹脂が硬化されて有機SOG膜になっていることを特徴とするものである。
樹脂としては、有機SOG膜を得るための前駆体であり、硬化反応により有機SOG膜を得ることが出来るポリシロキサン系の樹脂を用いることができる。樹脂の厚さは0.5〜5μmとすることが好ましい。
The present invention is based on such knowledge, and according to the first aspect of the present invention, a laminated body in which soft magnetic ribbons having a nanocrystalline structure are laminated, and a resin is provided between the ribbons. Is cured to be an organic SOG film.
As the resin, a polysiloxane resin which is a precursor for obtaining an organic SOG film and can obtain an organic SOG film by a curing reaction can be used. The thickness of the resin is preferably 0.5 to 5 μm.

ナノ結晶化のための熱処理を、樹脂の硬化後や圧着工程後に行うことができるため、薄帯に応力が印加され無い状態で熱処理を施すことができ、歪によって角形性が低下することなく好ましい磁気特性を持つ積層体を製造できる。この積層体は、占積率が80%以上であって直流磁化特性測定装置での印加磁界80A/mにおける磁束密度B(80)と飽和磁束密度Bsの比であるB(80)/Bsが、90%以上である。   Since the heat treatment for nanocrystallization can be performed after the resin is cured or after the pressure-bonding step, the heat treatment can be performed in a state where no stress is applied to the ribbon, and it is preferable that the squareness is not deteriorated due to strain. A laminate with magnetic properties can be manufactured. This laminate has a space factor of 80% or more, and B (80) / Bs, which is the ratio of the magnetic flux density B (80) to the saturation magnetic flux density Bs at an applied magnetic field of 80 A / m in the DC magnetization characteristic measuring apparatus. 90% or more.

この角形性の良い積層体の製造方法として、ナノ結晶化される前のアモルファス状態の軟磁性薄帯にポリシロキサンベースの樹脂を塗布し、前記軟磁性薄帯を積層して結晶化温度以下の温度で熱処理することにより前記樹脂を硬化させて前記軟磁性薄帯同士を圧着し、その後、応力をかけない状態で結晶化温度以上の熱処理を施すことにより前記軟磁性薄帯をナノ結晶化させる工程を用いることができる。熱処理の際に応力を印加すると印加方向に結晶磁気異方性が誘導されるため、磁気特性が低下する。   As a method for producing a laminate with good squareness, a polysiloxane-based resin is applied to an amorphous soft magnetic ribbon before being nanocrystallized, and the soft magnetic ribbon is laminated to a temperature lower than the crystallization temperature. The resin is cured by heat treatment at a temperature and the soft magnetic ribbons are pressure-bonded to each other, and then the soft magnetic ribbon is nanocrystallized by applying a heat treatment at a temperature higher than the crystallization temperature without applying stress. A process can be used. When stress is applied during the heat treatment, magnetocrystalline anisotropy is induced in the direction of application, so that the magnetic properties deteriorate.

また、ナノ結晶化される前のアモルファス状態の軟磁性薄帯にポリシロキサンベースの樹脂を塗布し、前記軟磁性薄帯を積層して結晶化温度以下で熱処理することにより前記軟磁性薄帯同士を仮接着し、仮接着した前記軟磁性薄帯に打抜き加工を施し、この打抜き加工を施した前記軟磁性薄帯同士を仮接着した時よりも高温でかつ結晶化温度以下で熱処理することにより前記軟磁性薄帯同士を圧着した後、応力をかけない状態で結晶化温度以上の熱処理を施すことにより加工による歪を緩和することが可能である。   In addition, by applying a polysiloxane-based resin to the amorphous soft magnetic ribbon before being nanocrystallized, laminating the soft magnetic ribbon and heat-treating it at a temperature below the crystallization temperature, the soft magnetic ribbons Is subjected to a punching process on the soft magnetic ribbon that has been temporarily bonded, and heat treatment is performed at a temperature higher than that when the soft magnetic ribbons subjected to the punching process are temporarily bonded to each other at a temperature lower than the crystallization temperature. After the soft magnetic ribbons are pressure-bonded to each other, it is possible to alleviate the strain caused by processing by applying a heat treatment at a temperature equal to or higher than the crystallization temperature without applying stress.

ナノ結晶化の熱処理は500℃以上600℃以下とすることが好ましい。一方、樹脂の硬化や熱圧着の際の温度は500℃未満とすることが好ましい。熱処理温度が、500℃以下では、軟磁気特性を得るためのナノ結晶組織を形成することが困難であり、また600℃以上では、粒成長により、保持力が増大する。   The heat treatment for nanocrystallization is preferably 500 ° C. or higher and 600 ° C. or lower. On the other hand, it is preferable that the temperature at the time of resin curing and thermocompression bonding is less than 500 ° C. When the heat treatment temperature is 500 ° C. or lower, it is difficult to form a nanocrystalline structure for obtaining soft magnetic properties. When the heat treatment temperature is 600 ° C. or higher, the retention force increases due to grain growth.

本発明によれば、熱処理により微細結晶を析出する軟磁性金属薄帯を用いた積層体において、軟磁性薄帯にポリシロキサンベースの耐熱性樹脂を付与することで耐候性の優れた積層体を得ることができる。また、さらに、熱処理条件に適した接着剤を用いることで、ナノ結晶化する前の積層体を応力フリーの状態で熱処理することができ、
従来は困難であった熱処理温度に耐えうる積層体を得ることができ磁気特性、特に角形性や占積率が高く飽和磁束密度の高い積層体を得ることができる。また、従来の含浸硬化プロセスや接着剤塗布プロセスを不要にすることによる製造コストの低減・生産性の向上などの大きな効果が得られ実用に供することができる。
According to the present invention, in a laminate using a soft magnetic metal ribbon that precipitates fine crystals by heat treatment, a laminate having excellent weather resistance can be obtained by applying a polysiloxane-based heat-resistant resin to the soft magnetic ribbon. Obtainable. Furthermore, by using an adhesive suitable for the heat treatment conditions, the laminate before nanocrystallization can be heat treated in a stress-free state,
A laminate capable of withstanding the heat treatment temperature, which has been difficult in the past, can be obtained, and a laminate having high magnetic properties, particularly squareness and space factor, and a high saturation magnetic flux density can be obtained. In addition, the conventional impregnation curing process and the adhesive coating process are not required, and thus great effects such as reduction in manufacturing cost and improvement in productivity can be obtained and put to practical use.

本発明におけるナノ結晶の組織を有する軟磁性薄帯とは、例えば、特開平1−156451号に開示されるような、(Fe・Co)CuBSiM系(M=Nb,W,Ta,Zr,Hf,Ti,Mo)などの合金組織からなり、組織の50%以上が1000Å以下の微細な組織を有するものを指す。
これらは、溶湯をロール冷却により超急例して、アモルファス状態の薄帯とした後、結晶化温度以上で熱処理することで上記の微細な組織を持つようにナノ結晶化を行うものである。
The soft magnetic ribbon having a nanocrystalline structure in the present invention is, for example, (Fe · Co) CuBSiM type (M = Nb, W, Ta, Zr, Hf) as disclosed in JP-A-1-156451. , Ti, Mo) and the like, and 50% or more of the structure has a fine structure of 1000 mm or less.
In these, the molten metal is supercooled by roll cooling to form an amorphous ribbon, and then subjected to heat treatment at a temperature equal to or higher than the crystallization temperature to perform nanocrystallization so as to have the fine structure described above.

また、軟磁性薄帯に塗布するポリシロキサン系樹脂とは、主鎖としてケイ素−酸素結合が繰り返す高分子鎖構造を有しており、それに炭素を持つ有機成分が結合しているものを指す。このケイ素−酸素結合が極低温から高温まで、幅広い温度域で柔軟性を保つものである。樹脂を塗布する際の軟磁性薄帯はアモルファス状態である。
このポリシロキサン系樹脂を熱処理して硬化することにより。有機SOG膜が得られる。有機SOG膜とは、ケイ素化合部を有機溶剤に溶解した溶液を被覆媒体に塗布した後に焼成し、これにより主に生成されるSiO2の被膜を指す。有機SOG膜は、(化1)で表される繰り返し構造を有する。なお、(化1)中に示すRは、アルキル基を示している。
軟磁性薄帯の結晶化温度未満(100〜500℃)でこのように構造を変化させることができる。
In addition, the polysiloxane resin applied to the soft magnetic ribbon refers to a polymer chain structure in which silicon-oxygen bonds are repeated as a main chain, and an organic component having carbon bonded thereto. This silicon-oxygen bond maintains flexibility in a wide temperature range from a very low temperature to a high temperature. The soft magnetic ribbon when the resin is applied is in an amorphous state.
By heat-treating and curing this polysiloxane resin. An organic SOG film is obtained. The organic SOG film refers to a coating of SiO2 mainly produced by applying a solution in which a silicon compound portion is dissolved in an organic solvent to a coating medium and baking it. The organic SOG film has a repeating structure represented by (Chemical Formula 1). In addition, R shown in (Chemical Formula 1) represents an alkyl group.
The structure can be changed in this way below the crystallization temperature of the soft magnetic ribbon (100 to 500 ° C.).

Figure 2009200428
Figure 2009200428

本発明において、ポリシロキサン系樹脂は、軟磁性薄帯の片面もしくは両面に塗布される。この場合、塗布する面に均一にむらなく塗膜されることが好ましいが、磁気コア等の軟磁性薄帯の積層体を用いた種々の磁気応用製品としての機械的強度が得られるように付与されていればよく、部分的に付与されていてもよい。
軟磁性薄帯が積層された磁性基材を作製する場合は、多層コ−ティング方法あるいは熱プレス方法、または熱ロ−ル法、高周波溶着法などで積層することで積層構造を自由に作製することができる。
In the present invention, the polysiloxane resin is applied to one side or both sides of the soft magnetic ribbon. In this case, it is preferable that the coated surface is evenly and uniformly coated, but it is applied so as to obtain mechanical strength as various magnetic application products using a laminate of soft magnetic ribbons such as a magnetic core. It may be provided and may be provided partially.
When producing a magnetic base material on which soft magnetic ribbons are laminated, a laminated structure can be freely produced by laminating by a multilayer coating method, a hot press method, a thermal roll method, a high frequency welding method, or the like. be able to.

多層コ−ティング方法では、アモルファス状態の軟磁性薄帯の原反からロ−ルコ−タなどのコ−ティング装置を用いて軟磁性薄帯上に液状樹脂の塗膜を作りこれを乾燥させて軟磁性薄帯に耐熱性樹脂を付与する方法で作製することができる。軟磁性薄帯フープから引き出された軟磁性薄帯上に、コーティング用ロールでコーティング用液状樹脂が塗布されて液状樹脂の塗膜が形成され、その後、液状樹脂の塗膜が形成された複数の軟磁性薄帯がヒートロールで貼り合わせられ、積層体が送りロールで送出される。この状態では、樹脂は耐熱性樹脂の前駆体の状態であり、十分な耐熱構造とはなっていないが、磁性基材は、脆化しておらず、加工性が十分にある状態である。この状態で任意の形状の加工することも可能である。その後、任意の高さに積層し、樹脂を硬化させることによって、積層体を得ることが出来る。その後、熱処理を行うことで、所定の磁気特性が発現する。また、軟磁性薄帯に耐熱性樹脂を付与した多層構造の磁性基材を作製する場合には、上記多層コ−ティング方法に加えて、単一または多層コ−ティング基材を加圧、例えば熱プレスや熱ロ−ルなどにより加圧して積層することができる。熱プレス法では、軟磁性薄帯に耐熱性樹脂を付与したコーティング基材を複数積層したものを、熱プレスで加圧して樹脂を硬化させるとともに接着して積層体を形成し、その後に熱処理を施すことで、所定の磁気特性を発現させることが出来る。   In the multi-layer coating method, a liquid resin coating film is formed on a soft magnetic ribbon using a coating device such as a roll coater from an amorphous soft magnetic ribbon and dried. It can be produced by applying a heat-resistant resin to the soft magnetic ribbon. On the soft magnetic ribbon drawn from the soft magnetic ribbon hoop, a coating liquid resin is applied with a coating roll to form a liquid resin coating, and then a plurality of liquid resin coatings are formed. The soft magnetic ribbon is bonded by a heat roll, and the laminate is sent by a feed roll. In this state, the resin is a precursor of a heat-resistant resin and does not have a sufficient heat-resistant structure, but the magnetic substrate is not brittle and has sufficient workability. It is also possible to process an arbitrary shape in this state. Then, it can laminate | stack to arbitrary height and a laminated body can be obtained by hardening resin. Thereafter, predetermined magnetic properties are exhibited by performing heat treatment. When a magnetic base material having a multilayer structure in which a heat-resistant resin is applied to a soft magnetic ribbon, in addition to the multilayer coating method described above, a single or multilayer coating base material is pressurized, for example, It can be laminated by pressing with a hot press or a heat roll. In the hot press method, a laminate in which a plurality of coating base materials each having a heat-resistant resin added to a soft magnetic ribbon is pressed with a hot press to cure and bond the resin to form a laminate, followed by heat treatment. By applying, predetermined magnetic characteristics can be expressed.

なお、加圧時の温度は耐熱性樹脂の種類により異なるが、概ね、塗布膜の流動する温度近傍で積層接着することが好ましい。   In addition, although the temperature at the time of pressurization changes with kinds of heat resistant resin, it is preferable to laminate and bond in the vicinity of the temperature at which the coating film flows.

耐熱性樹脂を付与すると共に、目的とする磁性応用製品に使用されるように所望の形状にした軟磁性薄帯、例えば巻回または積層した軟磁性薄帯に、その軟磁性薄帯の磁気特性を発現させるためのナノ結晶化熱処理が施される。通常、ナノ磁性材料の熱処理温度は、少なくと500℃以上の高温であるため、耐熱性樹脂は、軟磁性薄帯の最適な磁気特性を発現させるために必要な熱処理温度に十分に耐える耐熱性の高い樹脂を選択する必要がある。例えば、ポリイミドなどの樹脂では500℃以上の熱処理温度では分解が著しいので使用するのが困難である。
それに対して、有機SOG材料は、塗布した時点では、ポリシロキサン樹脂からなる膜であるが、400℃以上での硬化処理を施すことによってSiO2化し、500℃以上の熱処理にも耐え得る膜となり、熱処理後も軟磁性薄帯との接着強度が保たれるとともに、軟磁性薄帯の最適熱処理温度で熱処理することができるため優れた磁気特性を示すことができる。
Applying heat-resistant resin and magnetic properties of soft magnetic ribbons to soft magnetic ribbons that are shaped as desired for use in the desired magnetic application products, such as wound or laminated soft magnetic ribbons A nanocrystallization heat treatment is performed to develop the. Usually, the heat treatment temperature of nanomagnetic materials is at least 500 ° C or higher, so that the heat-resistant resin has sufficient heat resistance to withstand the heat treatment temperature necessary to develop the optimum magnetic properties of the soft magnetic ribbon. It is necessary to select a resin having a high value. For example, a resin such as polyimide is difficult to use because it decomposes significantly at a heat treatment temperature of 500 ° C. or higher.
On the other hand, the organic SOG material is a film made of a polysiloxane resin at the time of application, but it is converted into SiO2 by applying a curing treatment at 400 ° C. or higher and can withstand heat treatment at 500 ° C. or higher. Even after the heat treatment, the adhesive strength with the soft magnetic ribbon is maintained, and since the heat treatment can be performed at the optimum heat treatment temperature of the soft magnetic ribbon, excellent magnetic properties can be exhibited.

(実施例1)
以下、本発明の実施例について示す。
軟磁性薄帯として、原子%で、FebalCuSi13Nbの合金組成からなるアモルファス状態の非晶質金属薄帯を使用した。薄帯の幅は約50mm,厚みは約18μmである。この薄帯に約1.7mPa・sの粘度のポリシロキサン樹脂溶液を塗布し、100℃で乾燥硬化させ、薄帯の両面に約1μmの耐熱性樹脂前駆体を形成した。その後、この樹脂が塗布された軟磁性薄帯を磁心の断面形状に打抜いた後に、熱圧着用の治具内に厚さ1mmの高さに積上げた。この積上げたものを450℃×30分間で熱圧着することによって、一体化して本発明の積層体とした。
次に、この積層体を圧力の掛からない条件で530℃×1hの熱処理を行ったその結果、良好な直流BH特性を得ていることを確認した。
また、比較として、ポリシロキサン樹脂以外の樹脂を用いたものでは、樹脂の耐熱性が不足するために軟磁性薄帯を積層後にナノ結晶化のための熱処理を行った際に、熱処理温度により分解してしまい、積層体とすることが出来なかった。
Example 1
Examples of the present invention will be described below.
As the soft magnetic ribbon, an amorphous metal ribbon in an amorphous state made of an alloy composition of Fe bal Cu 1 Si 13 B 8 Nb 4 at atomic% was used. The ribbon has a width of about 50 mm and a thickness of about 18 μm. A polysiloxane resin solution having a viscosity of about 1.7 mPa · s was applied to the ribbon and dried and cured at 100 ° C. to form a heat-resistant resin precursor of about 1 μm on both sides of the ribbon. Thereafter, the soft magnetic ribbon coated with this resin was punched into a cross-sectional shape of the magnetic core, and then piled up to a height of 1 mm in a thermocompression bonding jig. The stacked product was integrated by thermocompression bonding at 450 ° C. for 30 minutes to obtain the laminate of the present invention.
Next, as a result of heat-treating this laminated body at 530 ° C. × 1 h under conditions where no pressure was applied, it was confirmed that good direct current BH characteristics were obtained.
Also, as a comparison, when a resin other than polysiloxane resin is used, the heat resistance of the resin is insufficient, so when heat treatment for nanocrystallization is performed after laminating the soft magnetic ribbon, it decomposes depending on the heat treatment temperature. As a result, the laminate could not be formed.

Figure 2009200428
Figure 2009200428

(実施例2)
実施例1と同じアモルファス状態の軟磁性薄帯を使用し、同様にポリシロキサン樹脂溶液を塗布した。非晶質金属薄帯はロールから連続して引きだし、この引き出した軟磁性薄帯にコーティング用ロールでこのポリシロキサン樹脂を連続して塗布した。同様に複数の軟磁性薄帯5本を同時に引きだし、150℃に加熱したヒートロールで貼り合わせることで磁性基体を得た。ポリシロキサン樹脂溶液は加熱されて約1μmの耐熱性樹脂前駆体となっている。
この磁性基体を磁心形状に打抜き加工を行った。この打抜き加工を行った磁性基体を熱圧着用の治具内に厚さ1mmの高さに積上げた。この積上げたものを450℃×30分間で熱圧着することによって、一体化して本発明の積層体とした。
次に、この積層体を圧力の掛からない条件で530℃×1hの熱処理を行った。その結果、良好な直流BH特性を得ていることを確認した。
(Example 2)
The same amorphous soft magnetic ribbon as in Example 1 was used, and a polysiloxane resin solution was similarly applied. The amorphous metal ribbon was continuously drawn from the roll, and the polysiloxane resin was continuously applied to the drawn soft magnetic ribbon with a coating roll. Similarly, a plurality of soft magnetic ribbons were pulled out at the same time and bonded together with a heat roll heated to 150 ° C. to obtain a magnetic substrate. The polysiloxane resin solution is heated to become a heat-resistant resin precursor of about 1 μm.
This magnetic substrate was punched into a magnetic core shape. The punched magnetic substrate was stacked in a thermocompression bonding jig to a height of 1 mm. The stacked ones were integrated by thermocompression bonding at 450 ° C. for 30 minutes to obtain the laminate of the present invention.
Next, this laminated body was heat-treated at 530 ° C. × 1 h under conditions where no pressure was applied. As a result, it was confirmed that good DC BH characteristics were obtained.

(参考例1)
実施例1と同様に軟磁性薄帯にポリシロキサン樹脂溶液を塗布し、100℃で乾燥硬化させ、薄板の両面に約1μmの耐熱性樹脂前駆体を形成後、積層磁心形状に打抜いたものを治具内にセットし、1mmの高さに積上げ、530℃×1hの条件で熱圧着したところ、一体化した磁性積層板を得ることが出来たが、その磁気特性は、熱処理時の押し圧の効果により、B80の値を小さくすることが出来た。
(Reference Example 1)
As in Example 1, a polysiloxane resin solution was applied to a soft magnetic ribbon, dried and cured at 100 ° C., formed a heat-resistant resin precursor of about 1 μm on both sides of the thin plate, and then punched into a laminated magnetic core shape Was placed in a jig and stacked to a height of 1 mm and thermocompression bonded under the conditions of 530 ° C. × 1 h. As a result, an integrated magnetic laminate was obtained. Due to the effect of pressure, the value of B80 could be reduced.

Claims (6)

ナノ結晶の組織を有する軟磁性薄帯が積層された積層体であって、薄帯間に樹脂が硬化した有機SOG膜を有することを特徴とする積層体。 A laminate in which soft magnetic ribbons having a nanocrystalline structure are laminated, and an organic SOG film in which a resin is cured is provided between the ribbons. 前記有機SOG膜がポリシロキサン系樹脂を熱硬化させることにより形成されたことを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein the organic SOG film is formed by thermosetting a polysiloxane resin. 占積率が80%以上の軟磁性薄帯が積層された積層体であって直流磁化特性の印加磁界80A/mにおける磁束密度B(80)と飽和磁束密度Bsの比であるB(80)/Bsが、90%以上であることを特徴とする請求項1〜2に記載の積層体。 B (80), which is a laminate in which soft magnetic ribbons having a space factor of 80% or more are laminated, and is the ratio of magnetic flux density B (80) to saturation magnetic flux density Bs at an applied magnetic field of 80 A / m with DC magnetization characteristics / Bs is 90% or more, The laminated body of Claims 1-2 characterized by the above-mentioned. ナノ結晶の組織を有する軟磁性薄帯が積層された積層体の製造方法であって、ナノ結晶化される前のアモルファス状態の軟磁性薄帯にポリシロキサンベースの樹脂を塗布し、前記軟磁性薄帯を積層して結晶化温度以下の温度で熱処理することにより前記樹脂を硬化させて前記軟磁性薄帯同士を接着した後、結晶化温度以上の熱処理を施すことにより前記軟磁性薄帯をナノ結晶組織とさせることを特徴とする積層体の製造方法。 A method of manufacturing a laminate in which soft magnetic ribbons having a nanocrystalline structure are laminated, wherein a polysiloxane-based resin is applied to an amorphous soft magnetic ribbon before being nanocrystallized, and the soft magnetism is applied. After laminating the ribbons and heat-treating them at a temperature below the crystallization temperature, the resin is cured and the soft-magnetic ribbons are bonded to each other, and then the soft-magnetic ribbons are subjected to a heat treatment above the crystallization temperature. A method for producing a laminate, characterized by having a nanocrystalline structure. ナノ結晶の組織を有する軟磁性薄帯が積層された積層体の製造方法であって、ナノ結晶化される前のアモルファス状態の軟磁性薄帯にポリシロキサンベースの樹脂を塗布し、前記軟磁性薄帯を積層して結晶化温度以下で熱処理することにより前記軟磁性薄帯同士を仮接着し、仮接着した前記軟磁性薄帯に打抜き加工を施し、この打抜き加工を施した前記軟磁性薄帯同士を仮接着した時よりも高い温度かつ結晶化温度以下で熱処理することにより前記軟磁性薄帯同士を接着した後、結晶化温度以上の熱処理を施すことにより前記軟磁性薄帯をナノ結晶化させることを特徴とする積層体の製造方法。 A method of manufacturing a laminate in which soft magnetic ribbons having a nanocrystalline structure are laminated, wherein a polysiloxane-based resin is applied to an amorphous soft magnetic ribbon before being nanocrystallized, and the soft magnetism is applied. The soft magnetic ribbons are temporarily bonded by stacking the ribbons and heat-treated at a temperature below the crystallization temperature, and the soft magnetic ribbons that have been temporarily bonded are punched, and the soft magnetic ribbons that have been punched are subjected to punching. After the soft magnetic ribbons are bonded together by heat treatment at a temperature higher than that when the bands are temporarily bonded to each other and below the crystallization temperature, the soft magnetic ribbons are nanocrystallized by performing a heat treatment above the crystallization temperature. The manufacturing method of the laminated body characterized by making it form. 結晶化温度以下で熱処理して前記軟磁性薄帯同士を接合する際、積層した軟磁性薄帯の積層方向に応力を印加することを特徴とする請求項4又は請求項5に記載の積層体の製造方法。 The laminate according to claim 4 or 5, wherein when the soft magnetic ribbons are bonded together by heat treatment at a temperature lower than a crystallization temperature, stress is applied in the lamination direction of the laminated soft magnetic ribbons. Manufacturing method.
JP2008043266A 2008-02-25 2008-02-25 Layered product, and its manufacturing method Pending JP2009200428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043266A JP2009200428A (en) 2008-02-25 2008-02-25 Layered product, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043266A JP2009200428A (en) 2008-02-25 2008-02-25 Layered product, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009200428A true JP2009200428A (en) 2009-09-03

Family

ID=41143577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043266A Pending JP2009200428A (en) 2008-02-25 2008-02-25 Layered product, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009200428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009710A (en) * 2014-06-23 2016-01-18 Jfeスチール株式会社 Laminated electromagnetic steel sheet and method for producing the same
WO2017150441A1 (en) * 2016-02-29 2017-09-08 日立金属株式会社 Multilayer block core, multilayer block, and method for producing multilayer block
WO2019208651A1 (en) * 2018-04-25 2019-10-31 日立金属株式会社 Amorphous metal ribbon, method for processing same, and method for producing laminate
CN112350075A (en) * 2020-10-19 2021-02-09 内蒙古大学 Multilayer composite material with strong microwave absorption in GHz interval and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009710A (en) * 2014-06-23 2016-01-18 Jfeスチール株式会社 Laminated electromagnetic steel sheet and method for producing the same
WO2017150441A1 (en) * 2016-02-29 2017-09-08 日立金属株式会社 Multilayer block core, multilayer block, and method for producing multilayer block
JPWO2017150441A1 (en) * 2016-02-29 2018-12-27 日立金属株式会社 Laminated block core, laminated block, and laminated block manufacturing method
TWI733766B (en) * 2016-02-29 2021-07-21 日商日立金屬股份有限公司 Layered block core, layered block, and method of producing layered block
US11322281B2 (en) 2016-02-29 2022-05-03 Hitachi Metals, Ltd. Multilayer block core, multilayer block, and method for producing multilayer block
WO2019208651A1 (en) * 2018-04-25 2019-10-31 日立金属株式会社 Amorphous metal ribbon, method for processing same, and method for producing laminate
JPWO2019208651A1 (en) * 2018-04-25 2021-05-27 日立金属株式会社 Amorphous metal strip, its processing method, and method of manufacturing a laminate
JP7219869B2 (en) 2018-04-25 2023-02-09 株式会社プロテリアル Amorphous metal strip, processing method thereof, and method for manufacturing laminate
CN112350075A (en) * 2020-10-19 2021-02-09 内蒙古大学 Multilayer composite material with strong microwave absorption in GHz interval and preparation method thereof

Similar Documents

Publication Publication Date Title
US7075402B1 (en) Method for treating a brittle thin metal strip and magnetic parts made from a nanocrystalline alloy strip
JP4537712B2 (en) Magnetic substrate, laminate of magnetic substrate, and method for producing laminate
JP2008213410A (en) Laminated sheet and manufacturing method of laminate
JP2012521649A (en) Laminated core made of soft magnetic material, and method of joining core single-layer plates by adhesive force to form soft magnetic laminated core
JP2023052730A (en) Laminate of soft magnetic alloy ribbon
JP2009200428A (en) Layered product, and its manufacturing method
WO1986005314A1 (en) Laminate of thinamorphous alloy strip, core made of thin amorphous alloy strip, and process for their production
JP2007221869A (en) Laminate
JP2006060432A (en) Radio wave transmitting and receiving antenna
KR102315813B1 (en) Heat dissipation member for reception device module of wireless power charger, Reception device module of wireless power charger containing the same and Reception device of wireless power charger containing the same
DE112004001813B4 (en) Laminate of magnetic substrates and process for its preparation
WO2009125639A1 (en) Wound magnetic core and process for production thereof
JP2006131964A (en) Method for manufacturing electromagnetic wave absorbing sheet
JP2735295B2 (en) Planar inductor
JP4145223B2 (en) Thin metal plate and manufacturing method thereof
JP2003100523A (en) Low-noise laminated core and wound core using high- silicon steel plate
JP2005109209A (en) Magnetic base, magnetic laminate, and manufacturing method thereof
JP2008135713A (en) Method of producing laminate-type soft magnetic sheet
JP6668113B2 (en) Inductor
WO2023243697A1 (en) Multilayer soft magnetic alloy thin strip and method for producing same, and laminated core and method for producing same
Soinski et al. The applicability of nanocrystalline stacked cores for power electronics
JP4522688B2 (en) Magnetic substrate and laminate and method for producing the same
JP2005104009A (en) Magnetic base material, laminate thereof and use of them
WO2024048064A1 (en) Method for manufacturing layered body of iron-based amorphous alloy
JP2004119403A (en) Magnetic laminate