JP2009200283A - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
JP2009200283A
JP2009200283A JP2008041023A JP2008041023A JP2009200283A JP 2009200283 A JP2009200283 A JP 2009200283A JP 2008041023 A JP2008041023 A JP 2008041023A JP 2008041023 A JP2008041023 A JP 2008041023A JP 2009200283 A JP2009200283 A JP 2009200283A
Authority
JP
Japan
Prior art keywords
refractive index
medium
light emitting
light
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008041023A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamura
隆之 島村
Masayuki Ono
雅行 小野
Reiko Taniguchi
麗子 谷口
Eiichi Sato
栄一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008041023A priority Critical patent/JP2009200283A/en
Publication of JP2009200283A publication Critical patent/JP2009200283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting element having the improved extraction efficiency of light from a luminescence particle and high emission efficiency, and facilitating area enlargement. <P>SOLUTION: A light-emitting element includes a pair of opposing electrodes and a light-emitting layer clamped by the pair of electrodes. The light-emitting layer is configured in such a way that first and second media having different refractive indexes are laminated in order from a front face side to a back face side in a light emission extraction direction and the luminescence particle is disposed in a border region of the first and second media so as to come into contact with each medium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直流電流によって動作する発光素子に関する。   The present invention relates to a light emitting element that operates with a direct current.

直流電流により動作する発光素子の中でも、特に、青色発光ダイオード(Blue−LED;Blue Light Emitting Diode)、紫外発光ダイオード(UV−LED;Ultra−Violet Light Emitting Diode)などの発光素子に使用される実用的な半導体材料として、窒化ガリウム(GaN),窒化インジウム・ガリウム混晶(InGaN),窒化アルミニウム・ガリウム混晶(AlGaN)あるいは窒化インジウム・アルミニウム・ガリウム混晶(InAlGaN)に代表されるGaN系半導体が注目されており、その研究開発が活発に行われている。   Among light-emitting elements that operate by direct current, in particular, they are used in light-emitting elements such as blue light-emitting diodes (Blue-LEDs) and ultraviolet light-emitting diodes (UV-LEDs; Ultra-Violet Light Emitting Diodes). GaN-based semiconductors typified by gallium nitride (GaN), indium nitride / gallium mixed crystal (InGaN), aluminum nitride / gallium mixed crystal (AlGaN) or indium nitride / aluminum / gallium mixed crystal (InAlGaN) as typical semiconductor materials Is attracting attention, and its research and development is actively underway.

このようなGaN系半導体は、従来、MOCVD(Metal Organic Chemical Vapor Deposition;有機金属化学気相成長)法を用いて基板上に成長させることにより単結晶薄膜として作製されている。しかしながら、MOCVD法によりGaN系半導体の単結晶薄膜を大面積で生成することは極めて困難である。   Such a GaN-based semiconductor is conventionally produced as a single crystal thin film by growing it on a substrate by using a MOCVD (Metal Organic Chemical Vapor Deposition) method. However, it is extremely difficult to produce a single crystal thin film of a GaN-based semiconductor with a large area by MOCVD.

一方、直流電流により動作する発光素子のもう一つの候補として、有機ELが挙げられる。有機ELは蒸着法など安価なプロセスを用いることができ、かつガラス等安価な基板を使用できるため安価に製造できるメリットがある。しかしながら、有機ELは信頼性が十分でないことが問題になっている。   On the other hand, organic EL is another candidate for a light-emitting element that operates by direct current. Organic EL can be manufactured at low cost because it can use an inexpensive process such as vapor deposition and can use an inexpensive substrate such as glass. However, the problem is that organic EL is not sufficiently reliable.

このため、無機発光体として薄膜ではなく粒子を用い、発光粒子を並べることにより発光素子とする手段が提案されている。前記手段のメリットとしては、無機薄膜型直流発光素子に対して、無機発光体を基板等の影響を受けずに生成できるため結晶性を高くできることや、大画面化が容易であることがあげられる。また、有機ELに対しては、発光体に無機物を使用できるため信頼性を向上できるという利点がある。   For this reason, there has been proposed means for using a particle instead of a thin film as the inorganic phosphor and arranging the phosphor particles to form a light emitting element. The merit of the above means is that, for an inorganic thin film type DC light emitting device, an inorganic light emitting body can be generated without being affected by a substrate or the like, so that crystallinity can be increased and a large screen can be easily formed. . In addition, for organic EL, there is an advantage that reliability can be improved because an inorganic substance can be used for the light emitter.

無機発光体粒子としては、前出のGaNをはじめとする窒化物半導体が望ましい。高輝度が実現でき、かつ信頼性も高いためである。しかしながら、窒化物半導体は屈折率が高く、光取り出し効率が低いという課題がある。   As the inorganic phosphor particles, nitride semiconductors such as GaN described above are desirable. This is because high luminance can be realized and reliability is high. However, the nitride semiconductor has a problem that the refractive index is high and the light extraction efficiency is low.

そこで、前記課題を解決する手段の事例として、窒化物よりなる屈折率n1を有する蛍光体粒子が、屈折率n2の被膜に覆われ、かつ屈折率n3の媒体に分散されている波長変換部材が提案されている。この波長変換部材では、下記関係式、
√(n1×n3)−0.2<n2<√(n1×n3)+0.2
を満たすことにより、光取出し効率を向上させている(例えば、特許文献1参照。)。
Therefore, as an example of means for solving the above problem, there is provided a wavelength conversion member in which phosphor particles made of nitride having a refractive index n1 are covered with a film having a refractive index n2 and dispersed in a medium having a refractive index n3. Proposed. In this wavelength conversion member, the following relational expression:
√ (n1 × n3) −0.2 <n2 <√ (n1 × n3) +0.2
By satisfying the above, the light extraction efficiency is improved (for example, see Patent Document 1).

特開2007−126536号公報JP 2007-126536 A

しかしながら、特許文献1に記載の従来技術によっても、依然として光取出し効率が低いという課題がある。それは、蛍光体粒子に対して被膜が一様に覆われているため、光取出し側と背面側と同量の光が放射されるため、背面側に放射される光が無駄になってしまうためである。   However, the conventional technique described in Patent Document 1 still has a problem that the light extraction efficiency is low. This is because the coating is uniformly covered with the phosphor particles, and the same amount of light is emitted from the light extraction side and the back side, so that the light emitted to the back side is wasted. It is.

そこで本発明の目的は、発光粒子からの光の取出し効率を向上させた、発光効率が高く大面積化が容易な発光素子を提供することである。   Accordingly, an object of the present invention is to provide a light-emitting element that has improved light extraction efficiency from light-emitting particles, has high light-emission efficiency, and can easily increase the area.

本発明に係る発光素子は、対向する一対の電極と、
前記一対の電極に挟持された発光層と、
を備え、
前記発光層は、屈折率が互いに異なる第1及び第2の媒体が発光取り出し方向の前面側から背面側について前記第1の媒体、前記第2の媒体の順に積層し、発光粒子が前記第1及び第2の媒体の境界領域にそれぞれの媒体と少なくとも接するように配置されて構成されていることを特徴とする。
A light emitting device according to the present invention includes a pair of opposing electrodes,
A light emitting layer sandwiched between the pair of electrodes;
With
The light emitting layer is formed by laminating first and second media having different refractive indexes from the front side to the back side in the light emission direction in the order of the first medium and the second medium. And the second medium is arranged so as to be in contact with each medium at least in the boundary region.

また、前記発光取り出し方向について、前面側の前記第1の媒体の屈折率をn1、背面側の前記第2の媒体の屈折率をn2とすると、
n2<n1
の関係を満たし、2つの媒体において前記第1の媒体が高屈折率媒体であって、前記第2の媒体が低屈折率媒体であってもよい。
Further, in the light emission extraction direction, if the refractive index of the first medium on the front side is n1, and the refractive index of the second medium on the back side is n2,
n2 <n1
In the two media, the first medium may be a high refractive index medium and the second medium may be a low refractive index medium.

さらに、前記発光粒子の屈折率をn3とした時、2つの媒体における低屈折率媒体の前記第2の媒体の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たすものであってもよい。
Furthermore, when the refractive index of the luminescent particles is n3, the relationship between the refractive index n2 of the second medium of the low refractive index medium in the two media is
n2 <n3-0.8
May be satisfied.

2つの媒体における高屈折率媒体の前記第1の媒体の屈折率n1と前記発光粒子の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たすものであってもよい。
The relationship between the refractive index n1 of the first medium of the high refractive index medium and the refractive index n3 of the luminescent particles in two media is:
n3-0.5 <n1 <n3 + 0.5
May be satisfied.

またさらに、前記低屈折率媒体と接している前記発光粒子の接触面は、前記発光粒子の前記発光取り出し方向の前面側にあたる半球表面の半分以下を含むと共に、前記発光粒子の背面側にあたる半球表面の半分以上を含むものであってもよい。   Further, the contact surface of the luminescent particles in contact with the low refractive index medium includes a half or less of a hemispherical surface corresponding to the front side of the luminescent particle in the emission extraction direction, and a hemispherical surface corresponding to the back side of the luminescent particle. It may contain more than half.

前記発光層は、前記第1及び第2の媒体の境界面が、前記発光粒子の前記発光取り出し方向の前面側の半球表面の半分から背面側の半球表面の半分の間に位置するように前記発光粒子を配置してもよい。   The light emitting layer is arranged such that a boundary surface between the first medium and the second medium is located between a half of the front hemispherical surface and a half of the rear hemispherical surface in the emission extraction direction of the light emitting particles. Luminescent particles may be arranged.

前記発光層は、前記発光粒子が前記第1及び第2の媒体の境界領域に一列に並んで構成されていてもよい。   The light emitting layer may be configured such that the light emitting particles are arranged in a line in a boundary region between the first and second media.

本発明に係る発光素子は、対向する一対の電極と、
前記一対の電極に挟持された発光層と、
を備え、
前記発光層は、第1の媒体中に発光粒子が分散して構成され、前記発光粒子は、発光取り出し方向の背面側の粒子表面が前記第1の媒体の屈折率n1より低い屈折率n2を有する第2の媒体で被覆されていることを特徴とする。
A light emitting device according to the present invention includes a pair of opposing electrodes,
A light emitting layer sandwiched between the pair of electrodes;
With
The light emitting layer is configured by dispersing light emitting particles in a first medium, and the light emitting particles have a refractive index n2 lower than the refractive index n1 of the first medium on the back surface in the light emission direction. It is covered with the 2nd medium which has.

また、発光粒子の屈折率n3と、前記第2の媒体の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たしてもよい。
Further, the relationship between the refractive index n3 of the luminescent particles and the refractive index n2 of the second medium is
n2 <n3-0.8
The following relational expression may be satisfied.

さらに、前記第1の媒体の屈折率n1と、前記発光粒子の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たしてもよい。
Furthermore, the relationship between the refractive index n1 of the first medium and the refractive index n3 of the luminescent particles is
n3-0.5 <n1 <n3 + 0.5
The following relational expression may be satisfied.

また、前記発光粒子は窒化物半導体からなるものであってもよい。   The light emitting particles may be made of a nitride semiconductor.

本発明に係る発光素子では、発光層において屈折率が互いに異なる2つの媒体を積層させ、その境界領域に発光粒子を配置している。また、この発光素子では、発光取り出し方向について前面側に高屈折率媒体、背面側に低屈折率媒体を積層している。さらに、2つの媒体の境界領域に発光粒子を配置している。また、前面側に比べて背面側に屈折率差のある低屈折率媒体を多く配置しているため、発光層からの発光を背面側で多く反射することができるので、前面側へ光を取り出しやすくなる。   In the light emitting device according to the present invention, two media having different refractive indexes are laminated in the light emitting layer, and the light emitting particles are arranged in the boundary region. Further, in this light emitting element, a high refractive index medium is laminated on the front side and a low refractive index medium is laminated on the back side in the light emission extraction direction. Furthermore, luminescent particles are arranged in the boundary region between the two media. In addition, since many low-refractive-index media having a difference in refractive index are arranged on the back side compared to the front side, a large amount of light emitted from the light emitting layer can be reflected on the back side. It becomes easy.

さらに、背面側の低屈折率媒体の屈折率n2と発光粒子の屈折率n3との差(|n3−n2|)が大きいほど、界面での反射率が高いため、前面側に取り出せる光が多くなる。さらに、前面側の高屈折率媒体n1と発光粒子の屈折率n3との差(|n3−n1|)が小さいほど、前面側での界面の反射率が低くなるので、前面側への光の取出し効率が高まる。   Furthermore, the greater the difference (| n3−n2 |) between the refractive index n2 of the low refractive index medium on the back side and the refractive index n3 of the luminescent particles, the higher the reflectivity at the interface, the more light that can be extracted to the front side. Become. Furthermore, the smaller the difference (| n3−n1 |) between the high refractive index medium n1 on the front side and the refractive index n3 of the luminescent particles, the lower the reflectance of the interface on the front side. Extraction efficiency increases.

本発明の実施の形態に係る発光素子について、添付の図面を用いて説明する。なお、図面において実質的に同一の部材には同一の符号を付している。   A light-emitting element according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1は、本実施の形態1に係る発光素子70の概略構成を表す断面図である。この発光素子70は、発光取り出し方向の前面側から見て、前面基板10、前面電極20、発光層30、背面電極50、背面基板60が順に配設されて構成されている。さらに、発光層30は、互いに屈折率が異なる2つの媒体のうち、発光取り出し方向の前面側から背面側について高屈折率媒体31、低屈折率媒体32の順に積層し、2つの媒体の境界領域に発光粒子40が配置されて構成されている。この発光粒子40は、その前面側で高屈折率媒体31と接し、背面側で低屈折率媒体32と接している。なお、図1は発光させるにあたって最低限の構成を示しており、他の部材がさらに配設されていても良い。
(Embodiment 1)
FIG. 1 is a cross-sectional view illustrating a schematic configuration of the light emitting element 70 according to the first embodiment. The light emitting element 70 is configured by a front substrate 10, a front electrode 20, a light emitting layer 30, a back electrode 50, and a back substrate 60 disposed in this order when viewed from the front side in the light emission extraction direction. Further, the light emitting layer 30 is formed by laminating a high refractive index medium 31 and a low refractive index medium 32 in this order from the front side to the back side in the light emission extraction direction among two media having different refractive indexes, and a boundary region between the two media. The luminescent particles 40 are arranged on the surface. The luminescent particles 40 are in contact with the high refractive index medium 31 on the front side and in contact with the low refractive index medium 32 on the back side. FIG. 1 shows a minimum configuration for emitting light, and other members may be further provided.

この発光素子70では、発光層30において発光取り出し方向について前面側に屈折率n1の高屈折率媒体31、背面側に屈折率n2の低屈折率媒体32が順に積層されている。さらに、発光粒子40の屈折率をn3とした時、低屈折率媒体32の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たすものであってもよい。
また、高屈折率媒体31の屈折率n1と発光粒子40の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たすものであってもよい。
In the light emitting element 70, in the light emitting layer 30, a high refractive index medium 31 having a refractive index n1 is laminated on the front side in the light emission extraction direction, and a low refractive index medium 32 having a refractive index n2 is laminated on the back side. Further, when the refractive index of the luminescent particles 40 is n3, the relationship with the refractive index n2 of the low refractive index medium 32 is
n2 <n3-0.8
May be satisfied.
In addition, the relationship between the refractive index n1 of the high refractive index medium 31 and the refractive index n3 of the luminescent particles 40 is
n3-0.5 <n1 <n3 + 0.5
May be satisfied.

この発光素子70では、低屈折率媒体32と接している発光粒子40の接触面は、発光粒子40の発光取り出し方向の前面側にあたる半球表面の半分以下を含むと共に、発光粒子40の背面側にあたる半球表面の半分以上を含むように発光粒子40を配置してもよい。あるいは、発光層30は、高屈折率媒体31と低屈折率媒体32の境界面が、発光粒子40の発光取り出し方向の前面側の半球表面の半分から背面側の半球表面の半分の間に位置するように発光粒子40を配置してもよい。   In the light emitting element 70, the contact surface of the light emitting particle 40 in contact with the low refractive index medium 32 includes less than half of the hemispherical surface corresponding to the front side in the light emission extraction direction of the light emitting particle 40 and corresponds to the back side of the light emitting particle 40. The luminescent particles 40 may be arranged so as to include more than half of the hemispherical surface. Alternatively, in the light emitting layer 30, the boundary surface between the high refractive index medium 31 and the low refractive index medium 32 is positioned between a half of the front hemispherical surface and a half of the rear hemispherical surface in the light emission extraction direction of the light emitting particles 40. The luminescent particles 40 may be arranged as described above.

また、発光層30は、発光粒子40が高屈折率媒体31と低屈折率媒体32の境界領域に一列に並んで構成してもよい。   Further, the light emitting layer 30 may be configured such that the light emitting particles 40 are arranged in a line in the boundary region between the high refractive index medium 31 and the low refractive index medium 32.

次に、この発光素子70を構成する各部材について説明する。
<前面基板>
前面基板10は、前面側から光を取り出すために光透過性の材料であることが望ましい。そして、前面基板10は、前面電極20の形成プロセスに耐えうる材料であることが要求される。なお、発光素子として形を維持できるのであれば、基板は背面基板のみでも良い。
Next, each member which comprises this light emitting element 70 is demonstrated.
<Front substrate>
The front substrate 10 is preferably made of a light transmissive material in order to extract light from the front side. The front substrate 10 is required to be a material that can withstand the process of forming the front electrode 20. Note that the back substrate may be the only substrate as long as the shape can be maintained as the light emitting element.

<背面基板>
背面基板60は、特には材料を問わないが、背面電極50の形成プロセスに耐えうることが要求される。
<Back substrate>
The back substrate 60 is not particularly limited in material, but is required to withstand the process of forming the back electrode 50.

<前面電極及び背面電極>
前面電極20および背面電極50の材料は、直流型電界発光素子とする場合において、陰極側に用いる材料はアルミニウム、マグネシウム、銀などの仕事関数の低い材料を用いることが望ましく、陽極側に用いる材料は、金やITOなど仕事関数の高い材料が好ましい。また、前面電極10は光透過性材料であることが好ましく、光透過性でない材料を用いる場合は発光をできるかぎり透過させるために100nm以下の膜厚にすることが望ましい。背面基板60に他元素をドーピングしたSi基板や金属基板などの導電性基板を使用している場合は背面電極50を必ずしも必要としない。
<Front electrode and back electrode>
In the case where the materials of the front electrode 20 and the back electrode 50 are DC type electroluminescent elements, the material used for the cathode side is preferably a material having a low work function such as aluminum, magnesium, silver, etc. The material used for the anode side Is preferably a material having a high work function such as gold or ITO. Further, the front electrode 10 is preferably made of a light transmissive material. When a non-light transmissive material is used, it is desirable to make the film thickness 100 nm or less in order to transmit light as much as possible. When a conductive substrate such as a Si substrate doped with other elements or a metal substrate is used for the back substrate 60, the back electrode 50 is not necessarily required.

<発光層>
発光層30は、発光取り出し方向の前面側から背面側について、高屈折率媒体31、低屈折率媒体32の順に積層している。また、高屈折率媒体31と低屈折率媒体の境界領域に発光粒子40が配置されている。
<Light emitting layer>
The light emitting layer 30 is laminated in the order of the high refractive index medium 31 and the low refractive index medium 32 from the front side to the back side in the light emission extraction direction. Further, the light emitting particles 40 are arranged in the boundary region between the high refractive index medium 31 and the low refractive index medium.

<高屈折率媒体及び低屈折率媒体>
高屈折率媒体31及び低屈折率媒体32の材料は、固体・液体・気体のいずれの状態であってもよい。また固体や液体に関しては有機物でも無機物でも良い。なお、高屈折率媒体31及び低屈折率媒体32のうち、リーク電流を防ぐためにどちらかが絶縁性物質であることが望ましい。また、ポーラスな膜であってもよい。さらに、媒体中に屈折率の異なる微粒子を分散させて屈折率を変化させたものでも良い。
<High refractive index medium and low refractive index medium>
The material of the high refractive index medium 31 and the low refractive index medium 32 may be in any state of solid, liquid, and gas. Further, the solid or liquid may be organic or inorganic. In addition, it is desirable that one of the high refractive index medium 31 and the low refractive index medium 32 is an insulating material in order to prevent leakage current. A porous film may also be used. Further, the refractive index may be changed by dispersing fine particles having different refractive indexes in the medium.

次に、高屈折率媒体31及び低屈折率媒体32の屈折率の条件について検討する。発光粒子40として用いるGaNの屈折率がn3=2.54である。そこで、屈折率n2がGaNに比べて0.8以上小さい(例えば、1.74以下)低屈折率媒体32の例としては、窒素ガス(n=1.00)、シリコーンオイル(n=1.45)、PEDOT(n=1.50)、PMMA(n=1.49)、SiO(n=1.45)などが挙げられる。上記各低屈折率媒体32の例は、その屈折率n2について、発光粒子40の屈折率n3との関係について、
n2<n3−0.8
の関係式を満たすことが好ましい。これによって、発光粒子40の背面側での低屈折率媒体32との界面での反射率が高くなり、前面側への光の取り出し効率を向上させることができる。
Next, the refractive index conditions of the high refractive index medium 31 and the low refractive index medium 32 will be examined. The refractive index of GaN used as the light emitting particle 40 is n3 = 2.54. Therefore, examples of the low refractive index medium 32 having a refractive index n2 that is 0.8 or more smaller than GaN (for example, 1.74 or less) include nitrogen gas (n = 1.00), silicone oil (n = 1. 45), PEDOT (n = 1.50), PMMA (n = 1.49), SiO 2 (n = 1.45), and the like. The example of each of the low refractive index media 32 described above is related to the refractive index n2 and the refractive index n3 of the luminescent particles 40.
n2 <n3-0.8
It is preferable that the relational expression is satisfied. Thereby, the reflectance at the interface with the low refractive index medium 32 on the back side of the luminescent particles 40 is increased, and the light extraction efficiency to the front side can be improved.

一方、高屈折率媒体31としては、アルミナ(n=1.75)、酸化亜鉛(n=2.0)、チタン酸バリウム(n=2.40)などが挙げられる。上記各高屈折率媒体31の例では、その屈折率n1について、発光粒子40の屈折率n3との関係について、
n3−0.5<n1<n3+0.5
の関係式を満たすことが好ましい。これによって、発光粒子40の前面側での高屈折率媒体31との界面での反射率が低くなり、前面側への光の取り出し効率を向上させることができる。
On the other hand, examples of the high refractive index medium 31 include alumina (n = 1.75), zinc oxide (n = 2.0), barium titanate (n = 2.40), and the like. In the example of each of the high refractive index media 31 described above, regarding the refractive index n1, the relationship between the refractive index n3 of the luminescent particles 40,
n3-0.5 <n1 <n3 + 0.5
It is preferable that the relational expression is satisfied. Thereby, the reflectance at the interface with the high refractive index medium 31 on the front surface side of the luminescent particles 40 is lowered, and the light extraction efficiency to the front surface side can be improved.

高屈折率媒体31及び低屈折率媒体32の成膜の方法としては、スピンコート法、ドクターブレード法、スパッタリング法、ゾルゲル法など、それぞれの材料に適した手段を選択することができる。   As a method for forming the high refractive index medium 31 and the low refractive index medium 32, means suitable for each material such as a spin coating method, a doctor blade method, a sputtering method, and a sol-gel method can be selected.

<発光粒子>
発光粒子40は、信頼性および輝度の面から窒化物半導体粒子を用いることが望ましい。窒化物半導体としては、特に窒化ガリウム(GaN)が好ましい。なお、GaNの屈折率n3は2.54である。窒化物半導体粒子の作成方法としては、ガリウム酸化物を窒化させて作成する方法(特開昭51−41686号公報)、ガリウム硫化物を窒化させて作成する方法(特開2001−49250号公報)、有機金属気相成長法を用いる方法(特許第3829464号)、ハライド気相成長法を用いる方法(特開2006−117735号公報)などが開示されており、適切に選択すればよい。直流型発光素子とする場合は、発光粒子として、n型半導体およびp型半導体を組み合わせたものを用いてもよい。なお、直流型発光素子とする場合は、発光粒子40に電子および正孔が電極から注入される必要がある。この場合には、発光粒子40が前面電極20および背面電極50に直接もしくは導電性材料を介してコンタクトしている必要がある。
<Luminescent particles>
The light emitting particles 40 are preferably made of nitride semiconductor particles in terms of reliability and luminance. As the nitride semiconductor, gallium nitride (GaN) is particularly preferable. Note that the refractive index n3 of GaN is 2.54. As a method for producing nitride semiconductor particles, a method of nitriding gallium oxide (Japanese Patent Laid-Open No. 51-41686) and a method of nitriding gallium sulfide (Japanese Patent Laid-Open No. 2001-49250) In addition, a method using a metal organic vapor phase growth method (Japanese Patent No. 3829464), a method using a halide vapor phase growth method (Japanese Patent Laid-Open No. 2006-117735), and the like are disclosed, and may be appropriately selected. In the case of a direct current light emitting element, a combination of an n-type semiconductor and a p-type semiconductor may be used as the light emitting particles. In the case of a direct current type light emitting device, electrons and holes need to be injected into the light emitting particles 40 from the electrodes. In this case, the luminescent particles 40 need to be in contact with the front electrode 20 and the back electrode 50 directly or through a conductive material.

図2の(a)〜(e)を用いて、本実施の形態1に係る発光素子70の製造プロセスについて説明する。なお、発光素子の製造プロセスはこれに限定されるものではない。
(a)まず、背面基板60上に背面電極50と、低屈折率媒体32とを順に積層する(図2(a))。
(b)次に、低屈折率媒体32上に発光粒子40を配設する(図2(b))。
(c)発光粒子40の上を覆って高屈折率媒体31を積層する(図2(c))。
(d)次いで、高屈折率媒体31の表面を削る(図2(d))。
(e)その後、表面を削った高屈折率媒体31の上に前面電極20および前面基板10を順に配設して、発光素子70を得る(図2(e))。
A manufacturing process of the light emitting element 70 according to the first embodiment will be described with reference to FIGS. Note that the manufacturing process of the light-emitting element is not limited to this.
(A) First, the back electrode 50 and the low refractive index medium 32 are sequentially laminated on the back substrate 60 (FIG. 2A).
(B) Next, the luminescent particles 40 are disposed on the low refractive index medium 32 (FIG. 2B).
(C) The high refractive index medium 31 is laminated so as to cover the luminescent particles 40 (FIG. 2C).
(D) Next, the surface of the high refractive index medium 31 is shaved (FIG. 2D).
(E) Thereafter, the front electrode 20 and the front substrate 10 are sequentially disposed on the high refractive index medium 31 whose surface has been cut off to obtain the light emitting element 70 (FIG. 2E).

(実施の形態2)
図3は、実施の形態2に係る発光素子70aの構成を示す断面図である。この発光素子70aは、実施の形態1に係る発光素子と比較すると、図3に示すように、粒子表面の一部を低屈折率媒体32で部分的に被覆した発光粒子40を高屈折率媒体31中に分散させている点で相違する。すなわち、この発光素子70aでは、発光層30は、高屈折率媒体31中に発光粒子40を分散させて構成されている。さらに、発光粒子40は、発光取り出し方向の背面側の粒子表面が高屈折率媒体31の屈折率n1より低い屈折率n2を有する低屈折率媒体32で被覆されていることを特徴とする。
(Embodiment 2)
FIG. 3 is a cross-sectional view showing a configuration of the light emitting element 70a according to the second embodiment. Compared with the light-emitting element according to Embodiment 1, the light-emitting element 70a includes a light-emitting particle 40 in which a part of the particle surface is partially covered with a low-refractive index medium 32 as shown in FIG. It is different in that it is dispersed in 31. That is, in the light emitting element 70 a, the light emitting layer 30 is configured by dispersing the light emitting particles 40 in the high refractive index medium 31. Further, the luminescent particle 40 is characterized in that the particle surface on the back side in the light emission extraction direction is covered with a low refractive index medium 32 having a refractive index n2 lower than the refractive index n1 of the high refractive index medium 31.

また、発光粒子40の屈折率n3と、低屈折率媒体32の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たしてもよい。
さらに、高屈折率媒体31の屈折率n1と、発光粒子40の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たしてもよい。
Further, the relationship between the refractive index n3 of the luminescent particles 40 and the refractive index n2 of the low refractive index medium 32 is
n2 <n3-0.8
The following relational expression may be satisfied.
Furthermore, the relationship between the refractive index n1 of the high refractive index medium 31 and the refractive index n3 of the luminescent particles 40 is
n3-0.5 <n1 <n3 + 0.5
The following relational expression may be satisfied.

この発光素子70aの製造プロセスの例を図4(a)〜(f)を用いて説明する。なおこれは一例であって、これに限定されるものではない。
(a)まず、発光粒子40の粒子表面を低屈折率媒体32で全体的に被覆する(図4(a))。
(b)次に、背面電極50を配設した背面基板60上に前記発光粒子を配設する(図4(b))。
(c)次に、低屈折率媒体32で粒子表面が全体的に被覆された発光粒子40の前面側をウエットエッチングもしくは、ドライエッチング等の手段を用いて、低屈折率媒体32の被覆を取り去る(図4(c))。
(d)次に、発光粒子40の上に高屈折率媒体料31を配設する(図4(d))。
(e)次に、前面側に設ける前面電極20と発光粒子40とを直接にコンタクトさせるために、エッチングなどの手段を用いて発光粒子40の表面が現れるようにする(図4(e))。
(f)最後に、前面電極20および前面基板10を配設する(図4(f))。
以上によって発光素子70aを得る。
An example of a manufacturing process of the light emitting element 70a will be described with reference to FIGS. This is an example, and the present invention is not limited to this.
(A) First, the particle surface of the luminescent particle 40 is entirely covered with the low refractive index medium 32 (FIG. 4A).
(B) Next, the luminous particles are disposed on the back substrate 60 on which the back electrode 50 is disposed (FIG. 4B).
(C) Next, the coating of the low refractive index medium 32 is removed using means such as wet etching or dry etching on the front surface side of the luminescent particles 40 whose particle surfaces are entirely coated with the low refractive index medium 32. (FIG. 4 (c)).
(D) Next, the high refractive index medium material 31 is disposed on the luminescent particles 40 (FIG. 4D).
(E) Next, in order to directly contact the front electrode 20 provided on the front side and the luminescent particles 40, the surface of the luminescent particles 40 is made to appear by using means such as etching (FIG. 4E). .
(F) Finally, the front electrode 20 and the front substrate 10 are disposed (FIG. 4F).
Thus, the light emitting element 70a is obtained.

(実施例1)
以下に、本発明の実施例1に係る発光素子の製造方法について説明する。なお、この発行素子は、実施の形態1に係る発光素子と同様の構成を有する。
(a)背面基板としてシリコン基板を用いた。
(b)上記シリコン基板を抵抗加熱蒸着装置に取り付け、抵抗加熱蒸着法により0.2μmの膜厚の銀電極を背面電極として積層した。
(c)次に、テトラエトキシシラン0.04molと、エタノール0.25molと、水0.24molと、1mol/L濃度HCl水溶液1mlと、を混合して70℃の温度で一時間加熱して、ゲルを作成した。
Example 1
Below, the manufacturing method of the light emitting element which concerns on Example 1 of this invention is demonstrated. This issuing element has the same configuration as the light emitting element according to the first embodiment.
(A) A silicon substrate was used as the back substrate.
(B) The silicon substrate was attached to a resistance heating vapor deposition apparatus, and a silver electrode having a thickness of 0.2 μm was laminated as a back electrode by a resistance heating vapor deposition method.
(C) Next, 0.04 mol of tetraethoxysilane, 0.25 mol of ethanol, 0.24 mol of water, and 1 ml of 1 mol / L aqueous HCl solution were mixed and heated at a temperature of 70 ° C. for 1 hour, A gel was created.

(d)次に、ハライド気相成長(HVPE)法を用いて発光粒子を作成した。このハライド気相成長法について図5を用いて説明する。
1)サセプター77上に、直径1μmのGaN単結晶を配設した。ガスラインA72にはHClを流量3cc/分およびNを流量250cc/分で流し、途中にGa金属75を配設した。ガスラインBにはMgCl粉末76を配設し、Nガスを流量250ml/分で流した。ガスラインCにはNHを流量250cc/分で流した。また炉内全体にNを流量3000cc/分で流した。
2)反応炉の温度を1000℃にして、上記GaN単結晶上に2分間成長させて、粒径5μmの大きさのMgドープのGaN粒子を形成した。このGaN粒子の屈折率はn=2.54であった。
3)反応後は炉内全体にNを流量3000cc/分で流したままま温度を降下させ、700℃に降下させた時点で温度を1時間保持し、その後に再度、炉内温度を降下させた。
以上によってMgドープのGaN粒子からなる発光粒子を得た。
(D) Next, luminescent particles were prepared using a halide vapor phase epitaxy (HVPE) method. This halide vapor phase growth method will be described with reference to FIG.
1) A GaN single crystal having a diameter of 1 μm was disposed on the susceptor 77. In the gas line A72, HCl was flowed at a flow rate of 3 cc / min and N 2 was flowed at a flow rate of 250 cc / min, and Ga metal 75 was disposed on the way. In the gas line B, MgCl 2 powder 76 was disposed, and N 2 gas was flowed at a flow rate of 250 ml / min. NH 3 was allowed to flow through the gas line C at a flow rate of 250 cc / min. Further, N 2 was flowed at a flow rate of 3000 cc / min throughout the furnace.
2) The temperature of the reaction furnace was set to 1000 ° C., and the GaN single crystal was grown for 2 minutes to form Mg-doped GaN particles having a particle size of 5 μm. The refractive index of the GaN particles was n = 2.54.
3) After the reaction, the temperature is lowered while N 2 is allowed to flow through the entire furnace at a flow rate of 3000 cc / min. When the temperature is lowered to 700 ° C., the temperature is maintained for 1 hour, and then the furnace temperature is decreased again. It was.
Thus, luminescent particles made of Mg-doped GaN particles were obtained.

(e)次に、銀電極が積層されているシリコン基板上に上記ゲルを塗布し、さらに上記発光粒子を配設した後、400℃、1時間大気中で全体を加熱した。上記ゲルは屈折率n=1.45の低屈折率媒体としてのSiO膜となった。その膜厚は1μmであった。
(f)その後、基板をスパッタリング装置に取り付け、アルミナターゲット及びArガス80%+Oガス20%の混合ガスを用いてスパッタリングを行い、4μmの膜厚でアルミナ(屈折率n=1.75)を積層して高屈折率媒体とした。
(g)次いで、発光粒子が表面に現れるまで機械研磨を行った。
(h)その後、再び基板をスパッタリング装置に取り付け、ITOターゲット及びArガスを用いてスパッタリングを行い、0.3μmのITOを製膜し前面電極とした。
(i)なお、前面基板は取り付けず、前面電極の上にZnS:Cu,Al蛍光体をアクリル樹脂に分散させたペーストを2μm塗布した。
(E) Next, the gel was applied onto a silicon substrate on which silver electrodes were laminated, and after the luminescent particles were further disposed, the whole was heated in the atmosphere at 400 ° C. for 1 hour. The gel became a SiO 2 film as a low refractive index medium having a refractive index n = 1.45. The film thickness was 1 μm.
(F) Thereafter, the substrate is attached to a sputtering apparatus, and sputtering is performed using a mixed gas of an alumina target and Ar gas 80% + O 2 gas 20%, and alumina (refractive index n = 1.75) is formed with a film thickness of 4 μm. A high refractive index medium was laminated.
(G) Next, mechanical polishing was performed until the luminescent particles appeared on the surface.
(H) After that, the substrate was attached again to the sputtering apparatus, and sputtering was performed using an ITO target and Ar gas to form a 0.3 μm ITO film as a front electrode.
(I) The front substrate was not attached, and 2 μm of a paste in which ZnS: Cu, Al phosphor was dispersed in acrylic resin was applied on the front electrode.

このようにして出来た発光素子を、銀電極側を陰極、ITO側を陽極として15Vの直流電圧を印加して発光させた。この時、発光粒子からは紫外線が発光されるが、ZnS:Cu,Al蛍光体により波長が変換されて緑色の発光が得られ、その輝度は450cd/mであり、発光効率は1.0lm/Wであった。 The light emitting device thus produced was made to emit light by applying a DC voltage of 15 V with the silver electrode side as the cathode and the ITO side as the anode. At this time, ultraviolet light is emitted from the light emitting particles, but the wavelength is converted by the ZnS: Cu, Al phosphor to obtain green light emission, the luminance is 450 cd / m 2 , and the light emission efficiency is 1.0 lm. / W.

(実施例2)
実施例2の発光素子は、高屈折率媒体として、アルミナの代わりにチタン酸バリウム(屈折率n=2.4)を用いた以外は実施例1と同様の手段で発光素子を作成した。
得られた発光素子について、実施例1と同様の条件で発光させたところ、その輝度は520cd/mであり、発光効率は1.2lm/Wであった。
(Example 2)
The light emitting device of Example 2 was prepared by the same means as in Example 1 except that barium titanate (refractive index n = 2.4) was used instead of alumina as the high refractive index medium.
The obtained light-emitting element was made to emit light under the same conditions as in Example 1. As a result, the luminance was 520 cd / m 2 and the light emission efficiency was 1.2 lm / W.

(実施例3)
以下の方法で実施例3の発光素子を作成した。この発光素子は、実施の形態2に係る発光素子と実質的に同様の構成を有する。
(a)まず、実施例1と同様の方法で発光粒子を作成した。
(b)その後、PEDOTとポリエチレングリコールの共重合体1%とプロピレンカーボネート95%、アセトニトリル4%の混合溶液中に前記発光粒子を浸し、その後、150℃、1時間で焼成して、発光粒子を低屈折率媒体であるPEDOT(屈折率n=1.5)で完全被覆した。膜厚は0.1μmであった。
(c)実施例1と同様にシリコン基板上に銀電極を取り付けた。その後に上記基板上に発光粒子を配設した。
(d)次いで、発光粒子を配設した上記基板をスパッタリング装置に取り付けた。基板側を陰極としてArガス中でスパッタリングを行って、発光粒子の前面側のPEDOTを取り去った。その後引き続き、ターゲット側を陰極にして実施例2と同様の方法で高屈折率媒体としてチタン酸バリウムを膜厚6μm成膜した。
(e)その後は実施例1と同様なプロセスで発光素子とした。
実施例1と同様に発光させた時の輝度は500cd/mであり発光効率は1.1lm/Wであった。
(Example 3)
The light emitting element of Example 3 was created by the following method. This light emitting element has a configuration substantially similar to that of the light emitting element according to Embodiment 2.
(A) First, luminescent particles were prepared in the same manner as in Example 1.
(B) Thereafter, the luminous particles are immersed in a mixed solution of 1% PEDOT / polyethylene glycol copolymer, 95% propylene carbonate and 4% acetonitrile, and then fired at 150 ° C. for 1 hour to obtain luminous particles. The film was completely covered with PEDOT (refractive index n = 1.5) which is a low refractive index medium. The film thickness was 0.1 μm.
(C) A silver electrode was attached on the silicon substrate in the same manner as in Example 1. Thereafter, luminescent particles were disposed on the substrate.
(D) Next, the substrate on which the luminescent particles were disposed was attached to a sputtering apparatus. Sputtering was performed in Ar gas using the substrate side as a cathode, and PEDOT on the front side of the luminescent particles was removed. Subsequently, barium titanate was formed to a thickness of 6 μm as a high refractive index medium in the same manner as in Example 2 with the target side as the cathode.
(E) Thereafter, a light emitting device was produced by the same process as in Example 1.
As in Example 1, the luminance was 500 cd / m 2 and the luminous efficiency was 1.1 lm / W when light was emitted.

(比較例1)
以下の方法で比較例1の発光素子を作成した。
(a)実施例1と同様にシリコン基板上に銀電極を製膜した。
(b)また、実施例1と同様にゲルおよび発光粒子を作成した。
(c)その後、シリコン基板上に上記ゲルを塗布し、さらに上記発光粒子を配設した後、400℃、1時間大気中で全体を加熱した。
(d)この基板に、前記ゲルを塗布し、400℃、1時間大気中加熱する熱処理をその後3回繰り返した。得られた低屈折率媒体であるSiO膜の膜厚は合計6μmであった。
(e)その後、実施例1と同様の方法で発光素子を作成した。
比較例1の発光素子では、発光層は、低屈折率媒体であるSiO層の中に発光粒子が分散して構成されている。
この発光素子について電圧を印加して発光させた。その輝度は310cd/mであり、発光効率は0.7lm/Wであった。
(Comparative Example 1)
The light emitting element of Comparative Example 1 was prepared by the following method.
(A) A silver electrode was formed on a silicon substrate in the same manner as in Example 1.
(B) Further, gels and luminescent particles were prepared in the same manner as in Example 1.
(C) Thereafter, the gel was applied on a silicon substrate, and the luminous particles were further disposed, and then the whole was heated in the atmosphere at 400 ° C. for 1 hour.
(D) The gel was applied to the substrate, and heat treatment was performed in air at 400 ° C. for 1 hour, and then repeated three times. The film thickness of the obtained SiO 2 film as the low refractive index medium was 6 μm in total.
(E) Thereafter, a light emitting device was produced in the same manner as in Example 1.
In the light emitting device of Comparative Example 1, the light emitting layer is configured by dispersing light emitting particles in a SiO 2 layer which is a low refractive index medium.
A voltage was applied to the light emitting element to emit light. Its luminance was 310 cd / m 2 and luminous efficiency was 0.7 lm / W.

本発明によれば、発光効率が高く大面積化の容易な発光素子を提供することができる。   According to the present invention, it is possible to provide a light-emitting element that has high luminous efficiency and can easily have a large area.

本発明の実施の形態1に係る発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light emitting element which concerns on Embodiment 1 of this invention. 実施の形態1に係る発光素子の製造プロセスの一工程の断面図である。FIG. 6 is a cross-sectional view of a step of the manufacturing process for the light-emitting element according to Embodiment 1. 実施の形態1に係る発光素子の製造プロセスの一工程の断面図である。FIG. 6 is a cross-sectional view of a step of the manufacturing process for the light-emitting element according to Embodiment 1. 実施の形態1に係る発光素子の製造プロセスの一工程の断面図である。FIG. 6 is a cross-sectional view of a step of the manufacturing process for the light-emitting element according to Embodiment 1. 実施の形態1に係る発光素子の製造プロセスの一工程の断面図である。FIG. 6 is a cross-sectional view of a step of the manufacturing process for the light-emitting element according to Embodiment 1. 実施の形態1に係る発光素子の製造プロセスの一工程の断面図である。FIG. 6 is a cross-sectional view of a step of the manufacturing process for the light-emitting element according to Embodiment 1. 本発明の実施の形態2に係る発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light emitting element which concerns on Embodiment 2 of this invention. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 実施の形態2に係る発光素子の製造プロセスの一工程の断面図である。12 is a cross-sectional view of a step of a manufacturing process for a light-emitting element according to Embodiment 2. FIG. 発光粒子を製造するためのHVPE装置の構成を示す概略図である。It is the schematic which shows the structure of the HVPE apparatus for manufacturing a luminescent particle.

符号の説明Explanation of symbols

10 前面基板
20 前面電極
30 発光層
31 高屈折率媒体
32 低屈折率媒体
40 発光粒子
50 背面電極
60 背面基板
70、70a 発光素子
71 反応炉
72 ガスラインA
73 ガスラインB
74 ガスラインC
75 Ga金属
76 MgCl
77 サセプター
78 GaN単結晶
DESCRIPTION OF SYMBOLS 10 Front substrate 20 Front electrode 30 Light emitting layer 31 High refractive index medium 32 Low refractive index medium 40 Luminescent particle 50 Rear electrode 60 Rear substrate 70, 70a Light emitting element 71 Reactor 72 Gas line A
73 Gas Line B
74 Gas Line C
75 Ga metal 76 MgCl 2
77 Susceptor 78 GaN single crystal

Claims (11)

対向する一対の電極と、
前記一対の電極に挟持された発光層と、
を備え、
前記発光層は、屈折率が互いに異なる第1及び第2の媒体が発光取り出し方向の前面側から背面側について前記第1の媒体、前記第2の媒体の順に積層し、発光粒子が前記第1及び第2の媒体の境界領域にそれぞれの媒体と少なくとも接するように配置されて構成されていることを特徴とする発光素子。
A pair of opposing electrodes;
A light emitting layer sandwiched between the pair of electrodes;
With
The light emitting layer is formed by laminating first and second media having different refractive indexes from the front side to the back side in the light emission direction in the order of the first medium and the second medium. And a light emitting element, wherein the light emitting element is arranged so as to be in contact with each medium at least in a boundary region of the second medium.
前記発光取り出し方向について、前面側の前記第1の媒体の屈折率をn1、背面側の前記第2の媒体の屈折率をn2とすると、
n2<n1
の関係を満たし、2つの媒体において前記第1の媒体が高屈折率媒体であって、前記第2の媒体が低屈折率媒体であることを特徴とする請求項1に記載の発光素子。
Regarding the emission extraction direction, if the refractive index of the first medium on the front side is n1, and the refractive index of the second medium on the back side is n2,
n2 <n1
2. The light-emitting element according to claim 1, wherein the first medium is a high refractive index medium and the second medium is a low refractive index medium in two media.
前記発光粒子の屈折率をn3とした時、2つの媒体における低屈折率媒体の前記第2の媒体の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たすことを特徴とする請求項2に記載の発光素子。
When the refractive index of the luminescent particles is n3, the relationship between the refractive index n2 of the second medium of the low refractive index medium in the two media is
n2 <n3-0.8
The light-emitting element according to claim 2, wherein the following relational expression is satisfied.
2つの媒体における高屈折率媒体の前記第1の媒体の屈折率n1と前記発光粒子の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たすことを特徴とする請求項2に記載の発光素子。
The relationship between the refractive index n1 of the first medium of the high refractive index medium and the refractive index n3 of the luminescent particles in two media is:
n3-0.5 <n1 <n3 + 0.5
The light-emitting element according to claim 2, wherein the following relational expression is satisfied.
前記低屈折率媒体である前記第2の媒体と接している前記発光粒子の接触面は、前記発光粒子の前記発光取り出し方向の前面側にあたる半球表面の半分以下を含むと共に、前記発光粒子の背面側にあたる半球表面の半分以上を含むことを特徴とする請求項2に記載の発光素子。   The contact surface of the luminescent particles in contact with the second medium, which is the low refractive index medium, includes less than half of the hemispherical surface corresponding to the front side in the emission extraction direction of the luminescent particles, and the back surface of the luminescent particles. The light emitting device according to claim 2, comprising more than half of the hemispherical surface on the side. 前記発光層は、前記第1及び第2の媒体の境界面が、前記発光粒子の前記発光取り出し方向の前面側の半球表面の半分から背面側の半球表面の半分の間に位置するように前記発光粒子を配置されていることを特徴とする請求項1に記載の発光素子。   The light emitting layer is arranged such that a boundary surface between the first medium and the second medium is located between a half of the front hemispherical surface and a half of the rear hemispherical surface in the emission extraction direction of the light emitting particles. The light emitting device according to claim 1, wherein the light emitting particles are arranged. 前記発光層は、前記発光粒子が前記第1及び第2の媒体の境界領域に一列に並んで構成されていることを特徴とする請求項1に記載の発光素子。   2. The light emitting device according to claim 1, wherein the light emitting layer includes the light emitting particles arranged in a line in a boundary region of the first and second media. 対向する一対の電極と、
前記一対の電極に挟持された発光層と、
を備え、
前記発光層は、第1の媒体中に発光粒子が分散して構成され、前記発光粒子は、発光取り出し方向の背面側の粒子表面が前記第1の媒体の屈折率n1より低い屈折率n2を有する第2の媒体で被覆されていることを特徴とする発光素子。
A pair of opposing electrodes;
A light emitting layer sandwiched between the pair of electrodes;
With
The light emitting layer is configured by dispersing light emitting particles in a first medium, and the light emitting particles have a refractive index n2 lower than the refractive index n1 of the first medium on the back surface in the light emission direction. A light-emitting element that is covered with a second medium.
発光粒子の屈折率n3と、前記第2の媒体の屈折率n2との関係が、
n2<n3−0.8
の関係式を満たすことを特徴とする請求項8に記載の発光素子。
The relationship between the refractive index n3 of the luminescent particles and the refractive index n2 of the second medium is
n2 <n3-0.8
The light emitting element according to claim 8, wherein the relational expression is satisfied.
前記第1の媒体の屈折率n1と、前記発光粒子の屈折率n3との関係が、
n3−0.5<n1<n3+0.5
の関係式を満たすことを特徴とする請求項8又は9に記載の発光素子。
The relationship between the refractive index n1 of the first medium and the refractive index n3 of the luminescent particles is
n3-0.5 <n1 <n3 + 0.5
The light-emitting element according to claim 8, wherein the relational expression is satisfied.
前記発光粒子は窒化物半導体からなることを特徴とする請求項1から10のいずれか一項に記載の発光素子。   The light emitting device according to claim 1, wherein the light emitting particles are made of a nitride semiconductor.
JP2008041023A 2008-02-22 2008-02-22 Light-emitting element Pending JP2009200283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041023A JP2009200283A (en) 2008-02-22 2008-02-22 Light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041023A JP2009200283A (en) 2008-02-22 2008-02-22 Light-emitting element

Publications (1)

Publication Number Publication Date
JP2009200283A true JP2009200283A (en) 2009-09-03

Family

ID=41143463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041023A Pending JP2009200283A (en) 2008-02-22 2008-02-22 Light-emitting element

Country Status (1)

Country Link
JP (1) JP2009200283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159813A (en) 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159813A (en) 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd Light-emitting device

Similar Documents

Publication Publication Date Title
CN111540822B (en) Light emitting device with remote nanostructured phosphor
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
JP4339822B2 (en) Light emitting device
JP2009076896A (en) Semiconductor light-emitting element
KR102337405B1 (en) Nano-sturucture semiconductor light emitting device
US8395173B2 (en) Semiconductor light-emitting element, method of manufacturing same, and light-emitting device
CN105679910A (en) Deep ultraviolet light emitting diode chip with high luminous efficiency and preparation method thereof
TWI420699B (en) Light emitting device having vertical structure and method for manufacturing the same
KR20160071780A (en) Method of fabricating a semiconductor light emitting device
JP2006041133A (en) Light emitting device
KR20150097322A (en) Nano-sturucture semiconductor light emitting device
JP2008098486A (en) Light emitting element
KR20120077612A (en) Manufacturing method for light emitting element and light emitting element manufactrued thereby
KR101288367B1 (en) White light emitting diode and manufacturing method thereof
JP6616126B2 (en) Nitride semiconductor light emitting device
WO2017127958A1 (en) Optical pumping light-emitting device and preparation method for monolithic integrated optical pumping light-emitting device
JP2009200283A (en) Light-emitting element
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
JP5543946B2 (en) Semiconductor light emitting element and light emitting device
US8975614B2 (en) Wavelength converters for solid state lighting devices, and associated systems and methods
TWI443864B (en) Fabrication of crystalline structure
JP2010147242A (en) Semiconductor light emitting device
JP2007214302A (en) Light emitting element and its fabrication process
JP2013229638A (en) Semiconductor light-emitting element and light-emitting device
US20240063344A1 (en) Metallic layer for dimming light-emitting diode chips