JP2009197740A - Intake exhaust control method and intake exhaust control device for engine - Google Patents

Intake exhaust control method and intake exhaust control device for engine Download PDF

Info

Publication number
JP2009197740A
JP2009197740A JP2008042263A JP2008042263A JP2009197740A JP 2009197740 A JP2009197740 A JP 2009197740A JP 2008042263 A JP2008042263 A JP 2008042263A JP 2008042263 A JP2008042263 A JP 2008042263A JP 2009197740 A JP2009197740 A JP 2009197740A
Authority
JP
Japan
Prior art keywords
intake
self
ignition
engine
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042263A
Other languages
Japanese (ja)
Inventor
Tooru Sotozono
徹 外薗
Takeshi Nagasawa
健 永澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008042263A priority Critical patent/JP2009197740A/en
Publication of JP2009197740A publication Critical patent/JP2009197740A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit an increase of a pumping loss by appropriately controlling internal EGR and to expand a self ignition zone to a high rotation speed-heavy load side by inhibiting premature ignition while securing following performance to a load. <P>SOLUTION: The self ignition zone is set at a low rotation speed-light load side. Exhaust valve closing timing is set before an intake top dead center, and intake valve opening timing is set after the intake top dead center to set a negative overlap period (NVO) in the self ignition zone, and an engine is operated by compression self-ignition by increasing a temperature in a cylinder by internal EGR. In the high rotation speed-heavy load side zone (zone where diagonal lines are drawn) in the self ignition zone, intake valve opening timing is advanced, part of internal EGR is blown back to an intake passage when the intake valve opens, and the part of internal EGR is sucked again after mixed with fresh air and cooled. Consequently, a rise of a temperature in the cylinder is inhibited and the generation of premature ignition is inhibited. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、火花点火式のエンジンを低回転・低負荷側の所定の運転領域において圧縮自己着火により運転することで燃費改善および排気清浄化を図る技術に関する。   The present invention relates to a technique for improving fuel efficiency and purifying exhaust gas by operating a spark ignition engine by compression self-ignition in a predetermined operation region on a low rotation / low load side.

火花点火式のエンジンを低回転・低負荷側の所定の運転領域において圧縮自己着火(Homogenious Charge Compression Ignition、略して、HCCI)させることで燃費改善および排気清浄化を図ことが従来から考えられている。この圧縮自己着火による燃焼(以下、HCCI燃焼ともいう)によれば、従来一般的な火花点火(Spark ignition、略して、SI)による燃焼(以下、SI燃焼ともいう)に比べて燃焼期間が短く、熱効率が高くなって燃費が向上し、また、燃焼期間そのものは短いものの激しい燃焼にはならないことから、窒素酸化物の生成も格段に少なくなる。   Conventionally, it has been considered to improve fuel economy and clean exhaust by making a spark ignition engine perform compression self-ignition (HCCI) in a predetermined operating region on the low rotation / low load side. Yes. According to the combustion by the compression self-ignition (hereinafter also referred to as HCCI combustion), the combustion period is shorter than the combustion by the conventional general spark ignition (abbreviated as SI) (hereinafter also referred to as SI combustion). The heat efficiency is improved and the fuel consumption is improved. Further, although the combustion period itself is short, the combustion is not intense, so that the generation of nitrogen oxides is remarkably reduced.

そして、このように所定の運転領域で圧縮自己着火により運転するエンジンとして、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、排気弁閉時期を吸気上死点前とし、吸気弁開時期を吸気上死点後として、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定することで、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火を促進するようにしたエンジンが従来から知られている(例えば、特許文献1参照。)。   As described above, when the engine is in the self-ignition region set to the low rotation / low load side as the engine to be operated by the compression self-ignition in the predetermined operation region, the exhaust valve closing timing is set before the intake top dead center. By setting the intake valve opening timing after the intake top dead center and setting a negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center, the burned gas remaining in the cylinder 2. Description of the Related Art An engine in which the temperature in a cylinder is increased to promote compression self-ignition has been conventionally known (for example, see Patent Document 1).

この場合、エンジンが低負荷、低回転側の運転領域にあるときには、圧縮上死点(TDC)近傍においても混合気の温度が自己着火温度まで上昇しない可能性があるため、吸気上死点近傍で吸気弁及び排気弁の双方が閉じる負のオーバーラップ期間を設けることにより、多量の既燃ガスを残留させること(以下、内部EGRともいう)により、気筒内の温度を高めるようにしている。また、燃費向上および排気清浄化のためには、できれば全ての運転領域で圧縮自己着火を行いたいが、高回転・高負荷領域では、燃料の噴射量が増えるため、内部EGRが多くて筒内温度が高まると、本来の狙いのタイミングよりも早めに自己着火(以下、過早着火ともいう)してしまい、燃費向上および排気清浄化を達成できない。そのため、高回転・高負荷になると、通常の火花点火に戻している。   In this case, when the engine is in the operating region on the low load and low rotation side, the temperature of the air-fuel mixture may not rise to the self-ignition temperature even near the compression top dead center (TDC). Thus, by providing a negative overlap period in which both the intake valve and the exhaust valve are closed, a large amount of burned gas remains (hereinafter also referred to as internal EGR), thereby increasing the temperature in the cylinder. In order to improve fuel efficiency and purify the exhaust, it is desirable to perform compression self-ignition in all operating regions if possible. However, in the high rotation and high load regions, the amount of fuel injection increases, so the internal EGR increases and the in-cylinder When the temperature rises, self-ignition (hereinafter also referred to as pre-ignition) occurs earlier than the original target timing, and fuel efficiency improvement and exhaust purification cannot be achieved. For this reason, the normal spark ignition is restored when the engine speed is high and the load is high.

また、それとは別に、負のオーバーラップ期間を設けることで内部EGRを行うものではないが、やはり圧縮自己着火(HCCI)を行うエンジンにおいて、自己着火領域の高回転・高負荷側では外部EGRを導入することで気筒内の温度を下げ、過早着火を抑制しつつ自己着火領域を拡大できるようにすることが従来から考えられている(例えば、特許文献2参照。)   Separately, internal EGR is not performed by providing a negative overlap period. However, in an engine that also performs compression self-ignition (HCCI), external EGR is not applied on the high rotation / high load side of the self-ignition region. It has been conventionally considered that the self-ignition region can be expanded while reducing the temperature in the cylinder by suppressing the pre-ignition (see, for example, Patent Document 2).

特開2002−129991号公報JP 2002-129991 A 特開2005−16407号公報Japanese Patent Laid-Open No. 2005-16407

上記のように自己着火領域の高回転・高負荷側で外部EGRを導入して気筒内の温度を下げることで、過早着火を抑制しつつ自己着火領域を高回転高負荷側に広げたいという要求は、負のオーバーラップ期間を設定することで内部EGRを増大させて気筒内の温度を高めることで圧縮自己着火を促進するようにするエンジンの場合も同様である。このようなエンジンは、高回転・高負荷域では、低回転・低負荷域に比べて相対的に燃料噴射量が多くなる一方で、内部EGRによって筒内温度を高く保たれるため、過早着火の恐れが高くなる。そのため、自己着火領域を高回転・高負荷域に拡大することが困難である。   As mentioned above, by introducing external EGR on the high rotation / high load side of the self-ignition region and lowering the temperature in the cylinder, it is desired to expand the self-ignition region to the high rotation / high load side while suppressing premature ignition. The same applies to an engine that promotes compression self-ignition by increasing the internal EGR by setting a negative overlap period and increasing the temperature in the cylinder. In such an engine, the fuel injection amount is relatively higher in the high rotation / high load region than in the low rotation / low load region, but the in-cylinder temperature is kept high by the internal EGR. The risk of ignition increases. Therefore, it is difficult to expand the self-ignition region to a high rotation / high load region.

過早着火を抑制するためには、排気通路から取り出した比較的温度の低い排気ガスをEGR通路を介して吸気通路に導入すること(以下、外部EGRともいう)が有効である。しかし、外部EGRを導入するためには、吸気通路を負圧にして外部EGRが取り込まれやすいようにすることが必要で、そのためにスロットルを絞ることになり、ポンピングロスが増大するという問題があり、また、内部EGRに比べて、外部EGRの場合は、気筒内に入ってくる量の制御が難しくて、負荷に対する追従性が悪いという問題がある。   In order to suppress premature ignition, it is effective to introduce the exhaust gas having a relatively low temperature taken out from the exhaust passage into the intake passage through the EGR passage (hereinafter also referred to as external EGR). However, in order to introduce the external EGR, it is necessary to make the intake passage have a negative pressure so that the external EGR is easily taken in. Therefore, there is a problem that the throttle is throttled and the pumping loss increases. In addition, compared with the internal EGR, the external EGR has a problem that it is difficult to control the amount entering the cylinder and the followability to the load is poor.

したがって、内部EGRを適切に制御して、ポンピングロスの増大を抑制するとともに、負荷に対する追従性を確保しつつ、過早着火を抑制して、高回転・高負荷側への自己着火領域の拡大を図ることが課題である。   Therefore, the internal EGR is appropriately controlled to suppress an increase in pumping loss and to ensure the followability to the load while suppressing premature ignition to expand the self-ignition region to the high rotation / high load side. It is a problem to plan.

本発明は、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンの吸排気制御方法であって、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、前記自己着火領域における高回転・高負荷側の領域では、排気弁閉時期から吸気上死点までの期間に比べ、吸気上死点から吸気弁開時期までの期間の方を短くすることを特徴とするエンジンの吸排気制御方法を提供し、また、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンに備えられ、エンジンの吸気弁および排気弁の開閉時期を制御する吸排気制御手段を有するエンジンの吸排気制御装置であって、前記吸排気制御手段は、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、前記自己着火領域における高回転・高負荷側の領域では、排気弁閉時期から吸気上死点までの期間に比べ、吸気上死点から吸気弁開時期までの期間の方を短くすることを特徴とするエンジンの吸排気制御装置を提供する。   In the present invention, when the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder, and the engine is operated by compression self-ignition. An engine intake / exhaust control method for operating by spark ignition when the operating state is outside the self-ignition region and in a high-rotation / high-load side operation region, wherein the low-rotation / low-load side region in the self-ignition region The exhaust valve closing timing is before the intake top dead center, the intake valve opening timing is after the intake top dead center, and the period from the exhaust valve closing timing to the intake top dead center and the intake top dead center to the intake valve opening timing The period until is substantially equal, while setting the negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center, in the high rotation and high load side region in the self-ignition region, Is the exhaust valve closing time? Provided an intake / exhaust control method for an engine characterized by shortening the period from the intake top dead center to the intake valve opening timing compared to the period until the intake top dead center, and the engine operating state is low. When in the self-ignition range set on the rotation / low load side, the burned gas remaining in the cylinder raises the temperature in the cylinder to operate with compression self-ignition, and the engine operating state deviates from the self-ignition range. An engine intake / exhaust control device having an intake / exhaust control means for controlling opening / closing timings of an intake valve and an exhaust valve of an engine provided in an engine that operates by spark ignition when in an operation region on a high rotation / high load side. The intake / exhaust control means has an exhaust valve closing timing before the intake top dead center, an intake valve opening timing after the intake top dead center, and the exhaust valve closing timing in the low rotation / low load side region in the self-ignition region. From the closing time The period until the top dead center and the period from the intake top dead center to the intake valve opening timing are made approximately equal to each other, and a negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center is set. On the other hand, in the high rotation / high load side region in the self-ignition region, the period from the intake top dead center to the intake valve open timing is shorter than the period from the exhaust valve close timing to the intake top dead center. An intake / exhaust control apparatus for an engine is provided.

これらエンジンの吸排気制御方法および吸排気制御装置によれば、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域における低回転・低負荷側の領域では、排気弁閉時期から吸気上死点までの期間と吸気上死点から吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定することにより、排気弁閉時期から吸気上死点までの期間での圧縮エネルギーをそのまま吸気上死点から吸気弁開時期までの期間での膨張に使って、ポンピングロスを抑制しつつ、気筒内に残留する既燃ガス(内部EGR)により気筒内の温度を高めて圧縮自己着火を促進することができる。また、自己着火領域における高回転・高負荷側の領域では、排気弁閉時期から吸気上死点までの期間に比べ、吸気上死点から吸気弁開時期までの期間の方を短くすることにより、吸気弁が開くと同時に内部EGRの一部が吸気通路に吹き返されて、吹き返された内部EGRが吸気通路の新気と混合され冷却されてから再度吸入されるようにすることができ、それにより、気筒内の温度を適切に制御して過早着火の発生を抑制しながら高回転・高負荷側への自己着火領域の拡大が可能になる。   According to these engine intake / exhaust control methods and intake / exhaust control systems, in the low-rotation / low-load side region in the self-ignition region where the engine operating state is set to the low-rotation / low-load side, the intake air is discharged from the exhaust valve closing timing. The period from the top dead center to the period from the intake top dead center to the intake valve opening timing should be approximately the same, and a negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center is set. Therefore, the compression energy from the exhaust valve closing timing to the intake top dead center is used as it is for the expansion from the intake top dead center to the intake valve opening timing, and remains in the cylinder while suppressing the pumping loss. The burned gas (internal EGR) can increase the temperature in the cylinder and promote compression self-ignition. In the high-rotation / high-load region in the self-ignition region, the period from the intake top dead center to the intake valve open timing is shorter than the period from the exhaust valve close timing to the intake top dead center. When the intake valve is opened, a part of the internal EGR is blown back into the intake passage so that the blown-back internal EGR is mixed with the fresh air in the intake passage, cooled, and then sucked again. Thus, it is possible to expand the self-ignition region to the high rotation / high load side while appropriately controlling the temperature in the cylinder and suppressing the occurrence of premature ignition.

また、本発明は、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンの吸排気制御方法であって、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、前記自己着火領域における高回転・高負荷側の領域では、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定することを特徴とするエンジンの吸排気制御方法を提供し、また、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンに備えられ、エンジンの吸気弁および排気弁の開閉時期を制御する吸排気制御手段を有するエンジンの吸排気制御装置であって、前記吸排気制御手段は、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、前記自己着火領域における高回転・高負荷側の領域では、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定する手段を備えたことを特徴とするエンジンの吸排気制御装置を提供する。   In the present invention, when the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder, and the operation is performed by compression self-ignition. An engine intake / exhaust control method for operating with spark ignition when the engine operating state is outside the self-ignition region and in the high-rotation / high-load side operation region, wherein the low-rotation / low-load side in the self-ignition region In this region, the exhaust valve closing timing is before the intake top dead center, the intake valve opening timing is after the intake top dead center, and the period from the exhaust valve closing timing to the intake top dead center and the intake top dead center The period until the opening timing is made substantially equal, and a negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center is set, while the high rotation / high load side region in the self-ignition region Let's open the intake valve Providing an intake / exhaust control method for an engine characterized by setting a positive overlap period in which both the intake valve and the exhaust valve are opened by advancing the period before the exhaust valve closing timing, and the operating state of the engine Is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder, and the engine is operated by compression self-ignition. An engine intake / exhaust control device provided with an engine that operates by spark ignition when in an operating region on the high-speed / high-load side that is out of control and has intake / exhaust control means for controlling the opening / closing timing of the intake and exhaust valves of the engine. The intake / exhaust control means is configured to set the exhaust valve closing timing before the intake top dead center, the intake valve opening timing after the intake top dead center, and the front in the low rotation / low load side region in the self-ignition region. The period from the exhaust valve closing timing to the intake top dead center is substantially equal to the period from the intake top dead center to the intake valve opening timing, so that the intake valve and the exhaust valve are closed negatively before and after the intake top dead center. While the overlap period is set, in the high-rotation / high-load region in the self-ignition region, the intake valve opening timing is advanced before the exhaust valve closing timing so that both the intake valve and the exhaust valve are opened. Provided is an intake / exhaust control apparatus for an engine, characterized by comprising means for setting a lap period.

そして、これらエンジンの吸排気制御方法および吸排気制御装置は、エンジン負荷の上昇に応じて排気弁閉時期を遅らせるとともに、前記自己着火領域における低回転・低負荷側の領域から前記自己着火領域における高回転・高負荷側の領域への移行時には、排気弁閉時期を一旦進ませる吸排気制御方法であるのがよく、また、エンジン負荷の上昇に応じて排気弁閉時期を遅らせるとともに、前記自己着火領域における低回転・低負荷側の領域から前記自己着火領域における高回転・高負荷側の領域への移行時には、排気弁閉時期を一旦進ませる手段を備えた吸排気制御装置であるのがよい。   The engine intake / exhaust control method and the intake / exhaust control apparatus delay the exhaust valve closing timing in response to an increase in engine load, and change from the low rotation / low load side region in the self-ignition region to the self-ignition region. It is preferable to use an intake / exhaust control method in which the exhaust valve closing timing is once advanced at the time of shifting to the high-speed / high-load region, and the exhaust valve closing timing is delayed in response to an increase in engine load. An intake / exhaust control device provided with means for temporarily advancing the exhaust valve closing timing at the time of transition from the low rotation / low load side region in the ignition region to the high rotation / high load side region in the self-ignition region Good.

これらエンジンの吸排気制御方法および吸排気制御装置によれば、エンジンの運転状態が低回転・低負荷側に設定した自己着火領域における低回転・低負荷側の領域では、排気弁閉時期から吸気上死点までの期間と吸気上死点から吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定することにより、排気弁閉時期から吸気上死点までの期間での圧縮エネルギーをそのまま吸気上死点から吸気弁開時期までの期間での膨張に使って、ポンピングロスを抑制しつつ、気筒内に残留する既燃ガス(内部EGR)により気筒内の温度を高めて圧縮自己着火を促進することができる。また、自己着火領域における高回転・高負荷側の領域では、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定することにより、吸気弁が開いたときに気筒内に溜まっている内部EGRの一部が吸気通路に吹き返されて、吹き返された内部EGRは吸気通路の新気と混合され冷却されてから再度吸入されるようにすることができ、それにより、気筒内の温度が適切に制御して過早着火の発生を抑制しながら高回転・高負荷側への自己着火領域の拡大が可能になるとともに、正のオーバーラップ期間により排気行程終盤におけるポンピングロスの増大を抑制することができる。つまり、ポンピングロスの増大を抑制しつつ、吸気吹き返しによる冷却効果により、過早着火の発生を抑制しながら高回転・高負荷側への自己着火領域の拡大が可能になる。   According to these engine intake / exhaust control methods and intake / exhaust control systems, in the low-rotation / low-load side region in the self-ignition region where the engine operating state is set to the low-rotation / low-load side, the intake air is discharged from the exhaust valve closing timing. The period from the top dead center to the period from the intake top dead center to the intake valve opening timing should be approximately the same, and a negative overlap period in which both the intake valve and the exhaust valve close before and after the intake top dead center is set. Therefore, the compression energy from the exhaust valve closing timing to the intake top dead center is used as it is for the expansion from the intake top dead center to the intake valve opening timing, and remains in the cylinder while suppressing the pumping loss. The burned gas (internal EGR) can increase the temperature in the cylinder and promote compression self-ignition. Also, in the high-rotation / high-load side area in the self-ignition area, the intake valve opening timing is advanced before the exhaust valve closing timing, and a positive overlap period in which both the intake valve and the exhaust valve are opened is set. When the intake valve is opened, part of the internal EGR accumulated in the cylinder is blown back into the intake passage, and the blown back internal EGR is mixed with fresh air in the intake passage, cooled, and then sucked again. As a result, it is possible to expand the self-ignition area to the high rotation / high load side while suppressing the occurrence of premature ignition by appropriately controlling the temperature in the cylinder, and positive over The increase in pumping loss at the end of the exhaust stroke can be suppressed by the lap period. That is, it is possible to expand the self-ignition region to the high rotation / high load side while suppressing the occurrence of premature ignition by the cooling effect due to the intake air blowback while suppressing the increase in pumping loss.

また、これらエンジンの吸排気制御方法および吸排気制御装置によれば、エンジン負荷の上昇に応じて排気弁閉時期を遅らせることにより、エンジン負荷が上昇して燃料噴射量が増大し発熱量が多くなるのに伴って内部EGR量を少なくして適正な気筒内温度を確保することができる。また、その場合、自己着火領域における低回転・低負荷側の領域から自己着火領域における高回転・高負荷側の領域への移行時には、負のオーバーラップからいきなり正のオーバーラップに切り替わることで急に内部EGRが多量に吸気通路に吹き返されて、冷えたEGRとして戻ってくることで、気筒内の温度が下がりすぎる懸念があるが、そうした状況で排気弁閉時期を一旦進めることによって、内部EGR量を増やし、気筒内の温度が低下しすぎないようにして、失火などの燃焼不良の発生を防止することができる。   In addition, according to these engine intake / exhaust control methods and intake / exhaust control apparatuses, delaying the exhaust valve closing timing in response to an increase in engine load increases the engine load, increasing the fuel injection amount and increasing the heat generation amount. As a result, the amount of internal EGR can be reduced to ensure an appropriate in-cylinder temperature. Also, in that case, when shifting from the low rotation / low load side region in the self-ignition region to the high rotation / high load side region in the self-ignition region, it suddenly switches from a negative overlap to a positive overlap. The internal EGR is blown back to the intake passage in a large amount and returned as a cold EGR, so there is a concern that the temperature in the cylinder will be lowered too much. By increasing the amount so that the temperature in the cylinder does not decrease too much, it is possible to prevent the occurrence of poor combustion such as misfire.

以上のとおり、本発明によれば、内部EGRを適切に制御して、ポンピングロスの増大を抑制するとともに、負荷に対する追従性を確保しつつ、過早着火を抑制して、高回転・高負荷側への自己着火領域の拡大を図ることができる。   As described above, according to the present invention, the internal EGR is appropriately controlled to suppress an increase in pumping loss, and to prevent the pre-ignition while ensuring the followability with respect to the load. The self-ignition area to the side can be expanded.

以下、本発明の実施形態を図面に基づいて説明する。
図1〜図3は本発明の実施形態の第1例および第2例に共通するもので、図1はエンジン制御装置の全体構成を示す図、図2はエンジン制御の概略を示すブロック図、図3は自己着火領域設定の制御マップを示す図である。そして、図4および図5は実施形態の第1例に係り、図4は自己着火領域でのバルブリフト特性の変化の一例を示すもので、(a)は自己着火領域における低回転・低負荷側の領域でのバルブリフト特性を示す図、(b)は自己着火領域における高回転・高負荷側の領域でのバルブリフト特性を示す図であり、図5は制御手順を示すフローチャートである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 are common to the first example and the second example of the embodiment of the present invention, FIG. 1 is a diagram showing the overall configuration of the engine control device, FIG. 2 is a block diagram showing an outline of engine control, FIG. 3 is a diagram showing a control map for setting the self-ignition region. 4 and 5 relate to a first example of the embodiment, and FIG. 4 shows an example of a change in valve lift characteristics in the self-ignition region. FIG. 4A shows a low rotation / low load in the self-ignition region. The figure which shows the valve lift characteristic in the area | region of a side, (b) is a figure which shows the valve lift characteristic in the area | region of the high rotation and high load side in a self-ignition area | region, FIG. 5 is a flowchart which shows a control procedure.

実施形態の第1例のエンジンは多気筒ガソリンエンジンである。そして、そのエンジン制御装置の全体構成は、図1に示すとおりで、エンジン本体1は、複数の気筒2(1つのみ図示する)が設けられたシリンダブロック3上にシリンダヘッド4が配置されてなり、各気筒2内にはピストン5が配置され、ピストン5の頂面とシリンダヘッド4の底面との間に燃焼室6が形成されている。そして、ピストン5はコネクティングロッド7によってクランク軸8に連結され、クランク軸8の一端側には、クランク軸8の回転角(クランク角)を検出するためのクランク角センサ9が配設されている。   The engine of the first example of the embodiment is a multi-cylinder gasoline engine. The overall configuration of the engine control apparatus is as shown in FIG. 1, and the engine body 1 has a cylinder head 4 disposed on a cylinder block 3 provided with a plurality of cylinders 2 (only one is shown). Thus, a piston 5 is arranged in each cylinder 2, and a combustion chamber 6 is formed between the top surface of the piston 5 and the bottom surface of the cylinder head 4. The piston 5 is connected to the crankshaft 8 by a connecting rod 7, and a crank angle sensor 9 for detecting the rotation angle (crank angle) of the crankshaft 8 is disposed on one end side of the crankshaft 8. .

シリンダヘッド4には、各気筒2毎に、燃焼室6の天井部に開口するように吸気ポート10及び排気ポート11が形成されている。これら吸気ポート10及び排気ポート11の内、吸気ポート10は、燃焼室6の天井部から斜め上方に延びてシリンダヘッド4の一側面に開口し、排気ポート11は反対側の側面に開口している。そして、シリンダヘッド4には、吸気ポート10及び排気ポート11を開閉するよう、吸気弁12及び排気弁13が配設され、これら吸気弁12及び排気弁13は、シリンダヘッド4に配設された動弁機構14のカム軸(図示せず)によりクランク軸8の回転に同期して駆動されるようになっている。   An intake port 10 and an exhaust port 11 are formed in the cylinder head 4 so as to open to the ceiling portion of the combustion chamber 6 for each cylinder 2. Of these intake port 10 and exhaust port 11, the intake port 10 extends obliquely upward from the ceiling of the combustion chamber 6 and opens on one side surface of the cylinder head 4, and the exhaust port 11 opens on the opposite side surface. Yes. The cylinder head 4 is provided with an intake valve 12 and an exhaust valve 13 so as to open and close the intake port 10 and the exhaust port 11. The intake valve 12 and the exhaust valve 13 are provided on the cylinder head 4. The camshaft (not shown) of the valve mechanism 14 is driven in synchronism with the rotation of the crankshaft 8.

前記動弁機構14には、吸気側及び排気側にそれぞれ、バルブリフト量を連続的に変更可能な公知のリフト可変機構15(以下、VVLと略称する)と、バルブリフトのクランク回転に対する位相角を連続的に変更可能な公知の位相可変機構16(以下、VVTと略称する)とが組み込まれている。それらVVL15及びVVT16の作動により、吸気弁12及び排気弁13のリフト特性を変更することができ、気筒2への吸気の充填量や残留既燃ガス(内部EGRガス)の量を調整することができる。   The valve mechanism 14 includes a known lift variable mechanism 15 (hereinafter abbreviated as VVL) capable of continuously changing the valve lift amount on the intake side and the exhaust side, and a phase angle of the valve lift with respect to crank rotation. Is incorporated with a known phase variable mechanism 16 (hereinafter abbreviated as VVT). By operating the VVL 15 and the VVT 16, the lift characteristics of the intake valve 12 and the exhaust valve 13 can be changed, and the amount of intake charge into the cylinder 2 and the amount of residual burned gas (internal EGR gas) can be adjusted. it can.

そして、シリンダヘッド4には、各気筒2の燃焼室6の天井部に、燃焼室6内に電極を臨ませた配置で点火プラグ17が配設されており、これら点火プラグ17は点火回路18によって所定の点火タイミングで通電されるようになっている。   In the cylinder head 4, ignition plugs 17 are arranged on the ceiling of the combustion chamber 6 of each cylinder 2 so that the electrodes face the inside of the combustion chamber 6. Thus, power is supplied at a predetermined ignition timing.

また、シリンダヘッド4には、各気筒2の燃焼室6の吸気側周縁部に、先端を燃焼室6内に臨ませて気筒2内に燃料を直接噴射する直噴インジェクタ19(燃料噴射弁)が配設され、また、先端を吸気ポート10内に臨ませて吸気ポート10内に燃料を噴射するポートインジェクタ20(燃料噴射弁)が配設されている。   Further, the cylinder head 4 has a direct injection injector 19 (fuel injection valve) that directly injects fuel into the cylinder 2 with the tip facing the combustion chamber 6 at the intake side peripheral edge of the combustion chamber 6 of each cylinder 2. Further, a port injector 20 (fuel injection valve) that injects fuel into the intake port 10 with its tip facing the intake port 10 is provided.

そして、シリンダヘッド4の一側に開口する各気筒2の吸気ポート10には、吸気通路21が連通している。この吸気通路21は、エンジン本体1の各気筒2の燃焼室6に対して図外のエアクリーナから濾過した空気を供給するためのもので、各気筒2の吸気ポート10に連通する分岐した通路部分の上流の集合部にサージタンク22が形成され、そのサージタンク22の上流が共通通路となって、その途中に電気式スロットル弁23が配設されている。   An intake passage 21 communicates with the intake port 10 of each cylinder 2 that opens to one side of the cylinder head 4. The intake passage 21 is for supplying air filtered from an air cleaner (not shown) to the combustion chamber 6 of each cylinder 2 of the engine body 1, and a branched passage portion communicating with the intake port 10 of each cylinder 2. A surge tank 22 is formed at the upstream upstream of the first tank, and an upstream side of the surge tank 22 serves as a common passage, and an electric throttle valve 23 is disposed in the middle.

一方、シリンダヘッド4の他側に開口する各気筒2の排気ポート11には、各気筒2毎に分岐した通路部分を有する排気通路25が接続されている。そして、この排気通路25の集合部には排気中の酸素濃度を検出する酸素濃度センサ26が配設されている。また、排気通路25の下流側には、排気中の有害成分を浄化するための触媒装置27が配設されている。   On the other hand, an exhaust passage 25 having a passage portion branched for each cylinder 2 is connected to the exhaust port 11 of each cylinder 2 opened to the other side of the cylinder head 4. An oxygen concentration sensor 26 that detects the oxygen concentration in the exhaust gas is disposed at the collecting portion of the exhaust passage 25. Further, on the downstream side of the exhaust passage 25, a catalyst device 27 for purifying harmful components in the exhaust is disposed.

そして、このエンジンには、各種制御を行うために、パワートレインコントロールモジュール(以下、PCMという)30が設けられている。PCM30は、周知のようにCPU、メモリ、I/Oインターフェース回路等を備えたもので、図2に示すように、クランク角センサ9からの信号、吸気通路21を流れる空気の流量を計測するエアフローセンサ31からの信号、図示しないアクセルペダルの操作量(アクセル開度)を検出するアクセル開度センサ32からの信号、車両の走行速度を検出する車速センサ33からの信号等が入力される。そして、PCM30は、前記各種センサからの信号等に基づいて、エンジンの運転状態(例えば負荷状態及びエンジン回転速度)を判定し、これに応じてVVL15、VVT16、点火プラグ17(点火回路18)、直噴インジェクタ19、ポートインジェクタ20、電気式スロットル弁23等を制御する。   The engine is provided with a powertrain control module (hereinafter referred to as PCM) 30 for performing various controls. As is well known, the PCM 30 includes a CPU, a memory, an I / O interface circuit, and the like. As shown in FIG. 2, the air flow for measuring the signal from the crank angle sensor 9 and the flow rate of the air flowing through the intake passage 21 is measured. A signal from the sensor 31, a signal from an accelerator opening sensor 32 that detects an operation amount (accelerator opening) of an accelerator pedal (not shown), a signal from a vehicle speed sensor 33 that detects a traveling speed of the vehicle, and the like are input. Then, the PCM 30 determines the operating state of the engine (for example, the load state and the engine speed) based on signals from the various sensors and the like, and VVL15, VVT16, spark plug 17 (ignition circuit 18), The direct injector 19, port injector 20, electric throttle valve 23 and the like are controlled.

そして、このエンジンでは、図3に示すように、低回転・低負荷側に圧縮自己着火領域(以下、自己着火領域ともいう)を設定し、エンジンの運転状態がこの自己着火領域にあるときには、排気弁閉時期を吸気上死点前として気筒内に残留する既燃ガスにより気筒2内の温度を高めてエンジンを圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するよう、吸気弁12および排気弁13のバルブリフト特性を調整する吸排気制御を行う。この吸排気制御は、VVL15及びVVT16の作動制御によるものであって、PCM30は、主にVVL15の作動制御によって吸気弁12及び排気弁13のリフト量を調整し、気筒2への吸気(空気)の充填量を制御するとともに、主にVVT16の作動制御によって排気弁13の閉時期及び吸気弁12の開時期を調整し、内部EGRガス量を制御する。また、PCM30は、主にVVT16の作動による内部EGRガス量の制御に伴って、点火プラグ17の作動状態を切換える。   In this engine, as shown in FIG. 3, a compression self-ignition region (hereinafter also referred to as a self-ignition region) is set on the low rotation / low load side, and when the operating state of the engine is in this self-ignition region, The exhaust valve is closed before the intake top dead center, the burned gas remaining in the cylinder raises the temperature in the cylinder 2 and the engine is operated with compression self-ignition, and the engine operating state is out of the self-ignition range. Intake / exhaust control is performed to adjust the valve lift characteristics of the intake valve 12 and the exhaust valve 13 so as to operate with spark ignition when in the operation region on the rotation / high load side. This intake / exhaust control is based on the operation control of the VVL 15 and VVT 16, and the PCM 30 adjusts the lift amount of the intake valve 12 and the exhaust valve 13 mainly by the operation control of the VVL 15, and intake (air) to the cylinder 2. The amount of internal EGR gas is controlled by adjusting the closing timing of the exhaust valve 13 and the opening timing of the intake valve 12 mainly by controlling the operation of the VVT 16. Further, the PCM 30 switches the operating state of the spark plug 17 with the control of the internal EGR gas amount mainly by the operation of the VVT 16.

そして、エンジンの運転状態が図3に示す低回転・低負荷側に設定した自己着火領域にあるときには、図4の(a)に示すように、排気弁閉時期を吸気上死点前としつつ、吸気弁開時期を吸気上死点後とし、排気弁閉時期から吸気上死点までの期間(A)と吸気上死点から吸気弁開時期までの期間(B)を略等しく、吸気上死点およびその前後に吸気弁12および排気弁13が共に閉じる負のオーバーラップ期間(NVOすなわちネガティブオーバーラップ期間)を設定するよう、吸気弁12のバルブリフト(IN)および排気弁13のバルブリフト(EX)を調整して、気筒2内に残留する既燃ガス(内部EGR)の量を増大させ、それにより気筒2内の温度を高めて圧縮自己着火を促進させて、圧縮自己着火で運転し、エンジンの運転状態が自己着火領域を外れた高回転・高負荷側の運転領域にあるときには通常のバルブタイミングに戻して火花点火で運転する。   Then, when the engine operating state is in the self-ignition region set on the low rotation / low load side shown in FIG. 3, the exhaust valve closing timing is set before the intake top dead center as shown in FIG. , The intake valve opening timing is after the intake top dead center, and the period (A) from the exhaust valve closing timing to the intake top dead center is substantially equal to the period (B) from the intake top dead center to the intake valve opening timing. The valve lift (IN) of the intake valve 12 and the valve lift of the exhaust valve 13 are set so as to set a negative overlap period (NVO, that is, a negative overlap period) in which both the intake valve 12 and the exhaust valve 13 close before and after the dead point. (EX) is adjusted to increase the amount of burnt gas (internal EGR) remaining in the cylinder 2, thereby increasing the temperature in the cylinder 2 to promote compression self-ignition, and operating with compression self-ignition. And engine operating conditions There returned to normal valve timing operating at the spark ignition when in the operating region of high rotation and high-load side out of the self-ignition region.

このエンジンでは、自己着火領域における低回転・低負荷側の領域では、排気弁閉時期から吸気上死点までの期間(A)と吸気上死点から吸気弁開時期までの期間(B)が略等しくなるため、排気弁閉時期から吸気上死点までの期間での圧縮エネルギーをそのまま吸気上死点から吸気弁開時期までの期間での膨張に使うことができ、ポンピングロスを抑制することができる。   In this engine, in the low rotation / low load region in the self-ignition region, there are a period (A) from the exhaust valve closing timing to the intake top dead center and a period (B) from the intake top dead center to the intake valve opening timing. Because it is approximately the same, the compression energy from the exhaust valve closing timing to the intake top dead center can be used as it is for the expansion from the intake top dead center to the intake valve opening timing, suppressing pumping loss. Can do.

自己着火領域における燃料噴射は、基本的には直噴インジェクタ19による第1噴射と、ポートインジェクタ20による第2噴射とで行う。その内、第1噴射(以下、NVO噴射ともいう)は、気筒2内の温度が低い低回転・低負荷側の領域で、吸気弁12と排気弁13が共に閉じる負のオーバーラップ期間中に直噴インジェクタ19によって燃料を気筒2内に噴射するもので、負のオーバーラップ期間中に少量の噴射を行っておくことによって、燃料が改質されて、自己着火性が向上するようにするためのものである。また、第2噴射(以下、メイン噴射ともいう)は、吸気行程においてポートインジェクタ20によって燃料を吸気ポート10内に噴射するもので、これでエンジンの出力(トルク)の殆どをまかなう。第1噴射は、負荷が高まるにつれて徐々に噴射量が少なくなり、高負荷側では噴射量が0(ゼロ)になるようにする。第2噴射は負荷が高まるにつれて噴射量を増やしていく。   The fuel injection in the self-ignition region is basically performed by the first injection by the direct injection injector 19 and the second injection by the port injector 20. Among them, the first injection (hereinafter also referred to as NVO injection) is a low-rotation / low-load side region where the temperature in the cylinder 2 is low, and during the negative overlap period in which both the intake valve 12 and the exhaust valve 13 are closed. The fuel is injected into the cylinder 2 by the direct injection injector 19, and the fuel is reformed by improving the self-ignitability by performing a small amount of injection during the negative overlap period. belongs to. The second injection (hereinafter also referred to as main injection) is a fuel that is injected into the intake port 10 by the port injector 20 during the intake stroke, and covers most of the output (torque) of the engine. In the first injection, the injection amount gradually decreases as the load increases, and the injection amount is set to 0 (zero) on the high load side. The second injection increases the injection amount as the load increases.

また、このエンジンでは、図3に示す低回転・低負荷側に設定した自己着火領域における高回転・高負荷側の領域(図3に斜線を引いた領域)では、図4の(b)に示すように、自己着火領域における低回転・低負荷側の領域にあるときに比べて吸気弁開時期を進ませ、排気弁閉時期から吸気上死点までの期間(A)に比べ、吸気上死点から吸気弁開時期までの期間(B)の方を短くするよう、吸気弁12のバルブリフト(IN)および排気弁13のバルブリフト(EX)を調整する。これにより、吸気弁12が開いたときに気筒2内に溜まっている内部EGRの一部が吸気通路21に吹き返されて、吹き返された内部EGRは吸気通路21の新気と混合され冷却されてから再度吸入されるようにすることができ、それにより、気筒2内の温度の上昇を抑制して過早着火の発生を抑制することができ、高回転・高負荷側の領域(図3に斜線を引いた領域)での安定した圧縮自己着火を確保でき、この領域にまで自己着火領域を拡大することができる。   Further, in this engine, in the high-rotation / high-load side region (region hatched in FIG. 3) in the self-ignition region set on the low-rotation / low-load side shown in FIG. As shown in the figure, the intake valve opening timing is advanced compared to the low-rotation / low-load region in the self-ignition region, and the intake air intake is increased compared to the period (A) from the exhaust valve closing timing to the intake top dead center. The valve lift (IN) of the intake valve 12 and the valve lift (EX) of the exhaust valve 13 are adjusted so as to shorten the period (B) from the dead point to the intake valve opening timing. As a result, when the intake valve 12 is opened, a part of the internal EGR accumulated in the cylinder 2 is blown back to the intake passage 21, and the blown back internal EGR is mixed with the fresh air in the intake passage 21 and cooled. From which it is possible to suppress the rise in the temperature in the cylinder 2 to suppress the occurrence of premature ignition, and the region on the high rotation / high load side (see FIG. 3). Stable compression self-ignition in the hatched area) can be ensured, and the self-ignition area can be expanded to this area.

このエンジンの吸排気制御および噴射制御の制御手順は、図5のフローチャートに示すとおりで、スタートすると、ステップS101で、クランク角センサの信号を読み込み(これによりエンジン回転数を求める)、車速センサの信号およびアクセル開度センサの信号を読み込む(これらから負荷すなわち目標トルクを計算する)。そして、ステップS102で、圧縮自己着火領域(HCCI)か否かを判定する。   The control procedure of the intake / exhaust control and the injection control of the engine is as shown in the flowchart of FIG. 5. When starting, in step S101, the crank angle sensor signal is read (the engine speed is obtained thereby), and the vehicle speed sensor The signal and the signal of the accelerator opening sensor are read (the load, that is, the target torque is calculated from them). In step S102, it is determined whether or not the compressed self-ignition region (HCCI).

そして、ステップS102の判定がNoである(火花点火領域である)というときは、ステップS103で、吸排気弁のバルブタイミングを回転数と負荷に応じた火花点火(SI)時のもの(通常の正のオーバーラップを形成するようなバルブタイミング)に設定する。   If the determination in step S102 is No (is the spark ignition region), in step S103, the valve timing of the intake / exhaust valve is the one at the time of spark ignition (SI) according to the rotational speed and load (normal). (Valve timing that forms a positive overlap).

そして、ステップS104で、所定燃料噴射タイミングか否かを判定して、Yesの判定になったら、ステップS105で燃料噴射を実行し、次いで、ステップS106で、所定点火タイミングか否かを判定して、Yesの判定になったら、ステップS107で点火を実行し、リターンする。   In step S104, it is determined whether or not it is a predetermined fuel injection timing. When the determination is Yes, fuel injection is executed in step S105, and then in step S106, it is determined whether or not the predetermined ignition timing is reached. If YES, ignition is executed in step S107, and the process returns.

一方、ステップS102の圧縮自己着火(HCCI)領域か否かの判定がYes(圧縮自己着火領域である)というときは、ステップS108で、圧縮自己着火領域における高回転・高負荷領域(図3で斜線を引いた領域)か否かを判定し、この判定がNoのときは、ステップS109で、図4の(a)に示すように、Aの期間とBの期間とが等しくなるように吸排気弁のバルブタイミングを回転数と負荷に応じて設定し、ステップS110で、VVT16、VVL15のアクチュエータを駆動させて、そのバルブタイミングにセットする。   On the other hand, when the determination of whether or not the compression self-ignition (HCCI) region in step S102 is Yes (compression self-ignition region), in step S108, a high rotation / high load region (in FIG. 3) in the compression self-ignition region. If the determination is No, in step S109, as shown in FIG. 4 (a), absorption is performed so that the period A is equal to the period B. The valve timing of the exhaust valve is set according to the rotation speed and the load, and the actuators of VVT16 and VVL15 are driven and set at the valve timing in step S110.

そして、ステップS111で、NVO噴射(負のオーバーラップ期間中の噴射すなわち第1噴射)のタイミングか否かを判定して、Yesの判定になったら、ステップS112でNVO噴射(第1噴射)を実行し、次に、ステップS113で、メイン噴射タイミングか否かを判定して、Yesの判定になったら、ステップS114でメイン噴射を実行して、圧縮自己着火燃焼させ、リターンする。   In step S111, it is determined whether or not it is the timing of NVO injection (injection during the negative overlap period, that is, the first injection). If the determination is Yes, NVO injection (first injection) is performed in step S112. Next, in step S113, it is determined whether or not it is the main injection timing. If the determination is Yes, the main injection is executed in step S114, the combustion is compressed and self-ignited, and the process returns.

また、ステップS102の圧縮自己着火(HCCI)領域か否かの判定がYes(圧縮自己着火領域)で、ステップS108の圧縮自己着火領域における高回転・高負荷領域(図3で斜線を引いた領域)か否かの判定がYesのときは、ステップS115で、図4の(b)に示すように、Aの期間に比べBの期間が短くなるように吸排気弁のバルブタイミングを回転数と負荷に応じて設定して、ステップS116でVVT16、VVL15のアクチュエータを駆動させて、そのバルブタイミングにセットする。そして、この領域では、ネガティブオーバーラップ期間中の噴射(第1噴射)をしなくても、自己着火してくれるということで、ステップS117で、メイン噴射タイミングか否かを判定し、その判定がYesになったら、ステップS118でメイン噴射を実行して、圧縮自己着火燃焼させて、リターンする。   Further, the determination of whether or not the compression self-ignition (HCCI) region in step S102 is Yes (compression self-ignition region), and the high rotation / high load region in the compression self-ignition region in step S108 (region hatched in FIG. 3) ) Or not, in step S115, as shown in FIG. 4B, the valve timing of the intake and exhaust valves is set to the rotation speed so that the period B is shorter than the period A. In accordance with the load, the actuators of VVT16 and VVL15 are driven in step S116, and the valve timing is set. In this region, it is determined whether or not the main injection timing is reached in step S117 because the self-ignition is performed without performing the injection (first injection) during the negative overlap period. If Yes, the main injection is executed in step S118 to cause compression self-ignition combustion and return.

次ぎに、本発明の実施形態の第2例を説明する。図6〜図8はこの第2例に係り、図6は自己着火領域でのバルブリフト特性の変化の一例を示すもので、(a)は自己着火領域における低回転・低負荷側の領域でのバルブリフト特性を示す図、(b)は自己着火領域における高回転・高負荷側の領域でのバルブリフト特性を示す図であり、図7は排気弁閉時期の制御マップを示す図、図8は制御手順を示すフローチャートである。なお、前述の図1〜図3はこの第2例にも共通する。   Next, a second example of the embodiment of the present invention will be described. FIGS. 6 to 8 relate to the second example, and FIG. 6 shows an example of a change in the valve lift characteristic in the self-ignition region. FIG. 6A is a region on the low rotation / low load side in the self-ignition region. FIG. 7B is a diagram showing the valve lift characteristics in the high rotation / high load side region in the self-ignition region, and FIG. 7 is a diagram showing a control map of the exhaust valve closing timing. 8 is a flowchart showing a control procedure. The above-described FIGS. 1 to 3 are common to the second example.

実施形態の第2例のエンジンは多気筒ガソリンエンジンであり、そのエンジン制御装置の全体構成は、図1に示すとおりで、第1例と同様である。そして、PCM30及びその入出力構成は図2に示すとおりで、第1例と同様である。   The engine of the second example of the embodiment is a multi-cylinder gasoline engine, and the overall configuration of the engine control device is as shown in FIG. 1 and is the same as that of the first example. The PCM 30 and its input / output configuration are as shown in FIG. 2 and are the same as in the first example.

そして、このエンジンは、第1例と同様、図3に示すように、低回転・低負荷側に自己着火領域(圧縮自己着火領域)を設定し、エンジンの運転状態がこの自己着火領域にあるときには、排気弁閉時期を吸気上死点前として気筒内に残留する既燃ガスにより気筒2内の温度を高めてエンジンを圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するよう、VVL15及びVVT16の作動制御により吸気弁12および排気弁13のバルブリフト特性を調整する吸排気制御等を行う。   As in the first example, this engine has a self-ignition region (compression self-ignition region) on the low rotation / low load side as shown in FIG. 3, and the engine operating state is in this self-ignition region. Sometimes, the exhaust valve is closed before the intake top dead center, the burned gas remaining in the cylinder raises the temperature in the cylinder 2 and the engine is operated by compression self-ignition, and the operating state of the engine deviates from the self-ignition region. In addition, intake / exhaust control for adjusting the valve lift characteristics of the intake valve 12 and the exhaust valve 13 is performed by the operation control of the VVL 15 and the VVT 16 so as to operate with spark ignition when in the operation region on the high rotation / high load side.

そして、エンジンの運転状態が図3に示す低回転・低負荷側に設定した自己着火領域にあるときには、図6の(a)に示すように、排気弁閉時期を吸気上死点前としつつ、吸気弁開時期を吸気上死点後とし、排気弁閉時期から吸気上死点までの期間(A)と吸気上死点から吸気弁開時期までの期間(B)を略等しくし、吸気上死点およびその前後に吸気弁12および排気弁13が共に閉じる負のオーバーラップ期間(NVOすなわちネガティブオーバーラップ期間))を設定するよう、吸気弁12のバルブリフト(IN)および排気弁13のバルブリフト(EX)を調整して、気筒2内に残留する既燃ガス(内部EGR)の量を増大させ、それにより気筒2内の温度を高めて圧縮自己着火を促進させて、圧縮自己着火で運転し、エンジンの運転状態が自己着火領域を外れた高回転・高負荷側の運転領域にあるときには通常のバルブタイミングに戻して火花点火で運転する。   Then, when the engine operating state is in the self-ignition region set to the low rotation / low load side shown in FIG. 3, the exhaust valve closing timing is set before the intake top dead center as shown in FIG. The intake valve opening timing is after the intake top dead center, and the period (A) from the exhaust valve closing timing to the intake top dead center is substantially equal to the period (B) from the intake top dead center to the intake valve opening timing. The valve lift (IN) of the intake valve 12 and the exhaust valve 13 are set so as to set a negative overlap period (NVO, that is, a negative overlap period) in which both the intake valve 12 and the exhaust valve 13 are closed before and after the top dead center. By adjusting the valve lift (EX), the amount of burnt gas (internal EGR) remaining in the cylinder 2 is increased, thereby increasing the temperature in the cylinder 2 to promote the compression self-ignition, and the compression self-ignition Drive with engine luck State is operated in back to normal valve timing when in the operating region of high rotation and high-load side out of the self-ignition region spark ignition.

このエンジンでは、自己着火領域における低回転・低負荷側の領域では、排気弁閉時期から吸気上死点までの期間(A)と吸気上死点から吸気弁開時期までの期間(B)が略等しくなるため、排気弁閉時期から吸気上死点までの期間での圧縮エネルギーをそのまま吸気上死点から吸気弁開時期までの期間での膨張に使うことができ、ポンピングロスを抑制することができる。   In this engine, in the low rotation / low load region in the self-ignition region, there are a period (A) from the exhaust valve closing timing to the intake top dead center and a period (B) from the intake top dead center to the intake valve opening timing. Because it is approximately the same, the compression energy from the exhaust valve closing timing to the intake top dead center can be used as it is for the expansion from the intake top dead center to the intake valve opening timing, suppressing pumping loss. Can do.

自己着火領域における燃料噴射は、基本的には直噴インジェクタ19による第1噴射と、ポートインジェクタ20による第2噴射とで行う。その内、第1噴射(以下、NVO噴射ともいう)は、気筒2内の温度が低い低回転・低負荷側の領域で、吸気弁12と排気弁13が共に閉じる負のオーバーラップ期間中に直噴インジェクタ19によって燃料を気筒2内に噴射するもので、負のオーバーラップ期間中に少量の噴射を行っておくことによって、燃料が改質されて、自己着火性が向上するようにするためのものである。また、第2噴射(以下、メイン噴射ともいう)は、吸気行程においてポートインジェクタ20によって燃料を吸気ポート10内に噴射するもので、これでエンジンの出力(トルク)の殆どをまかなう。第1噴射は、負荷が高まるにつれて徐々に噴射量が少なくなり、高負荷側では噴射量が0(ゼロ)になる。第2噴射は負荷が高まるにつれて噴射量が増えていく。   The fuel injection in the self-ignition region is basically performed by the first injection by the direct injection injector 19 and the second injection by the port injector 20. Among them, the first injection (hereinafter also referred to as NVO injection) is a low-rotation / low-load side region where the temperature in the cylinder 2 is low, and during the negative overlap period in which both the intake valve 12 and the exhaust valve 13 are closed. The fuel is injected into the cylinder 2 by the direct injection injector 19, and the fuel is reformed by improving the self-ignitability by performing a small amount of injection during the negative overlap period. belongs to. The second injection (hereinafter also referred to as main injection) is a fuel that is injected into the intake port 10 by the port injector 20 during the intake stroke, and covers most of the output (torque) of the engine. In the first injection, the injection amount gradually decreases as the load increases, and the injection amount becomes 0 (zero) on the high load side. In the second injection, the injection amount increases as the load increases.

また、このエンジンでは、図3に示す低回転・低負荷側に設定した自己着火領域における高回転・高負荷側の領域(図3に斜線を引いた領域)では、図6の(b)に示すように、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁12および排気弁13が共に開く正のオーバーラップ期間を設定するよう、吸気弁12のバルブリフト(IN)および排気弁13のバルブリフト(EX)を調整する。そして、図7に示すように、エンジン負荷の上昇に応じて排気弁閉時期(排気弁閉タイミング)を遅らせるとともに、自己着火領域における低回転・低負荷側の領域から前記自己着火領域における高回転・高負荷側の領域への移行時(切替時)には、排気弁閉時期を一旦進ませる。   Further, in this engine, in the high rotation / high load side region (the hatched region in FIG. 3) in the self-ignition region set on the low rotation / low load side shown in FIG. As shown, the valve lift (IN) of the intake valve 12 and the intake valve 12 are set so that the intake valve opening timing is advanced before the exhaust valve closing timing to set a positive overlap period in which both the intake valve 12 and the exhaust valve 13 are open. The valve lift (EX) of the exhaust valve 13 is adjusted. Then, as shown in FIG. 7, the exhaust valve closing timing (exhaust valve closing timing) is delayed in accordance with the increase in engine load, and the low rotation / low load side region in the self-ignition region is increased to the high rotation in the self-ignition region. • When shifting to the high load side area (when switching), temporarily advance the exhaust valve closing timing.

これにより、吸気弁12が開いたときに気筒2内に溜まっている内部EGRの一部が吸気通路21に吹き返されて、吹き返された内部EGRは吸気通路21の新気と混合され冷却されてから再度吸入されるようにすることができ、それにより、気筒2内の温度の上昇を抑制して過早着火の発生を抑制することができ、高回転・高負荷側の領域(図3に斜線を引いた領域)での安定した圧縮自己着火を確保でき、この領域にまで自己着火領域を拡大することができるとともに、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定することにより、排気行程終盤におけるポンピングロスの増大を抑制することができる。つまり、ポンピングロスの増大を抑制しつつ、吸気吹き返しによる冷却効果により、過早着火の発生を抑制しながら高回転・高負荷側への自己着火領域の拡大を図ることができる。   As a result, when the intake valve 12 is opened, a part of the internal EGR accumulated in the cylinder 2 is blown back to the intake passage 21, and the blown back internal EGR is mixed with the fresh air in the intake passage 21 and cooled. From which it is possible to suppress the rise in the temperature in the cylinder 2 to suppress the occurrence of premature ignition, and the region on the high rotation / high load side (see FIG. 3). Stable compression self-ignition in the hatched area) can be secured, the self-ignition area can be expanded to this area, and the intake valve opening timing is advanced before the exhaust valve closing timing. Further, by setting a positive overlap period in which both the exhaust valves are open, an increase in pumping loss at the end of the exhaust stroke can be suppressed. That is, it is possible to expand the self-ignition region toward the high rotation / high load side while suppressing the occurrence of premature ignition by the cooling effect due to the intake air blowback while suppressing the increase in pumping loss.

また、このエンジンでは、エンジン負荷の上昇に応じて排気弁閉時期を遅らせることにより、エンジン負荷が上昇して燃料噴射量が増大し発熱量が多くなるのに伴って内部EGR量を少なくして適正な気筒内温度を確保することができる。また、その場合、自己着火領域における低回転・低負荷側の領域から自己着火領域における高回転・高負荷側の領域への移行時には、負のオーバーラップからいきなり正のオーバーラップに切り替わることで急に内部EGRが多量に吸気通路に吹き返されて、冷えたEGRとして戻ってくることで、気筒2内の温度が下がりすぎる懸念があるが、そうした状況で排気弁閉時期を一旦進めることによって、内部EGR量を増やし、気筒2内の温度が低下しすぎないようにして、失火などの燃焼不良の発生を防止することができる。   Further, in this engine, the exhaust valve closing timing is delayed in accordance with the increase in the engine load, so that the internal EGR amount is reduced as the engine load increases and the fuel injection amount increases and the heat generation amount increases. An appropriate in-cylinder temperature can be secured. Also, in that case, when shifting from the low rotation / low load side region in the self-ignition region to the high rotation / high load side region in the self-ignition region, it suddenly switches from a negative overlap to a positive overlap. There is a concern that the internal EGR is blown back to the intake passage in a large amount and returned as a cold EGR, so that the temperature in the cylinder 2 may be lowered too much. By increasing the amount of EGR so that the temperature in the cylinder 2 does not decrease too much, it is possible to prevent the occurrence of poor combustion such as misfire.

この第2例のエンジンの吸排気制御および噴射制御の制御手順は、図8のフローチャートに示すとおりで、スタートすると、ステップS201で、クランク角センサの信号を読み込み(エンジン回転数を求める)、車速センサの信号およびアクセル開度センサの信号を読み込む(これらから負荷すなわち目標トルクを計算する)。そして、ステップS202で、圧縮自己着火領域(HCCI)か否かを判定する。   The control procedure of the intake / exhaust control and injection control of the engine of the second example is as shown in the flowchart of FIG. 8, and when started, in step S201, a crank angle sensor signal is read (engine speed is obtained), and the vehicle speed The sensor signal and the accelerator opening sensor signal are read (the load, that is, the target torque is calculated from these signals). In step S202, it is determined whether or not the compressed self-ignition region (HCCI).

そして、ステップS202の判定がNoである(火花点火領域である)というときは、ステップS203で、吸排気弁のバルブタイミングを回転数と負荷に応じた火花点火(SI)時のもの(通常の正のオーバーラップを形成するようなバルブタイミング)に設定する。   If the determination in step S202 is No (is the spark ignition region), in step S203, the valve timing of the intake / exhaust valve is the one at the time of spark ignition (SI) according to the rotational speed and load (normal). (Valve timing that forms a positive overlap).

そして、ステップS204で、所定燃料噴射タイミングか否かを判定して、Yesの判定になったら、ステップS205で燃料噴射を実行し、次いで、ステップS206で、所定点火タイミングか否かを判定して、Yesの判定になったら、ステップS207で点火を実行し、リターンする。   In step S204, it is determined whether or not it is a predetermined fuel injection timing. When the determination is Yes, fuel injection is executed in step S205, and then in step S206, it is determined whether or not the predetermined ignition timing is reached. If YES, ignition is executed in step S207, and the process returns.

一方、ステップS202の圧縮自己着火(HCCI)領域か否かの判定がYes(圧縮自己着火領域である)というときは、ステップS208で、圧縮自己着火領域における高回転・高負荷領域(図3で斜線を引いた領域)か否かを判定し、この判定がNoのときは、ステップS209で、図6の(a)に示すように、Aの期間とBの期間とが等しくなるように吸排気弁のバルブタイミングを回転数と負荷に応じて設定し、ステップS210で、VVT16、VVL15のアクチュエータを駆動させて、そのバルブタイミングにセットする。   On the other hand, when the determination of whether or not the compression self-ignition (HCCI) region in step S202 is Yes (compression self-ignition region), in step S208, the high rotation / high load region (in FIG. 3) If this determination is No, in step S209, as shown in FIG. 6 (a), absorption is performed so that the period A is equal to the period B. The valve timing of the exhaust valve is set according to the rotation speed and the load, and the actuators of VVT16 and VVL15 are driven and set at the valve timing in step S210.

そして、ステップS211で、NVO噴射(負のオーバーラップ期間中の噴射すなわち第1噴射)のタイミングか否かを判定して、Yesの判定になったら、ステップS212でNVO噴射(第1噴射)を実行し、次に、ステップS213で、メイン噴射タイミングか否かを判定して、Yesの判定になったら、ステップS214でメイン噴射を実行して、圧縮自己着火燃焼させ、リターンする。   In step S211, it is determined whether or not it is the timing of NVO injection (injection during the negative overlap period, that is, the first injection). If the determination is Yes, NVO injection (first injection) is performed in step S212. Next, in step S213, it is determined whether or not it is the main injection timing, and if the determination is Yes, the main injection is executed in step S214 to perform compression self-ignition combustion and return.

また、ステップS202の圧縮自己着火(HCCI)領域か否かの判定がYes(圧縮自己着火領域)で、ステップS208の圧縮自己着火領域における高回転・高負荷領域(図3で斜線を引いた領域)か否かの判定がYesのときは、ステップS215で、図6の(b)に示すように正のオーバーラップとなるように吸排気弁のバルブタイミングを回転数と負荷に応じて設定し(マップで設定する)、ステップS216でVVT16、VVL15のアクチュエータを駆動させて、そのバルブタイミングにセットする。そして、この領域では、ネガティブオーバーラップ期間中の噴射(第1噴射)をしなくても、自己着火してくれるということで、ステップS217で、メイン噴射タイミングか否かを判定し、その判定がYesになったら、ステップS218でメイン噴射を実行して、圧縮自己着火燃焼させて、リターンする。   Further, the determination as to whether or not it is the compression self-ignition (HCCI) region in step S202 is Yes (compression self-ignition region), and the high rotation / high load region in the compression self-ignition region in step S208 (region hatched in FIG. 3) ) Or not, in step S215, the valve timing of the intake / exhaust valves is set according to the rotational speed and the load so as to have a positive overlap as shown in FIG. 6B. In step S216, the VVT16 and VVL15 actuators are driven to set the valve timing. In this region, it is determined whether or not the main injection timing is reached in step S217 because the self-ignition is performed without performing the injection (first injection) during the negative overlap period. If Yes, the main injection is executed in step S218 to cause compression self-ignition combustion and return.

本発明の実施形態に係るエンジン制御装置の全体構成を示す図である。It is a figure showing the whole engine control device composition concerning an embodiment of the present invention. 本発明の実施形態に係るエンジン制御の概略を示すブロック図である。It is a block diagram which shows the outline of the engine control which concerns on embodiment of this invention. 本発明の実施形態に係るエンジンの自己着火領域設定の制御マップを示す図である。It is a figure which shows the control map of the self-ignition area | region setting of the engine which concerns on embodiment of this invention. 本発明の実施形態の第1例における自己着火領域でのバルブリフト特性の変化の一例を示すもので、(a)は自己着火領域における低回転・低負荷側の領域でのバルブリフト特性を示す図、(b)は自己着火領域における高回転・高負荷側の領域でのバルブリフト特性を示す図である。FIG. 3 shows an example of a change in valve lift characteristics in the self-ignition region in the first example of the embodiment of the present invention, and FIG. 5A shows the valve lift characteristics in the low rotation / low load side region in the self-ignition region. FIG. 4B is a diagram showing valve lift characteristics in the high rotation / high load side region in the self-ignition region. 本発明の実施形態の第1例の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the 1st example of embodiment of this invention. 本発明の実施形態の第2例における自己着火領域でのバルブリフト特性の変化の一例を示すもので、(a)は自己着火領域における低回転・低負荷側の領域でのバルブリフト特性を示す図、(b)は自己着火領域における高回転・高負荷側の領域でのバルブリフト特性を示す図である。An example of the change of the valve lift characteristic in the self-ignition area in the second example of the embodiment of the present invention is shown. (A) shows the valve lift characteristic in the low rotation / low load area in the self-ignition area. FIG. 4B is a diagram showing valve lift characteristics in the high rotation / high load side region in the self-ignition region. 本発明の実施形態に係るエンジン制御の第2例における排気弁閉時期の制御マップを示す図である。It is a figure which shows the control map of the exhaust valve closing timing in the 2nd example of the engine control which concerns on embodiment of this invention. 本発明の実施形態の第2例の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the 2nd example of embodiment of this invention.

符号の説明Explanation of symbols

1 エンジン本体
2 気筒
9 クランク角センサ
10 吸気ポート
11 排気ポート
12 吸気弁
13 排気弁
14 動弁機構
15 リフト可変機構(VVL)
16 位相可変機構(VVT)
17 点火プラグ
18 点火回路
19 直噴インジェクタ(燃料噴射弁)
20 ポートインジェクタ(燃料噴射弁)
21 吸気通路
30 パワートレインコントロールモジュール(PCM)
31 エアフローセンサ
32 アクセル開度センサ
33 車速センサ
DESCRIPTION OF SYMBOLS 1 Engine body 2 Cylinder 9 Crank angle sensor 10 Intake port 11 Exhaust port 12 Intake valve 13 Exhaust valve 14 Valve mechanism 15 Lift variable mechanism (VVL)
16 Phase variable mechanism (VVT)
17 ignition plug 18 ignition circuit 19 direct injection injector (fuel injection valve)
20 port injector (fuel injection valve)
21 Intake passage 30 Powertrain control module (PCM)
31 Airflow sensor 32 Accelerator opening sensor 33 Vehicle speed sensor

Claims (6)

エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンの吸排気制御方法であって、
前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、
前記自己着火領域における高回転・高負荷側の領域では、排気弁閉時期から吸気上死点までの期間に比べ、吸気上死点から吸気弁開時期までの期間の方を短くすることを特徴とするエンジンの吸排気制御方法。
When the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder and the engine is operated by compression self-ignition. An intake / exhaust control method for an engine that operates with spark ignition when it is in a high rotation / high load side operation region outside the self-ignition region,
In the low rotation / low load side region in the self-ignition region, the exhaust valve closing timing is before the intake top dead center, the intake valve opening timing is after the intake top dead center, and from the exhaust valve closing timing to the intake top dead center. While substantially equalizing the period from the intake top dead center to the intake valve opening timing, and setting a negative overlap period in which both the intake valve and the exhaust valve are closed before and after the intake top dead center,
In the high-rotation / high-load region in the self-ignition region, the period from the intake top dead center to the intake valve open timing is shorter than the period from the exhaust valve close timing to the intake top dead center. Engine intake and exhaust control method.
エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンの吸排気制御方法であって、
前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、
前記自己着火領域における高回転・高負荷側の領域では、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定することを特徴とするエンジンの吸排気制御方法。
When the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder and the engine is operated by compression self-ignition. An intake / exhaust control method for an engine that operates with spark ignition when it is in a high rotation / high load side operation region outside the self-ignition region,
In the low rotation / low load side region in the self-ignition region, the exhaust valve closing timing is before the intake top dead center, the intake valve opening timing is after the intake top dead center, and from the exhaust valve closing timing to the intake top dead center. While substantially equalizing the period from the intake top dead center to the intake valve opening timing, and setting a negative overlap period in which both the intake valve and the exhaust valve are closed before and after the intake top dead center,
In the high-rotation / high-load region in the self-ignition region, the intake valve opening timing is advanced before the exhaust valve closing timing, and a positive overlap period in which both the intake valve and the exhaust valve are opened is set. Engine intake and exhaust control method.
エンジン負荷の上昇に応じて排気弁閉時期を遅らせるとともに、前記自己着火領域における低回転・低負荷側の領域から前記自己着火領域における高回転・高負荷側の領域への移行時には、排気弁閉時期を一旦進ませる請求項2記載のエンジンの吸排気制御方法。 The exhaust valve closing timing is delayed according to the increase in engine load, and at the time of transition from the low rotation / low load side region in the self-ignition region to the high rotation / high load side region in the self-ignition region, the exhaust valve is closed. The engine intake / exhaust control method according to claim 2, wherein the timing is temporarily advanced. エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンに備えられ、エンジンの吸気弁および排気弁の開閉時期を制御する吸排気制御手段を有するエンジンの吸排気制御装置であって、
前記吸排気制御手段は、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、
前記自己着火領域における高回転・高負荷側の領域では、排気弁閉時期から吸気上死点までの期間に比べ、吸気上死点から吸気弁開時期までの期間の方を短くすることを特徴とするエンジンの吸排気制御装置。
When the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder and the engine is operated by compression self-ignition. When the engine is in the high-speed / high-load operation region outside the self-ignition region, the engine is equipped with an intake / exhaust control means for controlling the opening / closing timing of the intake valve and exhaust valve of the engine. An exhaust control device,
The intake / exhaust control means is configured to set the exhaust valve closing timing before the intake top dead center, the intake valve opening timing after the intake top dead center, and the exhaust valve closing in the low rotation / low load side region in the self-ignition region. The negative overlap period in which both the intake top dead center and the intake valve and the exhaust valve are closed before and after the intake top dead center by making the period from the timing to the intake top dead center and the period from the intake top dead center to the intake valve opening timing substantially equal. While setting
In the high-rotation / high-load region in the self-ignition region, the period from the intake top dead center to the intake valve open timing is shorter than the period from the exhaust valve close timing to the intake top dead center. Engine intake and exhaust control device.
エンジンの運転状態が低回転・低負荷側に設定した自己着火領域にあるときには、気筒内に残留する既燃ガスにより気筒内の温度を高めて圧縮自己着火で運転し、エンジンの運転状態が前記自己着火領域を外れた高回転・高負荷側の運転領域にあるときには火花点火で運転するエンジンに備えられ、エンジンの吸気弁および排気弁の開閉時期を制御する吸排気制御手段を有するエンジンの吸排気制御装置であって、
前記吸排気制御手段は、前記自己着火領域における低回転・低負荷側の領域では、排気弁閉時期を吸気上死点前、吸気弁開時期を吸気上死点後とし、かつ前記排気弁閉時期から吸気上死点までの期間と吸気上死点から前記吸気弁開時期までの期間を略等しくして、吸気上死点およびその前後に吸気弁および排気弁が共に閉じる負のオーバーラップ期間を設定する一方、
前記自己着火領域における高回転・高負荷側の領域では、吸気弁開時期を排気弁閉時期より前まで進ませて、吸気弁および排気弁が共に開く正のオーバーラップ期間を設定する手段を備えたことを特徴とするエンジンの吸排気制御装置。
When the operating state of the engine is in the self-ignition region set to the low rotation / low load side, the temperature in the cylinder is increased by the burned gas remaining in the cylinder and the engine is operated by compression self-ignition. When the engine is in the high-speed / high-load operation region outside the self-ignition region, the engine is equipped with an intake / exhaust control means for controlling the opening / closing timing of the intake valve and exhaust valve of the engine. An exhaust control device,
The intake / exhaust control means is configured to set the exhaust valve closing timing before the intake top dead center, the intake valve opening timing after the intake top dead center, and the exhaust valve closing in the low rotation / low load side region in the self-ignition region. The negative overlap period in which both the intake top dead center and the intake valve and the exhaust valve are closed before and after the intake top dead center by making the period from the timing to the intake top dead center and the period from the intake top dead center to the intake valve opening timing substantially equal. While setting
In the high rotation / high load side region in the self-ignition region, there is provided means for setting a positive overlap period in which both the intake valve and the exhaust valve are opened by advancing the intake valve opening timing before the exhaust valve closing timing. An intake / exhaust control device for an engine characterized by the above.
エンジン負荷の上昇に応じて排気弁閉時期を遅らせるとともに、前記自己着火領域における低回転・低負荷側の領域から前記自己着火領域における高回転・高負荷側の領域への移行時には、排気弁閉時期を一旦進ませる手段を備えた請求項5記載のエンジンの吸排気制御装置。 The exhaust valve closing timing is delayed according to the increase in engine load, and at the time of transition from the low rotation / low load side region in the self-ignition region to the high rotation / high load side region in the self-ignition region, the exhaust valve is closed. 6. The engine intake / exhaust control device according to claim 5, further comprising means for advancing the timing.
JP2008042263A 2008-02-22 2008-02-22 Intake exhaust control method and intake exhaust control device for engine Pending JP2009197740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042263A JP2009197740A (en) 2008-02-22 2008-02-22 Intake exhaust control method and intake exhaust control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042263A JP2009197740A (en) 2008-02-22 2008-02-22 Intake exhaust control method and intake exhaust control device for engine

Publications (1)

Publication Number Publication Date
JP2009197740A true JP2009197740A (en) 2009-09-03

Family

ID=41141512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042263A Pending JP2009197740A (en) 2008-02-22 2008-02-22 Intake exhaust control method and intake exhaust control device for engine

Country Status (1)

Country Link
JP (1) JP2009197740A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157861A (en) * 2010-01-29 2011-08-18 Honda Motor Co Ltd Compression ignition internal combustion engine
US20130080026A1 (en) * 2011-09-27 2013-03-28 GM Global Technology Operations LLC Method and apparatus for controlling combustion noise in an internal combustion engine
JP2013245602A (en) * 2012-05-25 2013-12-09 Mazda Motor Corp Compression self-ignition gasoline engine
DE102013013620A1 (en) 2012-08-29 2014-03-06 Mazda Motor Corp. Spark ignition direct injection engine, control means therefor, method of controlling an engine and computer program product
DE102013013527A1 (en) 2012-08-29 2014-03-06 Mazda Motor Corporation SPARK IGNITION DIRECT INJECTION ENGINE
DE102013014412A1 (en) 2012-09-07 2014-03-13 Mazda Motor Corporation Spark ignition direct injection engine, method of operating a spark ignition direct injection engine and computer program product
JP2014051928A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Spark ignition type engine
DE102014002893A1 (en) 2013-03-25 2014-09-25 Mazda Motor Corporation Spark ignition engine, control apparatus therefor, method of controlling an engine, and computer program product
DE102014002894A1 (en) 2013-03-25 2014-09-25 Mazda Motor Corporation Spark ignition engine, control device therefor, method for controlling an engine and computer program product
JP2014222024A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Internal combustion engine
JP2015034474A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
CN104454194A (en) * 2013-09-25 2015-03-25 马自达汽车株式会社 Control device of compression-ignition engine
US20150128901A1 (en) * 2011-09-16 2015-05-14 Ethanol Boosting Systems, Llc Open-Valve Port Fuel Injection Of Alcohol In Multiple Injector Engines
JP2015098803A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device of compression ignition type engine
JP5930050B2 (en) * 2012-09-07 2016-06-08 マツダ株式会社 Spark ignition engine
CN105683541A (en) * 2013-10-29 2016-06-15 马自达汽车株式会社 Control device for compression ignition-type engine
US9624868B2 (en) 2012-09-07 2017-04-18 Mazda Motor Corporation Spark-ignition direct injection engine
WO2018096747A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control apparatus for engine
CN108331676A (en) * 2017-01-17 2018-07-27 丰田自动车株式会社 The control method of internal-combustion engine system and internal combustion engine
JP2018189021A (en) * 2017-05-01 2018-11-29 マツダ株式会社 Valve gear for engine
JP2019039391A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Compression self-ignition engine with supercharger
EP3690219A1 (en) 2019-01-31 2020-08-05 Mazda Motor Corporation Control device for compression ignition engine, engine, vehicle, and method of controlling compression ignition engine
JP2020122447A (en) * 2019-01-31 2020-08-13 マツダ株式会社 Control device of compression ignition type engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154858A (en) * 2005-12-08 2007-06-21 Mazda Motor Corp Spark ignition type gasoline engine
JP2008163807A (en) * 2006-12-27 2008-07-17 Daihatsu Motor Co Ltd Control method of gasoline engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154858A (en) * 2005-12-08 2007-06-21 Mazda Motor Corp Spark ignition type gasoline engine
JP2008163807A (en) * 2006-12-27 2008-07-17 Daihatsu Motor Co Ltd Control method of gasoline engine

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157861A (en) * 2010-01-29 2011-08-18 Honda Motor Co Ltd Compression ignition internal combustion engine
US20150128901A1 (en) * 2011-09-16 2015-05-14 Ethanol Boosting Systems, Llc Open-Valve Port Fuel Injection Of Alcohol In Multiple Injector Engines
US9206761B2 (en) * 2011-09-16 2015-12-08 Ethanol Boosting Systems, Llc Open-valve port fuel injection of alcohol in multiple injector engines
US9267451B2 (en) * 2011-09-27 2016-02-23 GM Global Technology Operations LLC Method and apparatus for controlling combustion noise in an internal combustion engine
US20130080026A1 (en) * 2011-09-27 2013-03-28 GM Global Technology Operations LLC Method and apparatus for controlling combustion noise in an internal combustion engine
JP2013245602A (en) * 2012-05-25 2013-12-09 Mazda Motor Corp Compression self-ignition gasoline engine
US9261041B2 (en) 2012-08-29 2016-02-16 Mazda Motor Corporation Spark-ignition direct injection engine
DE102013013527B4 (en) * 2012-08-29 2016-08-04 Mazda Motor Corporation SPARK IGNITION DIRECT INJECTION ENGINE
CN103670759A (en) * 2012-08-29 2014-03-26 马自达汽车株式会社 Spark-ignition direct injection engine
CN103670873A (en) * 2012-08-29 2014-03-26 马自达汽车株式会社 Spark-ignition direct injection engine
DE102013013527A1 (en) 2012-08-29 2014-03-06 Mazda Motor Corporation SPARK IGNITION DIRECT INJECTION ENGINE
US9255539B2 (en) 2012-08-29 2016-02-09 Mazda Motor Corporation Spark-ignition direct injection engine
JP2014047629A (en) * 2012-08-29 2014-03-17 Mazda Motor Corp Spark ignition type direct-injection engine
DE102013013620A1 (en) 2012-08-29 2014-03-06 Mazda Motor Corp. Spark ignition direct injection engine, control means therefor, method of controlling an engine and computer program product
DE102013013620B4 (en) * 2012-08-29 2017-10-05 Mazda Motor Corp. Spark ignition direct injection engine, control means therefor, method of controlling an engine and computer program product
DE102013014412A1 (en) 2012-09-07 2014-03-13 Mazda Motor Corporation Spark ignition direct injection engine, method of operating a spark ignition direct injection engine and computer program product
US9702316B2 (en) 2012-09-07 2017-07-11 Mazda Motor Corporation Spark-ignition direct injection engine
JP5930050B2 (en) * 2012-09-07 2016-06-08 マツダ株式会社 Spark ignition engine
US9429087B2 (en) 2012-09-07 2016-08-30 Mazda Motor Corporation Spark ignition engine
DE102013014412B4 (en) * 2012-09-07 2017-08-31 Mazda Motor Corporation Spark ignition direct injection engine, method of operating a spark ignition direct injection engine and computer program product
JP2014051928A (en) * 2012-09-07 2014-03-20 Mazda Motor Corp Spark ignition type engine
US9624868B2 (en) 2012-09-07 2017-04-18 Mazda Motor Corporation Spark-ignition direct injection engine
DE102014002893A1 (en) 2013-03-25 2014-09-25 Mazda Motor Corporation Spark ignition engine, control apparatus therefor, method of controlling an engine, and computer program product
DE102014002894B4 (en) * 2013-03-25 2020-02-27 Mazda Motor Corporation Spark ignition engine, regulating or control device therefor, method for regulating or controlling an engine and computer program product
US9695770B2 (en) 2013-03-25 2017-07-04 Mazda Motor Corporation Control device of spark-ignition engine
DE102014002894A1 (en) 2013-03-25 2014-09-25 Mazda Motor Corporation Spark ignition engine, control device therefor, method for controlling an engine and computer program product
US9617945B2 (en) 2013-03-25 2017-04-11 Mazda Motor Corporation Control device of spark-ignition engine
JP2014222024A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Internal combustion engine
JP2015034475A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
JP2015034474A (en) * 2013-08-07 2015-02-19 本田技研工業株式会社 Control device of internal combustion engine
DE102014013884B4 (en) * 2013-09-25 2017-02-16 Mazda Motor Corporation Compression ignition engine, control apparatus therefor, method of controlling an engine and computer program product
US9546613B2 (en) 2013-09-25 2017-01-17 Mazda Motor Corporation Control device of compression-ignition engine
CN104454194A (en) * 2013-09-25 2015-03-25 马自达汽车株式会社 Control device of compression-ignition engine
JP2015063937A (en) * 2013-09-25 2015-04-09 マツダ株式会社 Control device for compression ignition type engine
DE102014013884A1 (en) 2013-09-25 2015-03-26 Mazda Motor Corporation Compression ignition engine, control apparatus therefor, method of controlling an engine and computer program product
US9850828B2 (en) 2013-10-29 2017-12-26 Mazda Motor Corporation Control device for compression ignition-type engine
DE112014004939B4 (en) 2013-10-29 2018-03-08 Mazda Motor Corporation Control device for compression ignition engine
CN105683541B (en) * 2013-10-29 2018-11-02 马自达汽车株式会社 The control device of compression ignition engine
CN105683541A (en) * 2013-10-29 2016-06-15 马自达汽车株式会社 Control device for compression ignition-type engine
JP2015098803A (en) * 2013-11-18 2015-05-28 マツダ株式会社 Control device of compression ignition type engine
WO2018096747A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control apparatus for engine
WO2018096589A1 (en) * 2016-11-22 2018-05-31 マツダ株式会社 Control device of compression autoignition engine
CN108884767A (en) * 2016-11-22 2018-11-23 马自达汽车株式会社 The control device of engine
JPWO2018096747A1 (en) * 2016-11-22 2018-12-27 マツダ株式会社 Engine control device
CN108884767B (en) * 2016-11-22 2021-06-22 马自达汽车株式会社 Engine control device
US10502147B2 (en) 2016-11-22 2019-12-10 Mazda Motor Corporation Control apparatus for engine
CN108331676A (en) * 2017-01-17 2018-07-27 丰田自动车株式会社 The control method of internal-combustion engine system and internal combustion engine
CN108331676B (en) * 2017-01-17 2020-10-16 丰田自动车株式会社 Internal combustion engine system and control method of internal combustion engine
JP2018189021A (en) * 2017-05-01 2018-11-29 マツダ株式会社 Valve gear for engine
JP2019039391A (en) * 2017-08-25 2019-03-14 マツダ株式会社 Compression self-ignition engine with supercharger
JP2020122448A (en) * 2019-01-31 2020-08-13 マツダ株式会社 Control device for compression ignition type engine
JP2020122447A (en) * 2019-01-31 2020-08-13 マツダ株式会社 Control device of compression ignition type engine
EP3690219A1 (en) 2019-01-31 2020-08-05 Mazda Motor Corporation Control device for compression ignition engine, engine, vehicle, and method of controlling compression ignition engine
US11156171B2 (en) 2019-01-31 2021-10-26 Mazda Motor Corporation Control device for compression ignition engine
JP7088049B2 (en) 2019-01-31 2022-06-21 マツダ株式会社 Compression ignition engine controller
JP7205258B2 (en) 2019-01-31 2023-01-17 マツダ株式会社 Compression ignition engine controller

Similar Documents

Publication Publication Date Title
JP2009197740A (en) Intake exhaust control method and intake exhaust control device for engine
JP3945152B2 (en) Combustion control device for internal combustion engine
JP6268864B2 (en) Control device for compression ignition engine
JP5644123B2 (en) ENGINE CONTROL METHOD AND CONTROL DEVICE
US9470174B2 (en) Control system and control method of spark ignition gasoline engine
JP4873250B2 (en) Pre-ignition detection device for vehicle engine
JP5040772B2 (en) Engine intake valve control method and intake valve control apparatus
JP2011214479A (en) Control device for gasoline engine
JP2014185623A (en) Control device of spark ignition type engine
JP2014047630A (en) Spark ignition type direct-injection engine
JP6131840B2 (en) Control device for compression ignition engine
JP2009103122A (en) Method and device of controlling internal combustion engine
JP2009024599A (en) Controller of internal combustion engine
JP4803151B2 (en) Control unit for gasoline engine
JP5907013B2 (en) Spark ignition direct injection engine
JP2009085175A (en) Control device for gasoline engine
JP2009041540A (en) Control device of gasoline engine
JP5552869B2 (en) Engine control device
US10273896B2 (en) Control device for internal combustion engine
JP6213175B2 (en) Control device for compression ignition engine
US20220034265A1 (en) Two-stroke engine with supercharger
JP2011058372A (en) Control method for engine, and control device for the same
JP6848412B2 (en) Internal combustion engine control device
JP2008051017A (en) Premixed compression self-igniting internal combustion engine
JP6369692B2 (en) Engine abnormal combustion detection device and engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703