JP2009196869A - Method for reforming hydrocarbon by oxyhydrogen flame using two burners - Google Patents

Method for reforming hydrocarbon by oxyhydrogen flame using two burners Download PDF

Info

Publication number
JP2009196869A
JP2009196869A JP2008042616A JP2008042616A JP2009196869A JP 2009196869 A JP2009196869 A JP 2009196869A JP 2008042616 A JP2008042616 A JP 2008042616A JP 2008042616 A JP2008042616 A JP 2008042616A JP 2009196869 A JP2009196869 A JP 2009196869A
Authority
JP
Japan
Prior art keywords
hydrogen
methane
oxyhydrogen flame
burner
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042616A
Other languages
Japanese (ja)
Inventor
Tomoki Yamazaki
知機 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUISO KK
Original Assignee
NIPPON SUISO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUISO KK filed Critical NIPPON SUISO KK
Priority to JP2008042616A priority Critical patent/JP2009196869A/en
Priority to US12/153,129 priority patent/US20090214987A1/en
Publication of JP2009196869A publication Critical patent/JP2009196869A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heat loss by improving the lowness of a fuel efficiency due to heating always necessary during the operation for continuously producing hydrogen from methane without generating CO<SB>2</SB>. <P>SOLUTION: A method, for reforming a hydrocarbon by an oxyhydrogen flame using a two-pole burner using an oxyhydrogen flame, comprises making an oxyhydrogen flame from a mixed hydrogen/oxygen gas using the two-pole burner into which hydrogen and oxygen are fed in a container sealed with a heat-insulating material, injecting methane preheated to 200-400°C into the oxyhydrogen flame from another burner, thereby rapidly heating the methane to 500-1,000°C to decompose it into hydrogen and a carbon powder, removing the carbon powder from the pyrolyzed mixed gas to continuously produce hydrogen without producing CO<SB>2</SB>as a by-product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭化水素と酸素だけを使って、CO2 を発生させないで水素を連続的に生産する方法で、2本のバーナーを使用した酸水素炎による炭化水素改質法に関するものである。 The present invention relates to a hydrocarbon reforming method using an oxyhydrogen flame using two burners, in which hydrogen and oxygen are used to produce hydrogen continuously without generating CO 2 .

本発明は、炭化水素(以下、メタンと称する)を水素と炭素に加熱分解し、水素を得るための方法に関するものである。   The present invention relates to a method for thermally decomposing a hydrocarbon (hereinafter referred to as methane) into hydrogen and carbon to obtain hydrogen.

メタンは無酸素状態で、500〜1000℃に加熱すると、
Cn H2n+2 → nC+2nH2 に分解するが、これは吸熱反応であり、その上、メタンの加熱と反応炉の熱損失を補うために、操業中は絶えず加熱する必要がある。この加熱のための熱量と生産される水素の熱量の差が、水素側に大きいほど有用なメタンの改質装置となる。
Methane is anaerobic and when heated to 500-1000 ° C,
Although it decomposes into Cn H 2 n + 2 → nC + 2 nH 2 , this is an endothermic reaction, and in addition, it is necessary to continuously heat during operation to compensate for the heating of methane and the heat loss of the reactor. The larger the difference between the amount of heat for heating and the amount of heat of hydrogen produced, the more useful the methane reformer is.

このため、メタンの加熱分解を如何なる方法で行うか、加熱炉の熱損失を如何にして少なくするか、損失熱量の回収と利用ができるか、といった事が重要な技術的課題である。   For this reason, it is an important technical problem how to perform the thermal decomposition of methane, how to reduce the heat loss of the heating furnace, and how to recover and use the heat loss.

従来法では、触媒が詰められた管状の炉を外部より加熱し、内部を700〜1000℃にした後、メタンを管中に導入し、加熱された触媒にメタンを触媒させ、メタンを分解させて排出口より水素と炭素を取り出すというものである(石油学会誌 40vol. No. 1,2,3 1997) 。   In the conventional method, a tubular furnace packed with a catalyst is heated from the outside to 700 to 1000 ° C., then methane is introduced into the pipe, the heated catalyst is made to catalyze methane, and methane is decomposed. In this way, hydrogen and carbon are extracted from the outlet (Journal of Petroleum Society 40vol. No. 1,2,3 1997).

しかし、この方法ではメタンを外部加熱するため、燃料効率が悪く、多量のLPGや電力を使用するので実用化はできなかった。
特開2002−312904号公報 石油学会誌 40vol. No. 1,2,3 1997
However, in this method, since methane is externally heated, the fuel efficiency is poor, and a large amount of LPG or electric power is used, so that it cannot be put into practical use.
JP 2002-312904 A Journal of Petroleum Society 40vol. No. 1,2,3 1997

メタンガスよりCO2 を発生させずに、水素を連続的に生産するための操業中絶えず必要とされる加熱による燃料効率の低さを改善し、熱損失を如何にして少なくするかが課題である。 The challenge is how to reduce the heat loss by improving the low fuel efficiency due to the continuous heating required to continuously produce hydrogen without generating CO 2 from methane gas. .

本発明は、上記の事情に鑑み、メタンよりCO2 を発生させずに、水素を連続的に生産するための操業中絶えず必要とされる加熱による燃料効率の低さを改善し、熱損失を少なくすべく、断熱材で密封した容器の中で、水素と酸素を供給する2極のバーナーを使用して水素と酸素の混合ガスで酸水素炎を作り、前記酸水素炎の中に別のバーナーから200〜400℃に予熱したメタンを噴入させ、メタンを急激に500〜1000℃に加熱させて水素と炭素粉末に熱分解させ、熱分解した混合ガスから炭素粉末を取り除いて連続的にCO2 の副生なしに水素を製造するようにした酸水素炎を用いた2本のバーナーを使用した酸水素炎による炭化水素改質法とした。 In view of the above circumstances, the present invention improves the low fuel efficiency due to heating that is constantly required during operation for continuously producing hydrogen without generating CO 2 from methane, and reduces heat loss. In order to reduce the oxyhydrogen flame with a mixed gas of hydrogen and oxygen using a bipolar bipolar gas and gas burner in a container sealed with heat insulating material, Methane preheated to 200 to 400 ° C. is injected from a burner, methane is rapidly heated to 500 to 1000 ° C. to thermally decompose into hydrogen and carbon powder, and carbon powder is removed from the pyrolyzed mixed gas continuously. A hydrocarbon reforming method using an oxyhydrogen flame using two burners using an oxyhydrogen flame designed to produce hydrogen without CO 2 as a by-product.

本発明は、メタンよりCO2 を発生させないで、水素を連続的に生産するのに、密閉容器の中で酸水素炎を使用して、メタンを直接加熱し熱分解をさせるというものであるが、これは、加熱に酸素と水素を使用することでCO2 の発生がなく、熱分解のための700℃以上の高熱が期待でき、しかも内部加熱なので抜群の熱効率化が可能となったものである。 In the present invention, in order to continuously produce hydrogen without generating CO 2 from methane, an oxyhydrogen flame is used in a sealed container, and methane is directly heated and thermally decomposed. This is because oxygen and hydrogen are used for heating, so there is no generation of CO 2 , high heat of 700 ° C. or higher for thermal decomposition can be expected, and since it is internal heating, it is possible to achieve outstanding thermal efficiency. is there.

このような密閉容器中での酸水素炎による直接熱分解によって、水素を製造するために必要な水素は、製造できる水素の約3分の1程度である。   The hydrogen required for producing hydrogen by direct thermal decomposition using an oxyhydrogen flame in such a sealed container is about one third of the hydrogen that can be produced.

本発明の装置は、先端にメッシュ状または針線状の金属触媒を配置した酸水素2極バーナーを備え、加熱部をセラミック製などの断熱材で覆い、全体を密閉容器中に納める。   The apparatus of the present invention includes an oxyhydrogen dipole burner having a mesh or needle wire-shaped metal catalyst disposed at the tip, covers the heating part with a heat insulating material such as ceramic, and stores the whole in a sealed container.

上記酸水素2極バーナーの酸水素炎に、他のメタンバーナーからの排気ガスで予熱した200〜400℃のメタンを吹き込むと、メタンは酸水素炎でさらに急速加熱され、500〜1000℃になって炭素と水素に分解される。   When 200-400 ° C methane preheated with exhaust gas from another methane burner is blown into the oxyhydrogen flame of the above oxyhydrogen bipolar burner, the methane is further rapidly heated by the oxyhydrogen flame to 500-1000 ° C. It is decomposed into carbon and hydrogen.

金属触媒は、反応温度を下げ、熱効率を良くするためのものでニッケルを中心にパラジウム、コバルト、クロム、白金等の合金で、一例としてはパラジウム、コバルト、クロム、白金を1〜5%含むニッケル合金の水素還元体が有効である。   The metal catalyst is for lowering the reaction temperature and improving the thermal efficiency, and is an alloy of palladium, cobalt, chromium, platinum, etc., mainly nickel, for example, nickel containing 1-5% of palladium, cobalt, chromium, platinum. An alloy hydrogen reductant is effective.

本発明は、断熱材で密封した容器の中で、水素と酸素を供給する2極のバーナーを使用して水素と酸素の混合ガスで酸水素炎を作り、前記酸水素炎の中に別のバーナーから200〜400℃に予熱したメタンを噴入させ、メタンを急激に500〜1000℃に加熱させて水素と炭素粉末に熱分解させ、熱分解した混合ガスから炭素粉末を取り除いて連続的にCO2 の副生なしに水素を製造するようにした酸水素炎を用いた2本のバーナーを使用した酸水素炎による炭化水素改質法であるので、メタンよりCO2 を発生させずに、水素を連続的に生産するために操業中絶えず必要とされる加熱による燃料効率の低さを改善し、熱損失を少なくすることができる。 The present invention uses a bipolar burner that supplies hydrogen and oxygen in a container sealed with a heat insulating material to create an oxyhydrogen flame with a mixed gas of hydrogen and oxygen. Methane preheated to 200 to 400 ° C. is injected from a burner, methane is rapidly heated to 500 to 1000 ° C. to thermally decompose into hydrogen and carbon powder, and carbon powder is removed from the pyrolyzed mixed gas continuously. Since it is a hydrocarbon reforming method using an oxyhydrogen flame using two burners using an oxyhydrogen flame designed to produce hydrogen without CO 2 byproduct, without generating CO 2 from methane, It is possible to improve the low fuel efficiency due to heating, which is constantly required during operation to produce hydrogen continuously, and to reduce heat loss.

図1は、本発明のメタンを水素と炭素とに分解する分解炉の縦断面図、図2は、本発明の水素生産装置の全体図である。   FIG. 1 is a longitudinal sectional view of a cracking furnace for decomposing methane of the present invention into hydrogen and carbon, and FIG. 2 is an overall view of the hydrogen production apparatus of the present invention.

本発明は、メタンの加熱方法として、内部加熱方式を採っている。   The present invention employs an internal heating method as a method for heating methane.

断熱材12で厚く覆われたバーナーの先端より、酸水素炎を吹き出させ、この炎の中に別のバーナーの先端より200〜400℃に予熱したメタンを吹き込むことによってメタンを分解炉39の内部で直接加熱し、同時にバーナーの炎の中に設けられた触媒14の働きもあって、メタンを水素と炭素とに分解するという方法で、熱効率が良いばかりでなく、CO2 の副生がなく、装置が小型で熱損失が少ないという利点がある。 An oxyhydrogen flame is blown out from the tip of the burner thickly covered with the heat insulating material 12, and methane preheated to 200 to 400 ° C. is blown into the flame from the tip of another burner. in directly heated, there is also the action of the catalyst 14 provided in the same time the burner flame, in a way that decomposition of methane into hydrogen and carbon, thermal efficiency as well as good, there is no by-production of CO 2 There is an advantage that the apparatus is small and heat loss is small.

本発明は、メタンと酸素だけでCO2 の副生なしに水素を経済的に生産するものである。その操作は次の3段階に分かれている。 The present invention economically produces hydrogen with methane and oxygen alone and without CO 2 byproduct. The operation is divided into the following three stages.

第1段階:装置全体から空気を排除する操作
第2段階:メタンを水素と酸素よりできる酸水素炎で高熱にしてメタンを水素と炭素 とに分解する操作
第3段階:生成した炭素粉末を水素から除去・精製する操作
本発明の装置を起動させる第1段階は、図2に示す装置全体から空気を排除することである。アルゴンや窒素などの不活性ガスを使用して装置内の空気を排除する。
1st stage: Operation to remove air from the whole equipment 2nd stage: Operation to decompose methane into hydrogen and carbon by heating methane with hydrogen and oxyhydrogen flames made of hydrogen and oxygen 3rd stage: Hydrogen the generated carbon powder The first step of starting the apparatus of the present invention is to eliminate air from the entire apparatus shown in FIG. An inert gas such as argon or nitrogen is used to eliminate air in the apparatus.

第2段階の操作は、予め、フロート式水素タンク33に貯蔵された水素を、タンク上部のバルブ34の操作により、図1の水素投入口31に送る。一方、酸素投入口22のバルブ24とバルブ43とを徐々に開き、ガス混合室26で水素と酸素の混合ガスを作り、吹管7を通して吹管先端19で点火、矢印10のように酸水素炎を噴出させる。符号51、符号52はトラップである。   In the second stage operation, hydrogen stored in the float type hydrogen tank 33 in advance is sent to the hydrogen inlet 31 of FIG. 1 by operating the valve 34 at the upper part of the tank. On the other hand, the valve 24 and the valve 43 of the oxygen inlet 22 are gradually opened, a mixed gas of hydrogen and oxygen is made in the gas mixing chamber 26, ignited at the blow pipe tip 19 through the blow pipe 7, and an oxyhydrogen flame as shown by the arrow 10 Erupt. Reference numerals 51 and 52 are traps.

他方、メタンバーナー3の吹管2の頂部にあるメタン投入口13よりバルブ30を経て、矢印17から矢印16を経てメタンが送られる。バルブ18によって熱交換器15に圧入され、200〜400℃に加熱されたメタンは、熱メタンパイプ5を経て、メタンバーナー3の先端部より矢印27のように矢印10の酸水素炎の中に吹き込まれ、一瞬のうちに500〜1000℃に昇温し、メタンは水素と炭素に分解され、矢印49のようにサイクロン塔38に送り込まれる。符号53はトラップである。   On the other hand, methane is fed from the methane inlet 13 at the top of the blow tube 2 of the methane burner 3 through the valve 30 and from the arrow 17 to the arrow 16. Methane, which is press-fitted into the heat exchanger 15 by the valve 18 and heated to 200 to 400 ° C., passes through the thermal methane pipe 5 and enters the oxyhydrogen flame indicated by arrow 10 from the tip of the methane burner 3 as indicated by arrow 27. The temperature is raised to 500 to 1000 ° C. in an instant, and methane is decomposed into hydrogen and carbon and sent into the cyclone tower 38 as indicated by an arrow 49. Reference numeral 53 denotes a trap.

第3段階の操作は、サイクロン塔38に入ってくるメタンの分解ガスは、サイクロン塔38で炭素粉末が分離され、サイクロン塔38内壁のジャケットで冷却され、ポンプ36で吸引・圧縮して水洗槽37を通り、バルブ41を経てポンプ35にて吸引し、フロート式水素タンク33に貯蔵される。符号32は不活性ガス排出用のバルブである。   In the third stage of operation, the methane decomposition gas entering the cyclone tower 38 is separated from the carbon powder by the cyclone tower 38, cooled by the jacket on the inner wall of the cyclone tower 38, and sucked / compressed by the pump 36. 37, sucked by the pump 35 through the valve 41 and stored in the float type hydrogen tank 33. Reference numeral 32 denotes an inert gas discharge valve.

なお、分解炉39の金属製外構部11の内側にはセラミック製断熱材22が張り付けられ、分解炉39の高温が保てるようになっている。この金属製外構部11はサイクロン38の外壁板21に取付けられている。   A ceramic heat insulating material 22 is attached to the inside of the metal outer structure 11 of the cracking furnace 39 so that the high temperature of the cracking furnace 39 can be maintained. The metal outer structure 11 is attached to the outer wall plate 21 of the cyclone 38.

他方、バーナーの過熱を防ぐための水冷式ジャケット28・29を備えている。   On the other hand, water-cooled jackets 28 and 29 for preventing overheating of the burner are provided.

バーナーを取付けた分解炉39は、サイクロン塔38に数個取付けることも可能である。   Several cracking furnaces 39 equipped with burners can be attached to the cyclone tower 38.

サイクロン塔38の冷却用ジャケットの熱は、冷暖房に利用されるが、分解炉39の排気ガスの高熱、高温の流れを利用して、発電や水蒸気ボイラーとして利用することもできる。なお、図中の符号40は炭素粉末である。   The heat of the cooling jacket of the cyclone tower 38 is used for cooling and heating, but it can also be used as power generation or a steam boiler by using the high-temperature and high-temperature flow of the exhaust gas from the cracking furnace 39. In addition, the code | symbol 40 in a figure is carbon powder.

バルブ25は、熱交換器15を使用しない時やその熱メタンバイプ5に炭素が付着するなどした時は開の位置にある。   The valve 25 is in the open position when the heat exchanger 15 is not used or when carbon adheres to the thermal methane vapor 5.

本発明は、それぞれの段階を経てメタンを分解し、水素を製造するものであるが、それらは連続しており、それぞれの工程の全てを電磁バルブの操作で可能であり、コンピューターによる一元管理が可能である。   In the present invention, methane is decomposed through each stage to produce hydrogen. However, they are continuous, and each process can be performed by operating electromagnetic valves. Is possible.

本発明は、炭化水素ガスよりCO2 を発生させないで水素を連続的に生産するのに、熱損失を少なくしてメタンを直接過熱して熱分解させるものであり、CO2 フリーの発電やボイラーにも利用できる。 The present invention is to produce hydrogen without producing the CO 2 from hydrocarbon gas continuously, the heat loss reduced to overheating methane directly is intended to be thermally decomposed, CO 2 free power generation and boiler It can also be used.

本発明のメタンを水素と炭素とに分解する分解炉の縦断面図である。It is a longitudinal cross-sectional view of the cracking furnace which decomposes | disassembles the methane of this invention into hydrogen and carbon. 本発明の水素生産の装置の全体図である。1 is an overall view of an apparatus for hydrogen production according to the present invention.

符号の説明Explanation of symbols

22…断熱材(セラミックス製断熱材)
31…水素投入口
22…酸素投入口
26…ガス混合室
13…メタン投入口
15…熱交換器
38…サイクロン塔
40…炭素粉末
37…水洗塔
33…フロート式水素タンク
51…トラップ
52…トラップ
53…トラップ
22 ... Insulation (ceramic insulation)
31 ... Hydrogen inlet
22 ... oxygen inlet
26 ... Gas mixing chamber
13 ... Methane inlet
15 ... heat exchanger
38 ... Cyclone Tower
40 ... carbon powder
37 ... Washing tower
33 ... Float type hydrogen tank
51 ... Trap
52 ... Trap
53 ... Trap

Claims (1)

断熱材で密封した容器の中で、水素と酸素を供給する2極のバーナーを使用して水素と酸素の混合ガスで酸水素炎を作り、前記酸水素炎の中に別のバーナーから200〜400℃に予熱したメタンを噴入させ、メタンを急激に500〜1000℃に加熱させて水素と炭素粉末に熱分解させ、熱分解した混合ガスから炭素粉末を取り除いて連続的にCO2 の副生なしに水素を製造するようにした酸水素炎を用いた2本のバーナーを使用した酸水素炎による炭化水素改質法。 In a container sealed with a heat insulating material, an oxyhydrogen flame is made with a mixed gas of hydrogen and oxygen using a bipolar burner that supplies hydrogen and oxygen. Methane preheated to 400 ° C. is injected, methane is rapidly heated to 500 to 1000 ° C. to thermally decompose into hydrogen and carbon powder, carbon powder is removed from the pyrolyzed mixed gas, and CO 2 is continuously added. Hydrocarbon reforming method by oxyhydrogen flame using two burners using oxyhydrogen flame made to produce hydrogen without raw material.
JP2008042616A 2008-02-25 2008-02-25 Method for reforming hydrocarbon by oxyhydrogen flame using two burners Pending JP2009196869A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008042616A JP2009196869A (en) 2008-02-25 2008-02-25 Method for reforming hydrocarbon by oxyhydrogen flame using two burners
US12/153,129 US20090214987A1 (en) 2008-02-25 2008-05-14 Method of preforming hydrocarbon by oxyhydrogen flame using two burners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042616A JP2009196869A (en) 2008-02-25 2008-02-25 Method for reforming hydrocarbon by oxyhydrogen flame using two burners

Publications (1)

Publication Number Publication Date
JP2009196869A true JP2009196869A (en) 2009-09-03

Family

ID=40998659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042616A Pending JP2009196869A (en) 2008-02-25 2008-02-25 Method for reforming hydrocarbon by oxyhydrogen flame using two burners

Country Status (2)

Country Link
US (1) US20090214987A1 (en)
JP (1) JP2009196869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520740A (en) * 2011-07-05 2014-08-25 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing hydrogen and carbon containing products in parallel
US10128489B2 (en) 2012-10-05 2018-11-13 Ut-Battelle, Llc Surface modifications for electrode compositions and their methods of making

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108266729A (en) * 2018-03-08 2018-07-10 广州荣誉国际电工有限公司 A kind of burner and method for improving thermal chemical reaction rate and enthalpy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198084A (en) * 1989-04-26 1993-03-30 Western Research Institute Low-cost process for hydrogen production
GB9806199D0 (en) * 1998-03-24 1998-05-20 Johnson Matthey Plc Catalytic generation of hydrogen
US6436354B1 (en) * 1998-12-11 2002-08-20 Uop Llc Apparatus for generation of pure hydrogen for use with fuel cells
WO2001046067A1 (en) * 1999-12-21 2001-06-28 Bechtel Bwxt Idaho, Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US6670058B2 (en) * 2000-04-05 2003-12-30 University Of Central Florida Thermocatalytic process for CO2-free production of hydrogen and carbon from hydrocarbons
US7572432B2 (en) * 2004-04-13 2009-08-11 General Electric Company Method and article for producing hydrogen gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520740A (en) * 2011-07-05 2014-08-25 ビーエーエスエフ ソシエタス・ヨーロピア Process for producing hydrogen and carbon containing products in parallel
US10128489B2 (en) 2012-10-05 2018-11-13 Ut-Battelle, Llc Surface modifications for electrode compositions and their methods of making

Also Published As

Publication number Publication date
US20090214987A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
KR101422825B1 (en) Apparatus for generating reforming gas
WO2022153720A1 (en) Ammonia decomposition device
CN115768718A (en) Process for the thermal decomposition of ammonia and reactor for carrying out said process
US7094384B1 (en) Combined methane decomposition and ammonia formation cell
JP2019156656A (en) Method and apparatus for generating hydrogen gas
AR034592A1 (en) PROCEDURE AND APPLIANCE FOR HYDROGEN PRODUCTION
JP2007284476A (en) Gasifying furnace
JP2009196869A (en) Method for reforming hydrocarbon by oxyhydrogen flame using two burners
CA2379942A1 (en) A combined heat and power plant and a process for the operation thereof
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JP2004011980A (en) Superheated steam generator and its generating method
JP2009102184A (en) Method of reforming hydrocarbon by oxyhydrogen flame using three-tube burner
US11013098B2 (en) Process for the partial oxidation of fuels and the device for applying said process
JP2008159373A (en) Hydrogen manufacturing device and fuel cell electric power generation system
KR101897802B1 (en) Thermal decomposition apparatus with high frequency induction heating for gas mixtures containing nitrous oxide
WO2014100887A1 (en) Method for producing fuel and heat energy therefrom
JP2012031470A (en) Method of reforming exhaust gas generated from arc furnace, reforming device, and method of manufacturing reformed gas
JPH10182521A (en) Synthesis of methanol and methanol-synthesizing apparatus
KR20170010805A (en) Combustion of lithium at different temperatures and pressures and with gas surpluses using porous tubes as burners
JP2010013302A (en) Hydrogen generating unit
JP2023152780A (en) Combustion system, steam supply facility and combustion device
RU217185U1 (en) Device for producing hydrogen by thermal decomposition of hydrocarbons in a gas-heated reactor
CA3069739C (en) Method for enhancing combustion reactions in high heat transfer environments
EA036734B1 (en) Method and combustion furnace for converting hydrogen and atmospheric oxygen into water or for converting brown&#39;s gas (hho) into water
JP2013119587A (en) Method of recovering sensible heat from scorching coke