JP2009195817A - Micro-reactor - Google Patents

Micro-reactor Download PDF

Info

Publication number
JP2009195817A
JP2009195817A JP2008039486A JP2008039486A JP2009195817A JP 2009195817 A JP2009195817 A JP 2009195817A JP 2008039486 A JP2008039486 A JP 2008039486A JP 2008039486 A JP2008039486 A JP 2008039486A JP 2009195817 A JP2009195817 A JP 2009195817A
Authority
JP
Japan
Prior art keywords
fluid
reactor
main body
microchannels
reactor main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008039486A
Other languages
Japanese (ja)
Other versions
JP4933464B2 (en
Inventor
Shozo Morishita
昭三 森下
Masamitsu Yamashita
雅充 山下
Mikio Baba
美貴男 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2008039486A priority Critical patent/JP4933464B2/en
Publication of JP2009195817A publication Critical patent/JP2009195817A/en
Application granted granted Critical
Publication of JP4933464B2 publication Critical patent/JP4933464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-reactor with a compact configuration and capable of efficiently carrying out mixture or reaction. <P>SOLUTION: The micro-reactor is a cylindrical reactor for fluids and includes a reactor body 1 in which an introduction channel 1B for flow-in from an end face in parallel to the center axis and at least one three-way microchannel are formed concentrically and further a discharge channel connected to a microchannel 1C extended in the outer circumferential direction of the three-way microchannel and communicated with a groove-like joining part 1D formed in the circumference is formed, an outer ring 2 fitted in the outer circumference of the reactor body and having a discharge port for taking fluids mixed and/or reacted out of the circular joining part, and a pair of end plates 3 joined coaxially to the end faces of the reactor body and provided with fluid pipe connection parts with outside for supplying fluids to the introduction channel and these components are assembled while being kept in air-tight state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微小な流路を用いて、流動性のある原材料の混合や、或いは反応を行うマイクロリアクタに関する。   The present invention relates to a microreactor that performs mixing or reaction of fluid raw materials using a minute flow path.

化学分野等において、複数の材料を微小空間の中で混合、化学反応などを効率的に行なう装置の研究が活発である。そういった装置はマイクロ化学プラントなどと呼ばれ、化学反応の必要最小限の量の流動性のある原材料を効率的に用いるという省資源化や、また化学反応を静的に効率良く行なうので使用されるエネルギーが少なくて済むという環境負荷の低減など環境対応の側面から、或いは必要な量に対応する規模の生産設備でムダ無く化学反応を実現するという生産効率の向上が期待できる事業対応の側面から、世界的な注目を集めている。   In the field of chemistry and the like, active research is being conducted on apparatuses that efficiently mix a plurality of materials in a minute space and perform chemical reactions. Such a device is called a micro chemical plant, etc., and it is used because it saves resources by efficiently using the raw material with the minimum amount of chemical reaction, and the chemical reaction is carried out statically and efficiently. From the aspect of environmental response such as reduction of environmental load that requires less energy, or from the aspect of business response that can be expected to improve production efficiency by realizing wasteless chemical reaction with a production facility of the scale corresponding to the required amount, Has attracted worldwide attention.

そのマイクロ化学プラントの研究・開発の中心となるものは、流動性のある原材料(以後流体と総称する)を供給する流路断面の幅や高さがミリメートルから数百、数十μmというY字状やT字状の微小流路の形成や、流路形成のための構造に関するものが多く、内外の研究機関から活発な研究成果の発表が行なわれている。   The core of the research and development of the microchemical plant is a Y-shaped channel with a width and height of millimeters to hundreds and tens of μm for supplying fluid raw materials (hereinafter collectively referred to as fluids). Many of the researches are related to the formation of a channel or T-shaped microchannel and the structure for channel formation, and active research results have been announced by internal and external research institutions.

事業対応の側面からみると、マイクロ化学プラントは、上述のように微小流路という空間内での流体の混合、化学反応などを行う生産設備であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備える。例えば、1)複数の流体の混合や化学反応を短時間且つ微量の原材料で行えること、2)原材料が容易に均一に混合されて、小規模な反応装置でも短時間で投入材料の全量の反応を終わらせることができること、3)装置が小型であるため実験室レベルで生成物の製造技術を確立できれば、必要な量に応じた装置の数の増加させることで需要量に合わせた生産量の調整が容易にできること等である。   From a business perspective, the micro chemical plant is a production facility that performs fluid mixing and chemical reaction in a space called a micro-channel as described above, and is a conventional batch method using large tanks. It has many advantages over the plant. For example, 1) Mixing of a plurality of fluids and chemical reaction can be performed in a short time with a small amount of raw materials, and 2) The raw materials are easily and uniformly mixed, and even in a small-scale reaction apparatus, the entire amount of input materials can be reacted in a short time 3) If the production technology of the product can be established at the laboratory level because the equipment is small, the production volume can be adjusted to the demand by increasing the number of equipment according to the required quantity. For example, adjustment can be easily performed.

このため、化学工業や医薬品工業の分野では、流体の混合や、或いは反応を行い性質の異なった原材料や製品を製造するための好適な装置として注目され、近年、その研究開発が盛んに行われている。   For this reason, in the fields of chemical industry and pharmaceutical industry, it has attracted attention as a suitable apparatus for producing raw materials and products having different properties by mixing or reacting fluids, and in recent years its research and development has been actively conducted. ing.

マイクロ化学プラントを構成するものは、材料供給装置、マイクロミキサ、熱交換装置、マイクロリアクタ、分離装置、これらの各装置を接続する配管、及び制御装置などを主構成要素とする。このうちマイクロミキサ及びマイクロリアクタは、それぞれ流路幅が数十μm〜数mm程度のオーダーである微小な流路を有し、この流路に導かれた複数の流体を互いに接触させることで混合または化学反応を生起するものである。   What constitutes a microchemical plant mainly includes a material supply device, a micromixer, a heat exchange device, a microreactor, a separation device, piping connecting these devices, a control device, and the like. Among these, the micromixer and the microreactor each have a minute flow channel having a flow channel width on the order of several tens of μm to several mm, and are mixed or mixed by bringing a plurality of fluids guided to the flow channel into contact with each other. It causes a chemical reaction.

マイクロミキサとマイクロリアクタとは、基本的には共通な構成であり、一般にその用途が混合である場合はマイクロミキサと呼び、化学反応である場合はマイクロリアクタと呼ぶ。従って、本発明のマイクロリアクタはマイクロミキサも含めている。   The micromixer and the microreactor basically have a common configuration. In general, the micromixer and the microreactor are referred to as a micromixer when the application is mixing, and the microreactor is referred to as a chemical reaction. Therefore, the microreactor of the present invention includes a micromixer.

このようなマイクロリアクタは、マイクロ化学プラントにおいては非常に重要なデバイスであり、そのリアクタの基本的な構造は特許文献としてもいくつか提示されている。
例えば、特許文献1(特開2004ー243308号公報)の発明では、微小流路の集積密度を上げ微小流路で化学合成物質或いは微粒子を工業的に大量生産する目的で、微小流路に原材料を送液する一例を上げている。その構造は、薄い円板(ディスク)にY字状の微小流路を形成した微小流路体を、2つの流体供給用構造体で挟み、2つの流体供給用構造体それぞれの流体導入口から材料を供給し、前記の中央に挟持されたY字状の微小流路で混合、或いは化学反応した材料を、2つのうち一方の流体供給構造体に設けた流体排出口から排出しているものである。これによりゲル製造用の微粒子製造装置として活用できると開示されている。
Such a microreactor is a very important device in a microchemical plant, and some basic structures of the reactor are also presented in patent literature.
For example, in the invention of Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-243308), the raw material in the microchannel is used for the purpose of increasing the integration density of the microchannel and industrially mass-producing chemically synthesized substances or fine particles in the microchannel. An example of feeding the liquid is given. The structure is such that a microchannel body in which a Y-shaped microchannel is formed on a thin disk (disk) is sandwiched between two fluid supply structures, and the fluid inlets of the two fluid supply structures are respectively inserted. Supplying material and discharging the material mixed or chemically reacted in the Y-shaped microchannel sandwiched in the center from the fluid outlet provided in one of the two fluid supply structures It is. It is disclosed that this can be utilized as a fine particle production apparatus for gel production.

また、特許文献2(特許第3727594号公報)の発明では、複数の溶液(流体)を急速に混合及び反応させる目的で、円筒状の小型の混合用装置の一例を上げている。その構造は、円筒状のベースプレートとミキシングプレートを上下のカバープレートで挟み込むサンドイッチ構造とし、ベースプレートは、流入路に繋がった櫛歯状の流路を複数設け、それぞれの櫛歯の先端が中央部に互いに独立して貫通する構造であり、それらの櫛歯の貫通部を通して流入する流体がミキシングプレートに形成したミキシング流路に導かれている。これにより複数の流体の急速な混合ができると開示している。   In the invention of Patent Document 2 (Japanese Patent No. 3727594), an example of a small cylindrical mixing device is given for the purpose of rapidly mixing and reacting a plurality of solutions (fluids). The structure is a sandwich structure in which a cylindrical base plate and a mixing plate are sandwiched between upper and lower cover plates. It is a structure which penetrates mutually independently, The fluid which flows in through the penetration part of those comb teeth is guide | induced to the mixing flow path formed in the mixing plate. This discloses that a plurality of fluids can be rapidly mixed.

さらに、特許文献3(特開2005ー490996号公報)の発明では、マイクロ化学チップにおいて、被処理流体に所定の反応を発生させる精密かつ均一な加熱を行なう目的で、平板に形成した流路に温度制御部材を付加した装置の一例を上げている。その構造はセラミック材料の薄板に、葛折状に流路(処理部)を形成して2つの材料供給口から流入した材料を合流・排出し、そのセラミック材料にはヒータと放熱板を密着して沿わせている。これにより、処理部における温度分布を精度良く均一化することが実現されると開示されている。   Furthermore, in the invention of Patent Document 3 (Japanese Patent Application Laid-Open No. 2005-490996), in a microchemical chip, a flow path formed on a flat plate is used for the purpose of performing precise and uniform heating that generates a predetermined reaction in a fluid to be processed. An example of a device to which a temperature control member is added is given. The structure is a thin plate of ceramic material, and a flow path (processing section) is formed in a twisted manner to merge and discharge the material flowing in from the two material supply ports. The heater and heat sink are closely attached to the ceramic material. It is along. Thus, it is disclosed that the temperature distribution in the processing unit can be made uniform with high accuracy.

一方、特許文献4(特開2001ー321649号公報)では、温度差の大きい2つの流体を混合する目的で、混合の熱応力を回避して安定して流量の変化にも対応した流体の混合を行なう装置の一例を上げている。その構造は、T字型継ぎ手に、中央に小径の管壁に多数の小孔を形成した内管を、T字型継ぎ手の直管両端よりレジューシングピースで支承および外部との配管接続をしている。これにより、温度差の大きい2つの流体を流量の変化によらず安定して混合することができると開示している。   On the other hand, in Patent Document 4 (Japanese Patent Laid-Open No. 2001-321649), for the purpose of mixing two fluids having a large temperature difference, fluid mixing that avoids thermal stress of mixing and stably copes with changes in flow rate is also known. An example of a device that performs the above is given. The structure consists of a T-shaped joint, an inner tube with many small holes formed in the center of a small-diameter tube wall, and supports and pipe connections to the outside with reducing pieces from both ends of the straight tube of the T-shaped joint. is doing. Thus, it is disclosed that two fluids having a large temperature difference can be stably mixed regardless of a change in flow rate.

他社の文献では、John Wiley & Sons, Inc.社発行の“Design of a New Mixer for Instant Mixing Based on the collision of Micro Segment”(Chem. Eng. Technol. 2005,28,No.3 324P−330P)に円盤状の部材に放射状の流路を形成したミキサーが紹介され、そのミキサー(反応器)の性能を評価・確認する手法としては、「Villermaux/Dushman反応」によるEhrfeld’s法で、2つの溶液の混合によってイオン化されたヨウ素が還元してヨウ素分子が生成され、その混合によって還元され生成されたヨウ素の量を、混合後の液に紫外線を照射してUVスペクトルの352nmの吸光度によって混合度合いを比較する方法を用いている。   Other companies' literature includes John Wiley & Sons, Inc. “Design of a New Mixer for Instant Mixing Based on the Segment” (Chem. Eng. Technol. 2005, 28, No. 3 324P-P In order to evaluate and confirm the performance of the mixer (reactor), the Ehrfeld's method using the “Villermuux / Dushman reaction” reduces the ionized iodine by mixing the two solutions. A method is used in which iodine molecules are generated and reduced by the mixing, and the amount of iodine generated is irradiated with ultraviolet rays to the mixed liquid and the degree of mixing is compared by the absorbance at 352 nm of the UV spectrum. .

このミキサーは円筒の一方より2つの流体の直線状導入路から、環状の流路を経て複数の放射状の微小流路によって中心に向かって流体が流れ込み、中心で流体が混合して他方の側に排出されている。結論としてこのミキサーは流量への柔軟な対応と混合が十分に行なわれていると開示している。   In this mixer, fluid flows from a linear introduction channel of two fluids from one side of a cylinder toward a center through a circular channel and a plurality of radial micro channels, and the fluid mixes in the center and moves to the other side. It has been discharged. In conclusion, the mixer discloses that the flow rate is flexible and mixed well.

特開2004ー243308号公報JP 2004-243308 A 特許第3727594号公報Japanese Patent No. 3727594 特開2005ー490996号公報JP-A-2005-490996 特開2001ー321649号公報JP 2001-321649 A “Design of a New Mixer for Instant Mixing Based on the collision of Micro Segment”(Chem. Eng. Technol. 2005,28,No.3)“Design of a New Mixer for Instant Mixing Based on the Collation of Micro Segment” (Chem. Eng. Technol. 2005, 28, No. 3).

しかしながら、微小流路によるマイクロ化学プラントの中で、ミリメートル単位の流路のマイクロ化学プラントで上述した「効率的な混合・反応」「量への柔軟な対応」「温度差を持つ流体」への課題を「微細加工などの特殊な加工プロセスを必要とせず安価に提供する」ことと同時に満足する構造の装置はいまだ実現されていない。
特許文献1の発明では基本部材の微小粒路基板に「微細加工」が必要で高価な装置になるという問題、或いは「成形加工」などで微細構造を実現し、低価格での実現しようとすると、組み上げ時の微細流路からの液の漏れを防止する為の密閉度を実現する構造的な制約などの課題がある。
However, among the micro chemical plants with micro-channels, the above-mentioned "Efficient mixing and reaction", "Flexible response to the amount", "Fluid with temperature difference" in the micro-chemical plant with millimeter channel An apparatus having a structure that satisfies the problem of “providing at low cost without requiring a special processing process such as micromachining” has not yet been realized.
In the invention of Patent Document 1, a problem arises in that the micro-channel substrate of the basic member requires “micro processing” and becomes an expensive device, or a micro structure is realized by “molding” or the like, and it is attempted to realize at a low price. However, there are problems such as structural restrictions that realize a sealing degree to prevent leakage of liquid from the fine flow path during assembly.

また、特許文献2の発明では、基本部材であるベースプレートへの櫛歯状の流路形成について、その形状の複雑さから放電加工など加工時間を要する、また非常に複雑な機械加工が必要であり、工数の多い複雑で高価な部材を必要とする、或いは量の増大への対応には、そうした高価な部材を大量に準備する必要があるという課題がある。   In addition, in the invention of Patent Document 2, it takes time for machining such as electric discharge machining from the complexity of the shape, and very complicated machining is necessary for forming the comb-like flow path on the base plate which is a basic member. However, there is a problem that a complicated and expensive member having a large number of man-hours is required, or in order to cope with an increase in the amount, it is necessary to prepare a large amount of such an expensive member.

さらに、特許文献3の発明では、セラミックの薄板にヒータと放熱板が必要である構造上の制約で大量の流体の混合には不向きである等の課題があった。
或いは、特許文献4の発明では、微小流量の物に対応するには管の径を細くする必要があり、そうした場合、内管の径も当然小さなものとなってしまい、そうした小径の管に多数の小孔を形成する加工上の課題と、量への対応に課題があった。
Furthermore, the invention of Patent Document 3 has problems such as being unsuitable for mixing a large amount of fluid due to structural restrictions that require a heater and a heat sink on a ceramic thin plate.
Alternatively, in the invention of Patent Document 4, it is necessary to reduce the diameter of the tube in order to cope with a minute flow rate. In such a case, the diameter of the inner tube is naturally small, and many such small diameter tubes are included. There was a problem in processing to form small holes and a problem in dealing with the amount.

上述の課題を解決するために、本発明のマイクロリアクタは、
流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1組のエンドプレートとよりなり、
それぞれが機密性を保ち、組み上げられている構成としている。
また、一方のエンドプレートに代えて、
前記反応器本体の他の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する、熱伝導率の低い材料により形成された1つの中間プレートと、
中間プレートを固定する環状プレートとする構成としている。
或いは、同心円上に形成した三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路と接続する構成としている。
さらに、一部に温冷熱源等を付加して温度調節機能を付加すること、環状の封止部材を備えること、また、前記三路微小流路の合流前のそれぞれの流路の径及び合流後の流路の径が流量に比例した径であることが好ましい。
In order to solve the above-described problems, the microreactor of the present invention includes:
A cylindrical reactor for a flowable raw material,
On the concentric circle, at least one introduction channel and three-way microchannels flowing in from the end face in parallel to the central axis are formed, and further formed on the outer periphery connected to the microchannels extending in the outer circumferential direction of the three-way microchannels. A reactor main body formed with a discharge passage communicating with the annular joining portion,
An outer ring fitted with the outer periphery of the reactor body and provided with a discharge port for taking out the mixed and / or reacted fluid from the annular merging portion;
A set of end plates that are coaxially joined to the end face of the reactor main body and have a fluid pipe connection with the outside to supply fluid to the introduction flow path;
Each is kept confidential and assembled.
Also, instead of one end plate,
One intermediate plate formed of a material having low thermal conductivity, coaxially joined to the other end face of the reactor main body, and provided with a fluid pipe connection with the outside to supply fluid to the introduction flow path;
It is set as the cyclic | annular plate which fixes an intermediate | middle plate.
Alternatively, the three-way microchannels formed on the concentric circles are divided into two or more groups, and a stepwise difference is provided in the sum of the cross-sectional area of each group so that each group of three-way microchannels is independent. Thus, it is configured to be connected to a fluid communication path from the outside.
Furthermore, a temperature control function is added by adding a heating / cooling heat source or the like in part, an annular sealing member is provided, and the diameter and merging of each flow path before the three-way micro flow path is merged It is preferable that the diameter of the subsequent channel is a diameter proportional to the flow rate.

本発明によれば、
三路微小流路のリアクタによる好ましい微小流体の混合及び/或いは反応が実現され、密集した配置による混合及び/或いは反応をそれぞれの三路微小流路における微小流体の混合及び/或いは反応の周囲条件を同一条件で行うことができる。
また、必要に応じて反応温度条件を変えたり、或いは流入するそれぞれの流体の温度条件を異なった設定とすることができ、さらには、異なった流量に対応した流体の混合及び/或いは反応を1つの反応器によって、簡単に反応器本体の回動(回転)で行なうことが可能であり、さらには所用の総流量の2つの流体の混合及び/或いは反応を確実に、効率的にしかも低コストで行うことが可能となる。
According to the present invention,
The preferred microfluidic mixing and / or reaction by the three-way microchannel reactor is realized, and the mixing and / or reaction by the dense arrangement is performed by the microfluidic mixing and / or reaction ambient conditions in the respective three-way microchannels. Can be performed under the same conditions.
In addition, the reaction temperature conditions can be changed as necessary, or the temperature conditions of the respective inflowing fluids can be set differently. Furthermore, the mixing and / or reaction of fluids corresponding to different flow rates can be performed as one. The two reactors can be easily rotated (rotated) by the reactor body, and moreover, the mixing and / or reaction of the two fluids with the desired total flow rate can be ensured efficiently and at low cost. Can be performed.

以下、添付図面を参照して、本発明を実施するための最良の形態について説明する。
図1は本発明による筒状反応器の一例として「円筒状」の反応器の断面を示すもので、
反応器本体1の外周には外リング2が嵌め合わされ、両端には外部より流体を供給する配管が接続され、反応器本体1及び外リング2と一体で固定するためのエンドプレート3が備えられる。
さらに詳しく構成を説明すると、反応器本体1は、端面に外部からの流体を導入して複数の流路に流体を分散する拡散部1Aが形成され、また反応器本体1の両端面の拡散部1Aからは、同心円上に複数の導入流路1Bを介して中央に、「三路」が直線とその中央で直角に交差する「T字型」で構成されたT字型微小流路1Cが形成され、そのT字型微小流路1Cの中央の足の位置にある微小流路は、径方向外向きにして形成され、さらに反応器本体1の中央外周にはT字型微小流路1Cの中央の足の位置にある微小流路の径より大なる径の排出流路を介して合流部1Dが形成されている。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a cross section of a “cylindrical” reactor as an example of a cylindrical reactor according to the present invention.
An outer ring 2 is fitted on the outer periphery of the reactor main body 1, pipes for supplying fluid from the outside are connected to both ends, and an end plate 3 for fixing the reactor main body 1 and the outer ring 2 together is provided. .
More specifically, the reactor main body 1 is formed with diffusion parts 1A for introducing fluid from the outside to the end face and dispersing the fluid in a plurality of flow paths, and diffusion parts on both end faces of the reactor main body 1 From 1A, there is a T-shaped microchannel 1C configured in a concentric circle through a plurality of introduction channels 1B and a “T-shape” in which “three paths” intersect a straight line and a right angle at the center. The microchannel formed at the center foot position of the T-shaped microchannel 1C is formed so as to face outward in the radial direction. Further, the T-shaped microchannel 1C is disposed on the outer periphery of the center of the reactor main body 1. The confluence portion 1D is formed through a discharge channel having a diameter larger than the diameter of the minute channel at the position of the center foot.

外リング2は、前記反応器本体1に形成された環状の合流部1Dから混合及び/或いは反応した流体を外部に排出する流路と、その流路を介し外部配管へ接続する為の「継ぎ手」を取り付けるネジ部を形成した流体配管接続部を備え、前記反応器本体1の外周に嵌め合わされ反応器本体1の合流部1Dを取り囲んでいる。   The outer ring 2 has a flow path for discharging fluid mixed and / or reacted from the annular junction 1D formed in the reactor main body 1 to the outside, and a “joint” for connecting to the external pipe via the flow path. And a fluid pipe connection part formed with a screw part to which the "reactor body" is attached. The fluid pipe connection part is fitted to the outer periphery of the reactor main body 1 and surrounds the junction part 1D of the reactor main body 1.

エンドプレート3はフランジ構造をしており、中心に外部からの流体を供給する小径の流路と、流路を介して流体を供給する外部配管へ接続する為の「継ぎ手」を取り付けるネジ部を形成した流体配管接続部を備え、外周部に反応器本体1及び外リング2と一体で固定するための固定部材用の貫通孔を複数形成している。   The end plate 3 has a flange structure, and a screw portion for attaching a small-diameter flow channel for supplying fluid from the outside to the center and a “joint” for connecting to external piping for supplying fluid via the flow channel. The formed fluid piping connection portion is provided, and a plurality of fixing member through holes for fixing the reactor main body 1 and the outer ring 2 integrally are formed on the outer peripheral portion.

前記反応器本体1とエンドプレート3の間、そして前記反応器本体1と外リング2の間には、図1のように流入する2つの流体同士、或いは2つの流体が混合及び/或いは反応する前後で、互いに混じり合わないように、拡散部1A及び合流部1Dを囲む反応器本体1及びエンドプレート3の部位にOリング4を挿入する溝を適宜設け、流体が反応器の内部・外部に漏れないように封止されそれぞれの流体が密閉されて組み上げられている。
このOリング4は接合面のどちらに配置されてあっても良い。また、導入流路1Bに流体を供給するこの拡散部1Aは、反応器本体1に形成するとあるが、エンドプレート3側にあっても良い。
Between the reactor main body 1 and the end plate 3 and between the reactor main body 1 and the outer ring 2, two fluids flowing in as shown in FIG. 1 or two fluids are mixed and / or reacted. A groove for inserting the O-ring 4 is appropriately provided in the reactor main body 1 and the end plate 3 surrounding the diffusion part 1A and the merging part 1D so that the fluid does not mix with each other before and after the fluid inside and outside the reactor. Each fluid is sealed and assembled so as not to leak.
The O-ring 4 may be disposed on any of the joining surfaces. Moreover, although this diffusion part 1A which supplies a fluid to the introduction flow path 1B is formed in the reactor main body 1, it may be on the end plate 3 side.

これらの反応器本体1,外リング2及びエンドプレート3等の部材は、流体の性質や、混合及び/或いは反応させる用途に応じて選択され、金属材料であれば、一般的なステンレス鋼、樹脂材料であればポリアセタール樹脂或いはフッ素系樹脂などによって必要な形状に加工され組み合わされることで十分である。耐久性や剛性、或いは流体が比較的高い温度で取り扱う必要など特別な要求があれ場合には金属材料がより好ましい。   These members such as the reactor main body 1, outer ring 2 and end plate 3 are selected in accordance with the properties of the fluid and the purpose of mixing and / or reacting. If it is a material, it is sufficient that it is processed into a necessary shape and combined with a polyacetal resin or a fluorine-based resin. Metal materials are more preferred when there are special requirements such as durability, rigidity, or the need to handle fluids at relatively high temperatures.

次に、この構成によって外部から供給した流体が混合及び/或いは反応される仕組みを説明する。
流体のT字型微小流路までの動きは同一であるので、以下片側の流体の流れで説明する。
Next, a mechanism for mixing and / or reacting fluid supplied from the outside with this configuration will be described.
Since the movement of the fluid up to the T-shaped microchannel is the same, the flow of the fluid on one side will be described below.

混合及び/或いは反応させる流体は、1つのエンドプレート3の外部との流体配管接続部に形成されたネジ部に付けられた継ぎ手を介して接続された供給経路の配管を接続して外部より導入され、反応器本体1の拡散部1Aから、反応器本体1の中心軸に同心円上に、かつ平行に複数形成された導入流路1Bを経てT字型微小流路1Cに流れる。
この複数のT字型微小流路1Cの両側から流れ込んだ2つの流体は、このT字型微小流路1Cの中央で衝突、合流して、混合及び/或いは反応しながら中央部で分岐し外周方向に向かって延びた流路から反応器本体1の中央外周に形成された環状の合流部1Dに流れ出す。
The fluid to be mixed and / or reacted is introduced from the outside by connecting the piping of the supply path connected via the joint attached to the threaded portion formed in the fluid piping connecting portion with the outside of one end plate 3. Then, the gas flows from the diffusion portion 1A of the reactor main body 1 to the T-shaped microchannel 1C through a plurality of introduction channels 1B formed concentrically with the central axis of the reactor main body 1 and in parallel.
The two fluids that have flowed from both sides of the plurality of T-shaped microchannels 1C collide and merge at the center of the T-shaped microchannel 1C, and are branched and mixed at the center while mixing and / or reacting. It flows out from the flow path extending in the direction to the annular junction 1D formed on the outer periphery of the center of the reactor main body 1.

環状の合流部1Dに流れ出た混合及び/或いは反応した2つの流体は、外リング2に形成された流路、流体配管接続部に密閉装着された継ぎ手、それに接続された配管によって外部に排出される。   The mixed and / or reacted two fluids that flow out to the annular joining portion 1D are discharged to the outside through a flow path formed in the outer ring 2, a joint hermetically attached to the fluid piping connection portion, and a pipe connected thereto. The

この実施形態では「三路」が直線とその中央で直角に交差する「T字型」で構成されるT字型微小流路を説明したが、混合及び/或いは反応する流体の性質などに依っては、この合流する角度が180度以外のもの、例えば導出微小流路側へ流れのエネルギー損失の低い角度(例えばY字状)や、反対の損失の大きい角度(例えば傘状)で2つの流体が合流する構成も容易にできる。   In this embodiment, a T-shaped microchannel composed of a “T-shape” in which “three paths” intersects a straight line and a right angle at the center thereof has been described. However, depending on the nature of the fluid to be mixed and / or reacted, etc. In this case, the two fluids having a merging angle other than 180 degrees, for example, an angle with a low energy loss of flow toward the outlet microchannel (for example, Y shape) or an opposite angle with a large loss (for example, umbrella shape). Can be easily combined.

この時、混合及び/或いは反応に必要な、或いは単に流体の流れを促進する温度に条件があれば、その最適な温度に反応器全体を保つため、図2のように外リング2に温度調節(温調)のための温冷熱源5、例えばバンド型のヒータ或いは、温冷熱源からの熱媒体を流通させる熱交換媒体等を温度検知器などと共に設け、反応器本体1などの温度を検知し温冷熱源5を制御して所定の温度にすることが好ましい。   At this time, if there is a condition for the temperature necessary for mixing and / or reaction, or simply promoting the flow of fluid, the temperature is adjusted in the outer ring 2 as shown in FIG. 2 in order to keep the entire reactor at the optimum temperature. A temperature / heat source 5 for temperature control, for example, a band-type heater or a heat exchange medium for circulating a heat medium from the temperature / cool heat source is provided together with a temperature detector to detect the temperature of the reactor body 1 and the like. It is preferable to control the hot / cold heat source 5 to a predetermined temperature.

また、流体が反応器の外部に漏れないように封止する目的を達成することを簡便に実現するために、前記反応器本体1とエンドプレート3の間、そして前記反応器本体1との間に、合流部1D或いは拡散部1Aを囲む部位に溝を形成して、それぞれの要素間の、要素間での流体の漏れを封止するOリング4を挿入する代わりに、図3のように反応器本体1及び外リング2とエンドプレート3と接合部を軸方向の面で接触するように構成して、それぞれの端面に一つの環状封止部材6を挿入することが好ましい。
これによってそれぞれの流体の通過部分の周囲に、個別に溝を形成してOリングを挿入して流体の通過部分からの流体の漏れを封止するのに比べ、構成部品が少なくてコストを抑え、流体の漏れを封止することが実現される。
In order to easily achieve the purpose of sealing so that the fluid does not leak outside the reactor, between the reactor body 1 and the end plate 3 and between the reactor body 1 In addition, instead of inserting a O-ring 4 that seals the leakage of fluid between the elements, a groove is formed in a portion surrounding the merging portion 1D or the diffusion portion 1A as shown in FIG. It is preferable that the reactor main body 1 and the outer ring 2, the end plate 3, and the joint portion are configured to come into contact with each other in the axial direction, and one annular sealing member 6 is inserted into each end face.
This reduces the number of components and reduces costs compared to forming a separate groove around each fluid passage and inserting an O-ring to seal fluid leakage from the fluid passage. , Sealing of fluid leakage is realized.

さらに、混合及び/或いは反応するそれぞれの流体のT字型微小流路1Cへの導入までの温度条件に異なった温度条件が必要である場合、例えば一方の流体の室温付近での粘性が高く流動性が低いような場合、温冷熱源5にはヒータなどの加熱用熱源を温度調節可能に制御して備え、一方のエンドプレート3と反応器本体1とを、使用中には外部から流入する流体の温度と合わせて一定の温度に保ち、その一方の流体の流動性を高めて、その流動性を他の流体の流動性と同程度に保つ場合などには、
図4のように、他のエンドプレート3を外部との流体配管接続部と、前記反応器本体1のT字型微小流路1Cに連結する複数の傾斜導入流路7−1が形成される熱伝導率の低い材料による中間プレート7と、前記中間プレート7を固定する環状プレート8とで構成することが好ましい。この熱伝導率の低い材料としては耐薬品性に優れた樹脂材料や、高温特性に優れたセラミック材料などが推奨される。
Further, when different temperature conditions are required for the temperature conditions until the fluids to be mixed and / or reacted into the T-shaped microchannel 1C are introduced, for example, one of the fluids has a high viscosity around room temperature and flows. When the temperature is low, the heating / cooling heat source 5 is provided with a heating heat source such as a heater so that the temperature can be adjusted, and the one end plate 3 and the reactor main body 1 flow from the outside during use. When maintaining a constant temperature together with the temperature of the fluid, increasing the fluidity of one of the fluids, and maintaining the fluidity at the same level as the fluidity of the other fluid,
As shown in FIG. 4, a plurality of inclined introduction channels 7-1 are formed that connect the other end plate 3 to the fluid pipe connection part to the outside and the T-shaped microchannel 1 </ b> C of the reactor body 1. It is preferable to comprise an intermediate plate 7 made of a material having low thermal conductivity and an annular plate 8 for fixing the intermediate plate 7. As the material having a low thermal conductivity, a resin material having excellent chemical resistance or a ceramic material having excellent high temperature characteristics is recommended.

こうして、中間プレート7に耐薬品性の優れた樹脂材料、例えばポリアセタール樹脂、フッ素系樹脂等のエンジニアリングプラスチックスを使用すれば、エンドプレート3側から流入する流体の温度を高く設定して流入する流体の流動性が高まり、室温でも十分な流動性を持つ流体との混合及び/或いは反応をする際に、他の流体が流体配管接続部から導入されるT字型微小流路1Cまでは、流入する流体が不必要に温度が高くなり、時には混合及び/或いは反応する前に流入する流体の性質が変化してしまい、本来の目的である2つの流体の混合及び/反応にも影響を与えてしまうこと等を避けることができる。   Thus, if a resin material having excellent chemical resistance, for example, engineering plastics such as polyacetal resin and fluorine resin is used for the intermediate plate 7, the temperature of the fluid flowing in from the end plate 3 side is set high. When fluid is mixed and / or reacted with a fluid having sufficient fluidity even at room temperature, the fluid flows into the T-shaped microchannel 1C into which another fluid is introduced from the fluid pipe connection. The temperature of the fluid is unnecessarily high, and sometimes the properties of the fluid that flows before mixing and / or reacting change, affecting the original mixing and / or reaction of the two fluids. Can be avoided.

反対に、極端にエンドプレート3側から流入する液体の流入時の温度が低い場合には、温冷熱源5に低温熱源を備え、混合及び/或いは反応直前までの一定温度の保持を可能にする。   On the contrary, when the temperature of the liquid flowing in from the end plate 3 side is extremely low, the hot / cold heat source 5 is provided with a low-temperature heat source, and can maintain a constant temperature until immediately before mixing and / or reaction. .

さらに、熱伝導率の低い材料で構成した中間プレート7から流入する流体の温度が極端に高い場合には、この中間プレート7にセラミック材を用いて構成すれば、混合及び/或いは反応直前までの一定温度の保持を可能にでき、それぞれに2つの流体の混合及び/或いは反応を効率良く行うことができる。   Furthermore, when the temperature of the fluid flowing in from the intermediate plate 7 made of a material having low thermal conductivity is extremely high, if the intermediate plate 7 is made of a ceramic material, the process up to immediately before mixing and / or reaction is performed. A constant temperature can be maintained, and mixing and / or reaction of two fluids can be performed efficiently.

こうして構成されたマイクロリアクタによる2つの流体の混合及び/或いは反応の働きを実施例により説明する。   The working of the mixing and / or reaction of two fluids by the thus configured microreactor will be described with reference to examples.

図1の反応器を、ステンレス鋼を用いて、反応器本体1の導入流路1Bの径を1mm、そしてT字型微小流路1Cの径を0.1mm及び0.5mmの2種類で作成した。   The reactor shown in FIG. 1 is made of stainless steel using two kinds of diameters of the introduction channel 1B of the reactor main body 1 of 1 mm and the diameter of the T-shaped microchannel 1C of 0.1 mm and 0.5 mm. did.

この実施例における2つの流体には、1つの流体がヨウ化カリウム、ヨウ素酸カリウム、酢酸ナトリウムの3つの溶液を十分に混合した混合液とし、他の流体として溶液に酢酸ナトリウムを選択し、この2つの流体の混合によって生成する成分としてはヨウ素が生成され、そのヨウ素の生成量が混合度合いに依存するという性質を利用する。   For the two fluids in this embodiment, one fluid is a mixed solution in which three solutions of potassium iodide, potassium iodate, and sodium acetate are mixed thoroughly, and sodium acetate is selected as the solution for the other fluid. As a component generated by mixing the two fluids, iodine is generated, and the property that the amount of iodine generated depends on the degree of mixing is utilized.

そしてヨウ素の生成を検知計測する方法としては、引用文献と同じように「Villermaux/Dushman反応」による混合後の液に紫外線を照射してUVスペクトルの352nmの吸光度によって混合度合いを比較する方法を採用した。   And as a method of detecting and measuring the production of iodine, the method of comparing the degree of mixing with the absorbance at 352 nm of the UV spectrum by irradiating the liquid after mixing by “Villermuux / Dushman reaction” as in the cited literature. did.

非特許文献から引用した図5の試験結果において、単純なT字型流路を使用した場合、IMMと表記されたドイツの企業が提供するミキサーを使用した場合、そして筆者(Hideharu Nagasawa)等の研究成果である放射状流路ミキサーを使用した場合の性能比較がなされ、筆者等の性能が優れていると開示されている。
本発明のマイクロリアクタの性能も、ステンレス鋼に本発明によるマイクロリアクタとして1つのT字型微小流路を形成し、その流路の径をφ0.1mmとした本発明のマイクロリアクタで1ml/min程度の微小流量において波長352nmの吸光度を計測すると、その値は0.012、またT字型微小流路1Cの径をφ0.5mmとした本発明のマイクロリアクタで10ml/minの流量において吸光度を計測すると0.013であり、非特許文献の引用文献における筆者らの最高の性能のミキサーと同等以上の2液の混合を達成している。
In the test results of FIG. 5 quoted from non-patent literature, when using a simple T-shaped channel, when using a mixer provided by a German company labeled IMM, and by the author (Hideharu Nagasawa), etc. It is disclosed that the performance of the radial flow mixer, which is the research result, is compared and the performance of the authors is excellent.
The performance of the microreactor of the present invention is also as small as about 1 ml / min in the microreactor of the present invention in which one T-shaped microchannel is formed in stainless steel as a microreactor according to the present invention, and the diameter of the channel is φ0.1 mm. When the absorbance at a wavelength of 352 nm is measured at a flow rate, the value is 0.012, and when the absorbance is measured at a flow rate of 10 ml / min in the microreactor of the present invention in which the diameter of the T-shaped microchannel 1C is φ0.5 mm, it is 0. 013, and mixing of two liquids equal to or higher than that of the authors' best-performing mixer in the cited literature of the non-patent literature is achieved.

また、この実験結果から、流路の径がφ0.5mmの微小流路では、10ml/min以下では波長352nmの吸光度が急激に上昇し、混合が十分ではないと言う結果となった。これから、流動性のある流体及びその流量に最適な流路径によってT字型微小流路を形成し、そのT字型微小流路の数の増減で大きな流量に対応する事が好ましい。   Also, from this experimental result, in a micro flow channel having a diameter of φ0.5 mm, the absorbance at a wavelength of 352 nm rapidly increased at 10 ml / min or less, and mixing was not sufficient. From this, it is preferable to form a T-shaped microchannel with a flowable fluid and a channel diameter optimum for the flow rate, and to cope with a large flow rate by increasing or decreasing the number of the T-shaped microchannels.

このように、本発明のマイクロリアクタによれば、集積型のT字型微小流路1Cのリアクタによる好ましい微小流体の混合及び/或いは反応が実現され、また非常に近接・密集した配置による混合及び/或いは反応をそれぞれのT字型微小流路1Cにおける微小流体の混合及び/或いは反応の周囲条件を同一条件で行うことができ、さらに必要に応じ流体間の混合及び/或いは反応を促進する為や、或いは流体の流れ易さを維持する為などに、流入するそれぞれの流体の温度条件を異なった設定とすることができ、所用の総流量の2つの流体の混合及び/或いは反応を確実に、効率的にしかも低コストで行うことが可能となる。   Thus, according to the microreactor of the present invention, preferable mixing and / or reaction of microfluids by the reactor of the integrated T-shaped microchannel 1C is realized, and mixing and / or reaction by a very close and dense arrangement is realized. Alternatively, the reaction can be performed under the same conditions of the mixing of the microfluids and / or the reaction in the respective T-shaped microchannels 1C, and further to promote the mixing and / or reaction between the fluids as necessary. Alternatively, in order to maintain the ease of fluid flow, etc., the temperature conditions of each inflowing fluid can be set differently to ensure the mixing and / or reaction of the two fluids at the desired total flow rate, It can be performed efficiently and at low cost.

また、反応器本体1に形成する導入流路1B及びT字型微小流路1Cの近接・密集の度合いを限界まで利用するようにスペースの許容範囲内で増やすことで、2つの流体の混合及び/或いは反応する量を増やす=生産性を向上することができることは明らかである。   Further, by increasing the proximity / concentration of the introduction flow path 1B and the T-shaped micro flow path 1C formed in the reactor main body 1 within the allowable range of the space so as to be utilized to the limit, mixing of the two fluids and It is clear that increasing the amount of reaction can improve productivity.

さらには、図6に示すように同心円上に複数形成した前記三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路をエンドプレート側に設け(図中斜線画が付された部分など)と接続する構成とする(この例では反応器本体1を45度の倍数の角度で取り付け位置を振る)ことで、流量を変えた試験が反応器の取り付け角度を変える変更で対応が可能である。   Further, as shown in FIG. 6, the three-way microchannels formed in a plurality of concentric circles are divided into two or more groups, and a stepwise difference is provided in the sum of the channel cross-sectional areas for each group. A group of three-way micro-channels is configured to be connected to an external fluid communication path provided on the end plate side (indicated by a hatched portion in the figure) (in this example, reactor main body 1 Can be handled by changing the attachment angle of the reactor.

この角度を振るのは、反応器本体1とエンドプレート3の相対位置(角度)の変更であるので片側のエンドプレート3を外し、本体を一定角度振ることで実現する、或いはエンドプレート3及び外リング2に複数形成された固定反応器本体1とを一体で固定するための固定部材用の貫通孔の角度が一致するものであれば、固定部材を外し一対のエンドプレート3を流体の連通路と共に一定の角度振って実現することもできる。   This angle is changed by changing the relative position (angle) between the reactor main body 1 and the end plate 3, so that it can be realized by removing the end plate 3 on one side and shaking the main body at a constant angle, or If the angle of the through hole for the fixing member for integrally fixing the plurality of fixed reactor main bodies 1 formed in the ring 2 is the same, the fixing member is removed and the pair of end plates 3 are connected to the fluid communication path. In addition, it can be realized by swinging a certain angle.

また、筒の断面は多角形であっても良く、特に円筒に限定されるものではない。多角形の場合には流量を変化させて再組み立てする際に、方向(角度)を変えることが外形を合わせるだけで、特別な指標なしにも容易に組み立てが可能となる。   Further, the cross section of the cylinder may be polygonal and is not particularly limited to a cylinder. In the case of a polygon, when reassembling by changing the flow rate, changing the direction (angle) only matches the outer shape, and the assembly can be easily performed without any special index.

本発明は、近年注目を浴びているマイクロスケールの空間内での複数の流体を混合、化学反応などを行う生産設備として利用可能であり、大型タンク等を用いた従来のバッチ方式のプラントと比較して多くの有利点を備えるマイクロ化学プラントの一つのものとして、様々な分野における流体の混合及び/或いは反応に適用が可能で、必要に応じてこの装置の数を増やすことで求められる生成流体の量を簡便に調整することもできるという生産量への対応に柔軟性がある生産設備の一部として活用できる。   The present invention can be used as a production facility that mixes a plurality of fluids in a micro-scale space that has been attracting attention in recent years, and performs chemical reactions, etc. Compared with a conventional batch-type plant using a large tank or the like As one of the microchemical plants with many advantages, it can be applied to fluid mixing and / or reaction in various fields, and the production fluid required by increasing the number of devices as necessary It can be used as part of a production facility that can flexibly adapt to the production volume that can be easily adjusted.

本発明の(円)筒状反応器の部分断面図であるIt is a fragmentary sectional view of the (circle) cylindrical reactor of the present invention. 温調機能を付与した(円)筒状反応器の部分断面図であるIt is a fragmentary sectional view of the (circle) cylindrical reactor which provided the temperature control function. 環状封止部材による封止機能を付与した(円)筒状反応器の部分断面図であるIt is a fragmentary sectional view of the (circle) cylindrical reactor which gave the sealing function by an annular sealing member. 低熱伝導率部材を片側の導入部にした(円)筒状反応器の部分断面図であるIt is a fragmentary sectional view of the (circle) cylindrical reactor which made the low thermal conductivity member the introduction part of one side. 混合度合いを吸光度で計測比較した従来例のグラフ(引用文献資料より)Graph of a conventional example comparing and measuring the degree of mixing by absorbance (from cited literature) 微小流路を群(本例では3つの流路を群)として利用する例を示す図The figure which shows the example which utilizes a micro channel as a group (in this example, three channels)

符号の説明Explanation of symbols

1 反応器本体
2 外リング
3 エンドプレート
4 Oリング
5 温冷熱源
6 環状封止部材
7 中間プレート
8 環状プレート
DESCRIPTION OF SYMBOLS 1 Reactor body 2 Outer ring 3 End plate 4 O-ring 5 Heating / cooling heat source 6 Annular sealing member 7 Intermediate plate 8 Annular plate

Claims (6)

流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1組のエンドプレートとよりなり、
それぞれが機密性を保ち、組み上げられていることを特徴とするマイクロリアクタ。
A cylindrical reactor for a flowable raw material,
On the concentric circle, at least one introduction channel and three-way microchannels flowing in from the end surface in parallel to the central axis are formed, and further formed on the outer periphery connected to the microchannels extending in the outer circumferential direction of the three-way microchannels. A reactor main body formed with a discharge passage communicating with the annular joining portion,
An outer ring having a discharge port that is fitted to the outer periphery of the reactor main body and takes out the mixed and / or reacted fluid from the annular merging portion;
A set of end plates that are coaxially joined to the end face of the reactor main body and have a fluid pipe connection with the outside to supply fluid to the introduction flow path;
Each microreactor is characterized by its confidentiality and assembly.
流動性のある原材料用の筒状反応器であって、
同心円上に、中心軸に平行に端面より流入する導入流路と三路微小流路を少なくとも1つ以上形成し、さらに前記三路微小流路の外周方向に延びる微小流路と繋がり外周に形成した環状の合流部に連通する排出流路を形成した反応器本体と、
前記反応器本体の外周に嵌め合わせ前記環状の合流部からの混合及び/或いは反応した流体を取り出す吐出口を備えた外リングと、
前記反応器本体の1の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する1つのエンドプレートと、
前記反応器本体の他の端面に同軸に接合され、外部との流体配管接続部を備え前記導入流路に流体を供給する、熱伝導率の低い材料により形成された中間プレートと、
中間プレートを固定する環状プレートとよりなり、
それぞれが機密性を保ち、組み上げられていることを特徴とするマイクロリアクタ。
A cylindrical reactor for a flowable raw material,
On the concentric circle, at least one introduction channel and three-way microchannels flowing in from the end surface in parallel to the central axis are formed, and further formed on the outer periphery connected to the microchannels extending in the outer circumferential direction of the three-way microchannels. A reactor main body formed with a discharge passage communicating with the annular joining portion,
An outer ring having a discharge port that is fitted to the outer periphery of the reactor main body and takes out the mixed and / or reacted fluid from the annular merging portion;
One end plate that is coaxially joined to one end surface of the reactor main body and includes a fluid pipe connection with the outside to supply fluid to the introduction flow path;
An intermediate plate formed of a material having low thermal conductivity, which is coaxially joined to the other end face of the reactor main body and has a fluid pipe connection with the outside and supplies fluid to the introduction flow path.
It consists of an annular plate that fixes the intermediate plate,
Each microreactor is characterized by its confidentiality and assembly.
同心円上に複数形成した前記三路微小流路を2つ以上の群に分け、群ごとの流路断面積の和に段階的な差を設けて、それぞれの三路微小流路の群が独立して外部からの流体の連通路と接続する構成とする請求項1ないし請求項2記載のマイクロリアクタ。 Divide the three-way microchannels formed concentrically into two or more groups, and provide a stepwise difference in the sum of the cross-sectional areas of each group so that each group of three-way microchannels is independent. 3. The microreactor according to claim 1, wherein the microreactor is configured to be connected to an external fluid communication path. 前記外リング等に温度調節機能を備えた特許請求の範囲第1項から第3項記載のマイクロリアクタ The microreactor according to any one of claims 1 to 3, wherein the outer ring or the like has a temperature control function. 前記反応器本体及び前記外リングと、前記のエンドプレートの接合部に環状の封止部材を備えたことを特徴とする特許請求の範囲第1項から第4項記載のマイクロリアクタ The microreactor according to any one of claims 1 to 4, wherein an annular sealing member is provided at a joint portion between the reactor main body, the outer ring, and the end plate. 前記三路微小流路の合流前のそれぞれの流路の径及び合流後の流路の径が流量に比例した径である特許請求の範囲第1項から第5項記載のマイクロリアクタ 6. The microreactor according to any one of claims 1 to 5, wherein a diameter of each of the three-way micro-channels before merging and a diameter of the channel after merging are proportional to the flow rate.
JP2008039486A 2008-02-21 2008-02-21 Microreactor Active JP4933464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008039486A JP4933464B2 (en) 2008-02-21 2008-02-21 Microreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039486A JP4933464B2 (en) 2008-02-21 2008-02-21 Microreactor

Publications (2)

Publication Number Publication Date
JP2009195817A true JP2009195817A (en) 2009-09-03
JP4933464B2 JP4933464B2 (en) 2012-05-16

Family

ID=41139956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039486A Active JP4933464B2 (en) 2008-02-21 2008-02-21 Microreactor

Country Status (1)

Country Link
JP (1) JP4933464B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219054A (en) * 1999-12-22 2001-08-14 Bayer Inc Reactor assembly
JP2004243308A (en) * 2002-08-01 2004-09-02 Tosoh Corp Microchannel structure, desk size chemical plant constituted thereof, and fine particle producing apparatus using them
JP2006055770A (en) * 2004-08-20 2006-03-02 Tosoh Corp Microchannel structure
JP2006320772A (en) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd Micro-fluid-device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219054A (en) * 1999-12-22 2001-08-14 Bayer Inc Reactor assembly
JP2004243308A (en) * 2002-08-01 2004-09-02 Tosoh Corp Microchannel structure, desk size chemical plant constituted thereof, and fine particle producing apparatus using them
JP2006055770A (en) * 2004-08-20 2006-03-02 Tosoh Corp Microchannel structure
JP2006320772A (en) * 2005-05-17 2006-11-30 Hitachi Plant Technologies Ltd Micro-fluid-device

Also Published As

Publication number Publication date
JP4933464B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4432104B2 (en) Microreactor
JP5604038B2 (en) Reaction apparatus and reaction plant
JP4431857B2 (en) Micro device
JP4091440B2 (en) Fractal equipment used for mixing and reaction
JP5030520B2 (en) Fluid mixing method and microdevice
Shen et al. Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels
CA2593145A1 (en) High performance microreactor
US20080165616A1 (en) Mixer System, Reactor and Reactor System
WO2011027570A1 (en) Flow-type tubular reactor
CN108212046B (en) Honeycomb type channel microreactor
US20090253841A1 (en) Method for producing chemicals
US8101128B2 (en) Injector assemblies and microreactors incorporating the same
JPWO2006030952A1 (en) Fluid mixer
Chen et al. Experimental and numerical investigation on the scaling-up of microsieve dispersion mixers
CN211463116U (en) Premixing device and tubular micro-reactor with same
JP4933464B2 (en) Microreactor
JP2007098226A (en) Fluid device
Lu et al. Fractal reactor in micro-scale for process intensification
Reschetilowski Principles of microprocess technology
JP4592644B2 (en) Microreactor
JP5345750B2 (en) Fluid device
CN112705134A (en) Microflow pipeline and multi-material microflow channel reactor
JP4958298B2 (en) Fluid processing equipment
CN219518591U (en) Microfluidic mixer
Team Microreactors & Microfluidics in Chemistry–a Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250