JP2009191375A - Method for producing nonwoven fabric of synthetic fiber, and apparatus for sorting cloth-shaped and/or cottony fiber - Google Patents

Method for producing nonwoven fabric of synthetic fiber, and apparatus for sorting cloth-shaped and/or cottony fiber Download PDF

Info

Publication number
JP2009191375A
JP2009191375A JP2008030170A JP2008030170A JP2009191375A JP 2009191375 A JP2009191375 A JP 2009191375A JP 2008030170 A JP2008030170 A JP 2008030170A JP 2008030170 A JP2008030170 A JP 2008030170A JP 2009191375 A JP2009191375 A JP 2009191375A
Authority
JP
Japan
Prior art keywords
fiber
fibers
cloth
cotton
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008030170A
Other languages
Japanese (ja)
Other versions
JP4962342B2 (en
Inventor
Hideyuki Onari
英之 大成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008030170A priority Critical patent/JP4962342B2/en
Publication of JP2009191375A publication Critical patent/JP2009191375A/en
Application granted granted Critical
Publication of JP4962342B2 publication Critical patent/JP4962342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a nonwoven fabric of a synthetic fiber which has high additional value from a cloth-shaped fiber waste in which various kinds of materials are mixed. <P>SOLUTION: The kinds of materials constituting a cloth-shaped fiber waste are identified from the cloth-shaped fiber waste by using a plastic-distinguishing machine constituted by a near infrared spectrophotometer. The fiber containing 10 wt.% or more of cellulose-containing fiber included in the cloth-shaped waste is specified, selected and removed. The remaining fiber waste from which the fiber containing 10 wt.% or more of cellulose-containing fiber is selected and removed is recovered and finished to a nonwoven fabric so as to be recycled as the nonwoven fabric of the synthetic fiber which is a material for industry. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、布状繊維製品及び/又は綿状繊維製品を原料として合成繊維不織布を製造する方法およびそれに用いる繊維製品の分別装置に関するものであり、特に、衣服やカーテン等からなる布状繊維廃棄物から付加価値の高い合成繊維不織布を効率良く製造するための合成繊維不織布の製造方法、並びにその際に用いる布状及び/又は綿状の繊維を素材別に分別するための分別装置に関する。   TECHNICAL FIELD The present invention relates to a method for producing a synthetic fiber nonwoven fabric using cloth-like fiber products and / or cotton-like fiber products as raw materials, and a fiber product separation apparatus used therefor, and in particular, disposal of cloth-like fibers comprising clothes, curtains, and the like. The present invention relates to a method for producing a synthetic fiber nonwoven fabric for efficiently producing a synthetic fiber nonwoven fabric having a high added value from a product, and a separation device for separating cloth-like and / or cotton-like fibers used at that time by material.

一般に、衣服やカーテン、綿等からなる繊維廃棄物は、複数以上の素材により構成されているものが有り、かつ、多くの物は、各種繊維素材の混合物として排出されている。これら各種繊維素材が混合した繊維廃棄物をリサイクルしようとした場合、衣服や服地についてはその素材表示ラベルを見て分別する、又は、熟練者がその繊維の風合いや手触り感、燃焼時の臭い等から用途に合致しない素材の物を分別してリサイクルが行われている。ところが、繊維廃棄物の種類によっては、各種様々な素材が混合しているが故に十分な分別ができず、例えば、開繊、反毛化して不織布とした場合にその用途が限られる、或いは、不織布としてもその価値が低くて経済的に合わない等の理由でリサイクルされず廃棄される場合があった。   In general, some fiber wastes composed of clothes, curtains, cotton, etc. are composed of a plurality of materials, and many are discharged as a mixture of various fiber materials. When trying to recycle fiber waste mixed with these various fiber materials, clothing and clothing are sorted by looking at the material label, or the texture and feel of the fibers, smell during combustion, etc. The materials that do not match the intended use are sorted and recycled. However, depending on the type of fiber waste, since various various materials are mixed, it cannot be sufficiently separated. In some cases, the non-woven fabric is not recycled and discarded because of its low value and economic incompatibility.

繊維廃棄物の中でも、布地からなるカーテンは、ポリエステル系繊維、アクリル繊維、アクリル系繊維を主体とする合成繊維からなるものや、これら合成繊維にレーヨン、木綿等のセルロース含有繊維が混紡されたものや難燃処理されたもの等、様々な種類のものが知られている。これらカーテン廃棄物の反毛化においては、予め、適当な大きさに切断、裁断する作業が必要で手間を要すること、また、ポリエステル系繊維等のフィラメントは、特殊な開繊機や方法を選択して開繊しなければ良好な反毛が得られないため、不織布に加工する上で効率が上がらないという問題があった。   Among textile wastes, fabric curtains are made of polyester fibers, acrylic fibers, synthetic fibers mainly composed of acrylic fibers, and these synthetic fibers are blended with cellulose-containing fibers such as rayon and cotton. Various types are known, such as those treated with flame retardant. In the curling of these curtain wastes, it is necessary to work to cut and cut to an appropriate size in advance, and it is time-consuming. For filaments such as polyester fibers, select a special opening machine or method. If the fiber is not opened, good bristles cannot be obtained. Therefore, there is a problem that the efficiency of processing into a non-woven fabric does not increase.

従って、各種素材が混合したカーテン廃棄物については、単一素材や一定割合の素材で構成された物を分別して集積することができれば、不織布に加工する条件もコントロールし易く、その製品価値も高めることが可能である。   Therefore, for curtain waste mixed with various materials, if the material composed of a single material or a certain proportion of materials can be separated and accumulated, the conditions for processing into a non-woven fabric can be easily controlled, and the product value is also increased. It is possible.

プラスチックの種類を識別する装置については、近赤外分光光度計からなるプラスチック識別機が知られている(例えば特許文献1参照。)。このプラスチックの種類を識別する近赤外分光光度計からなる装置については、例えば、ABS樹脂、アクリロニトリルスチレン、ポリアミド、ポリブチレンテレフタレート、ポリカーボネート、ポリカ ABS、ポリエチレン、ポリエチレンテレフタレート、アクリル樹脂(ポリメチルメタクリレート樹脂)、ポリアセタール、ポリプロピレン、ポリスチレン、ポリウレタン、塩化ビニル樹脂、ポリ塩化ビニリデンからなる15種類のプラスチック種を識別するプラスチック種類識別計が上市され販売されている。   As a device for identifying the type of plastic, a plastic identifying machine including a near-infrared spectrophotometer is known (see, for example, Patent Document 1). For an apparatus comprising a near-infrared spectrophotometer for identifying the type of plastic, for example, ABS resin, acrylonitrile styrene, polyamide, polybutylene terephthalate, polycarbonate, polycarbonate ABS, polyethylene, polyethylene terephthalate, acrylic resin (polymethyl methacrylate resin) ), A plastic type discriminator for identifying 15 types of plastics consisting of polyacetal, polypropylene, polystyrene, polyurethane, vinyl chloride resin, and polyvinylidene chloride is marketed and sold.

プラスチックの種類を識別する装置の原理は、特許文献1に示されるように、近赤外光をプラスチック成形体に照射し、その反射光又は透過光を所定の分光手段により検出した基準吸収スペクトルをコンピューター・ディスプレイ上に表示させる近赤外分光光度計であり、このスペクトラムと、予め、学習している標準プラスチックのスペクトラムデーターと照合してプラスチックの種類を識別する装置である。このようなプラスチックの種類を識別する装置は、家電リサイクル、容器包装リサイクル、自動車リサイクル等のリサイクル分野において、プラスチックの種類を識別するために用いられ、活用されている。   As shown in Patent Document 1, the principle of the apparatus for identifying the type of plastic is that a reference absorption spectrum obtained by irradiating a plastic molded body with near infrared light and detecting the reflected or transmitted light by a predetermined spectroscopic means is used. This is a near-infrared spectrophotometer to be displayed on a computer display, and is a device for identifying the type of plastic by comparing this spectrum with spectrum data of a standard plastic that has been learned in advance. Such an apparatus for identifying the type of plastic is used and used for identifying the type of plastic in the recycling field such as home appliance recycling, container packaging recycling, and automobile recycling.

しかし、各種繊維素材が混合した繊維を分別するために、プラスチックの種類を識別する装置を用いる方法については、これまで検討された事例は認められない。
特開2006−84350号公報
However, there has been no case that has been studied so far regarding a method of using an apparatus for identifying the type of plastic in order to sort fibers mixed with various fiber materials.
JP 2006-84350 A

本発明は、各種素材が混合した布状及び/又は綿状の繊維、例えばカーテン廃棄物等の繊維廃棄物から、土木資材や難燃資材として好適な合成繊維不織布を効率良く製造するための合成繊維不織布の製造方法並びにそれに用いる繊維素材を識別して分別回収するための分別装置を提供するものである。   The present invention is a composition for efficiently producing a synthetic nonwoven fabric suitable as a civil engineering material or a flame-retardant material from cloth-like and / or cotton-like fibers mixed with various materials, for example, textile waste such as curtain waste. The present invention provides a method for manufacturing a fiber nonwoven fabric and a sorting device for identifying and collecting the fiber material used therefor.

本発明者は、上記課題を解決するため、鋭意検討を重ねた結果、各種素材が混合した布状及び/又は綿状の繊維、例えばカーテン廃棄物等の繊維廃棄物から、耐久性や難燃性が劣る木綿又はレーヨン等のセルロース含有繊維を特定して分別して反毛化することで、付加価値の高い合成繊維不織布として、土木資材や難燃資材として好適な合成繊維不織布を効率良く製造することができる、との着想を得、本発明を完成させるにいたった。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventor has determined that durability and flame retardancy from cloth waste and / or cotton-like fibers mixed with various materials, for example, fiber waste such as curtain waste, etc. By efficiently identifying cellulose-containing fibers such as cotton or rayon, which are inferior in properties, and separating them into anti-hairs, it is possible to efficiently produce synthetic fiber nonwoven fabrics suitable as civil engineering materials and flame retardant materials as high-value-added synthetic fiber nonwoven fabrics. The idea of being able to do so was obtained and the present invention was completed.

すなわち、本発明は、
(1)合成繊維不織布の製造方法であって、原料としての布状及び/又は綿状の繊維を、近赤外分光光度計により前記布状及び/又は綿状の繊維を構成する素材の種類を識別する素材識別工程と、前記素材識別工程において、セルロース含有繊維を10重量%以上含むと識別された布状繊維(以下、セルロース系布状繊維ともいう。)や綿状繊維を選別し、原料から除去するセルロース除外工程と、前記除外されたセルロース系布状繊維や綿状繊維以外の布状及び/又は綿状の繊維を反毛とする反毛工程と、前記反毛工程で得られた反毛を不織布に加工する不織布加工工程と、を有することを特徴とする合成繊維不織布の製造方法、
(2)前記布状及び/又は綿状の繊維が繊維廃棄物であり、製造される合成繊維不織布が再生合成繊維不織布である前記(1)記載の合成繊維不織布の製造方法、
(3)前記布状繊維がカーテンである前記(1)又は(2)に記載の合成繊維不織布の製造方法、
(4)前記セルロース含有繊維が木綿又はレーヨンを10重量%以上含む繊維である前記(1)〜(3)のいずれかに記載の合成繊維不織布の製造方法、
(5)前記素材選別工程において、前記素材識別工程において近赤外分光光度計により原料としての布状及び/又は綿状の繊維の中からアクリル系繊維を30重量%以上含むと識別された布状繊維(以下、アクリル系布状繊維ともいう。)及び/又は綿状繊維を選別し、該選別されたアクリル系布状及び/又は綿状の繊維を回収し、前記反毛工程において反毛とし、該反毛を前記不織布加工工程において不織布に加工して難燃性不織布とする前記(1)〜(4)の何れかに記載の合成繊維不織布の製造方法、
(6)布状及び/又は綿状の繊維の分別装置であって、布状及び/又は綿状の繊維の供給装置と、布状及び/又は綿状の繊維の供給状況を検知するための位置センサーと、供給された布状及び/又は綿状の繊維を間欠的に搬送する搬送装置と、前記搬送装置によって搬送される布状及び/又は綿状の繊維に近赤外光を照射して反射光を検出するための検出機と、検出機の位置での布状及び/又は綿状の繊維の搬送状態を検出するための位置センサーと、前記検出機での識別データーに基づいて布状及び/又は綿状の繊維を繊維素材毎に分別する仕分け機と、該仕分け機後部に設置された2乃至4個の仕分け品収容部と、を備えることを特徴とするからなる布状及び/又は綿状の繊維の分別装置、
(7)前記供給装置が、布状及び/又は綿状の繊維を搬送装置の上部から供給し、上方に傾斜した経路において、該布状及び/又は綿状の繊維を引っ掛けて引き上げる装置であることを特徴とする前記(6)記載の布状及び/又は綿状の繊維の分別装置、
(8)前記仕分け機が、前記布状及び/又は綿状の繊維の識別データーを基に、搬送経路を変更して仕分け品収容部に投入するものである前記(6)又(7)に記載の布状及び/又は綿状の繊維の分別装置、
(9)前記布状及び/又は綿状の繊維が、繊維廃棄物であり、布状繊維廃棄物及び/又は綿状繊維廃棄物の分別に用いられる前記(6)〜(8)のいずれかに記載の分別装置、
(10)セルロース含有繊維を10重量%以上含むセルロース系布状及び/又は綿状の繊維と、アクリル系繊維を30重量%以上含むアクリル系布状及び/又は綿状の繊維と、それ以外の合成繊維からなる布状及び/又は綿状の繊維と、識別不能の繊維からなる布状及び/又は綿状の繊維とに識別し、分別して回収することを特徴とする前記(6)〜(9)のいずれかに記載の布状及び/又は綿状の繊維の分別装置、
である。
That is, the present invention
(1) A method for producing a synthetic fiber nonwoven fabric, in which cloth-like and / or cotton-like fibers as raw materials are composed of the cloth-like and / or cotton-like fibers by a near-infrared spectrophotometer. In the material identifying step, and in the material identifying step, a cloth-like fiber (hereinafter also referred to as cellulosic cloth-like fiber) or cotton-like fiber identified as containing 10% by weight or more of cellulose-containing fibers is selected, Cellulose exclusion step to be removed from the raw material, a repulsion step in which cloth-like and / or cotton-like fibers other than the excluded cellulosic cloth-like fibers and cotton-like fibers are used as a bristles, and A method of manufacturing a synthetic fiber nonwoven fabric, comprising:
(2) The method for producing a synthetic fiber nonwoven fabric according to (1), wherein the cloth-like and / or cotton-like fibers are fiber waste, and the synthetic fiber nonwoven fabric to be produced is a recycled synthetic fiber nonwoven fabric,
(3) The method for producing a synthetic fiber nonwoven fabric according to (1) or (2), wherein the cloth fiber is a curtain,
(4) The method for producing a synthetic fiber nonwoven fabric according to any one of (1) to (3), wherein the cellulose-containing fiber is a fiber containing 10% by weight or more of cotton or rayon,
(5) In the material selection step, the fabric identified in the material identification step as containing at least 30% by weight of acrylic fiber from cloth-like and / or cotton-like fibers as a raw material by a near infrared spectrophotometer Fiber-like fibers (hereinafter also referred to as “acrylic cloth-like fibers”) and / or cotton-like fibers, and the selected acrylic cloth-like and / or cotton-like fibers are collected and rebounded in the rebounding step. And the manufacturing method of the synthetic fiber nonwoven fabric in any one of said (1)-(4) which processes the said bristles into a nonwoven fabric in the said nonwoven fabric processing process, and makes it a flame-retardant nonwoven fabric,
(6) Cloth-like and / or cotton-like fiber separation device for detecting cloth-like and / or cotton-like fiber feeding device and cloth-like and / or cotton-like fiber feeding status A position sensor, a conveying device that intermittently conveys the supplied cloth-like and / or cotton-like fibers, and the cloth-like and / or cotton-like fibers conveyed by the conveying device are irradiated with near infrared light. A detector for detecting the reflected light, a position sensor for detecting the conveyance state of the cloth-like and / or cotton-like fibers at the position of the detector, and the cloth based on the identification data of the detector And / or a sorter for separating cotton-like fibers for each fiber material, and 2 to 4 sorter storage units installed at the rear of the sorter, and / Or cotton-like fiber sorting device,
(7) The supply device is a device that supplies cloth-like and / or cotton-like fibers from the upper part of the transport device and hooks and pulls up the cloth-like and / or cotton-like fibers in a path inclined upward. The cloth-like and / or cotton-like fiber separation device according to (6) above,
(8) In the above (6) or (7), the sorting machine changes the transport path based on the identification data of the cloth-like and / or cotton-like fibers and puts it into the sorted product storage unit. The cloth-like and / or cotton-like fiber separation device as described,
(9) Any of the above (6) to (8), wherein the cloth-like and / or cotton-like fibers are fiber waste and are used for separation of cloth-like fiber waste and / or cotton-like fiber waste. Sorting device according to
(10) Cellulosic cloth-like and / or cotton-like fibers containing 10% by weight or more of cellulose-containing fibers, acrylic cloth-like and / or cotton-like fibers containing 30% by weight or more of acrylic fibers, and other The above-mentioned (6) to (6), wherein the cloth-like and / or cotton-like fibers made of synthetic fibers and the cloth-like and / or cotton-like fibers made of indistinguishable fibers are discriminated, sorted and collected. 9) The cloth-like and / or cotton-like fiber separation device according to any one of
It is.

合成繊維不織布を製造するにあたって、布状及び/又は綿状の繊維を近赤外分光光度計により布状及び/又は綿状の繊維を構成する素材の種類を識別してセルロース含有繊維を10重量%以上含むセルロース系布状繊維や綿状繊維を選別、除去後、前記残りの布状繊維や綿状繊維の繊維素材を反毛とし、該反毛を不織布に加工してリサイクルすれば、セルロース含有繊維の含有量の低い不織布を得ることができ、例えば、廃棄物埋め立て処分場等の透水性シートとして布状繊維や綿状繊維をリサイクルすることができる。また、前記布状繊維及び/綿状繊維が繊維廃棄物であり、製造される合成繊維不織布が再生合成繊維不織布であれば、繊維廃棄物の再生利用が可能となる。   In producing a synthetic fiber nonwoven fabric, the weight of the cellulose-containing fiber is identified by identifying the type of material constituting the cloth-like and / or cotton-like fibers with a near-infrared spectrophotometer. After selecting and removing cellulosic cloth-like fibers and cotton-like fibers containing at least 50%, the fiber material of the remaining cloth-like fibers and cotton-like fibers is made into a bristles, and the bristles are processed into a non-woven fabric for recycling. A nonwoven fabric with a low content of contained fibers can be obtained, and for example, cloth-like fibers and cotton-like fibers can be recycled as water-permeable sheets for waste landfills and the like. Further, if the cloth-like fibers and / or cotton-like fibers are fiber waste and the synthetic fiber nonwoven fabric to be produced is a recycled synthetic fiber nonwoven fabric, the fiber waste can be recycled.

また、前記布状繊維がカーテンであれば、カーテンの構成素材がポリエステル系繊維、アクリル繊維、アクリル系繊維を主体とする合成繊維が多いため、これら合成繊維に混紡されたレーヨン、木綿等のセルロースを10重量%以上含む繊維を特定して分別することで、レーヨン、木綿等のセルロース含有繊維の含有量が少ない合成繊維不織布を得ることができる。このようにして製造された不織布は、セルロース含有繊維を10重量%以上含む繊維が選別、除去された合成繊維で構成されているため、例えば、土木用資材として使用した場合に、土中のバクテリア等による分解が生じ難く、有効に利用できるため好ましい。   If the cloth-like fiber is a curtain, the constituent material of the curtain is mostly polyester fiber, acrylic fiber, synthetic fiber mainly composed of acrylic fiber, and cellulose such as rayon and cotton blended with these synthetic fibers. By specifying and separating fibers containing 10% by weight or more, a synthetic fiber nonwoven fabric having a low content of cellulose-containing fibers such as rayon and cotton can be obtained. The non-woven fabric produced in this way is composed of synthetic fibers from which fibers containing 10% by weight or more of cellulose-containing fibers have been selected and removed. For example, when used as a civil engineering material, It is preferable because it is difficult to decompose due to the like and can be used effectively.

また、前記セルロース含有繊維が、木綿又はレーヨンを10重量%以上含む繊維であれば、近赤外分光光度計により、容易に、セルロース含有繊維であることを特定することができる。   Moreover, if the said cellulose containing fiber is a fiber containing 10 weight% or more of cotton or rayon, it can identify easily that it is a cellulose containing fiber with a near-infrared spectrophotometer.

また、前記近赤外分光光度計により選別して回収される布状繊維や綿状繊維が、アクリル系繊維を30重量%以上含むアクリル系布状繊維や綿状繊維であれば、識別して回収した繊維廃棄物は難燃性を有するため、アクリル系繊維を30重量%以上含む繊維を分別後、開繊、反毛化した反毛を用いて不織布を加工すれば、難燃性が付与された不織布を得易いため、より付加価値の高い不織布としてリサイクルすることも可能となる。   Further, if the cloth-like fiber or cotton-like fiber selected and collected by the near-infrared spectrophotometer is an acrylic cloth-like fiber or cotton-like fiber containing 30% by weight or more of the acrylic fiber, it is identified. Since the recovered fiber waste has flame retardancy, it is possible to impart flame retardancy by separating the fiber containing 30% by weight or more of acrylic fiber, and then processing the nonwoven fabric using the opened and repelled repellent. Since the obtained non-woven fabric is easy to obtain, it can be recycled as a non-woven fabric with higher added value.

また、前記合成繊維不織布を製造するにあたって、繊維廃棄物等の布状繊維や綿状繊維の供給装置と、布状繊維や綿状繊維の供給状況を検知するための位置センサーと、供給された布状繊維や綿状繊維を間欠して搬送する搬送装置と、前記搬送装置によって搬送される布状繊維や綿状繊維に近赤外光を照射して反射光を検出するための検出機と、検出機の位置での該布状繊維や綿状繊維の搬送状態を検出するための位置センサーと、該検出機での識別データーに基づいて布状繊維や綿状繊維を繊維素材毎に分別する仕分け機と、該仕分け機後部に設置された2乃至4個の仕分け品収容部からなる布状繊維廃棄物や綿状繊維廃棄物の分別装置を用いることにより、カーテン廃棄物等の布状繊維の原料の中から、セルロース含有繊維を10重量%以上含む繊維を効率的に、かつ自動で選別処理することもできる。   Further, in manufacturing the synthetic fiber nonwoven fabric, a supply device for cloth-like fibers and cotton-like fibers such as fiber waste, and a position sensor for detecting the supply status of the cloth-like fibers and cotton-like fibers were supplied. A conveying device that intermittently conveys cloth-like fibers and cotton-like fibers, and a detector for detecting reflected light by irradiating near-infrared light to the cloth-like fibers and cotton-like fibers conveyed by the conveying device; , A position sensor for detecting the conveyance state of the cloth-like fiber and cotton-like fiber at the position of the detector, and the cloth-like fiber and cotton-like fiber are separated for each fiber material based on the identification data in the detector By using a sorting device for cloth-like fiber waste and cotton-like fiber waste comprising a sorter that performs and 2 to 4 sorter storage units installed at the rear of the sorter, a cloth-like form such as curtain waste 10% by weight of cellulose-containing fiber from fiber raw materials The fibers comprising the above efficiently, and can be sorted automatically processed.

前記供給装置は、布状繊維や綿状繊維を搬送装置の上部から供給するものであり、上方に傾斜した経路において、該布状繊維や綿状繊維を引っ掛けて引き上げることにより、布状繊維や綿状繊維を一枚(一塊)ずつ供給可能とするものであり、これにより、検出部において識別される複数種以上の布状繊維や綿状繊維が混在することなく、かつ、折り重なった状態で識別されるため、回収される布状繊維や綿状繊維の識別精度が向上し、その結果、精度良く分別処理することができる。   The supply device supplies cloth-like fibers and cotton-like fibers from the upper part of the conveying device, and in a path inclined upward, the cloth-like fibers and cotton-like fibers are hooked up and pulled up, It is possible to supply cotton-like fibers one by one (one lump), and this allows multiple types of cloth-like fibers and cotton-like fibers identified in the detection unit to be mixed and in a folded state. As a result of the identification, the identification accuracy of the recovered cloth-like fiber or cotton-like fiber is improved, and as a result, the separation process can be performed with high accuracy.

また、前記仕分け装置が、前記布状繊維や綿状繊維の識別データーに基づき、搬送経路を変更して仕分け品収容部に投入することにより、素材別に分別された布状繊維や綿状繊維を、それぞれ効率よく回収することができる。   In addition, the sorting device changes the transport path based on the identification data of the cloth-like fibers and cotton-like fibers, and puts them into the sorted-item storage unit, so that the cloth-like fibers and cotton-like fibers sorted according to the material are collected. , Each can be recovered efficiently.

更に、本分別装置によると、繊維素材が、セルロース含有繊維を10重量%以上含む繊維と、アクリル系繊維を30重量%以上含む繊維と、それ以外の合成繊維と、識別不能の繊維とに識別し、該識別データーを基に仕分け機を制御することで、布状繊維廃棄物や綿状繊維廃棄物を前記した2乃至4種の素材に分別して回収することができ、これにより付加価値の高い合成繊維不織布を製造するための原料を分別して回収することができる。   Furthermore, according to the present sorting apparatus, the fiber material is classified into fibers containing 10% by weight or more of cellulose-containing fibers, fibers containing 30% by weight or more of acrylic fibers, other synthetic fibers, and indistinguishable fibers. By controlling the sorting machine based on the identification data, the cloth-like fiber waste and the cotton-like fiber waste can be separated and collected into the above-mentioned 2 to 4 types of materials, thereby adding value. The raw material for producing a high synthetic fiber nonwoven fabric can be separated and recovered.

本発明の合成繊維不織布の製造方法は、衣服やカーテン等の布状繊維や綿等からなる繊維の素材の種類を、近赤外分光光度計を用いて識別し、木綿又はレーヨン等からなるセルロース含有繊維を10重量%以上含む繊維を特定して原料中から分別、除去するとともに、該繊維を構成する素材毎に分別し、分別された繊維を反毛化後、合成繊維不織布とする合成繊維の製造方法である。なお、本発明における繊維は、紙、パルプ等の古紙からなる紙製品を含むものではなく、繊維製品の中でも、布状繊維及び綿状繊維、並びにそれらの廃棄物を対象とするものである。   The method for producing a synthetic fiber nonwoven fabric according to the present invention uses a near-infrared spectrophotometer to identify the type of fabric material such as clothes and curtains and fiber materials such as cotton, and cellulose or cotton made of rayon or the like. Synthetic fibers that specify fibers containing 10% by weight or more of the contained fibers, and separate and remove them from the raw materials, and classify them for each material constituting the fibers, and make the separated fibers anti-haired to make synthetic fiber nonwoven fabrics. It is a manufacturing method. In addition, the fiber in this invention does not include the paper products which consist of used papers, such as paper and a pulp, but targets a cloth-like fiber, a cotton-like fiber, and those waste among fiber products.

布状繊維や綿状繊維を構成する素材を識別する際には、近赤外分光光度計から成るプラスチック判別計を用いることが好ましい。近赤外分光光度計で使用する近赤外光の波長領域は、1300〜2600nmの範囲であり、プラスチックの種類を識別する場合においては、通常、1600〜2400nmが使用され、布状繊維や綿状繊維の素材識別においてもこの波長領域の近赤外光を使用することが好ましい。布状繊維や綿状繊維の素材を識別するための測定を行うにあたって、前記波長領域における測定回数、走査回数、測定点数を設定して行われるが、通常、1測定あたり約2秒の識別時間で測定されるものである。近赤外光を利用して素材の識別を行う場合、黒色や濃色の材料は、近赤外反射光が材料に吸収されて得られないため、識別は困難となるが、白色やその他のガラものは容易に識別できる。なお、近赤外分光光度計で布状繊維や綿状繊維の構成素材を識別する際には、該繊維廃棄物の形状は、綿状、布状、糸状の何れであっても良いが、構成素材を識別後、分別する点から布状繊維であることが好ましい。また、近赤外分光光度計により繊維の素材の選別を行う場合に、薄いポリエチレン製の袋に挿入されている物で、単一の素材が挿入されている物、例えば、カーテン原反等については、ポリエチレン製の袋を解袋することなく、袋中の繊維素材の選別を行っても選別が可能であるため、袋を取り外して選別する手間を省くことも可能である。   When identifying the material constituting the cloth-like fiber or cotton-like fiber, it is preferable to use a plastic discriminator comprising a near-infrared spectrophotometer. The wavelength region of near infrared light used in the near infrared spectrophotometer is in the range of 1300 to 2600 nm. When identifying the type of plastic, 1600 to 2400 nm is usually used, and cloth-like fibers and cotton are used. It is preferable to use near-infrared light in this wavelength region also for identifying the material of the fiber. When performing measurement for identifying the material of cloth-like fiber or cotton-like fiber, it is performed by setting the number of measurements, the number of scans, and the number of measurement points in the wavelength region. Usually, the identification time is about 2 seconds per measurement. It is measured by. When identifying materials using near-infrared light, it is difficult to identify black or dark materials because the near-infrared reflected light is not absorbed by the material. Gara can be easily identified. When identifying the constituent material of cloth-like fibers and cotton-like fibers with a near-infrared spectrophotometer, the shape of the fiber waste may be any of cotton-like, cloth-like, or thread-like, It is preferable that it is a cloth-like fiber from the point of separating after identifying a constituent material. In addition, when selecting a fiber material with a near-infrared spectrophotometer, a material inserted in a thin polyethylene bag, with a single material inserted, such as a curtain fabric Since it is possible to select the fiber material in the bag without unpacking the polyethylene bag, it is possible to save the trouble of removing the bag and selecting it.

また、布状繊維の中で、カーテンについては、ポリエステル系繊維を使用しているものが多く、何社かのカーテンメーカーの製品見本帳について、その素材を調べてみると、ポリエステル系繊維単独で構成されているものが50%以上を占めている。しかしながら、カーテンの素材については、縦糸と横糸の素材を異なる素材の糸で構成したものや、異なる素材を混紡して使用し、風合いや洗濯した際の耐久性、遮光性、難燃性等の機能性を付与したものも挙げられる。具体的には、ポリエステル系繊維にアクリル繊維、アクリル系繊維、レーヨン、木綿等の繊維が様々な割合で混紡され、製織されたものである。また、カーテンの中でも、レースカーテンについては、近赤外分光光度計で識別する際に、近赤外光が素材を透過して反射光が集光され難い場合は、複数枚以上のレースカーテンを積層して反射光を集光しやすくすると容易に識別可能となる。   Of the fabric-like fibers, many of the curtains use polyester fibers, and when examining the materials of product samples from some curtain manufacturers, the polyester fibers alone What is composed accounts for 50% or more. However, the curtain material is composed of warp and weft yarns made of different materials, mixed with different materials, and used for texture, washing durability, shading, flame resistance, etc. The thing which provided functionality is also mentioned. Specifically, fibers such as acrylic fibers, acrylic fibers, rayon, and cotton are mixed and woven in various proportions with polyester fibers. Also, among the curtains, if the lace curtain is identified with a near-infrared spectrophotometer, if the near-infrared light is transmitted through the material and the reflected light is difficult to collect, a plurality of lace curtains should be used. If it is laminated to easily collect the reflected light, it can be easily identified.

これらポリエステル系繊維にアクリル繊維、アクリル系繊維、レーヨン、木綿等の繊維が混紡されたものは、ポリエステル系繊維に10重量%以上の混紡率で混紡されたものであれば、ポリエステル系繊維と異なるピークを検出できるため、識別が可能となる。更に、20重量%以上の混紡率のものは、より容易に識別することができるため好ましい。   These polyester fibers blended with fibers such as acrylic fibers, acrylic fibers, rayon, and cotton are different from polyester fibers as long as they are blended with polyester fibers at a blending rate of 10% by weight or more. Since the peak can be detected, identification is possible. Furthermore, those having a blending ratio of 20% by weight or more are preferable because they can be easily identified.

本発明におけるセルロース含有繊維とは、主としてレーヨン、木綿等からなる紡績糸である。更に、麻、絹、羊毛等からなる天然繊維も、同様にして、本発明における近赤外分光光度計でのセルロース含有繊維の識別方法を使用して分別することが可能である。本発明においては、布状繊維や綿状繊維から耐久性や難燃性に劣るセルロース含有繊維を10重量%以上含む繊維を選別、除去して回収される布状繊維や綿状繊維等の原料繊維は、耐久性の優れる合成繊維から構成されることとなるため、不織布を製造して再利用する上で有用と成り、好ましい。   The cellulose-containing fiber in the present invention is a spun yarn mainly made of rayon, cotton or the like. Furthermore, natural fibers made of hemp, silk, wool, etc. can be similarly classified using the method for identifying cellulose-containing fibers with a near infrared spectrophotometer according to the present invention. In the present invention, raw materials such as cloth fibers and cotton fibers recovered by selecting and removing fibers containing 10% by weight or more of cellulose-containing fibers having inferior durability and flame retardancy from cloth fibers and cotton fibers. Since the fiber is composed of a synthetic fiber having excellent durability, it is useful and preferable for producing and reusing a nonwoven fabric.

本発明におけるポリエステル系繊維とは、テレフタル酸、イソフタル酸、ナフタレン−2、6−ジカルボン酸、フタル酸、α、β−(4−カルボキシフェノキシ)エタン、4,4‘−ジカルボキシジフェニル、5−ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸;アゼライン酸、アジピン酸、セバシン酸等の脂肪族ジカルボン酸とエチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン−1,4−ジメタノール、ポリエチレングリコール、ポリテトラメチレングリコール等のジオールからなる繊維形成性のポリエステルを挙げることができ、構成単位の80モル%以上がエチレンテレフタレート単位であることが好ましい。また、末端に反応性官能基としてカルボキシル基や水酸基を有するリン酸エステル等のリン含有エステル形成性化合物を前記ポリエステル形成性モノマーと重縮合した難燃性ポリエステル、リン含有難燃剤又は臭素含有難燃剤を混合成形、後加工等により導入又は付与して得られるポリエステル系難燃繊維を使用することもできる。   The polyester fiber in the present invention is terephthalic acid, isophthalic acid, naphthalene-2, 6-dicarboxylic acid, phthalic acid, α, β- (4-carboxyphenoxy) ethane, 4,4′-dicarboxydiphenyl, 5- Aromatic dicarboxylic acids such as sodium sulfoisophthalic acid; aliphatic dicarboxylic acids such as azelaic acid, adipic acid and sebacic acid and ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexane Examples thereof include fiber-forming polyesters composed of diols such as diol, neopentyl glycol, cyclohexane-1,4-dimethanol, polyethylene glycol, and polytetramethylene glycol. More than 80 mol% of the structural units are ethylene terephthalate units. Prefer to be That's right. In addition, a flame-retardant polyester, phosphorus-containing flame retardant or bromine-containing flame retardant obtained by polycondensation of a phosphorus-containing ester-forming compound such as a phosphate having a carboxyl group or a hydroxyl group as a reactive functional group at the terminal with the polyester-forming monomer It is also possible to use a polyester-based flame retardant fiber obtained by introducing or imparting the material by mixing molding, post-processing or the like.

次に、本発明におけるアクリル系繊維とは、アクリロニトリルモノマーを85重量%未満含む共重合体を用いてなる繊維であり、具体的には、アクリロニトリル30〜70重量%、塩化ビニルモノマー及び/又は塩化ビニリデンモノマー等のハロゲン含有ビニル系単量体を70〜30重量%、及び、これらと共重合可能なビニル単量体0〜10重量%からなる共重合体の繊維である。更に、難燃性を付与する点から、前記共重合体は、アクリロニトリル40〜60重量%、塩化ビニルモノマー及び/又は塩化ビニリデンモノマー等のハロゲン含有ビニル系単量体を60〜40重量%、及び、これらと共重合可能なビニル単量体0〜10 重量%からなる共重合体の繊維が好ましい。一方、一般的なアクリル繊維とは、アクリロニトリルをモノマー単位として85重量%以上含む共重合体を用いてなる繊維でアクリル系繊維と区分される。   Next, the acrylic fiber in the present invention is a fiber formed by using a copolymer containing less than 85% by weight of acrylonitrile monomer, specifically, 30 to 70% by weight of acrylonitrile, vinyl chloride monomer and / or chloride. This is a copolymer fiber comprising 70 to 30% by weight of a halogen-containing vinyl monomer such as vinylidene monomer and 0 to 10% by weight of a vinyl monomer copolymerizable therewith. Furthermore, from the viewpoint of imparting flame retardancy, the copolymer is composed of 40 to 60% by weight of acrylonitrile, 60 to 40% by weight of a halogen-containing vinyl monomer such as vinyl chloride monomer and / or vinylidene chloride monomer, and A copolymer fiber composed of 0 to 10% by weight of a vinyl monomer copolymerizable therewith is preferred. On the other hand, a general acrylic fiber is a fiber using a copolymer containing 85% by weight or more of acrylonitrile as a monomer unit and is classified as an acrylic fiber.

図1〜図4に示すのは、それぞれ、赤外分光光度計により木綿100重量%、ポリエステル系繊維100重量%、アクリル繊維100重量%、アクリル系繊維100重量%から成る布状繊維を分析した結果であり、図5〜図7に示すのは、それぞれ、ポリエステル系繊維69重量%、70重量%、55重量%に、レーヨン31重量%、アクリル繊維30重量%、アクリル系繊維45重量%が混紡された布状繊維を分析した結果を示す。   FIGS. 1 to 4 show analysis of cloth-like fibers composed of 100% by weight of cotton, 100% by weight of polyester fiber, 100% by weight of acrylic fiber, and 100% by weight of acrylic fiber, respectively, using an infrared spectrophotometer. FIG. 5 to FIG. 7 show the results of 69% by weight, 70% by weight, and 55% by weight of polyester fiber, 31% by weight of rayon, 30% by weight of acrylic fiber, and 45% by weight of acrylic fiber, respectively. The result of having analyzed the blended cloth-like fiber is shown.

これらの分析結果において、レーヨン、木綿等からなるセルロース含有繊維を近赤外分光光度計により分析した場合、1924〜1974nm(1937、1946nm)と2084〜2163nm(2124nm)の波長領域に特徴的なブロードなピークが生じ、このピークを検出することにより、セルロース含有繊維を容易に識別できるため好ましい。更に、近赤外分光光度計で前記したポリエステル系繊維、アクリル繊維、アクリル系繊維、レーヨン、木綿を測定した場合、それぞれ、特徴的なピークが生じるため、このピークを基に識別することで各種素材毎に識別することが可能となる。   In these analysis results, when cellulose-containing fibers made of rayon, cotton, etc. are analyzed with a near-infrared spectrophotometer, they are broad in the wavelength range of 1924 to 1974 nm (1937, 1946 nm) and 2084 to 2163 nm (2124 nm). This is preferable because a cellulose-containing fiber can be easily identified by detecting this peak. Furthermore, when measuring the above-mentioned polyester fiber, acrylic fiber, acrylic fiber, rayon, and cotton with a near infrared spectrophotometer, each has a characteristic peak. It is possible to identify each material.

一方、ポリエステル系繊維、アクリル繊維、アクリル系繊維からなる布状繊維についても、近赤外分光光度計により分析した結果は、各種素材毎に特徴的なピークを生じるため、構成素材を特定するために有効となる。ここで、ポリエステル系繊維、アクリル繊維、アクリル系繊維、及び、レーヨン又は木綿からなるセルロース含有繊維を近赤外分光光度計で分析した際の、各素材を識別するための特徴的ピークを表1に示す。ポリエステル系繊維が含まれている布状繊維については、2155、2183、2208nmに、ポリエステル系繊維に固有の3本の特徴的なピークが生じるため、容易に識別される。また、アクリル繊維は、1690,1743,2302nmに、アクリル系繊維は、1701、1746、2325、2381nmに、特徴的なピークを有する。その他のピークとして、例えば、1920nm付近に生じるピークは、ポリエステル系繊維、アクリル繊維、アクリル系繊維において共に生じるものであるが、特徴的ピークとの組合せによるピークパターンを基に、より精度良く識別することが可能となる。この様にして、セルロース含有繊維を10重量%以上含む繊維、アクリル繊維、アクリル系繊維を識別して、分別し、前記した近赤外分光分析によりポリエステル系繊維の含有有無を明確化すると、布状繊維中に残存する繊維中のポリエステル系繊維の含有量は、少なくとも50重量%を超えることとなる。   On the other hand, for cloth-like fibers made of polyester fibers, acrylic fibers, and acrylic fibers, the results of analysis using a near-infrared spectrophotometer produce characteristic peaks for each type of material. Effective. Here, characteristic peaks for identifying each material when a polyester-based fiber, an acrylic fiber, an acrylic fiber, and a cellulose-containing fiber made of rayon or cotton are analyzed with a near-infrared spectrophotometer are shown in Table 1. Shown in The cloth-like fiber containing the polyester fiber is easily identified because three characteristic peaks inherent to the polyester fiber occur at 2155, 2183, and 2208 nm. Acrylic fibers have characteristic peaks at 1690, 1743 and 2302 nm, and acrylic fibers have characteristic peaks at 1701, 1746, 2325 and 2381 nm. As other peaks, for example, a peak generated in the vicinity of 1920 nm occurs in the polyester fiber, acrylic fiber, and acrylic fiber, but is identified more accurately based on the peak pattern in combination with the characteristic peak. It becomes possible. In this way, when fibers containing 10% by weight or more of cellulose-containing fibers, acrylic fibers, and acrylic fibers are identified and classified, and the presence or absence of polyester fibers is clarified by the above-mentioned near infrared spectroscopy, The content of the polyester fiber in the fiber remaining in the fiber will exceed at least 50% by weight.

Figure 2009191375
Figure 2009191375

一般に、近赤外分光光度計によりプラスチックを識別する装置においては、近赤外分光光度計とコンピューターを接続し、得られた近赤外光の吸光度のデーターをコンピューターに取り込むと共に、予め、記憶させておいたプラスチック種毎の近赤外光の吸光度のパターンとの合致性を比較、計算することによりプラスチック種を特定し、識別する機械が市販されている。   In general, in a device for identifying plastics with a near-infrared spectrophotometer, a near-infrared spectrophotometer and a computer are connected, and the obtained near-infrared light absorbance data is loaded into the computer and stored in advance. Machines that identify and identify plastic species by comparing and calculating near-infrared light absorbance patterns for each plastic species are commercially available.

ところで、アクリル系繊維が使用される繊維製品、中でもカーテンは、通常、40重量%以上の混紡比率で使用されているものが多いため、近赤外分光計での識別を容易に行うことができる。また、アクリル系繊維を含むカーテンのほとんどが、防炎製品であるため、識別後、分別して回収した繊維についても、良好な難燃性を有するものとなる。更に、アクリル系繊維を構成する樹脂自体が難燃性を有することから、難燃後加工されたポリエステル系繊維に対して、経年劣化による難燃性能の低下が生じ難い点に特徴を有する。   By the way, since many fiber products using acrylic fibers, especially curtains, are usually used at a blending ratio of 40% by weight or more, identification with a near-infrared spectrometer can be easily performed. . Moreover, since most of the curtains containing acrylic fibers are flameproof products, the fibers collected after being separated after identification also have good flame retardancy. Furthermore, since the resin itself constituting the acrylic fiber has flame retardancy, the polyester fiber processed after the flame retardancy is characterized in that the flame retardancy performance is hardly lowered due to deterioration over time.

図8は、各種布状繊維廃棄物を繊維素材毎に分別する分別装置1の構成について、具体的形態の1例を示す概略説明図である。この分別装置1において、布状繊維(廃棄物)又は綿状繊維等の原料繊維2は、例えば多数のフック6aを備えるベルトコンベア等の供給装置6により、引っ掛けて引き上げられ、搬送装置3の上方に搬送され、落下、供給される。この際に、位置センサー5cにより原料繊維2が搬送装置3に供給されたことを検知し、供給装置6を停止状態とする。そして、搬送装置3を駆動し、原料繊維2を検知機4まで搬送させる。次に、搬送装置3の位置センサー5bまで原料繊維2が搬送され、検知機4上部に原料繊維2があることを、位置センサー5a、5bにより検知すると、搬送装置3の駆動は停止し、検知機4により原料繊維に対して近赤外光を照射して素材の識別が行われる。得られたデーターはコンピューター(図示省略。)に送られ、該コンピューターでの識別結果を基に原料繊維2の素材を判定する。この判定の識別データーに基づいて、仕分け機7の方向が変更され、更に、搬送装置3を駆動して原料繊維が仕分け機7に搬送される。それと同時に、仕分け機7の搬送機構も駆動され、原料繊維2が、その素材別に仕分けされ、核仕分け品収容部8に分別回収されるように構成されている。   FIG. 8 is a schematic explanatory diagram showing an example of a specific form of the configuration of the sorting apparatus 1 that sorts various cloth-like fiber wastes for each fiber material. In this sorting apparatus 1, raw fibers 2 such as cloth-like fibers (waste) or cotton-like fibers are hooked and pulled up by a feeding device 6 such as a belt conveyor provided with a large number of hooks 6 a, for example, above the conveying device 3. It is transported, dropped and supplied. At this time, the position sensor 5c detects that the raw material fiber 2 has been supplied to the conveying device 3, and the supply device 6 is brought into a stopped state. And the conveyance apparatus 3 is driven and the raw material fiber 2 is conveyed to the detector 4. FIG. Next, when the raw material fibers 2 are conveyed to the position sensor 5b of the conveying device 3 and the presence of the raw material fibers 2 on the detector 4 is detected by the position sensors 5a and 5b, the driving of the conveying device 3 is stopped and detected. The material is identified by irradiating the near-infrared light to the raw fiber by the machine 4. The obtained data is sent to a computer (not shown), and the material of the raw fiber 2 is determined based on the identification result of the computer. Based on the identification data of this determination, the direction of the sorting machine 7 is changed, and further, the conveying device 3 is driven to feed the raw material fibers to the sorting machine 7. At the same time, the transport mechanism of the sorting machine 7 is also driven, so that the raw material fibers 2 are sorted according to the material and separated and collected in the nuclear sorting product storage unit 8.

なお、布状繊維廃棄物等の原料繊維2が、検知機4で識別された後、位置センサー5aを通過すると、供給装置6が再駆動し、次の原料繊維2が、順次、搬送装置3に落下、供給される。この一連の操作は、例えば、シーケンサーを用いて制御し、これらの操作は繰り返し行われて原料繊維2の分別が行われる。   When the raw material fibers 2 such as cloth-like fiber waste are identified by the detector 4 and then pass through the position sensor 5a, the supply device 6 is restarted, and the next raw material fibers 2 are sequentially transferred to the conveying device 3. Fall and supplied. This series of operations is controlled using, for example, a sequencer, and these operations are repeatedly performed to separate the raw fibers 2.

図示した分別装置1においては、供給装置6は、傾斜したコンベアからなり、例えば、鋼鉄の太い針を植えた木材を帆布で繋いだスパイクド・ラチスで布状繊維廃棄物2を引っ掛けて移送し、搬送装置3の上に順次供給させるものである。この際、原料繊維2の大きさは、識別頻度が多くなって分別処理効率が劣ってしまうため30cm角以上であることが好ましく、大きさが非常に大きいものについては、予め、幅1m、長さ2m以下に切断して分別することが好ましい。また、搬送装置3は、コンベア装置からなることが好ましい。また、検知機4は、布状繊維廃棄物2と密着して素材を識別すると識別精度が高いことから、布状繊維廃棄物2の下方から近赤外光を照射するように設置して識別操作を行うように構成することが好ましい。   In the illustrated separation apparatus 1, the supply apparatus 6 is composed of an inclined conveyor. For example, the supply apparatus 6 hangs and transfers the cloth-like fiber waste 2 with a spiked lattice in which woods with thick steel needles are connected with a canvas, This is sequentially supplied onto the conveying device 3. At this time, the size of the raw fiber 2 is preferably 30 cm square or more because the identification frequency increases and the separation processing efficiency is inferior, and those having a very large size are 1 m wide and long in advance. It is preferable to cut it to 2 m or less for separation. Moreover, it is preferable that the conveying apparatus 3 consists of a conveyor apparatus. In addition, the detector 4 is installed so as to irradiate near infrared light from below the cloth-like fiber waste 2 because the identification accuracy is high when the material is identified in close contact with the cloth-like fiber waste 2. Preferably, the operation is performed.

また、布状繊維や綿状繊維等の原料繊維2の仕分け方法は、分別回収した繊維の用途に応じて、仕分け品収容部8を2乃至4個設置し、識別された原料2を、セルロース含有繊維を10重量%以上含むセルロース系原料繊維もしくは綿及び識別不能な原料繊維と、それ以外の合成繊維からなる原料繊維との2種類に分別して回収する。あるいは、セルロース含有繊維を10重量%以上含むセルロース系布状繊維もしくは綿状繊維と、識別不能な繊維と、それ以外の合成繊維からなる繊維との3種類に分別して回収する。更には、セルロース含有繊維を10重量%以上含む繊維と識別不能な繊維と、アクリル系繊維を30重量%以上含む繊維と、それ以外の合成繊維からなる繊維との4種類に分別して回収するように、適宜、選択して分別することが好ましい。   In addition, according to the method of sorting the raw material fibers 2 such as cloth-like fibers and cotton-like fibers, two to four sorting product storage portions 8 are installed according to the use of the separated and collected fibers, and the identified raw material 2 is made of cellulose. Cellulosic raw material fiber or cotton containing 10% by weight or more of the contained fiber is separated and collected into two types of raw material fiber consisting of synthetic fiber and other raw fiber that cannot be identified. Alternatively, it is separated and collected into three types: a cellulose-based fiber-like fiber or cotton-like fiber containing 10% by weight or more of a cellulose-containing fiber, an indistinguishable fiber, and a fiber made of other synthetic fibers. Furthermore, the fiber containing 10% by weight or more of the cellulose-containing fiber is indistinguishable from the fiber, the fiber containing 30% by weight or more of the acrylic fiber, and the fiber made of the other synthetic fiber. In addition, it is preferable to appropriately select and fractionate.

位置センサー5a,5b,5cは、例えば、光の反射有無により布状繊維廃棄物2の存在を検知する作用を有する光センサーを使用することができ、その動作については、供給装置6の下部にある位置センサー5cの位置を原料繊維2が通過している間は、供給装置6を駆動して搬送装置3に供給させる。一方、位置センサー5bの位置に原料繊維2が存在する場合には、供給装置6は停止し、搬送装置3に原料繊維2が供給されないように制御すれば、順次、分別操作を行うことができる。なお、位置センサー5a,5bの設置位置は、繊維原料2の搬送状況を検知して搬送装置3の駆動を制御可能であれば、搬送装置3のコンベア部の搬送面に対して、側部、上部、下部の何れに設置しても構わない。   As the position sensors 5a, 5b, and 5c, for example, an optical sensor having an action of detecting the presence of the cloth-like fiber waste 2 can be used based on whether or not light is reflected. While the raw material fiber 2 passes through the position of a certain position sensor 5c, the supply device 6 is driven and supplied to the transport device 3. On the other hand, when the raw material fiber 2 is present at the position of the position sensor 5b, the supply device 6 is stopped, and if the control is performed so that the raw material fiber 2 is not supplied to the conveying device 3, the separation operation can be performed sequentially. . In addition, if the installation position of position sensor 5a, 5b can detect the conveyance condition of the fiber raw material 2 and can control the drive of the conveying apparatus 3, a side part with respect to the conveyance surface of the conveyor part of the conveying apparatus 3, You may install in any of upper part and lower part.

搬送装置3の制御については、位置センサー5aに布状繊維廃棄物2が有り、5bに無い状態となった時に、供給装置6を駆動させるように制御すれば、次の識別処理を行うことが可能となる。また、検知機4で識別するタイミングは、位置センサー5a,5bが共に繊維原料2を検知した後、搬送装置3を停止した時に行うようにし、引き続き、識別データーに基づいて仕分け機7の位置を変更する。そして、搬送装置3及び仕分け機7のコンベアを連動させて移送することにより、繊維原料2は素材毎に分別されて仕分け品収容部8に回収されることとなる。   As for the control of the conveying device 3, if the position sensor 5a has the cloth-like fiber waste 2 and is not in the state 5b, it can be controlled to drive the supply device 6 to perform the following identification process. It becomes possible. Further, the timing of identification by the detector 4 is performed when the position of the fiber raw material 2 is detected by the position sensors 5a and 5b and then the conveying device 3 is stopped. Subsequently, the position of the sorting machine 7 is determined based on the identification data. change. And the fiber raw material 2 will be fractionated for every raw material and will be collect | recovered by the classification | category goods accommodating part 8 by interlocking and conveying the conveyor of the conveying apparatus 3 and the sorter 7. FIG.

なお、仕分け機7は、仕分け品収容部8の数に応じたコンベアを設置し、搬送経路を変更して回収可能なように構成しても良い。その際には、識別データーに基づく搬送時間のタイムラグを計算して、タイミングを合わせることが必要となる。   The sorter 7 may be configured so that it can be collected by installing a conveyor according to the number of the sort item storage units 8 and changing the transport path. In that case, it is necessary to calculate the time lag of the conveyance time based on the identification data and to adjust the timing.

一方、カーテン原反等の巻物を本発明の分別装置を使用して分別する場合は、搬送装置3の上流側(供給装置6側)から順次供給し、検知機4で素材識別後、再び搬送装置3により下流側へ搬送し、原反等の重量を勘案して仕分け、回収可能な装置として構成すれば良い。   On the other hand, when separating scrolls such as curtain fabrics using the sorting apparatus of the present invention, they are sequentially supplied from the upstream side (supplying device 6 side) of the transporting device 3 and transported again after the material is identified by the detector 4. What is necessary is just to comprise as an apparatus which can convey to the downstream side with the apparatus 3, and can classify | categorize and collect | recover in consideration of the weight of a raw material.

図9は、布状繊維や綿状繊維等の原料繊維を近赤外分光光度計により、該布状繊維を構成する素材を識別して分別を行った後に反毛とする場合の工程をフロー図であって、前記布状繊維がカーテンである場合において、切断機及び/または裁断機で切断して10cm角程度の大きさとした後に、開繊機で反毛化する処理フロー図で有る。また、図10は、得られた反毛を用いて不織布を製造するための処理フローの一例を示すフロー図である。   FIG. 9 is a flow chart of a process in which raw fibers such as cloth-like fibers and cotton-like fibers are made to be bristles after being identified and separated by a near-infrared spectrophotometer to identify the material constituting the cloth-like fibers. It is a figure, and when the cloth-like fiber is a curtain, it is a processing flow diagram in which it is cut with a cutting machine and / or a cutting machine to have a size of about 10 cm square, and then rebounded with a spreader. Moreover, FIG. 10 is a flowchart which shows an example of the processing flow for manufacturing a nonwoven fabric using the obtained bristles.

カーテン等からなる布状繊維廃棄物を用いて不織布を製造する場合、まず、10cm程度の幅に切断する必要が有る。そのために使用する切断機としては、送り機構と切断機構を有するシートカッターを用いて、切断することが好ましい。次に、回転円筒形に複数の刃が設置された裁断機で所定の大きさとして約10cm角程度の布片とすることが好ましい。また、カーテン生地の原反等からなる巻物状の布状繊維を処理する際には、切断機として、例えば、切断機の一種である昇降板に、丸ナイフを設置して巻物状原反の幅方向に、布幅を調整しながら切断することにより、効率良く10cm程度幅の短冊状の布に切断することができる。この短冊状の布を回転円筒形に複数の刃が設置された裁断機で所定の大きさの布片とすれば、同様に、10cm角程度の大きさの布片に切断することも可能である。   When manufacturing a nonwoven fabric using the cloth-like fiber waste which consists of a curtain etc., it is necessary to cut | disconnect to the width | variety of about 10 cm first. As a cutting machine used for that purpose, it is preferable to cut using a sheet cutter having a feed mechanism and a cutting mechanism. Next, it is preferable to make a cloth piece of about 10 cm square as a predetermined size with a cutting machine in which a plurality of blades are installed in a rotating cylindrical shape. In addition, when processing a scroll-like cloth-like fiber made of an original fabric of curtain fabric, etc., as a cutting machine, for example, a round knife is installed on an elevating plate which is a kind of cutting machine, By cutting in the width direction while adjusting the cloth width, it can be efficiently cut into a strip-like cloth having a width of about 10 cm. If this strip-shaped cloth is made into a cloth piece of a predetermined size with a cutting machine in which a plurality of blades are installed in a rotating cylindrical shape, it can be similarly cut into a cloth piece of about 10 cm square. is there.

このように切断機により10cm角程度の大きさに切断された布片に対して、水や帯電防止剤、油剤等をかけて湿潤した後に、複数台以上の開繊機を直列に並べた開繊装置で処理する、あるいは、開繊機で1回又は2回処理した後に、続いてカード機又はガーネットワインダーで処理することで、糸がほぼ開かれた反毛を得ることができる。一般に、ポリエステル系繊維のフィラメントは紡績糸に対して開繊することが難しく、ガーネットワイヤーを巻いたシリンダーロールを有するガーネット式開繊機で処理することが好ましい。そのため、ポリエステル系繊維を50重量%以上含む繊維廃棄物においては、前記したガーネット式開繊機を用いて開繊することが好ましい。この様に、繊維素材によって、開繊機の機種を選定することで、得られる反毛の性状が良好となるため、素材毎に選別した後に、前記開繊装置を選定して処理することが好ましい。   A cloth piece cut into a size of about 10 cm square by a cutting machine is wetted with water, an antistatic agent, an oil agent, etc., and then opened by arranging a plurality of opening machines in series. By processing with an apparatus, or processing once or twice with a fiber spreader, and subsequently processing with a card machine or a garnet winder, it is possible to obtain a bristles in which the yarn is almost open. In general, it is difficult to open a filament of a polyester fiber with respect to a spun yarn, and it is preferable to treat the filament with a garnet type opening machine having a cylinder roll wound with a garnet wire. Therefore, it is preferable that the fiber waste containing 50% by weight or more of the polyester fiber is opened using the garnet-type spreader. In this way, by selecting the type of the spreader depending on the fiber material, the properties of the obtained bristles are improved. Therefore, after sorting for each material, it is preferable to select and process the spreader. .

更に、前記したような開繊機でカーテンの切断物を開繊する場合、未開繊物が分離される構造となった開繊機を使用することが好ましい。未開繊物を分離することで、綿状になった反毛を更に開繊機で処理すると、繊維が必要以上に切断されたり、傷められるのが防止されるためである。一方、カーテンを複数台以上の開繊機を直列に並べた開繊装置で開繊処理する場合においては、シリンダーロールに開繊用ワイヤーを巻き付けた開繊機を多段に組合せ、かつ、開繊用ワイヤーの刃の目立てを順次、小さなるように配列した開繊装置で、繊維を順次、開繊処理することで、良好な反毛が得やすくなる。更に、カーテン廃棄物を反毛化して使用する際には、金属製のフックやプラスチック付着物及び著しく傷んだカーテンを分別、除去する、望ましくは、クリーニング処理を行った上で、前記開繊装置を選定し、反毛化することも好ましい。   Furthermore, when opening the cut piece of the curtain with the opening machine as described above, it is preferable to use a opening machine having a structure in which the unopened article is separated. This is because separating the unopened material further prevents the fiber from being cut or damaged more than necessary if the cotton-like repellent is further processed by a fiber opening machine. On the other hand, when opening a curtain with a spreader in which multiple spreaders are lined up in series, combine the spreaders with the spreader wire around the cylinder roll in multiple stages and open the wire. It is easy to obtain good anti-wrists by sequentially opening the fibers with a fiber opening device in which the sharpenings of the blades are sequentially arranged so as to be small. Further, when the curtain waste is used in the form of anti-hair, it is used to separate and remove metal hooks, plastic deposits, and extremely damaged curtains. It is also preferable to select and to make it anti-haired.

また、得られた反毛を不織布とする場合、後述するように、ニードルパンチングマシンを用いてニードルパンチする、或いは、該反毛に熱融着性バインダー繊維を混合後、加熱融着して不織布とする方法が挙げられる。これらの方法により不織布を製造する際に、反毛を繋ぐためのバージン繊維を混合して不織布を製造しても良い。反毛を繋ぐために配合するバージン繊維は、近赤外分光光度計により繊維廃棄物を構成する素材の種類を識別後、選別された繊維素材から得られる反毛と同一の素材であることが好ましく、本発明では、セルロース含有繊維を除く合成繊維である。また、特定の素材だけにまで選別された繊維廃棄物においては、その素材と同一の繊維素材から成るバージン繊維を用いると、不織布製造時の端材や不良品を回収、リサイクルする上で不織布の品質をコントロールし易く、好ましい。反毛を繋ぐために配合するバージン繊維の配合量は、該反毛50〜100重量%に対して、0〜50重量%である。   Moreover, when making the obtained bristles into a non-woven fabric, as will be described later, needle punching is performed using a needle punching machine, or a heat-fusible binder fiber is mixed with the bristles and then heat-fused to produce a non-woven fabric. The method to do is mentioned. When manufacturing a nonwoven fabric by these methods, you may manufacture a nonwoven fabric by mixing the virgin fiber for connecting a bristle. The virgin fiber to be blended to connect the repellent hair is the same material as the repellent hair obtained from the selected fiber material after identifying the type of material constituting the fiber waste by the near infrared spectrophotometer. Preferably, in the present invention, synthetic fibers excluding cellulose-containing fibers. In addition, when using virgin fibers made of the same fiber material as the fiber waste that has been sorted to a specific material, it is necessary to collect and recycle the scraps and defective products during the manufacture of the nonwoven fabric. It is preferable because quality is easy to control. The compounding quantity of the virgin fiber mix | blended in order to connect a repelling is 0 to 50 weight% with respect to 50-100 weight% of this repelling.

熱融着性バインダー繊維については、例えば、鞘部が200℃以下、好ましくは70℃以上170℃以下の融点を持ち、ポリエステル系樹脂又はポリプロピレン系樹脂からなる合成繊維等からなる芯とで形成される芯鞘型構造を有する熱融着性バインダー繊維(この繊維を単にバインダー繊維と称すことがある。)が挙げられる。この芯鞘型構造を有する熱融着性バインダー繊維は、繊維本体となる芯部の周囲に被覆材が被覆され、鞘部を形成する2層構造の繊維からなるバインダー繊維を前記反毛に混合して使用するものである。この芯鞘型構造を有する熱融着性バインダー繊維として、芯部がポリエステル樹脂で、鞘部が共重合ポリエステル樹脂からなるもの、或いは、芯部がポリプロピレン系繊維で鞘部が低融点ポリエチレンからなる複合繊維(ES繊維)は、単繊維繊度、繊維長、融点が異なる幾種もの物が市販されている。このため、バインダー繊維を混合して不織布を製造する際に、該バインダー繊維の単繊維繊度、繊維長、融点の選択幅が広いため、不織布の外観性、均一性が良好な不織布を容易に得ることができる。更に、より低融点で鞘部が溶融するバインダー繊維を使用することによって、より温和な成形加工条件を選択しても不織布の表面から内部までほぼ均一に接着することが容易と成るためより好ましく、成形時間を短縮することも可能となる。   About the heat-fusible binder fiber, for example, the sheath has a melting point of 200 ° C. or lower, preferably 70 ° C. or higher and 170 ° C. or lower, and is formed with a core made of a synthetic fiber made of a polyester resin or a polypropylene resin. A heat-fusible binder fiber having a core-sheath structure (this fiber may be simply referred to as a binder fiber). This heat-fusible binder fiber having a core-sheath structure is coated with a coating material around the core part that becomes the fiber body, and the binder fiber made of fibers having a two-layer structure forming the sheath part is mixed with the above-mentioned bristles. To use. As the heat-fusible binder fiber having this core-sheath structure, the core part is made of polyester resin and the sheath part is made of copolymer polyester resin, or the core part is made of polypropylene fiber and the sheath part is made of low melting point polyethylene. Various types of composite fibers (ES fibers) with different single fiber fineness, fiber length, and melting point are commercially available. For this reason, when a nonwoven fabric is produced by mixing binder fibers, a wide range of selections of the single fiber fineness, fiber length, and melting point of the binder fibers makes it easy to obtain a nonwoven fabric with good appearance and uniformity of the nonwoven fabric. be able to. Furthermore, by using a binder fiber that melts the sheath at a lower melting point, it is more preferable because it becomes easy to adhere almost uniformly from the surface to the inside of the nonwoven fabric even if milder molding processing conditions are selected, It is also possible to shorten the molding time.

また、前記反毛に対するバインダー繊維の配合量は、5重量%以上40重量%以下の範囲であると、合成繊維との混合状態が良くなり、不織布中で均一に分散して接着するため好ましい。更に、この範囲の配合量であれば、バインダー繊維同士の過剰な融着が抑制され、コスト的にも有利な不織布を得ることができる。これらバインダー繊維の中でも、芯鞘型低融点ポリエステル系繊維を使用して不織布を成形することが好ましい。   Further, the blending amount of the binder fiber with respect to the above-mentioned repelling is preferably in the range of 5% by weight or more and 40% by weight or less because the mixed state with the synthetic fiber is improved and the dispersion is uniformly dispersed and bonded in the nonwoven fabric. Furthermore, if it is the compounding quantity of this range, the excessive melt | fusion of binder fibers is suppressed and the nonwoven fabric advantageous also in cost can be obtained. Among these binder fibers, it is preferable to form a nonwoven fabric using a core-sheath type low melting point polyester fiber.

また、前記バインダー繊維の繊維長は、3mm以上70mm以下が好ましく、単繊維繊度は1.5dtex以上7.8dtex以下のものを使用すると、不織布の成形性が良好になるため好ましく、また、汎用的に使用されるバインダー繊維である。   Further, the fiber length of the binder fiber is preferably 3 mm or more and 70 mm or less, and the single fiber fineness is preferably 1.5 dtex or more and 7.8 dtex or less because the moldability of the nonwoven fabric is improved, It is a binder fiber used for.

前記した方法で製造される不織布の厚みと平均面密度は、製造方法によるところも有るが、例えば、0.5cm以上2cm以下の厚みで、平均面密度が300g/m以上2000g/m以下の範囲の不織布である。 Although the thickness and average surface density of the nonwoven fabric manufactured by the above-mentioned method may depend on the manufacturing method, for example, the thickness is 0.5 cm or more and 2 cm or less, and the average surface density is 300 g / m 2 or more and 2000 g / m 2 or less. It is a nonwoven fabric of the range.

不織布を成形する際に、反毛とバインダー繊維又は繋ぎ用繊維等の繊維を混合する場合、ホッパー・ベール・ブレッカー、ホッパー・ミキサー、フェアノート等の混合機が使用される。所定量計量された繊維は、例えば、水平ラチスで運ばれたホッパー内に運ばれた繊維を、鋼鉄の太い針を植えた木材を帆布で繋いだスパイクド・ラチスで反転させながら、スパイクで繊維を掻き上げて、スパイクド・シリンダーの針との間で開繊して輸送し、雑物を落下させつつ混合する機構を有するホッパー・ベール・ブレッカー等の混合機を用いて、接着斑を生じ無いように混合される。   When the non-woven fabric is formed, a mixer such as a hopper, a bale, a breaker, a hopper mixer, or a fair note is used to mix the repellent with fibers such as binder fibers or connecting fibers. For example, the fibers weighed in a certain amount are, for example, the fibers carried in the hopper carried in the horizontal lattice, and the fibers in the spikes with the spiked lattice made by connecting the wood with thick steel needles connected with the canvas. Use a mixing machine such as a hopper, bale, or breaker that has a mechanism to mix up while picking up, opening and transporting with the needle of the spiked cylinder, and dropping miscellaneous materials, so as not to cause adhesion spots To be mixed.

また、本発明において使用される不織布の成形方法については、特に制限が無いが、公知の不織布成形方法として乾式法が好ましい。乾式法にはエアーレイド法とカード法がある。エアーレイド法は、混合、開繊した繊維を空気流により集めてマット状とするもので、カード法は、カード機でシリンダーと針布によって繊維を開繊しながら繊維をある程度平行化し、次いで、ウェブレイヤーを有するウェブ形成装置に搬送され、原反マットを作成するものである。   Moreover, there is no restriction | limiting in particular about the shaping | molding method of the nonwoven fabric used in this invention, However, A dry method is preferable as a well-known nonwoven fabric shaping | molding method. There are an air raid method and a card method in the dry method. In the air raid method, the mixed and opened fibers are collected by air flow into a mat shape, and the card method makes the fibers parallel to some extent while opening the fibers with a cylinder and needle cloth in a card machine, It is transported to a web forming apparatus having a web layer to create a raw mat.

このようにして作成された原反マットから不織布を形成する方法については、ニードルを用いてパンチングする方法(ニードルパンチフェルト)、或いは、熱融着性バインダー繊維を配合した原反マットをパンチングメタルやメッシュ金網等の熱風を通す板に原反マットを挟んで厚み調整して熱風加熱処理して成形し、バインダー繊維を熱融着する方法(熱融着型フェルト)が挙げられる。バインダー繊維を配合した原反マットを加熱して融着する際の加熱温度については、不織布の成形加工性から120℃以上180℃以下が好ましい。   About the method of forming a nonwoven fabric from the raw fabric mat thus produced, a method of punching using a needle (needle punch felt), or a raw fabric mat containing a heat-fusible binder fiber is punched metal or Examples include a method (heat fusion type felt) in which the thickness is adjusted by sandwiching a raw fabric mat on a plate that passes hot air, such as a mesh wire net, and then heated and heated to form, and the binder fiber is thermally fused. About the heating temperature at the time of heating and fusing the raw fabric mat | matte which mix | blended the binder fiber, 120 to 180 degreeC is preferable from the moldability of a nonwoven fabric.

ところで、近赤外分光光度計を用いて繊維中のセルロース含有繊維を特定すると共に、選別除去した繊維中には、難燃性を有するアクリル系繊維を含有する物がある。該アクリル系繊維は、特に、防炎製品であるカーテン等の布状繊維中に含まれる物であるが、近赤外分光光度計を用いることにより、アクリル系繊維が30重量%以上含む繊維を特定して選別した布であれば、これらの布状繊維廃棄物を開繊して反毛を得、バインダー繊維や繋ぎ用繊維を配合する場合は、必要に応じて、バージンのアクリル系繊維を適宜、配合して不織布を作成すると、該合成繊維布織布を難燃化することも容易である。例えば、ポリエステル系繊維とアクリル系繊維が混紡された防炎製品であるカーテンを選別して回収し、これらのカーテン生地を開繊した反毛とし、合成繊維不織布を作成すると、得られた不織布は、カーテンの難燃性と略同等の難燃性を有するものとなる。   By the way, while specifying the cellulose containing fiber in a fiber using a near-infrared spectrophotometer, there exists a thing containing the acrylic fiber which has a flame retardance in the fiber selected and removed. The acrylic fiber is particularly a material contained in a cloth-like fiber such as a curtain, which is a flameproof product. By using a near-infrared spectrophotometer, the acrylic fiber contains a fiber containing 30% by weight or more. If it is a specific and selected cloth, these cloth-like fiber wastes are opened to obtain rebounds, and when blending binder fibers and connecting fibers, virgin acrylic fibers can be used as necessary. When a non-woven fabric is prepared by appropriately blending, it is easy to make the synthetic fiber woven fabric flame-retardant. For example, when curtains, which are flameproof products in which polyester fibers and acrylic fibers are blended, are selected and collected, and the curtain fabrics are made into open bristles and synthetic fiber nonwoven fabrics are created, the resulting nonwoven fabric is The flame retardancy of the curtain is almost the same as that of the curtain.

一方、得られた不織布を土木用産業資材として使用する場合は、埋立処分場透水性シートや盛土押さえ用シートの用途が挙げられる。本発明方法により製造される合成繊維不織布においては、セルロース含有繊維として天然繊維も選別、除去され、少なくとも10重量%以下の含有量となるため、土中に施工した場合においても、土壌細菌等の微生物による不織布の分解が生じ難く、土木用産業資材として有効に利用できることとなる。 On the other hand, when using the obtained nonwoven fabric as an industrial material for civil engineering, the use of a landfill disposal site water-permeable sheet or embankment holding sheet can be mentioned. In the synthetic fiber nonwoven fabric produced by the method of the present invention, natural fibers are also selected and removed as cellulose-containing fibers, so that the content is at least 10% by weight. Therefore, even when applied in soil, soil bacteria, etc. The nonwoven fabric is hardly decomposed by microorganisms and can be effectively used as an industrial material for civil engineering.

<実施例>
以下に実施例により本発明を更に詳細に説明するが、この発明はこれら実施例に限定されるものではない。
<Example>
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(I)プラスチック判別装置による繊維素材の識別
住江織物株式会社製カーテン見本帳:Ventana(‘98−’00)の318銘柄のカーテン生地について、15種類のプラスチックの素材を識別可能なアマノトレーディング株式会社製プラスチック種類判別計(PlaScan−W)を用いて、その素材を識別した。
(I) Identification of fiber material by plastic discriminator Curtain sample book made by Sumie Textile Co., Ltd .: Amano Trading Co., Ltd., which can identify 15 types of plastic materials for 318 brand curtain fabrics of Ventana ('98 -'00) The material was identified using a plastic type discriminator (PlaScan-W).

(識別1)
レーヨンを10重量%以上含む67銘柄のカーテンのサンプルを分析した結果、全て1924〜1974nm(1937、1946nm)に、ブロードなピークが生じ、セルロース含有繊維と特定された。
(Identification 1)
As a result of analyzing 67 brand curtain samples containing 10% by weight or more of rayon, broad peaks were generated at 1924 to 1974 nm (1937, 1946 nm), and the fibers were identified as cellulose-containing fibers.

(識別2)
(識別1)と同様にして、木綿を10重量%以上含む31銘柄のカーテンのサンプルを分析した結果、全て1924〜1974nm(1937、1946nm)に、ブロードなピークが生じ、セルロース含有繊維と特定された。
(Identification 2)
As in (Identification 1), 31 brand curtain samples containing 10% by weight or more of cotton were analyzed. As a result, broad peaks were generated at 1924 to 1974 nm (1937, 1946 nm), which were identified as cellulose-containing fibers. It was.

(識別3)
アクリル系繊維を含有する繊維を特定して分別するため、識別ソフトを変更し、アクリル系繊維、アクリル系繊維/ポリエステル系繊維混合品、それ以外のプラスチックの3種類に識別できるようにして識別した。アクリル系繊維を30重量%以上含む57銘柄のカーテンのサンプルをこの方法で分析した結果、アクリル系繊維を60重量%以上含む18銘柄は、「PVDC」と判定されて識別され、残る39銘柄は「アクリル系繊維/PET」として識別された。
(Identification 3)
In order to identify and classify fibers containing acrylic fibers, the identification software was changed to identify the fibers so that they could be identified as acrylic fiber, acrylic fiber / polyester fiber mixture, and other plastics. . As a result of analyzing this sample of 57 brand curtains containing 30% by weight or more of acrylic fiber, 18 brands containing 60% by weight or more of acrylic fiber were identified as “PVDC” and the remaining 39 brands were identified. Identified as “acrylic fiber / PET”.

(識別4)
レーヨン、木綿、アクリル系繊維を含まない150銘柄について識別した結果、129銘柄は、「PET」として判定されて識別され、全て、50重量%以上の含有量であった。残る21銘柄は、その他の素材である「OTHERS」と表示された。これらの21銘柄においても、2155、2183、2208nmに特徴的なピークが確認され、ポリエステル系繊維が含まれていることは識別されたが、ポリエステル系繊維の含有量は、50重量%未満であった。
(Identification 4)
As a result of identifying 150 brands that did not contain rayon, cotton, and acrylic fibers, 129 brands were identified as “PET” and all contained 50% by weight or more. The remaining 21 brands were displayed as “OTHERS”, which is another material. Even in these 21 brands, characteristic peaks were confirmed at 2155, 2183, and 2208 nm, and it was identified that polyester fibers were contained, but the content of polyester fibers was less than 50% by weight. It was.

(識別5)
ポリエステル系繊維100%のカーテン布地30重量%と、ポリエステル系繊維/アクリル繊維の混紡カーテン(重量比率=65/35)20重量%と、アクリル系繊維/ポリエステル系繊維の混紡カーテン(重量比率=50/50)20重量%とポリエステル系繊維/木綿の混紡カーテン(重量比率=72/28)10重量%と、木綿100%のカーテン20重量%を準備してプラスチック分別計で識別を行った。その結果、セルロース含有繊維を含むカーテンが28重量%、アクリル系繊維を含むカーテンが17重量%と、アクリル系繊維を含む繊維及びセルロース含有繊維を含むカーテンを分別除去したカーテン48重量%と、判別不能な繊維7重量%を分別回収した。用いたカーテンの生地と照し合せて分別されたカーテンの識別精度を確認した結果、アクリル系繊維を含むカーテンと、アクリル系繊維を含む繊維とセルロース含有繊維を含むカーテンを分別除去したカーテンには、セルロース含有繊維を含むカーテンは含まれていなかった。
(Identification 5)
30% by weight of 100% polyester fiber curtain fabric, 20% by weight of polyester fiber / acrylic fiber blend curtain (weight ratio = 65/35), and acrylic fiber / polyester fiber blend curtain (weight ratio = 50) / 50) 20% by weight, 10% by weight of a polyester fiber / cotton blended curtain (weight ratio = 72/28), and 20% by weight of a 100% cotton curtain were prepared and identified with a plastic fractionator. As a result, 28% by weight of the curtain containing cellulose-containing fibers, 17% by weight of curtains containing acrylic fibers, and 48% by weight of curtains obtained by separating and removing acrylic fibers and cellulose-containing fibers. 7% by weight of the impossible fiber was collected separately. As a result of confirming the identification accuracy of the curtains that were separated by collating with the fabric of the curtains used, the curtains containing acrylic fibers, the curtains containing acrylic fibers, and the curtains containing cellulose-containing fibers were separated and removed. Curtains containing cellulose-containing fibers were not included.

(II)不織布の製作
(実施例1)
識別5で分別したアクリル系繊維を含む繊維とセルロース含有繊維を含むカーテンを分別除去したカーテンを不織布用材料(A)とした。近赤外分光分析でのチャートから該不織布材料には、ポリエステル系繊維とアクリル繊維が含有されていることが判った。この不織布用材料(A)を10cm幅に成るように切断後、(株たいへい製開繊機(シリンダーオープナーB−03型)で2回開繊して開繊物(A)を得た。該開繊物80重量部に、芯鞘型低融点ポリエステル繊維(鞘部融点75℃、51mm、4.4dtex)を20重量部の比率で混綿し、カード機で更に混綿・開繊後、平均面密度が約1kg/m2となるように斜めに積層し固定した。前記繊維積層物をスパンボンド不織布に挟み、厚み25mmと成るようにパンチングメタル板に充填圧縮した状態で熱風対流型乾燥機で140℃×15分で乾燥処理後、不織布1を取出した。不織布1の厚みは25mm、平均面密度は972g/m2であった。
(II) Fabrication of non-woven fabric (Example 1)
The non-woven fabric material (A) was a curtain obtained by separating and removing the fiber containing the acrylic fiber and the curtain containing the cellulose-containing fiber that were separated in the identification 5. From the chart in the near infrared spectroscopic analysis, it was found that the nonwoven fabric material contained polyester fibers and acrylic fibers. The nonwoven fabric material (A) was cut so as to have a width of 10 cm, and then opened twice by (Taiwai Opening Machine Co., Ltd. (Cylinder Opener B-03 type)) to obtain a spread product (A). 80 parts by weight of the spread product is blended with 20 parts by weight of a core-sheath type low melting point polyester fiber (sheath melting point 75 ° C., 51 mm, 4.4 dtex), and after blending and opening with a card machine, the average surface The fiber laminate was sandwiched between and fixed to a spunbonded nonwoven fabric so as to have a density of about 1 kg / m 2. The punched metal plate was filled and compressed to a thickness of 25 mm with a hot air convection dryer. After drying at 140 ° C. for 15 minutes, the nonwoven fabric 1 was taken out, and the nonwoven fabric 1 had a thickness of 25 mm and an average surface density of 972 g / m 2 .

(実施例2)
識別5で分別したアクリル系繊維を含む繊維を不織布用材料(B)として回収した。不織布1と同様にして、(株)たいへい製開繊機(シリンダーオープナーB−03型)で2回開繊して開繊物(B)を得た。該開繊物80重量部に芯鞘型低融点ポリエステル繊維(鞘部融点110℃、25mm、2.2dtex)を20重量部と、の比率で混綿し、カード機で更に混綿・開繊後、エアーレイ式フォーマーで混綿した綿を走行方向に移動しつつ、走行方向に対して斜めに積層し固定した。前記繊維をスパンボンド不織布に挟み、パンチングメタル板に充填圧縮した状態で熱風対流型乾燥機で160℃×2分で乾燥処理後、不織布2を取出した。不織布2の平均面密度は990g/m2で、厚みは13mmであった。
(Example 2)
The fiber containing the acrylic fiber classified by identification 5 was collected as a nonwoven fabric material (B). In the same manner as Non-woven fabric 1, it was opened twice by Taihei Co., Ltd. (Cylinder opener B-03 type) to obtain a spread product (B). 80 parts by weight of the spread product is mixed with 20 parts by weight of a core-sheath type low-melting polyester fiber (sheath part melting point 110 ° C., 25 mm, 2.2 dtex), and after further blending and opening with a card machine, Cotton mixed with an airlay former was laminated and fixed obliquely with respect to the running direction while moving in the running direction. The nonwoven fabric 2 was taken out after being dried at 160 ° C. for 2 minutes by a hot air convection dryer in a state where the fibers were sandwiched between spunbond nonwoven fabrics and filled and compressed in a punching metal plate. Non-woven fabric 2 had an average surface density of 990 g / m 2 and a thickness of 13 mm.

(実施例3)
不織布2と同様にして、開繊物(B)を得た。該開繊物(B)50重量部に、芯鞘型低融点ポリエステル繊維(鞘部融点110℃、25mm、2.2dtex)20重量部とアクリル系繊維((株)カネカ製 カネカロン;38−23mm
、7.8dtex)30重量部の比率で混綿し、カード機で更に混綿・開繊後、エアーレイ式フォーマーで混綿した綿を走行方向に移動しつつ、走行方向に対して斜めに積層し固定した。前記繊維をスパンボンド不織布に挟み、パンチングメタル板に充填圧縮した状態で熱風対流型乾燥機で160℃×2分で乾燥処理後、不織布3を取出した。不織布3の平均面密度は1050g/m2で、厚みは15mmであった。
(Example 3)
In the same manner as the nonwoven fabric 2, a spread product (B) was obtained. 50 parts by weight of the spread product (B), 20 parts by weight of core-sheath type low melting point polyester fiber (sheath part melting point 110 ° C., 25 mm, 2.2 dtex) and acrylic fiber (manufactured by Kaneka Corporation)
, 7.8 dtex) blended at a ratio of 30 parts by weight, and after further blending and opening with a card machine, the cotton blended with an airlay former was moved in the running direction, and was laminated and fixed obliquely with respect to the running direction. . The nonwoven fabric 3 was taken out after being dried at 160 ° C. for 2 minutes by a hot air convection dryer in a state where the fibers were sandwiched between spunbond nonwoven fabrics and filled and compressed in a punching metal plate. The nonwoven fabric 3 had an average surface density of 1050 g / m 2 and a thickness of 15 mm.

(実施例4)
不織布2と同様にして、開繊物(B)を得た。次に、カード機にかけて繊維の方向を揃えてウェブレーヤーで積層して面密度を調整した原反とし、そのままDILO社製ニードルパンチング装置に移送して不織布4を回収した。なお、パンチングは、50cm×20cmのニードル板にオルガンニードル社製ニードルFPD−75 40Sを2.7本/cm2で設置し、パンチング速度:約1.5秒/回、送り速度:約50cm/分で実施し、厚み7mm、平均面密度999g/cm2の不織布4(ニードルパンチフェルト)を回収した。
Example 4
In the same manner as the nonwoven fabric 2, a spread product (B) was obtained. Next, the nonwoven fabric 4 was recovered by transferring it to a needle punching device manufactured by DILO as it was as a raw material with the surface density adjusted by laminating with a web layer by aligning the direction of the fibers through a card machine. Punching is performed by setting a needle FPD-75 40S manufactured by Organ Needle at 2.7 pieces / cm 2 on a 50 cm × 20 cm needle plate, punching speed: about 1.5 seconds / time, feeding speed: about 50 cm / The nonwoven fabric 4 (needle punch felt) having a thickness of 7 mm and an average surface density of 999 g / cm 2 was collected.

(比較例1)
木綿を主とした繊維廃棄物について、近赤外分光光度計よりなるプラスチック判別機でセルロース含有繊維を選別後、不織布用材料(C)として回収した。不織布用材料(C)における木綿の含有量は、製品表示から95重量%であった。次に、カーテン廃棄物を近赤外分光光度計よりなるプラスチック判別機でセルロース含有繊維を選別、除去した後、「PET」と判別された物だけを集めて不織布用材料(D)とした。この不織布用材料(C)と不織布用材料(D)は、不織布1と同様にして10cm幅に成るように切断後、それぞれ、(株)たいへい製開繊
機(シリンダーオープナーB−03型)で2回開繊して開繊物(C)及び開繊物(D)を得た。該開繊物(C)50重量部に、開繊物(D)30重量部と芯鞘型低融点ポリエステル繊維(鞘部融点75℃、51mm、4.4dtex)を20重量部の比率で混綿し、カード機で更に混綿・開繊後、平均面密度が約1kg/m2となるように斜めに積層し固定した。前記積層した繊維原反をスパンボンド不織布に挟み、パンチングメタル板に充填圧縮した状態で熱風対流型乾燥機で160℃×20分で乾燥処理後、不織布5を取出した。不織布5の厚みは25mmで、平均面密度は960g/m2であった。
(Comparative Example 1)
The fiber waste mainly composed of cotton was collected as a nonwoven fabric material (C) after selecting cellulose-containing fibers with a plastic discriminator comprising a near-infrared spectrophotometer. The cotton content in the nonwoven fabric material (C) was 95% by weight from the product label. Next, after separating and removing the cellulose-containing fibers from the curtain waste with a plastic discriminator composed of a near-infrared spectrophotometer, only those discriminated as “PET” were collected and used as a nonwoven fabric material (D). This non-woven fabric material (C) and non-woven fabric material (D) were cut so as to have a width of 10 cm in the same manner as the non-woven fabric 1 and then each made by Taihei Opening Machine (Cylinder Opener B-03). The opened product (C) and the opened product (D) were obtained by opening twice. 50 parts by weight of the spread product (C) is mixed with 30 parts by weight of the spread product (D) and a core-sheath type low-melting polyester fiber (sheath part melting point 75 ° C., 51 mm, 4.4 dtex) at a ratio of 20 parts by weight. Then, after further blending and opening with a card machine, they were laminated and fixed obliquely so that the average surface density was about 1 kg / m 2 . The laminated fiber raw fabric was sandwiched between spunbonded nonwoven fabrics, dried and filled at 160 ° C. for 20 minutes with a hot air convection dryer in a state where the punched metal plate was filled and compressed, and the nonwoven fabric 5 was taken out. The thickness of the nonwoven fabric 5 is 25 mm, the average surface density of 960 g / m 2.

(比較例2)
識別5で分別したセルロース含有繊維を含むカーテンを不織布用材料(E)として回収した。不織布用材料(E)における木綿の含有量は、製品表示から算出した結果、約75重量%であった。次に、識別5で分別した、アクリル系繊維を含む繊維及びセルロース含有繊維を含むカーテンを分別除去したカーテンを不織布用材料(A)として回収した。この不織布用材料(E)と不織布用材料(A)は、それぞれ、10cm角の大きさに切断すると共に、(株)たいへい製開繊機(シ
リンダーオープナーB−03型)で2回開繊して開繊物(E)及び開繊物(A)を得た。該開繊物(A)15重量部に、開繊物(E)65重量部と芯鞘型低融点ポリエステル繊維(鞘部融点75℃、51mm、4.4dtex)を20重量部の比率で混綿し、カード機で更に混綿・開繊後、平均面密度が約1kg/m2となるように斜めに積層し固定した。前記積層した繊維原反をスパンボンド不織布に挟み、パンチングメタル板に充填圧縮した状態で熱風対流型乾燥機にて160℃×20分で乾燥処理後、不織布6を取出した。不織布6の厚みは20mmで、平均面密度は976g/m2であった。
(Comparative Example 2)
The curtain containing the cellulose-containing fibers separated by identification 5 was collected as a nonwoven fabric material (E). The content of cotton in the nonwoven fabric material (E) was about 75% by weight as calculated from the product label. Next, the curtain which separated and removed the fiber containing an acrylic fiber and the curtain containing a cellulose containing fiber classified by identification 5 was collect | recovered as a nonwoven fabric material (A). This non-woven fabric material (E) and non-woven fabric material (A) are each cut to a size of 10 cm square, and opened twice by Taihei-made opener (Cylinder Opener B-03). As a result, a spread product (E) and a spread product (A) were obtained. 15 parts by weight of the spread product (A) is mixed with 65 parts by weight of the spread product (E) and a core-sheath type low-melting polyester fiber (sheath part melting point 75 ° C., 51 mm, 4.4 dtex) at a ratio of 20 parts by weight. Then, after further blending and opening with a card machine, they were laminated and fixed obliquely so that the average surface density was about 1 kg / m 2 . The laminated fiber fabric was sandwiched between spunbond nonwoven fabrics, and after being subjected to drying treatment at 160 ° C. for 20 minutes in a hot air convection dryer in a state where the punched metal plate was filled and compressed, the nonwoven fabric 6 was taken out. The thickness of the nonwoven fabric 6 is 20 mm, the average surface density of 976 g / m 2.

(参考例1)
合成繊維不織布として厚み30mm、面密度1000g/mの再生ポリエステル系繊維からなる不織布7(山一株式会社製YPF)を用いた。
(Reference Example 1)
A nonwoven fabric 7 (YPF, manufactured by Yamaichi Co., Ltd.) made of recycled polyester fiber having a thickness of 30 mm and a surface density of 1000 g / m 2 was used as the synthetic fiber nonwoven fabric.

(III)不織布の物性
試験材料として、平均面密度1000±50g/m2の不織布を用いた。不織布1〜不織布7について、それぞれ、200mm×25mmの布片を5枚切り出して試験サンプルとした。JIS A9511の燃焼性測定方法Aを使用し、図11に示すようにサンプルを鉛直方向から−45°傾けて、火源用ろうそくの炎をサンプル右端の先端に当て、約5秒間かけてろうそくの炎を等速で着火限界指示線まで移動させ、到達後直ぐに後退させた。サンプルを火から離した後、15秒間、状態を保持し、燃焼性を火の消え方とサンプル右端の先端からの燃焼距離を測定し、難燃性のレベルを比較評価した。その結果を表2に示す。
(III) Physical Properties of Nonwoven Fabric A nonwoven fabric having an average surface density of 1000 ± 50 g / m 2 was used as a test material. About the nonwoven fabric 1-the nonwoven fabric 7, 5 pieces of cloth pieces of 200 mm x 25 mm were cut out and used as test samples. Using the flammability measurement method A of JIS A9511, tilt the sample by -45 ° from the vertical direction as shown in Fig. 11, apply the flame of the candle for the fire source to the tip of the right end of the sample, and take about 5 seconds. The flame was moved to the ignition limit indicator line at a constant speed and retracted immediately after reaching. After the sample was removed from the fire, the state was maintained for 15 seconds, and the flammability was measured by measuring how the fire extinguished and the combustion distance from the tip of the right end of the sample, and compared the flame retardance level. The results are shown in Table 2.

Figure 2009191375
Figure 2009191375

各種布状繊維の内、木綿の布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near infrared rays are irradiated to the cotton cloth among various cloth-like fibers. 各種布状繊維の内、ポリエステル系繊維の布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near infrared rays are irradiated to the cloth of a polyester fiber among various cloth-like fibers. 各種布状繊維の内、アクリル繊維の布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near-infrared rays are irradiated to the cloth of an acrylic fiber among various cloth-like fibers. 各種布状繊維の内、アクリル系繊維の布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near-infrared rays are irradiated to the cloth of acrylic fiber among various cloth-like fibers. 各種布状繊維の内、ポリエステル系繊維69重量%とレーヨン31重量%が混紡された布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near infrared rays are irradiated to the cloth in which 69 weight% of polyester-type fibers and 31 weight% of rayon were mixed among various cloth-like fibers. 各種布状繊維の内、ポリエステル系繊維70重量%とアクリル繊維30重量%が混紡された布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near infrared rays are irradiated to the cloth in which 70 weight% of polyester-type fibers and 30 weight% of acrylic fibers were mixed among various cloth-like fibers. 各種布状繊維の内、ポリエステル系繊維55重量%とアクリル系繊維45重量%が混紡された布に近赤外線を照射した時に、吸収される吸光度スペクトルを示すグラフである。It is a graph which shows the light absorption spectrum absorbed when near-infrared rays are irradiated to the cloth by which 55 weight% of polyester-type fibers and acrylic fiber 45 weight% were mixed among various cloth-like fibers. 各種布状繊維廃棄物を繊維素材毎に分別する分別装置の構成例を示す概略説明図である。It is a schematic explanatory drawing which shows the structural example of the sorting apparatus which sorts various cloth-like fiber wastes for every fiber raw material. 本発明方法において繊維廃棄物を構成する素材を識別して分別を行った後に、反毛を製造する際の処理フローの一例を示すフロー図である。It is a flowchart which shows an example of the processing flow at the time of manufacturing a fluff after identifying the raw material which comprises a fiber waste in the method of this invention, and performing a classification. 本発明方法において繊維廃棄物から得た反毛から不織布を製造する際の処理フローの一例を示すフロー図である。It is a flowchart which shows an example of the processing flow at the time of manufacturing a nonwoven fabric from the bristles obtained from the fiber waste in the method of this invention. 難燃性試験の説明図である。It is explanatory drawing of a flame retardance test.

符号の説明Explanation of symbols

1 分別装置
2 原料繊維
3 搬送装置
4 検知機
5a,5b,5c 位置センサー
6 供給装置
6a フック
7 仕分け機
8 仕分け品収容部
DESCRIPTION OF SYMBOLS 1 Sorting apparatus 2 Raw material fiber 3 Conveying apparatus 4 Detector 5a, 5b, 5c Position sensor 6 Feeding apparatus 6a Hook 7 Sorting machine 8 Sorted goods storage part

Claims (10)

合成繊維不織布の製造方法であって、
原料としての布状及び/又は綿状の繊維を、近赤外分光光度計により前記布状及び/又は綿状の繊維を構成する素材の種類を識別する素材識別工程と、
前記素材識別工程において、セルロース含有繊維を10重量%以上含むと識別された布状及び/又は綿状の繊維を選別し、原料から除去するセルロース除外工程と、
前記除外されたセルロース含有繊維を含む布状及び/又は綿状の繊維以外の布状及び/又は綿状の繊維を反毛とする反毛工程と、
前記反毛工程で得られた反毛を不織布に加工する不織布加工工程と、
を有することを特徴とする合成繊維不織布の製造方法。
A method for producing a synthetic fiber nonwoven fabric,
A material identification step of identifying a cloth-like and / or cotton-like fiber as a raw material, and a kind of material constituting the cloth-like and / or cotton-like fiber by a near infrared spectrophotometer,
In the material identification step, a cellulose-excluding step of selecting cloth-like and / or cotton-like fibers identified as containing 10% by weight or more of cellulose-containing fibers and removing them from the raw material,
A repulsion process in which cloth-like and / or cotton-like fibers other than the cloth-like and / or cotton-like fibers including the excluded cellulose-containing fibers are used as repellings;
A non-woven fabric processing step of processing the anti-hair obtained in the anti-hair step into a non-woven fabric;
The manufacturing method of the synthetic fiber nonwoven fabric characterized by having.
前記布状及び/又は綿状の繊維が繊維廃棄物であり、製造される合成繊維不織布が再生合成繊維不織布である請求項1記載の合成繊維不織布の製造方法。   The method for producing a synthetic fiber nonwoven fabric according to claim 1, wherein the cloth-like and / or cotton-like fibers are fiber waste, and the synthetic fiber nonwoven fabric to be produced is a recycled synthetic fiber nonwoven fabric. 前記布状繊維がカーテンである請求項1又は2に記載の合成繊維不織布の製造方法。   The method for producing a synthetic fiber nonwoven fabric according to claim 1 or 2, wherein the cloth-like fiber is a curtain. 前記セルロース含有繊維が、木綿又はレーヨンを10重量%以上含む繊維である請求項1〜3のいずれかに記載の合成繊維不織布の製造方法。   The method for producing a synthetic fiber nonwoven fabric according to any one of claims 1 to 3, wherein the cellulose-containing fiber is a fiber containing 10% by weight or more of cotton or rayon. 前記素材選別工程において、前記素材識別工程において近赤外分光光度計により原料としての布状及び/又は綿状の繊維の中からアクリル系繊維を30重量%以上含むと識別された布状及び/又は綿状の繊維を選別し、該選別された布状及び/又は綿状の繊維を回収し、前記反毛工程において反毛とし、該反毛を前記不織布加工工程において不織布に加工して難燃性不織布とする請求項1〜4の何れかに記載の合成繊維不織布の製造方法。   In the material selection step, in the material identification step, a cloth shape and / or a cloth shape identified as containing 30% by weight or more of acrylic fiber from cloth-like and / or cotton-like fibers as raw materials by a near infrared spectrophotometer and / or Alternatively, the cotton-like fibers are selected, and the selected cloth-like and / or cotton-like fibers are collected and converted into bristles in the above-mentioned bristles process. The manufacturing method of the synthetic fiber nonwoven fabric in any one of Claims 1-4 made into a flame-retardant nonwoven fabric. 布状及び/又は綿状の繊維の分別装置であって、
布状及び/又は綿状の繊維の供給装置と、
布状及び/又は綿状の繊維の供給状況を検知するための位置センサーと、
供給された布状及び/又は綿状の繊維を間欠的に搬送する搬送装置と、
前記搬送装置によって搬送される布状及び/又は綿状の繊維に近赤外光を照射して反射光を検出するための検出機と、
検出機の位置での布状及び/又は綿状の繊維の搬送状態を検出するための位置センサーと、
前記検出機での識別データーに基づいて布状及び/又は綿状の繊維を繊維素材毎に分別する仕分け機と、
該仕分け機後部に設置された2乃至4個の仕分け品収容部と、
を備えることを特徴とする布状及び/又は綿状の繊維の分別装置。
A cloth-like and / or cotton-like fiber separation device,
A supply device of cloth-like and / or cotton-like fibers;
A position sensor for detecting the supply status of cloth-like and / or cotton-like fibers;
A transport device for intermittently transporting the supplied cloth-like and / or cotton-like fibers;
A detector for detecting reflected light by irradiating near-infrared light to cloth-like and / or cotton-like fibers conveyed by the conveying device;
A position sensor for detecting the conveyance state of cloth-like and / or cotton-like fibers at the position of the detector;
A sorting machine that sorts cloth-like and / or cotton-like fibers into fiber materials based on the identification data in the detector;
2 to 4 sorter storage units installed at the rear of the sorter;
An apparatus for separating fabric-like and / or cotton-like fibers, comprising:
前記供給装置が、布状及び/又は綿状の繊維を搬送装置の上部から供給し、上方に傾斜した経路において、該布状及び/又は綿状の繊維を引っ掛けて引き上げる装置であることを特徴とする請求項6記載の布状及び/又は綿状の繊維の分別装置。   The supply device is a device that supplies cloth-like and / or cotton-like fibers from the upper part of the conveying device, and hooks and pulls up the cloth-like and / or cotton-like fibers in an upwardly inclined path. The cloth-like and / or cotton-like fiber separation device according to claim 6. 前記仕分け機が、前記布状及び/又は綿状の繊維の識別データーを基に、搬送経路を変更して仕分け品収容部に投入するものである請求項6又7に記載の布状及び/又は綿状の繊維の分別装置。   8. The cloth and / or cloth according to claim 6 or 7, wherein the sorting machine changes the transport path based on the cloth and / or cotton-like fiber identification data, and puts it into the sorted article storage unit. Or a device for separating cotton-like fibers. 前記布状及び/又は綿状の繊維が、繊維廃棄物であり、布状繊維廃棄物及び/又は綿状繊維廃棄物の分別に用いられる請求項6〜8に記載の分別装置。   9. The sorting apparatus according to claim 6, wherein the cloth-like and / or cotton-like fibers are fiber waste, and are used for sorting cloth-like fiber waste and / or cotton-like fiber waste. セルロース含有繊維を10重量%以上含むセルロース系布状及び/又は綿状の繊維と、アクリル系繊維を30重量%以上含むアクリル系布状及び/又は綿状の繊維と、それ以外の合成繊維からなる布状及び/又は綿状の繊維と、識別不能の繊維からなる布状及び/又は綿状の繊維とに識別し、分別して回収することを特徴とする請求項6〜9のいずれかに記載の布状及び/又は綿状の繊維の分別装置。   Cellulosic cloth-like and / or cotton-like fibers containing 10% by weight or more of cellulose-containing fibers, acrylic cloth-like and / or cotton-like fibers containing 30% by weight or more of acrylic fibers, and other synthetic fibers It distinguishes into the cloth-like and / or cotton-like fiber which becomes, and the cloth-like and / or cotton-like fiber which consists of an indistinguishable fiber, It classify | categorizes and collect | recovers in any one of Claims 6-9 characterized by the above-mentioned. The cloth-like and / or cotton-like fiber separation apparatus as described.
JP2008030170A 2008-02-12 2008-02-12 Synthetic fiber nonwoven fabric production method and cloth-like and / or cotton-like fiber separation device Active JP4962342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030170A JP4962342B2 (en) 2008-02-12 2008-02-12 Synthetic fiber nonwoven fabric production method and cloth-like and / or cotton-like fiber separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030170A JP4962342B2 (en) 2008-02-12 2008-02-12 Synthetic fiber nonwoven fabric production method and cloth-like and / or cotton-like fiber separation device

Publications (2)

Publication Number Publication Date
JP2009191375A true JP2009191375A (en) 2009-08-27
JP4962342B2 JP4962342B2 (en) 2012-06-27

Family

ID=41073652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030170A Active JP4962342B2 (en) 2008-02-12 2008-02-12 Synthetic fiber nonwoven fabric production method and cloth-like and / or cotton-like fiber separation device

Country Status (1)

Country Link
JP (1) JP4962342B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009216A (en) * 2013-07-01 2015-01-19 日本ウエス 株式会社 Fiber classification system
JP2018111908A (en) * 2017-01-13 2018-07-19 帝人フロンティア株式会社 Manufacturing method of dry type non-woven fabric
CN108796821A (en) * 2018-07-23 2018-11-13 启东启雅复合材料有限公司 A kind of non-woven fabrics and preparation method thereof
WO2021161779A1 (en) * 2020-02-13 2021-08-19 大王製紙株式会社 Waste plastic material determination device, material determination method, and material determination program
US11624706B2 (en) 2020-12-24 2023-04-11 Panasonic Holdings Corporation Cellulose composite determination method and apparatus for composite resin
WO2024074974A1 (en) * 2022-10-04 2024-04-11 Igers S.R.L. Method for recovering fibres from discarded textile items and associated plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182883A (en) * 1992-08-14 1994-07-05 Hoechst Ag Production of molded piece and molded piece obtained by said method
JPH10253453A (en) * 1997-03-10 1998-09-25 Toray Ind Inc Abnormally-dyed yarn discriminating method for synthetic fiber
JP2001316963A (en) * 2000-05-10 2001-11-16 Howa Seni Kogyo Kk Felt material for vehicle
JP2004027383A (en) * 2002-06-21 2004-01-29 Kasai Kogyo Co Ltd Sound-absorbing mat for forming and vehicular sound-absorbing material
JP2004143620A (en) * 2002-10-24 2004-05-20 Hayashi Telempu Co Ltd Method for forming recycled mat, recycled mat and interior automotive interior material
JP2004232139A (en) * 2003-01-30 2004-08-19 Kanegafuchi Chem Ind Co Ltd Method for producing formed product and the formed product
JP2004268381A (en) * 2003-03-07 2004-09-30 Yoshiyori Yokoi Manufacturing method for molded product comprising waste fiber component of carpet for car
JP2006161166A (en) * 2004-12-02 2006-06-22 Nagoya Oil Chem Co Ltd Method for producing formed felt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182883A (en) * 1992-08-14 1994-07-05 Hoechst Ag Production of molded piece and molded piece obtained by said method
JPH10253453A (en) * 1997-03-10 1998-09-25 Toray Ind Inc Abnormally-dyed yarn discriminating method for synthetic fiber
JP2001316963A (en) * 2000-05-10 2001-11-16 Howa Seni Kogyo Kk Felt material for vehicle
JP2004027383A (en) * 2002-06-21 2004-01-29 Kasai Kogyo Co Ltd Sound-absorbing mat for forming and vehicular sound-absorbing material
JP2004143620A (en) * 2002-10-24 2004-05-20 Hayashi Telempu Co Ltd Method for forming recycled mat, recycled mat and interior automotive interior material
JP2004232139A (en) * 2003-01-30 2004-08-19 Kanegafuchi Chem Ind Co Ltd Method for producing formed product and the formed product
JP2004268381A (en) * 2003-03-07 2004-09-30 Yoshiyori Yokoi Manufacturing method for molded product comprising waste fiber component of carpet for car
JP2006161166A (en) * 2004-12-02 2006-06-22 Nagoya Oil Chem Co Ltd Method for producing formed felt

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015009216A (en) * 2013-07-01 2015-01-19 日本ウエス 株式会社 Fiber classification system
JP2018111908A (en) * 2017-01-13 2018-07-19 帝人フロンティア株式会社 Manufacturing method of dry type non-woven fabric
CN108796821A (en) * 2018-07-23 2018-11-13 启东启雅复合材料有限公司 A kind of non-woven fabrics and preparation method thereof
WO2021161779A1 (en) * 2020-02-13 2021-08-19 大王製紙株式会社 Waste plastic material determination device, material determination method, and material determination program
JP2021128062A (en) * 2020-02-13 2021-09-02 大王製紙株式会社 Material determination device, material determination method, and material determination program for waste plastic
JP7419093B2 (en) 2020-02-13 2024-01-22 大王製紙株式会社 Waste plastic sorting equipment, sorting method, and sorting program
US11624706B2 (en) 2020-12-24 2023-04-11 Panasonic Holdings Corporation Cellulose composite determination method and apparatus for composite resin
WO2024074974A1 (en) * 2022-10-04 2024-04-11 Igers S.R.L. Method for recovering fibres from discarded textile items and associated plant

Also Published As

Publication number Publication date
JP4962342B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4962342B2 (en) Synthetic fiber nonwoven fabric production method and cloth-like and / or cotton-like fiber separation device
Albrecht et al. Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes
Bhatia et al. Recycled fibers: an overview
TW200930535A (en) Method of separating and cleaning of post consumer carpet face yarn from carpet backing and yarn product produced therefrom
US5919717A (en) Recycled fiber yarn and method for making same
WO2017141642A1 (en) Sheet production device
WO2016139885A1 (en) Sheet manufacturing device and sheet manufacturing method
JP6531381B2 (en) Sheet manufacturing apparatus and sheet manufacturing method
WO2023123990A1 (en) Non-woven carpet and manufacturing method therefor
Kadnikova et al. Improving the technology of processing sewing and knitwear production waste
JP2016113720A (en) Sheet manufacturing device and sheet manufacturing method
Wojnowska-Baryła et al. The Growing Problem of Textile Waste Generation—The Current State of Textile Waste Management
US20200392649A1 (en) Method for Recycling Textile Material
Cao et al. Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability. 2022; 14: 8553
Husain et al. The Influence of Fibre Feeder Speed and Stacking Layers on Physical Properties of Needle-Punched Nonwovens from Industrial Cotton Waste
Halimi et al. Optimization and valorization of recycled fiber in non-woven fabric
Wroe The Recycling of Resorcinol Formaldehyde Latex Coated Nylon 66
Gupta et al. Development of value added products from shoddy yarn
Alam et al. Analysis of physio-mechanical properties of pineapple leaf fiber
JP2022156206A (en) Method for producing sheet, and apparatus for producing sheet
Sakthivel et al. Development of textiles for automotive applications using recycled fibres
CS261724B1 (en) Method and device for textile shearings stratification
JP2006022436A (en) Fiber product
Aronsson Torn to be worn?: Cotton fibre length of shredded post-consumer garments
George et al. Textile products produced from alternative fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4962342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250