JP2009188033A - Reactor mounting structure - Google Patents

Reactor mounting structure Download PDF

Info

Publication number
JP2009188033A
JP2009188033A JP2008023987A JP2008023987A JP2009188033A JP 2009188033 A JP2009188033 A JP 2009188033A JP 2008023987 A JP2008023987 A JP 2008023987A JP 2008023987 A JP2008023987 A JP 2008023987A JP 2009188033 A JP2009188033 A JP 2009188033A
Authority
JP
Japan
Prior art keywords
coil
core
cooling base
reactor
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008023987A
Other languages
Japanese (ja)
Other versions
JP5167843B2 (en
Inventor
Mutsumi Ito
睦 伊藤
Masayuki Kato
雅幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008023987A priority Critical patent/JP5167843B2/en
Publication of JP2009188033A publication Critical patent/JP2009188033A/en
Application granted granted Critical
Publication of JP5167843B2 publication Critical patent/JP5167843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Transformer Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat-releasing ability of a structure for mounting a reactor on a cooling base. <P>SOLUTION: A reactor mounting structure comprises a closed-loop shaped core 1 having opposing coil winding portions, coils 2 formed on the coil winding portions, and a cooling base 5 on which the core 1 having the coils 2 is mounted. The structure is also equipped with a pressing member (pressing plate 3) to be in contact with at least one of the coils 2 and the core 1 and, between the opposing coils 2, a connecting member (connecting bolts 4) for connecting the pressing member and the cooling base 5 and securing the core 1 having the coil 2 to a place between the pressing member and the cooling base 5. There is provided no case for accommodating the core 1 on which core is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、昇降圧を行うコンバータなどの部品に用いられるリアクトルの取付構造に関するものである。特に、放熱特性に優れ、冷却ベースへの取り付けが容易かつ確実なリアクトルの取付構造に関するものである。   The present invention relates to a reactor mounting structure used for components such as a converter that performs step-up / step-down. In particular, the present invention relates to a reactor mounting structure that has excellent heat dissipation characteristics and is easy and reliable for mounting to a cooling base.

近年、普及が進みつつあるハイブリッド自動車におけるコンバータの部品として、リアクトルが用いられている。このリアクトルには、対向し合うコイル巻回部を有して閉ループ状に形成されるコアと、コイル巻回部に形成されたコイルとを備える構成が知られている(特許文献1)。この特許文献1には、リアクトルのコアがボルトにてヒートシンク(冷却ベース)に固定されることが記載されている。   2. Description of the Related Art In recent years, a reactor is used as a converter part in a hybrid vehicle that is becoming popular. This reactor is known to include a core having opposing coil winding portions and formed in a closed loop shape, and a coil formed in the coil winding portion (Patent Document 1). Patent Document 1 describes that the core of a reactor is fixed to a heat sink (cooling base) with a bolt.

特開2004−241475号公報 明細書0010JP 2004-241475 A Specification 0010

しかし、従来のリアクトルの取付構造では、リアクトルの放熱特性が十分ではないという問題があった。   However, the conventional reactor mounting structure has a problem that the heat dissipation characteristics of the reactor are not sufficient.

リアクトルの作動時、コイルおよびコアが発熱する。この熱は、速やかに放熱されることが好ましいが、従来の取付構造では、ボルトでコアをヒートシンクに固定することが述べられているに止まり、放熱特性に優れた具体的な取付構造は示されていない。   During the operation of the reactor, the coil and the core generate heat. This heat is preferably dissipated quickly, but the conventional mounting structure only states that the core is fixed to the heat sink with bolts, and a specific mounting structure with excellent heat dissipation characteristics is shown. Not.

一方、特許文献1は、コアを冷却ベースに固定するのではなく、コアに設けたボルト孔にボルトを通すことで、コアをケースに固定する構成を開示している。しかし、この構成では、ケースを必須とするため、リアクトルが大型化すると共に、ケース自体が放熱を妨げる虞もあり、さらにはケースを冷却ベースに固定する必要がある。そのため、ケースを用いることなく、取付作業性と放熱特性に優れたリアクトルの取付構造が望まれていた。特に、大電流に対応できるリアクトルの取付構造とするには、より一層の放熱特性の改善が求められる。   On the other hand, Patent Document 1 discloses a configuration in which the core is fixed to the case by passing a bolt through a bolt hole provided in the core, instead of fixing the core to the cooling base. However, in this configuration, since the case is indispensable, the reactor is increased in size, and the case itself may hinder heat dissipation. Further, it is necessary to fix the case to the cooling base. Therefore, a reactor mounting structure that is excellent in mounting workability and heat dissipation characteristics without using a case has been desired. In particular, in order to obtain a reactor mounting structure that can handle a large current, further improvement in heat dissipation characteristics is required.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、放熱特性に優れたリアクトルの取付構造を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor mounting structure with excellent heat dissipation characteristics.

本発明のリアクトルの取付構造は、対向し合うコイル巻回部を有して閉ループ状に形成されるコアと、コイル巻回部に形成されるコイルと、コイルの形成されたコアが取り付けられる冷却ベースとを備えるリアクトルの取付構造である。この取付構造は、コイルおよびコアの少なくとも一方に当接される押え部材と、対向し合うコイル間において、押え部材と冷却ベースとを連結してコイルの形成されたコアを押え部材と冷却ベースとの間に固定する連結部材とを備える。そして、コイルの形成されたコアが収納されるケースを有さないことを特徴とする。   The reactor mounting structure according to the present invention includes a core formed in a closed loop shape having opposing coil winding portions, a coil formed in the coil winding portion, and a cooling to which the core on which the coil is formed is attached. A reactor mounting structure including a base. In this mounting structure, a pressing member that is in contact with at least one of the coil and the core, and the pressing member and the cooling base are connected between the opposing coils, and the core on which the coil is formed is connected to the pressing member and the cooling base. And a connecting member fixed between the two. And it does not have a case in which the core in which the coil was formed is stored.

この構成によれば、コイルの形成されたコアは、冷却ベースにケースを介することなく固定されるため、コイルまたはコアの熱を速やかに冷却ベースに伝導することができ、効率的な放熱を行うことができる。また、熱のこもりやすいコイル間に連結部材を配置し、この連結部材を冷却ベースに連結することで、連結部材を通じて効果的な放熱を行うことができる。さらに、この連結部材は、放熱時の熱伝導路としての機能に加え、コイルの形成されたコアを冷却ベースに固定する固定手段の機能も果たすため、放熱時の熱伝導路となる部材と固定手段とを個別の部材とする必要がない。   According to this configuration, since the core on which the coil is formed is fixed to the cooling base without passing through the case, the heat of the coil or the core can be quickly conducted to the cooling base, and efficient heat dissipation is performed. be able to. Further, by disposing a connecting member between the coils that are likely to accumulate heat and connecting the connecting member to the cooling base, effective heat dissipation can be performed through the connecting member. Furthermore, in addition to the function as a heat conduction path at the time of heat dissipation, this connecting member also functions as a fixing means for fixing the core on which the coil is formed to the cooling base. The means need not be separate members.

本発明のリアクトルの取付構造において、前記連結部材は、押え部材に貫通されると共に、一端が押え部材に係合され、他端が冷却ベースに螺合されるボルトであることが好ましい。   In the reactor mounting structure of the present invention, it is preferable that the connecting member is a bolt that penetrates the holding member, has one end engaged with the holding member, and the other end screwed to the cooling base.

この構成によれば、連結部材をボルトとすることで、容易かつ堅固に、押さ部材と冷却ベースとの間にリアクトルを固定することができる。   According to this configuration, the reactor can be fixed between the pressing member and the cooling base easily and firmly by using the connecting member as a bolt.

本発明のリアクトルの取付構造において、前記連結部材は、対向し合うコイル間に介在される扁平部材としてもよい。   In the reactor mounting structure of the present invention, the connecting member may be a flat member interposed between opposing coils.

この構成によれば、対向し合うコイル間に扁平状の連結部材を介在させることで、コイルと連結部材の接触面積を大きくとることができ、効率的な放熱を行うことができる。   According to this structure, the contact area of a coil and a connection member can be enlarged by interposing a flat connection member between the coils which oppose, and efficient heat dissipation can be performed.

本発明のリアクトルの取付構造において、前記冷却ベースは冷媒が流通される循環路を備え、前記連結部材が循環路にまで到達していることも好ましい。   In the reactor mounting structure according to the present invention, it is also preferable that the cooling base includes a circulation path through which a refrigerant is circulated, and the connecting member reaches the circulation path.

この構成によれば、連結部材が冷媒の循環路にまで到達していることで、コイル間の熱を、連結部材を介して直接冷媒に伝導させることができ、効率的な放熱を行うことができる。   According to this configuration, since the connecting member reaches the refrigerant circulation path, the heat between the coils can be directly conducted to the refrigerant through the connecting member, and efficient heat dissipation can be performed. it can.

本発明のリアクトルの取付構造において、前記押え部材と連結部材とが一体であることが好ましい。   In the reactor mounting structure of the present invention, it is preferable that the pressing member and the connecting member are integrated.

この構成によれば、少ない部品点数で、組立作業性に優れるリアクトルの取付構造とすることができる。   According to this configuration, it is possible to provide a reactor mounting structure with a small number of parts and excellent assembly workability.

本発明のリアクトルの取付構造において、前記冷却ベースは、リアクトルの少なくとも一部が収納される収納凹部を備え、この収納凹部にコイルの形成されたコアが収納されることも挙げられる。   In the reactor mounting structure of the present invention, the cooling base may include a storage recess in which at least a part of the reactor is stored, and a core in which a coil is formed is stored in the storage recess.

この構成によれば、リアクトルの少なくとも一部を冷却ベースに収納することができ、リアクトルの冷却ベースからの突出量を小さくすることができる。   According to this configuration, at least a part of the reactor can be stored in the cooling base, and the amount of protrusion of the reactor from the cooling base can be reduced.

この収納凹部にリアクトルを収納した本発明のリアクトルの取付構造において、押え部材と冷却ベースの各表面が面一に構成されていることが好ましい。   In the reactor mounting structure of the present invention in which the reactor is housed in the housing recess, it is preferable that the surfaces of the holding member and the cooling base are flush with each other.

この構成によれば、リアクトルを冷却ベースに埋設した状態とすることができ、かつ押え部材と冷却ベースの表面同士が面一となることで、突出箇所のない冷却ベースとすることができる。   According to this structure, it can be set as the state which the reactor was embed | buried under the cooling base, and it can be set as the cooling base without a protrusion location because the surfaces of a pressing member and a cooling base are flush | level.

本発明のリアクトルの取付構造によれば、ケースを用いることなく、放熱性に優れたリアクトルの取付構造とできる。   According to the reactor mounting structure of the present invention, a reactor mounting structure having excellent heat dissipation can be obtained without using a case.

以下、本発明の実施例を図に基づいて説明する。各図において、共通する部材には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same code | symbol is attached | subjected to the common member.

<実施例1>
図1、図2を参照して、本発明取付構造の実施例を説明する。この取付構造は、図1に示すように、コア1、コイル2、押え板3(押え部材)、連結ボルト4(連結部材)、冷却ベース5を主要構成部品としている。
<Example 1>
An embodiment of the mounting structure of the present invention will be described with reference to FIGS. As shown in FIG. 1, the mounting structure includes a core 1, a coil 2, a pressing plate 3 (pressing member), a connecting bolt 4 (connecting member), and a cooling base 5 as main components.

まず、コア1は、対向し合うコイル巻回部を有して閉ループ状に形成された部材で、磁性体部とギャップ部(図示略)とからなる。そのうち、磁性体部は、軟磁性粉末の圧粉成形体や電磁鋼板の積層体からなり、直方体状のノーマルブロック片と、屈曲されたU字状ブロック片1Uとを有する。特に、本例では、U字状ブロック片1Uをノーマルブロック片よりも下方に突出させ、コイル2の形成されたコア1を冷却ベース5上に設置した際、コア1とコイル2とが面一となって冷却ベース5に接触するようにしている。一方、ギャップ部は、アルミナなどの非磁性材料からなる矩形板で構成される。本例では、4つのノーマルブロック片と、2つのU字状ブロック片1Uとを用い、一対のU字状ブロック片1Uの間に、一対ずつ並列したノーマルブロック片を配置し、全てのブロック片の間に合計6枚のギャップ部を介在させて互いに接着することで閉ループ状のコア1としている。   First, the core 1 is a member having a coil winding portion facing each other and formed in a closed loop shape, and includes a magnetic body portion and a gap portion (not shown). Among them, the magnetic part is made of a compacted body of soft magnetic powder or a laminate of electromagnetic steel sheets, and has a rectangular parallelepiped normal block piece and a bent U-shaped block piece 1U. In particular, in this example, when the U-shaped block piece 1U protrudes below the normal block piece and the core 1 on which the coil 2 is formed is installed on the cooling base 5, the core 1 and the coil 2 are flush with each other. In this way, the cooling base 5 is contacted. On the other hand, the gap portion is formed of a rectangular plate made of a nonmagnetic material such as alumina. In this example, four normal block pieces and two U-shaped block pieces 1U are used, and a pair of normal block pieces arranged in parallel is arranged between a pair of U-shaped block pieces 1U. A closed loop core 1 is formed by adhering a total of six gaps between the two.

このコア1のうち、ノーマルブロック片とU字状ブロック片1Uの両端部とで形成されたコイル巻回部の外周に巻線を巻回してなるコイル2が配置される。本例では、平角銅線の表面にエナメル被覆を形成した巻線をエッジワイズ巻きにすることでコイル2を形成した。この巻線は、図1では簡略化しているが、実際には、図2に示すように、コア1の一方のコイル巻回部1Cにおける一端側から他端側に向かって一方向に巻回され、そのまま他方のコイル巻回部1Cに移行して、他方のコイル巻回部1Cの他端側から一端側に向かって逆方向に巻回されることで、コア1の両コイル巻回部1Cを覆うコイル2を形成している。このコイル2をコイル巻回部1Cに形成した結果、コア1のコイル巻回部がコイル2に覆われ、U字状ブロック片1Uの大半がコイル2から露出した状態とされている。   In the core 1, a coil 2 formed by winding a winding around the outer periphery of a coil winding portion formed by the normal block piece and both ends of the U-shaped block piece 1U is disposed. In this example, the coil 2 was formed by using an edgewise winding of a winding in which an enamel coating was formed on the surface of a flat copper wire. Although this winding is simplified in FIG. 1, actually, as shown in FIG. 2, the winding is wound in one direction from one end side to the other end side in one coil winding portion 1C of the core 1. The coil winding portion 1C of the core 1 is moved to the other coil winding portion 1C as it is and wound in the opposite direction from the other end side of the other coil winding portion 1C to the one end side. A coil 2 covering 1C is formed. As a result of forming the coil 2 in the coil winding part 1C, the coil winding part of the core 1 is covered with the coil 2, and the majority of the U-shaped block piece 1U is exposed from the coil 2.

また、このコア1とコイル2の組立体には、インシュレータ6も設けられている。このインシュレータ6は、コア1の外周を覆う筒状の胴部(図示略)と、コイル2の端部に当接される板状のつば部6F(図2参照)とを備える。胴部は、半割れの角筒片同士を係合することでコア1のコイル巻回部1Cの外周を覆う。つば部6Fは胴部の両端部に対面されると共に、コイル2の各端部に当接する一対の矩形枠である。インシュレータ6の材料には、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)などが利用できる。   An insulator 6 is also provided in the assembly of the core 1 and the coil 2. The insulator 6 includes a cylindrical body portion (not shown) that covers the outer periphery of the core 1 and a plate-shaped collar portion 6F (see FIG. 2) that comes into contact with the end portion of the coil 2. The body portion covers the outer periphery of the coil winding portion 1C of the core 1 by engaging the half-cut square tube pieces. The collar portion 6F is a pair of rectangular frames that face both end portions of the body portion and abut against each end portion of the coil 2. As a material for the insulator 6, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), or the like can be used.

この組立体は、冷却ベース5の表面に固定される(図1)。冷却ベース5は、ほぼ角柱状の金属部材で、内部に冷媒の循環路5Cを備える。ここでは、アルミ合金鋳物からなる冷却ベース5とし、循環路5C内で図1の左から右側に向かって冷媒が流通される。ただし、循環路5Cの経路は特に限定されない。冷媒の循環には、図示しないポンプが用いられ、リアクトルから熱を吸収して昇温された冷媒の冷却には、図示しないラジエータが用いられる。また、この冷却ベース5の上面には、複数のボルト穴5Hが形成されている。これらのボルト穴5Hは、冷媒の循環路5Cには達しておらず、次述する連結ボルト4がねじ結合される。   This assembly is fixed to the surface of the cooling base 5 (FIG. 1). The cooling base 5 is a substantially prismatic metal member and includes a refrigerant circulation path 5C therein. Here, the cooling base 5 is made of an aluminum alloy casting, and the refrigerant is circulated from the left to the right in FIG. 1 in the circulation path 5C. However, the route of the circulation path 5C is not particularly limited. A pump (not shown) is used for circulating the refrigerant, and a radiator (not shown) is used for cooling the refrigerant that has been heated by absorbing heat from the reactor. A plurality of bolt holes 5H are formed on the upper surface of the cooling base 5. These bolt holes 5H do not reach the refrigerant circulation path 5C, and the connecting bolts 4 described below are screwed together.

一方、コア1とコイル2の組立体を冷却ベース5に固定するには、押え板3と連結ボルト4からなる固定手段を用いる。押え板3は、コイル2の上面に当接される矩形板である。この押え板3は、コイルの上面の全面を覆う程度の大きさを有し、かつ連結ボルト4の貫通孔3Hが複数形成されている。本例では、平板状の押え板3としているが、折曲状の押え板として、コア1とコイル2の双方に当接する押え板としてもよい。この構成により、コア1→押え板3→連結ボルト4→冷却ベース5という放熱経路も確保できる。連結ボルト4は、一端にヘッド部4Hを備え、他端に前記ボルト穴5Hに螺合する雄ねじ部4Tを有する。連結ボルト4の本数は、リアクトルの冷却効率を考慮すると、コイル2間に挿入できる限り多い方が好ましい。   On the other hand, in order to fix the assembly of the core 1 and the coil 2 to the cooling base 5, a fixing means including the presser plate 3 and the connecting bolt 4 is used. The presser plate 3 is a rectangular plate that comes into contact with the upper surface of the coil 2. The presser plate 3 has a size that covers the entire upper surface of the coil, and a plurality of through holes 3H of the connecting bolt 4 are formed. In this example, the presser plate 3 has a flat plate shape, but may be a presser plate that is in contact with both the core 1 and the coil 2 as a bent presser plate. With this configuration, it is also possible to secure a heat dissipation path of the core 1 → the presser plate 3 → the connecting bolt 4 → the cooling base 5. The connecting bolt 4 has a head portion 4H at one end and a male screw portion 4T that is screwed into the bolt hole 5H at the other end. The number of connecting bolts 4 is preferably as large as possible so that it can be inserted between the coils 2 in consideration of the cooling efficiency of the reactor.

これら押え板3と連結ボルト4の材質は、熱伝導性に優れる非磁性材料が好適である。具体的には、その熱伝導性は10W/m・K以上、より好ましくは20W/m・K以上、さらに好ましくは30W/m・K以上のものが選択されればよい。ちなみに、ゴム系材料などの有機材料や絶縁紙の熱伝導率は1W/m・K未満である。   The material of the presser plate 3 and the connecting bolt 4 is preferably a nonmagnetic material having excellent thermal conductivity. Specifically, a thermal conductivity of 10 W / m · K or more, more preferably 20 W / m · K or more, and even more preferably 30 W / m · K or more may be selected. Incidentally, the thermal conductivity of organic materials such as rubber materials and insulating paper is less than 1 W / m · K.

高熱伝導性の非磁性材料の具体例として、絶縁性部材では、アルミナ(Al2O3)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、窒化珪素(Si3N4)および炭化珪素(SiC)よりなる群から選択される少なくとも1種が挙げられる。アルミナの熱伝導率は20〜30W/m・K程度、窒化アルミニウムの熱伝導率は100〜250W/m・K程度、窒化ホウ素の熱伝導率は50〜65W/m・K程度、窒化珪素の熱伝導率は40〜150W/m・K程度、炭化珪素の熱伝導率は50〜130W/m・K程度である。特に、コイル2を励磁した際、コア1の外部への漏洩磁束を低減できるよう、絶縁性部材が好ましい。また、導電性部材では、アルミ(236W/m・K)、銅(390W/m・K)、これらの合金、オーステナイト系ステンレス(16.7W/m・K@SUS304)が挙げられる。 Specific examples of non-magnetic materials with high thermal conductivity include alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ) and silicon carbide (SiC). And at least one selected from the group consisting of: The thermal conductivity of alumina is about 20 to 30 W / m · K, the thermal conductivity of aluminum nitride is about 100 to 250 W / m · K, the thermal conductivity of boron nitride is about 50 to 65 W / m · K, silicon nitride The thermal conductivity is about 40 to 150 W / m · K, and the thermal conductivity of silicon carbide is about 50 to 130 W / m · K. In particular, when the coil 2 is excited, an insulating member is preferable so that the leakage magnetic flux to the outside of the core 1 can be reduced. Examples of conductive members include aluminum (236 W / m · K), copper (390 W / m · K), alloys thereof, and austenitic stainless steel (16.7 W / m · K @ SUS304).

リアクトルを冷却ベース5に固定する際、まず、コア1とコイル2の組立体を冷却ベース5の上面に載せ、対向するコイル2間の隙間をボルト穴5Hに位置合わせする。必要に応じて、コイル2と連結ボルト4の接触面や、組立体と冷却ベース5との接触面に、高熱伝導性のペーストやシートを介在させてもよい。   When fixing the reactor to the cooling base 5, first, the assembly of the core 1 and the coil 2 is placed on the upper surface of the cooling base 5, and the gap between the opposing coils 2 is aligned with the bolt hole 5H. If necessary, a paste or sheet having high thermal conductivity may be interposed between the contact surface of the coil 2 and the connecting bolt 4 and the contact surface of the assembly and the cooling base 5.

次に、コイル2の上面に押え板3を載せる。その際、貫通孔3Hを、対向するコイル間の隙間に位置合わせする。   Next, the presser plate 3 is placed on the upper surface of the coil 2. At that time, the through hole 3H is aligned with the gap between the opposing coils.

次に、コイルの上部から貫通孔3Hに連結ボルト4を通し、その先端の雄ねじ部4Tをボルト穴5Hにねじ込む。   Next, the connecting bolt 4 is passed through the through hole 3H from the upper part of the coil, and the male screw portion 4T at the tip is screwed into the bolt hole 5H.

この連結ボルト4の締め付けにより、コア1とコイル2の組立体は、押え板3と冷却ベース5との間に挟みこまれて固定される。そして、組立体の周囲には、従来用いられていた容器状のケースはもちろん、コイルの底面と側面を覆うボビンカバーも用いられていない。そのため、組立体が冷却ベース5に固定された状態では、U字状ブロック片1Uの大半およびコイル2の両側面は露出されている。   By tightening the connecting bolt 4, the assembly of the core 1 and the coil 2 is sandwiched and fixed between the presser plate 3 and the cooling base 5. And the bobbin cover which covers the bottom face and side face of a coil is not used around the assembly, let alone the container-like case used conventionally. Therefore, in a state where the assembly is fixed to the cooling base 5, most of the U-shaped block piece 1U and both side surfaces of the coil 2 are exposed.

このような取付構造によれば、ケースを用いることなく、コイル2の形成されたコア1を直接冷却ベース5に固定するため、ケースが不要で、リアクトルの小型化を達成でき、かつコイル1およびコア2の熱を直ちに冷却ベース5に伝導させることができる。そのため、効率的な放熱を行うことができる。   According to such a mounting structure, since the core 1 on which the coil 2 is formed is directly fixed to the cooling base 5 without using a case, no case is required, the reactor can be downsized, and the coil 1 and The heat of the core 2 can be immediately conducted to the cooling base 5. Therefore, efficient heat dissipation can be performed.

また、連結ボルト4が熱のこもりやすい箇所、つまり対向するコイル2同士の間に配されているため、連結ボルト4を冷却ベース5への熱伝導路として利用することができ、効率的な放熱が期待できる。もちろん、連結ボルト4は、コア1とコイル2を冷却ベース5に固定する機能も備えているため、熱伝導路と固定手段とを一つの部材で構成することができる。   In addition, since the connecting bolt 4 is easily accumulated in heat, that is, between the opposing coils 2, the connecting bolt 4 can be used as a heat conduction path to the cooling base 5 for efficient heat dissipation. Can be expected. Of course, since the connecting bolt 4 also has a function of fixing the core 1 and the coil 2 to the cooling base 5, the heat conduction path and the fixing means can be constituted by a single member.

<変形例1>
図3に、実施例1の変形例を示す。この変形例は、連結ボルト4が冷媒の循環路5C内に突出している点で実施例1と異なり、他の点は実施例1と同様の構成である。
<Modification 1>
FIG. 3 shows a modification of the first embodiment. This modification differs from the first embodiment in that the connecting bolt 4 protrudes into the refrigerant circulation path 5C, and the other points are the same as the first embodiment.

つまり、冷却ベース5に構成したボルト孔5HLが冷却ベース5の上面から冷媒の循環路5Cにまで達している。このボルト孔5HLに連結ボルトの雄ねじ部4Tを螺合して、循環路内に同ボルト4の先端部を突出させれば、連結ボルト4の先端部が直接冷媒Cに浸漬された状態とできるため、連結ボルト4を熱伝導路とした効果的な放熱が可能になる。なお、ボルト孔5HLと連結ボルト4の間は、適宜パッキンなどの止水手段を設ければよい。   That is, the bolt hole 5HL formed in the cooling base 5 reaches the refrigerant circulation path 5C from the upper surface of the cooling base 5. By screwing the male screw portion 4T of the connecting bolt into the bolt hole 5HL and projecting the tip of the bolt 4 into the circulation path, the tip of the connecting bolt 4 can be directly immersed in the refrigerant C. Therefore, effective heat dissipation using the connecting bolt 4 as a heat conduction path is possible. In addition, a water stop means such as packing may be provided between the bolt hole 5HL and the connecting bolt 4 as appropriate.

<実施例2>
次に、図4に基づいて実施例2を説明する。この実施例2は、実施例1における連結ボルトの代わりに扁平連結部材を用いている点が主たる相違点であり、他の構成は実施例1と実質的に同一である。
<Example 2>
Next, Example 2 will be described with reference to FIG. The second embodiment is mainly different from the first embodiment in that a flat connecting member is used instead of the connecting bolt, and the other configuration is substantially the same as the first embodiment.

この扁平連結部材4Fは、対向するコイル2間の隙間に挿入できる厚さで、コイル巻回部の幅に相当する幅を有し、材質は実施例1の連結ボルトと同様である。本例では、扁平連結部材4Fの下端に雄ねじ部4MTが突設され、上端に雌ねじ部4FTが形成されている。また、扁平連結部材4の表面は、図4では平面としているが、波形としてもよい。一方、押え板3は、コイル2の上面を覆うような矩形板で、中央にボルト7の貫通孔3Hが形成されている。この押え板3の材質も実施例1と同様である。また、冷却ベース5の上面には、ボルト穴5Hが一つ形成されている。そして、コイル2と扁平連結部材4Fの接触面や、組立体と冷却ベース5との接触面に、高熱伝導性のペーストやシートを介在させてもよい。   The flat connecting member 4F has a thickness that can be inserted into the gap between the opposing coils 2 and has a width corresponding to the width of the coil winding portion. The material is the same as that of the connecting bolt of the first embodiment. In this example, a male threaded portion 4MT projects from the lower end of the flat connecting member 4F, and a female threaded portion 4FT is formed at the upper end. Further, the surface of the flat connecting member 4 is a flat surface in FIG. On the other hand, the presser plate 3 is a rectangular plate that covers the upper surface of the coil 2, and a through hole 3H of the bolt 7 is formed at the center. The material of the pressing plate 3 is the same as that of the first embodiment. Further, one bolt hole 5H is formed on the upper surface of the cooling base 5. Then, a paste or sheet having high thermal conductivity may be interposed on the contact surface between the coil 2 and the flat connecting member 4F or the contact surface between the assembly and the cooling base 5.

リアクトルを冷却ベース5に固定する際、まず、扁平連結部材の雄ねじ部4MTを冷却ベースのボルト穴5Hにねじ込み、扁平連結部材4Fを冷却ベース5に固定する。   When the reactor is fixed to the cooling base 5, first, the male threaded portion 4MT of the flat connecting member is screwed into the bolt hole 5H of the cooling base, and the flat connecting member 4F is fixed to the cooling base 5.

次に、この扁平連結部材4Fが、対向し合うコイル2間の隙間に介在されるように、コア1とコイル2の組立体を冷却ベース上に設置する。   Next, the assembly of the core 1 and the coil 2 is installed on the cooling base so that the flat connecting member 4F is interposed in the gap between the coils 2 facing each other.

続いて、コイル2の上面に押え板3を配置し、貫通孔3Hにボルト7を通して、そのボルト7を扁平連結部材の雌ねじ部4FTに螺合する。これにより、押え板3と冷却ベース5の間にコア1とコイル2の組立体を固定する。   Subsequently, the presser plate 3 is disposed on the upper surface of the coil 2, the bolt 7 is passed through the through hole 3H, and the bolt 7 is screwed into the female thread portion 4FT of the flat connecting member. Thereby, the assembly of the core 1 and the coil 2 is fixed between the presser plate 3 and the cooling base 5.

この取付構造によれば、連結部材が扁平状であるため、コイル2と大きい接触面積を確保することができ、より効率的な放熱を期待することができる。また、複数の連結ボルトを用いた実施例1に比べ、連結部材を一つの部材とできるため、部品点数の減少と取付作業性の向上も実現できる。   According to this mounting structure, since the connecting member is flat, a large contact area with the coil 2 can be secured, and more efficient heat dissipation can be expected. Further, since the connecting member can be a single member as compared with the first embodiment using a plurality of connecting bolts, the number of parts can be reduced and the mounting workability can be improved.

<変形例2>
上記の実施例2では、押え板3と扁平連結部材4Fとを別部材とし、ボルト7により両者を連結したが、押え板と扁平連結部材とが一体成形されたものとしてもよい(図示略)。押え板と扁平連結部材とを一体にするには、金属材料であればダイキャスト成形や押え板と扁平連結部材の溶接により、セラミックス材料であれば押え板と扁平連結部材の一体焼結や接着により実現できる。
<Modification 2>
In the second embodiment, the presser plate 3 and the flat connecting member 4F are separate members and are connected by the bolts 7. However, the presser plate and the flat connecting member may be integrally formed (not shown). . In order to integrate the presser plate and the flat connecting member, if the metal material is die-cast molding or welding the presser plate and the flat connecting member, if it is a ceramic material, the presser plate and the flat connecting member are integrally sintered or bonded. Can be realized.

本例の取付構造を組み立てるには、押え板と扁平連結部材の一体部材のうち、扁平連結部材をリアクトルの上方から対向するコイル間の隙間に差し込み、押え板をコイル上面に当接させて、その状態で雄ねじ部を冷却ベースのボルト穴に螺合すればよい。その際、実施例2のボルト7は用いる必要がない。   To assemble the mounting structure of this example, out of the integral member of the presser plate and the flat connecting member, the flat connecting member is inserted into the gap between the opposing coils from above the reactor, and the presser plate is brought into contact with the upper surface of the coil, In this state, the male screw portion may be screwed into the bolt hole of the cooling base. At that time, it is not necessary to use the bolt 7 of the second embodiment.

この構成によれば、実施例2よりも部品点数を削減でき、コアとコイルの組立体を冷却ベースに取り付ける際の作業性にも優れる。   According to this configuration, the number of parts can be reduced as compared with the second embodiment, and the workability when the assembly of the core and the coil is attached to the cooling base is excellent.

<実施例3>
次に、図5に基づいて実施例3を説明する。実施例3は、リアクトル自体の構成は実施例1と実質的に共通であり、そのリアクトルを冷却ベースに設けた収納凹部に収納した点が主たる相違点である。
<Example 3>
Next, Example 3 will be described with reference to FIG. The third embodiment is substantially different from the first embodiment in the configuration of the reactor itself, and the main difference is that the reactor is housed in a housing recess provided in the cooling base.

本例の冷却ベース5には、上部が開口したほぼ直方体状の収納凹部5Rが形成されている。この収納凹部5Rの底面は、図5の左右端部が高く、中央が低い段差5Bが構成されている。この底面の段差5Bは、コア1とコイル2の段差にほぼ相当する高さである。そして、底面の中央部には、複数のボルト穴5Hが並列されている。また、収納凹部5Rの開口縁部にも段差5Uが形成されている。この開口縁部の段差5Uは、押え板3の厚さにほぼ相当する高さである。本例での押え板3は、中央部に複数の貫通孔3Hが形成されている点で実施例1と同じであるが、その貫通孔3Hには連結ボルト4のヘッド部4Hが収納される座ぐり3Rが形成され、かつ押え板3の面積がコア1とコイル2の組立体よりも広い点で実施例1と相違する。   The cooling base 5 of the present example is formed with a substantially rectangular parallelepiped storage recess 5R having an open top. The bottom surface of the storage recess 5R is formed with a step 5B having a high left and right end in FIG. 5 and a low center. The step 5B on the bottom surface has a height substantially corresponding to the step between the core 1 and the coil 2. A plurality of bolt holes 5H are arranged in parallel at the center of the bottom surface. A step 5U is also formed at the opening edge of the storage recess 5R. The step 5U at the opening edge has a height substantially corresponding to the thickness of the presser plate 3. The presser plate 3 in this example is the same as that of the first embodiment in that a plurality of through holes 3H are formed in the central part, but the head part 4H of the connecting bolt 4 is accommodated in the through hole 3H. The counterbore 3R is formed, and the area of the presser plate 3 is different from that of the first embodiment in that it is wider than the core 1 and coil 2 assembly.

一方、本例での冷媒Cの循環路5Cは、蛇行状に形成されている。つまり、例えば図5の左側の循環路5Cが上流側で、紙面の貫通方向に迂回して、下流側となる右側の循環路5Cにつながっている。このような循環路5Cは、ほぼ収納凹部5Rを挟む両側に形成されている。   On the other hand, the circulation path 5C of the refrigerant C in this example is formed in a meandering shape. That is, for example, the left circulation path 5C in FIG. 5 is detoured in the penetrating direction in the drawing on the upstream side and connected to the right circulation path 5C on the downstream side. Such a circulation path 5C is formed substantially on both sides sandwiching the storage recess 5R.

リアクトルを冷却ベース5に固定する際、まず、コア1とコイル2の組立体を収納凹部5Rの底面に載せ、対向するコイル2間の隙間をボルト穴5Hに位置合わせする。必要に応じて、コイル1と連結ボルト4との接触面や、組立体と冷却ベース5との接触面に、高熱伝導性のペーストやシートを介在させてもよい。   When fixing the reactor to the cooling base 5, first, the assembly of the core 1 and the coil 2 is placed on the bottom surface of the housing recess 5R, and the gap between the opposing coils 2 is aligned with the bolt hole 5H. If necessary, a paste or sheet having high thermal conductivity may be interposed between the contact surface between the coil 1 and the connecting bolt 4 and the contact surface between the assembly and the cooling base 5.

次に、コイル2の上面に押え板3を載せる。その際、押え板3は周縁部が開口縁部の段差5Uに支持され、中央部はコイル2に支持される。そして、押え板3の貫通孔3Hは対向するコイル2間の隙間に位置合わせされる。   Next, the presser plate 3 is placed on the upper surface of the coil 2. At this time, the presser plate 3 is supported at the periphery by the step 5U at the opening edge and at the center by the coil 2. The through hole 3H of the presser plate 3 is aligned with the gap between the opposing coils 2.

次に、コイル2の上部から貫通孔3Hに連結ボルト4を通し、その先端の雄ねじ部4Tをボルト穴5Hにねじ込む。その際、連結ボルトのヘッド部4Hは、押え板3の貫通孔3Hに形成された座ぐり3Rに収められる。その結果、冷却ベース5の上面と押え板3の上面が面一となり、これら上面の上に突出する部材がない状態となる。   Next, the connecting bolt 4 is passed from the upper part of the coil 2 through the through hole 3H, and the male screw portion 4T at the tip is screwed into the bolt hole 5H. At that time, the head portion 4H of the connecting bolt is accommodated in a counterbore 3R formed in the through hole 3H of the presser plate 3. As a result, the upper surface of the cooling base 5 and the upper surface of the pressing plate 3 are flush with each other, and there is no member protruding above these upper surfaces.

この連結ボルト4の締め付けにより、コア1とコイル2の組立体は、押え板3と冷却ベース5との間に挟みこまれて固定される。必要に応じて、収納凹部5Rの空スペースに高熱伝導性の充填材を充填してもよい。   By tightening the connecting bolt 4, the assembly of the core 1 and the coil 2 is sandwiched and fixed between the presser plate 3 and the cooling base 5. If necessary, the empty space of the storage recess 5R may be filled with a highly heat conductive filler.

本例の取付構造によれば、冷却ベース5にリアクトルを収納することができ、冷却ベース5と押え板3により、リアクトルの全周から熱を吸収することができる。特に、収納凹部5Rの底面に段差5Bを設けることで、コア1とコイル2の双方を収納凹部5Rの底面に接触させることができ、コア1とコイル2の双方から冷却ベース5への放熱を行うことができる。もちろん、ケースを用いず、連結ボルト4を介して放熱を行える点は実施例1と同様である。そのため、一層効率的なリアクトルの冷却を行うことができる。さらに、冷却ベース5の上面と押え板3の上面が面一となり、冷却ベース5から部材が突出することを回避できる。   According to the mounting structure of this example, the reactor can be accommodated in the cooling base 5, and the cooling base 5 and the presser plate 3 can absorb heat from the entire circumference of the reactor. In particular, by providing a step 5B on the bottom surface of the housing recess 5R, both the core 1 and the coil 2 can be brought into contact with the bottom surface of the housing recess 5R, and heat radiation from both the core 1 and the coil 2 to the cooling base 5 can be performed. It can be carried out. Of course, it is the same as in the first embodiment that heat can be radiated through the connecting bolt 4 without using a case. Therefore, the reactor can be cooled more efficiently. Furthermore, the upper surface of the cooling base 5 and the upper surface of the presser plate 3 are flush with each other, so that it is possible to prevent the members from protruding from the cooling base 5.

なお、上述した各実施例は、本発明の具体例にすぎず、他の種々の変更が可能なことはいうまでもない。   The above-described embodiments are merely specific examples of the present invention, and it goes without saying that other various modifications can be made.

本発明は、放熱特性に優れたリアクトルの取付構造として利用することができる。特に、ハイブリッド自動車や電気自動車などの自動車用リアクトルの取付構造として好適に利用することができる。   The present invention can be used as a reactor mounting structure having excellent heat dissipation characteristics. In particular, it can be suitably used as a mounting structure for a reactor for a vehicle such as a hybrid vehicle or an electric vehicle.

実施例1に係る取付構造の分解斜視図である。1 is an exploded perspective view of a mounting structure according to Embodiment 1. FIG. 実施例1において、リアクトルを構成するコアとコイルとの組立体の斜視図である。In Example 1, it is a perspective view of the assembly of the core and coil which comprise a reactor. 変形例1に係る取付構造の断面図である。It is sectional drawing of the attachment structure which concerns on the modification 1. FIG. 実施例2に係る取付構造の分解斜視図である。It is a disassembled perspective view of the attachment structure which concerns on Example 2. FIG. 実施例3に係る取付構造の断面図である。It is sectional drawing of the attachment structure which concerns on Example 3. FIG.

符号の説明Explanation of symbols

1 コア
1U U字状ブロック片 1C コイル巻回部
2 コイル
3 押え板
3H 貫通孔 3R 座ぐり
4 連結ボルト
4H ヘッド部 4T 雄ねじ部
4F 扁平連結部材
4MT 雄ねじ部 4FT 雌ねじ部
5 冷却ベース
5C 循環路 5H ボルト穴 5HL ボルト孔 5R 収納凹部
5B 段差 5U 段差
6 インシュレータ
6F つば部
7 ボルト
C 冷媒
1 core
1U U-shaped block piece 1C Coil winding part
2 coils
3 Presser plate
3H Through hole 3R Counterbore
4 Connecting bolt
4H Head 4T Male thread
4F flat connecting member
4MT male thread 4FT female thread
5 Cooling base
5C Circuit 5H Bolt hole 5HL Bolt hole 5R Recessed recess
5B step 5U step
6 Insulator
6F collar
7 volts
C refrigerant

Claims (7)

対向し合うコイル巻回部を有して閉ループ状に形成されるコアと、コイル巻回部に形成されるコイルと、コイルの形成されたコアが取り付けられる冷却ベースとを備えるリアクトルの取付構造であって、
コイルおよびコアの少なくとも一方に当接される押え部材と、
対向し合うコイル間において、押え部材と冷却ベースとを連結してコイルの形成されたコアを押え部材と冷却ベースとの間に固定する連結部材とを備え、
コイルの形成されたコアが収納されるケースを有さないことを特徴とするリアクトルの取付構造。
Reactor mounting structure comprising a core formed in a closed loop with opposing coil winding portions, a coil formed in the coil winding portion, and a cooling base to which the core on which the coil is formed is attached There,
A holding member abutted against at least one of the coil and the core;
A coupling member that couples the pressing member and the cooling base between the opposing coils and fixes the core on which the coil is formed between the pressing member and the cooling base;
A reactor mounting structure characterized by not having a case in which a core on which a coil is formed is stored.
前記連結部材は、押え部材に貫通されると共に、一端が押え部材に係合され、他端が冷却ベースに螺合されるボルトであることを特徴とする請求項1に記載のリアクトルの取付構造。   The reactor mounting structure according to claim 1, wherein the connecting member is a bolt that penetrates the holding member, has one end engaged with the holding member, and the other end screwed to the cooling base. . 前記連結部材は、対向し合うコイル間に介在される扁平部材であることを特徴とする請求項1に記載のリアクトルの取付構造。   The reactor connecting structure according to claim 1, wherein the connecting member is a flat member interposed between opposing coils. 前記冷却ベースは冷媒が流通される循環路を備え、
前記連結部材が循環路にまで到達していることを特徴とする請求項1〜3のいずれか一項に記載のリアクトルの取付構造。
The cooling base includes a circulation path through which a refrigerant flows.
The reactor attachment structure according to any one of claims 1 to 3, wherein the connecting member reaches the circulation path.
前記押え部材と連結部材とが一体であることを特徴とする請求項1〜4のいずれか一項に記載のリアクトルの取付構造。   The reactor mounting structure according to any one of claims 1 to 4, wherein the pressing member and the connecting member are integrated. 前記冷却ベースは、リアクトルの少なくとも一部が収納される収納凹部を備え、
この収納凹部にコイルの形成されたコアが収納されることを特徴とする請求項1〜5のいずれか一項に記載のリアクトルの取付構造。
The cooling base includes a storage recess in which at least a part of the reactor is stored,
The reactor mounting structure according to any one of claims 1 to 5, wherein a core in which a coil is formed is housed in the housing recess.
押え部材と冷却ベースの表面が面一に構成されていることを特徴とする請求項6に記載のリアクトルの取付構造。   The reactor mounting structure according to claim 6, wherein a surface of the presser member and the cooling base are flush with each other.
JP2008023987A 2008-02-04 2008-02-04 Reactor mounting structure Expired - Fee Related JP5167843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023987A JP5167843B2 (en) 2008-02-04 2008-02-04 Reactor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023987A JP5167843B2 (en) 2008-02-04 2008-02-04 Reactor mounting structure

Publications (2)

Publication Number Publication Date
JP2009188033A true JP2009188033A (en) 2009-08-20
JP5167843B2 JP5167843B2 (en) 2013-03-21

Family

ID=41071015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023987A Expired - Fee Related JP5167843B2 (en) 2008-02-04 2008-02-04 Reactor mounting structure

Country Status (1)

Country Link
JP (1) JP5167843B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182500A (en) * 2010-02-26 2011-09-15 Keihin Corp Switching power supply
JP2014064029A (en) * 2013-12-09 2014-04-10 Toshiba Mitsubishi-Electric Industrial System Corp Water-cooling fin and high-voltage device
JP2014187117A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Cooling device
EP2858076A1 (en) * 2013-10-04 2015-04-08 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US9373436B2 (en) 2014-07-07 2016-06-21 Hamilton Sundstrand Corporation Liquid cooled inductors
WO2017187521A1 (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Heat generating component mounting device
US10546678B2 (en) 2013-02-04 2020-01-28 Tokin Corporation Magnetic core, inductor and module including inductor
EP3929950A1 (en) * 2020-06-23 2021-12-29 Hamilton Sundstrand Corporation Thermal management of inductor on a cold plate
US12009132B2 (en) 2020-12-28 2024-06-11 Toyota Jidosha Kabushiki Kaisha Reactor unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944003U (en) * 1982-09-14 1984-03-23 松下電器産業株式会社 coil mounting device
JPH05109542A (en) * 1991-10-16 1993-04-30 Fuji Electric Co Ltd Reactor device
JPH06120054A (en) * 1992-10-06 1994-04-28 Daiyamondo Denki Kk Ignition coil provided with heat dissipating body
JPH11238629A (en) * 1998-02-19 1999-08-31 Sansha Electric Mfg Co Ltd Induction equipment
JP2001257120A (en) * 2000-03-09 2001-09-21 Soshin Electric Co Ltd Multiple cylindrical choke coil
JP2002208521A (en) * 2001-01-11 2002-07-26 Denso Corp Smoothing coil for smoothing large current
JP2004273657A (en) * 2003-03-07 2004-09-30 Tokyo Seiden Kk Reactor device
JP2005303212A (en) * 2004-04-15 2005-10-27 Denso Corp Reactor with cooler
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit
JP2007235054A (en) * 2006-03-03 2007-09-13 Nec Tokin Corp Heat sink, choke coil with heat sink, and manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944003U (en) * 1982-09-14 1984-03-23 松下電器産業株式会社 coil mounting device
JPH05109542A (en) * 1991-10-16 1993-04-30 Fuji Electric Co Ltd Reactor device
JPH06120054A (en) * 1992-10-06 1994-04-28 Daiyamondo Denki Kk Ignition coil provided with heat dissipating body
JPH11238629A (en) * 1998-02-19 1999-08-31 Sansha Electric Mfg Co Ltd Induction equipment
JP2001257120A (en) * 2000-03-09 2001-09-21 Soshin Electric Co Ltd Multiple cylindrical choke coil
JP2002208521A (en) * 2001-01-11 2002-07-26 Denso Corp Smoothing coil for smoothing large current
JP2004273657A (en) * 2003-03-07 2004-09-30 Tokyo Seiden Kk Reactor device
JP2005303212A (en) * 2004-04-15 2005-10-27 Denso Corp Reactor with cooler
JP2007227640A (en) * 2006-02-23 2007-09-06 Toyota Motor Corp Cooling structure of reactor, and electrical apparatus unit
JP2007235054A (en) * 2006-03-03 2007-09-13 Nec Tokin Corp Heat sink, choke coil with heat sink, and manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011182500A (en) * 2010-02-26 2011-09-15 Keihin Corp Switching power supply
US10546678B2 (en) 2013-02-04 2020-01-28 Tokin Corporation Magnetic core, inductor and module including inductor
US11610710B2 (en) 2013-02-04 2023-03-21 Tokin Corporation Magnetic core, inductor and module including inductor
JP2014187117A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Cooling device
EP2858076A1 (en) * 2013-10-04 2015-04-08 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US10225960B2 (en) 2013-10-04 2019-03-05 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US9299488B2 (en) 2013-10-04 2016-03-29 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
JP2014064029A (en) * 2013-12-09 2014-04-10 Toshiba Mitsubishi-Electric Industrial System Corp Water-cooling fin and high-voltage device
US9373436B2 (en) 2014-07-07 2016-06-21 Hamilton Sundstrand Corporation Liquid cooled inductors
WO2017187521A1 (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Heat generating component mounting device
JP6242504B1 (en) * 2016-04-26 2017-12-06 三菱電機株式会社 Heating component mounting device
EP3929950A1 (en) * 2020-06-23 2021-12-29 Hamilton Sundstrand Corporation Thermal management of inductor on a cold plate
US11557419B2 (en) 2020-06-23 2023-01-17 Hamilton Sundstrand Corporation Thermal management of inductor on a cold plate
US12009132B2 (en) 2020-12-28 2024-06-11 Toyota Jidosha Kabushiki Kaisha Reactor unit

Also Published As

Publication number Publication date
JP5167843B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5167843B2 (en) Reactor mounting structure
JP5246502B2 (en) Reactor and converter
JP4921154B2 (en) Reactor and power conversion device incorporating the same
JP4946775B2 (en) Reactor
JP5343387B2 (en) Reactor and converter
JP4924949B2 (en) Reactor
JP5212077B2 (en) Electromagnetic device and its cooling structure
JP2009194198A (en) Reactor
JP2010226138A (en) Component for reactor and the reactor
WO2013061799A1 (en) Power conversion device
JP5783212B2 (en) Power supply
JP2007173700A (en) Magnetic component
JP2008153293A (en) Transformer
JP2007180145A (en) Magnetic component
JP5274208B2 (en) Inductor
JP2010165951A (en) Reactor and molded coil body
JP2009212384A (en) Reactor and attaching structure for the same
JP2008112818A (en) Reactor
JP6226543B2 (en) Power supply
JP2010118423A (en) Reactor
JP2009194199A (en) Reactor and assembly method thereof
JP2009188034A (en) Reactor, and mounting structure thereof
JP6300920B2 (en) Cooling system
JP2016127109A (en) Reactor cooling structure
JP2011049494A (en) Fixation structure of reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees