JP2009187684A - Method for controlling electron flow of field emission type electron source - Google Patents

Method for controlling electron flow of field emission type electron source Download PDF

Info

Publication number
JP2009187684A
JP2009187684A JP2008023388A JP2008023388A JP2009187684A JP 2009187684 A JP2009187684 A JP 2009187684A JP 2008023388 A JP2008023388 A JP 2008023388A JP 2008023388 A JP2008023388 A JP 2008023388A JP 2009187684 A JP2009187684 A JP 2009187684A
Authority
JP
Japan
Prior art keywords
emitter
voltage
current
electron
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008023388A
Other languages
Japanese (ja)
Inventor
Takahiro Matsumoto
貴裕 松本
Yoshihiro Onizuka
好弘 鬼塚
Tomonobu Nakamura
智宣 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Original Assignee
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONIZUKA GLASS KK, Stanley Electric Co Ltd filed Critical ONIZUKA GLASS KK
Priority to JP2008023388A priority Critical patent/JP2009187684A/en
Publication of JP2009187684A publication Critical patent/JP2009187684A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling electron flow, which eliminates power loss in a field emission type electron source and enables power-saving and miniaturization of an apparatus using the field emission type electron source. <P>SOLUTION: In the field emission type electron source which emits electrons by being applied with an electric field, a conductive material 12 is placed around an emitter 11 which emits an electron flow to a target 3, and the electron flow to be fed to the target is controlled by applying a voltage negative to the emitter 11 to the conductive material 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電界が印加されることにより電子を放出する電界放射型電子源の電子流制御方法に関する。   The present invention relates to an electron current control method for a field emission electron source that emits electrons when an electric field is applied.

従来、透過電子顕微鏡、電子線描画装置、X線回折装置等に用いられ、電界が印加されることにより電子を放出する電界放射型電子源が知られている。電界放射型電子源の冷陰極(エミッタ)から放出される電子の流れ(放出電流)Jは、電界の強さをF、仕事関数をφ、定数をA、Bとしたとき、次式(1)で表される。   2. Description of the Related Art Conventionally, a field emission electron source that is used in a transmission electron microscope, an electron beam drawing apparatus, an X-ray diffraction apparatus, and the like and emits electrons when an electric field is applied is known. An electron flow (emission current) J emitted from a cold cathode (emitter) of a field emission electron source is expressed by the following equation (1) where F is a field strength, φ is a work function, and A and B are constants. ).

J=A(F/φ)exp[−Bφ3/2/F] ・・・(1)
式(1)によれば、仕事関数φを低くすることにより大きな放出電流Jを得ることができる。
J = A (F 2 / φ) exp [−Bφ 3/2 / F] (1)
According to equation (1), a large emission current J can be obtained by lowering the work function φ.

上記のような電界放射型電子源は、熱電子放出型の電子源のようにフィラメントの加熱を必要としないことから、電子流を得るために電力損失がないとされているが、電界放射型電子源から放出された電流の安定性は、真空中に残留するガスに強く依存することから、放出電流を安定化させるためには、一般に10−9Pa以下の超高真空の環境を実現することが必要となる。ところが、実際には、このような超高真空を実現することが困難であるから、上記よりも低い真空度で電界放射電子源を動作させることになる。このため、次のような電流制御方法が用いられる。 The field emission electron source as described above does not require heating of the filament, unlike the thermionic emission electron source, and it is said that there is no power loss to obtain the electron flow. Since the stability of the current emitted from the electron source strongly depends on the gas remaining in the vacuum, in order to stabilize the emission current, an ultra-high vacuum environment of 10 −9 Pa or less is generally realized. It will be necessary. However, in practice, since it is difficult to realize such an ultra-high vacuum, the field emission electron source is operated at a vacuum degree lower than that described above. For this reason, the following current control method is used.

すなわち、電界放射型電子源の電子流制御方法として、図9に示すように、エミッタ1の近傍に引き出し電極としてのグリッド2を設置し、エミッタ−グリッド間の電流を制御することによってエミッタ1とターゲット3との間の電子流を制御することが考えられている。ここで、エミッタ1とグリッド2との間に数kVの電圧VEGを印加することによって、エミッタ1から電子流が放出される。放出された電子流は、グリッド2に衝突するか又は通過する。グリッド2に衝突した電子は、エミッタ‐グリッド間を流れる電流(IEG)として検出される一方、グリッド2を通過した電子流は、エミッタ‐ターゲット間の印加電圧VETによって加速され、ターゲット3に衝突する。従って、エミッタ‐ターゲット間に一定の電子流を供給(安定化)するためには、エミッタ‐グリッド間の電流IEGが一定となるようにエミッタ‐グリッド間の電圧VETを調整することが必要である。 That is, as a method for controlling the electron current of a field emission electron source, as shown in FIG. 9, a grid 2 as an extraction electrode is provided in the vicinity of the emitter 1 and the current between the emitter and the grid is controlled by controlling the current between the emitter 1 and the emitter 1. It is considered to control the electron flow with the target 3. Here, by applying a voltage V EG of several kV between the emitter 1 and the grid 2, electrons flow from the emitter 1 is emitted. The emitted electron stream strikes or passes through the grid 2. The electrons colliding with the grid 2 are detected as a current (I EG ) flowing between the emitter and the grid, while the electron flow passing through the grid 2 is accelerated by the applied voltage V ET between the emitter and the target, collide. Thus, the emitter - in order to supply (stabilized) is a constant electron flow between the target, the emitter - emitter such that the current I EG between the grids is constant - necessary to adjust the voltage V ET between the grids It is.

しかしながら、図9の回路において、エミッタ・引き出し電極間の電位差は1〜5kV程度であり、この間を流れる電流は数百〜500μAであることから、上記の電界放射型電子源でも、0.5W(=1kV×0.5mA)程度の電力損失が生じる。また、エミッタ・引き出し電極間の電子流を安定化させるためには、1〜5kVの高い電位差の範囲で電圧VETを制御する必要がある。 However, in the circuit of FIG. 9, the potential difference between the emitter and the extraction electrode is about 1 to 5 kV, and the current flowing between them is several hundred to 500 μA. Therefore, even with the above field emission electron source, 0.5 W ( = 1 kV x 0.5 mA). Further, in order to stabilize the electron flow between the emitter and extraction electrode, it is necessary to control the voltage V ET in the range of high 1~5kV potential.

本発明は、以上の状況に鑑み、電界放射型電子源での電力損失をなくし、電界放射型電子源を用いる装置の省電力化及び小型化を可能にする電子流制御方法を提供することを目的とする。   In view of the above situation, the present invention provides an electron current control method that eliminates power loss in a field emission electron source and enables power saving and downsizing of an apparatus using the field emission electron source. Objective.

本発明は、電界が印加されることにより電子を放出する電界放射型電子源の電子流制御方法であって、ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を配置し、該導電性材料に前記エミッタに対して負の電圧を印加することにより、前記電子流を制御することを特徴とする。   The present invention relates to an electron flow control method for a field emission electron source that emits electrons when an electric field is applied, and a conductive material is disposed around an emitter that emits an electron flow to a target. The electron flow is controlled by applying a negative voltage to the emitter with respect to the emitter.

本発明によれば、エミッタを取り囲む導電性材料に、エミッタに対して負の電圧を印加することにより、ターゲットに供給する電子流を制御することができる。そして、この電子流制御では、エミッタ‐導電性材料間に電流が発生せず、従って電力損失も発生しないことから、省電力化できる。また、エミッタ‐導電性材料間の電圧のみによって電子流を制御できるので、制御電圧の低電圧化を図ることができる。これにより、制御系の電源部の容積を小さくすることが可能となり、電界放射型電子源を備える装置全体の小型化及び制御の高速化が可能となる。   According to the present invention, the electron flow supplied to the target can be controlled by applying a negative voltage to the emitter in the conductive material surrounding the emitter. In this electron flow control, no current is generated between the emitter and the conductive material, and therefore no power loss occurs, so that power can be saved. Further, since the electron flow can be controlled only by the voltage between the emitter and the conductive material, the control voltage can be reduced. As a result, the volume of the power supply unit of the control system can be reduced, and the entire apparatus including the field emission electron source can be reduced in size and the control speed can be increased.

本発明の電子流制御方法では、エミッタ‐ターゲット間に電圧を印加することによって流れる電流を計測し、その電流変動に応じた電圧により前記導電性材料に印加する負電圧を調整することが好ましい。これによれば、放出電流値を一定に安定化して制御することができる。   In the electron current control method of the present invention, it is preferable to measure a current flowing by applying a voltage between the emitter and the target, and adjust a negative voltage applied to the conductive material by a voltage according to the current fluctuation. According to this, the emission current value can be stabilized and controlled to be constant.

この場合、前記計測した電流を入力電圧に変換し、該入力電圧と前記エミッタからの放出電流の最低値に相当する参照電圧との差に応じた電圧を出力し、これに基づいて前記負電圧を生成することができる。   In this case, the measured current is converted into an input voltage, and a voltage corresponding to the difference between the input voltage and a reference voltage corresponding to the lowest value of the emission current from the emitter is output. Based on this, the negative voltage is output. Can be generated.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の方法を実施するための電界放射型電子源の構造を示す。これは、棒状のエミッタ11の周囲に円環状の金属板等の導電性材料12を配置した構造である。すなわち、エミッタ11は、導電性材料12の中心部の円形の孔13を垂直に貫通すると共に、先端が導電性材料12の上面よりもわずかに高い位置となるように配置されている。   FIG. 1 shows the structure of a field emission electron source for carrying out the method of the present invention. This is a structure in which a conductive material 12 such as an annular metal plate is disposed around a rod-shaped emitter 11. That is, the emitter 11 passes through the circular hole 13 in the central portion of the conductive material 12 vertically and is arranged so that the tip is slightly higher than the upper surface of the conductive material 12.

図2は、図1の構造の電界放射型電子源からターゲット3に安定な電子流を供給するための回路構成を示す。この回路において、エミッタ11と導電性材料12が同電位の状態では、エミッタ‐ターゲット間に高電圧VETを印加すると、図3に示すように、電気力線はエミッタ11の先端に集中し、エミッタ11からの電界放射により電子流がターゲット3に供給される。この電界放射による電子流は、エミッタ11に向かう電気力線の密度に依存し、電気力線の数は、ターゲット・エミッタ間の距離、印加電圧、エミッタ11と導電性材料12の幾何学的位置関係等によって大きく変動する。 FIG. 2 shows a circuit configuration for supplying a stable electron flow to the target 3 from the field emission electron source having the structure of FIG. In this circuit, when the emitter 11 and the conductive material 12 are at the same potential, when the high voltage VET is applied between the emitter and the target, the electric field lines are concentrated at the tip of the emitter 11 as shown in FIG. Electron current is supplied to the target 3 by field emission from the emitter 11. The electron flow due to this field emission depends on the density of electric field lines toward the emitter 11, and the number of electric field lines depends on the distance between the target and the emitter, the applied voltage, the geometric position of the emitter 11 and the conductive material 12. It varies greatly depending on the relationship.

ここで、導電性材料12にエミッタ11に対して負の電圧(−V12)を印加すると、図4に示すように、エミッタ11の先端部に対する電気力線の集中が緩和される。これにより、上記のように電気力線の密度に依存する電子流の量を可変とする、すなわち放出電流の量を制御することが可能となる。このとき、導電性材料12には負電圧が印加されているため、エミッタ11から放出された電子流は導電性材料12に衝突せず、エミッタと導電性材料の間には電流が発生しない。 Here, when a negative voltage (−V 12 ) is applied to the conductive material 12 with respect to the emitter 11, as shown in FIG. 4, the concentration of lines of electric force with respect to the tip of the emitter 11 is relaxed. This makes it possible to vary the amount of electron flow depending on the density of the electric field lines as described above, that is, to control the amount of emission current. At this time, since a negative voltage is applied to the conductive material 12, the electron flow emitted from the emitter 11 does not collide with the conductive material 12, and no current is generated between the emitter and the conductive material.

従って、図1の構造によれば、エミッタ11を取り囲む導電性材料12に、エミッタに対して負の電圧を印加することにより、ターゲット3に供給する電子流を制御することができる。そして、この電子流制御では、エミッタ‐導電性材料間に電流が発生せず、従って電力損失も発生しないことから、省電力化できる。また、エミッタ‐導電性材料間の電圧−V12(その大きさは、例えば100V程度の低電圧でよい。)のみによって電子流を制御できるので、制御系の電源部の容積を小さくすることが可能となり、電界放射型電子源を備える装置全体の小型化及び制御の高速化が可能となる。 Therefore, according to the structure of FIG. 1, the electron flow supplied to the target 3 can be controlled by applying a negative voltage to the conductive material 12 surrounding the emitter 11 with respect to the emitter. In this electron flow control, no current is generated between the emitter and the conductive material, and therefore no power loss occurs, so that power can be saved. Further, since the electron flow can be controlled only by the voltage −V 12 between the emitter and the conductive material (the magnitude may be a low voltage of about 100 V, for example), the volume of the power supply unit of the control system can be reduced. Thus, the entire apparatus including the field emission electron source can be reduced in size and the control speed can be increased.

図5は、電界放射型電子源の電子流を安定化するために導電性材料に印加する負電圧を調整する回路の構成を示す。この回路は、ターゲット3に印加する電圧VETによる電流IETを電流計21で計測し、その電流変動に応じた電圧をフィードバック回路(FB)22で生成して、その出力電圧VOUTにより導電性材料12への供給電圧(−V12)を調整するものである。 FIG. 5 shows a circuit configuration for adjusting a negative voltage applied to the conductive material in order to stabilize the electron flow of the field emission electron source. This circuit measures the current I ET by the voltage V ET to be applied to the target 3 at a current meter 21, and generates a voltage corresponding to the current variation in the feedback circuit (FB) 22, conductive by the output voltage V OUT The supply voltage (−V 12 ) to the conductive material 12 is adjusted.

上記フィードバック回路(FB)22は、例えば、図6のように構成される。このFB回路22は、電流計21で計測した電流を入力電圧VINに変換する電流‐電圧変換部23と、その入力電圧VINとエミッタからの放出電流の最低値に相当する参照電圧VREFとの差分を増幅する差動増幅器24とで構成される。ここで、差動増幅器24は、入力電圧VINと参照電圧VREFとの差に応じた電圧VOUTを出力するので、これを反転増幅して前述の負電圧−V12として導電性材料12に印加することができる。すなわち、入力電圧VINと参照電圧VREFとの差に応じた電圧VOUTを出力し、この電圧に基づいて負電圧−V12を生成する。この負電圧を導電性材料12に供給することにより、放出電流を安定化するように制御することができる。 The feedback circuit (FB) 22 is configured as shown in FIG. 6, for example. The FB circuit 22, current converts the current measured by the ammeter 21 to input voltage V IN - voltage conversion unit 23, the reference voltage V REF corresponding to the minimum value of the emission current from the input voltage V IN and the emitter And a differential amplifier 24 that amplifies the difference between the two. Here, the differential amplifier 24, so outputs a voltage V OUT corresponding to the difference between the reference voltage V REF and the input voltage V IN, the conductive material which was inverted and amplified as a negative voltage -V 12 of the aforementioned 12 Can be applied. That is, the output voltage V OUT corresponding to the difference between the reference voltage V REF and the input voltage V IN, and generates a negative voltage -V 12 based on this voltage. By supplying this negative voltage to the conductive material 12, the emission current can be controlled to be stabilized.

図5の構成において、エミッタ11にカーボンナノチューブ等で代表されるカーボンナノ構造の電子放出源、導電性材料12としてステンレス鋼を用い、これらをガラス管に封入して高真空状態に保持する。エミッタ・ターゲット間(距離4mm)に電圧VET=10kVを印加する。このとき、電界は10kV/4mm=2500V/mmである。ステンレス鋼製の導電性材料12の中心孔13(直径4mm)にエミッタ11(直径0.5mmの棒状)を配置し、このエミッタ11に対する負電圧−V12として、0から−500V(平均電位=500/2=250V/mm)を印加する。その結果、図7に示すように、エミッタ‐ターゲット間の電流IETを0.15mAから0mAにまで変化させ得ることが判明した。そして、エミッタ11の周辺に配置された導電体材料12に印加する電圧を変化させることにより、電子流の量(電流量)を制御可能であることを確認できた。なお、ステンレス‐エミッタ間の電流量は、検出レベル以下であった。 In the configuration of FIG. 5, a carbon nanostructure electron emission source represented by carbon nanotubes or the like is used as the emitter 11 and stainless steel is used as the conductive material 12, and these are sealed in a glass tube and kept in a high vacuum state. A voltage V ET = 10 kV is applied between the emitter and target (distance 4 mm). At this time, the electric field is 10 kV / 4 mm = 2500 V / mm. An emitter 11 (rod-shaped with a diameter of 0.5 mm) is arranged in a central hole 13 (diameter 4 mm) of the conductive material 12 made of stainless steel, and a negative voltage −V 12 with respect to the emitter 11 is 0 to −500 V (average potential = 500/2 = 250 V / mm). As a result, as shown in FIG. 7, the emitter - that the current I ET between the target may be varied from 0.15mA to the 0mA was found. It was confirmed that the amount of electron flow (current amount) can be controlled by changing the voltage applied to the conductor material 12 arranged around the emitter 11. The amount of current between the stainless steel and the emitter was below the detection level.

図7は、上記実施例において、導電性材料12(導電体)に負電圧を印加しない場合(0V)と印加した場合(500V)の電流放出特性を示す。図において、縦軸は電流値、横軸は放射電界の値である。   FIG. 7 shows current discharge characteristics when no negative voltage is applied to the conductive material 12 (conductor) and when it is applied (500 V) in the above embodiment. In the figure, the vertical axis represents the current value, and the horizontal axis represents the value of the radiated electric field.

また、図8は、図5に示した回路を用いて、導電性材料12に負電圧−V12を印加して電界放射型電子源からの放出電流を安定化させた場合と、安定化しない場合(安定化前)の放出電流値を示すグラフである。このグラフから、安定化しない場合に大きく変動していた電流値が、上記の安定化によりほぼ一定値をとることがわかる。 Further, FIG. 8 shows the case where the emission current from the field emission electron source is stabilized by applying the negative voltage −V 12 to the conductive material 12 using the circuit shown in FIG. It is a graph which shows the discharge | release electric current value in the case (before stabilization). From this graph, it can be seen that the current value that fluctuated greatly when not stabilized takes a substantially constant value due to the stabilization described above.

以上のように本発明の方法で放出電流が制御される電界放射型電子源は、X線管球及び電子線管球の電子線源部、走査型電子顕微鏡及び透過型電子顕微鏡の電子源部、電子線励起型蛍光灯の電子源部、電子線マイクロプローブアナライザの電子線源部、カソードルミネッセンスの電子線源部等に好適に用いられる。   As described above, the field emission electron source whose emission current is controlled by the method of the present invention includes an X-ray tube, an electron beam source portion of an electron beam tube, an electron source portion of a scanning electron microscope and a transmission electron microscope. It is suitably used for an electron source part of an electron beam excitation type fluorescent lamp, an electron beam source part of an electron beam microprobe analyzer, an electron beam source part of cathode luminescence, and the like.

本発明の方法を実施する電界放射型電子源の構造を示す図で、(A)は縦断面図、(B)は平面図。It is a figure which shows the structure of the field emission type electron source which enforces the method of this invention, (A) is a longitudinal cross-sectional view, (B) is a top view. 図1の構造でターゲットに安定な電子流を供給するための回路構成を示す図。The figure which shows the circuit structure for supplying the stable electron flow to a target with the structure of FIG. 図1の構造においてエミッタと導電性材料が同電位である場合の電気力線を示す説明図。FIG. 3 is an explanatory diagram showing lines of electric force when the emitter and the conductive material have the same potential in the structure of FIG. 1. 図1の構造において導電性材料に負電圧が印加された場合の電気力線を示す説明図。FIG. 3 is an explanatory diagram showing lines of electric force when a negative voltage is applied to the conductive material in the structure of FIG. 1. 導電性材料に負電圧を印加してエミッタからの放出電流を安定化するための回路構成を示す図。The figure which shows the circuit structure for applying the negative voltage to an electroconductive material and stabilizing the discharge current from an emitter. 図5に示されたフィードバック(FB)回路の構成例を示す回路図。FIG. 6 is a circuit diagram showing a configuration example of a feedback (FB) circuit shown in FIG. 5. 図5の回路において導電性材料に負電圧を印加しない場合と印加した場合の電流放出特性を示す図。FIGS. 6A and 6B are diagrams showing current discharge characteristics when a negative voltage is not applied to a conductive material and when it is applied in the circuit of FIG. 5. 図5の回路において導電性材料に負電圧を印加して電界放射型電子源からの放出電流を安定化させた場合と、安定化しない場合(安定化前)の放出電流値を示すグラフ。6 is a graph showing emission current values when a negative voltage is applied to the conductive material in the circuit of FIG. 5 to stabilize the emission current from the field emission electron source and when it is not stabilized (before stabilization). 電界放射型電子源を用いて電子流をターゲットに照射するための回路構成を示す図。The figure which shows the circuit structure for irradiating a target with an electron flow using a field emission type electron source.

符号の説明Explanation of symbols

1,11・・・エミッタ、2…グリッド、3…ターゲット、12・・・導電性材料、13…孔、21…電流計、22…フィードバック回路、23…電流‐電圧変換部、24…差動増幅器。   DESCRIPTION OF SYMBOLS 1,11 ... Emitter, 2 ... Grid, 3 ... Target, 12 ... Conductive material, 13 ... Hole, 21 ... Ammeter, 22 ... Feedback circuit, 23 ... Current-voltage conversion part, 24 ... Differential amplifier.

Claims (3)

電界が印加されることにより電子を放出する電界放射型電子源の電子流制御方法であって、ターゲットに対し電子流を放出するエミッタの周囲に導電性材料を配置し、該導電性材料に前記エミッタに対して負の電圧を印加することにより、前記電子流を制御することを特徴とする電子流制御方法。   An electron current control method for a field emission electron source that emits electrons when an electric field is applied, the method comprising: arranging a conductive material around an emitter that emits an electron current to a target; An electron current control method, wherein the electron current is controlled by applying a negative voltage to an emitter. 前記電界放射型電子源のエミッタとターゲットとの間に電圧を印加することによって流れる電流を計測し、その電流変動に応じた電圧により前記導電性材料に印加する負電圧を調整することを特徴とする請求項1記載の電子流制御方法。   Measuring a current flowing by applying a voltage between an emitter and a target of the field emission electron source, and adjusting a negative voltage applied to the conductive material by a voltage according to the current fluctuation; The electron current control method according to claim 1. 前記計測した電流を入力電圧に変換し、該入力電圧と前記エミッタからの放出電流の最低値に相当する参照電圧との差に応じた電圧を出力し、これに基づいて前記負電圧を生成することを特徴とする請求項2記載の電子流制御方法。   The measured current is converted into an input voltage, and a voltage corresponding to a difference between the input voltage and a reference voltage corresponding to the lowest value of the emission current from the emitter is output, and the negative voltage is generated based on the voltage. The electron current control method according to claim 2, wherein:
JP2008023388A 2008-02-02 2008-02-02 Method for controlling electron flow of field emission type electron source Pending JP2009187684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023388A JP2009187684A (en) 2008-02-02 2008-02-02 Method for controlling electron flow of field emission type electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023388A JP2009187684A (en) 2008-02-02 2008-02-02 Method for controlling electron flow of field emission type electron source

Publications (1)

Publication Number Publication Date
JP2009187684A true JP2009187684A (en) 2009-08-20

Family

ID=41070734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023388A Pending JP2009187684A (en) 2008-02-02 2008-02-02 Method for controlling electron flow of field emission type electron source

Country Status (1)

Country Link
JP (1) JP2009187684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110981A (en) * 2011-12-29 2014-09-17 엘화 엘엘씨 Field emission device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180059A (en) * 1981-04-17 1982-11-05 Perkin Elmer Corp Field discharge type electron gun for improving converging stability
JPS57180864A (en) * 1981-04-17 1982-11-08 Perkin Elmer Corp Beam controller in field discharge type gun unit
JPH10223166A (en) * 1997-01-31 1998-08-21 Nikon Corp Electron gun
WO2007030819A2 (en) * 2005-09-10 2007-03-15 Applied Materials, Inc. Electron beam source for use in electron gun
JP2007073521A (en) * 2005-09-05 2007-03-22 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Electrically-charged particle beam irradiation device and method for operating it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180059A (en) * 1981-04-17 1982-11-05 Perkin Elmer Corp Field discharge type electron gun for improving converging stability
JPS57180864A (en) * 1981-04-17 1982-11-08 Perkin Elmer Corp Beam controller in field discharge type gun unit
JPH10223166A (en) * 1997-01-31 1998-08-21 Nikon Corp Electron gun
JP2007073521A (en) * 2005-09-05 2007-03-22 Ict Integrated Circuit Testing Ges Fuer Halbleiterprueftechnik Mbh Electrically-charged particle beam irradiation device and method for operating it
WO2007030819A2 (en) * 2005-09-10 2007-03-15 Applied Materials, Inc. Electron beam source for use in electron gun

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140110981A (en) * 2011-12-29 2014-09-17 엘화 엘엘씨 Field emission device
KR20140116181A (en) * 2011-12-29 2014-10-01 엘화 엘엘씨 Anode with Suppressor Grid
KR101988069B1 (en) * 2011-12-29 2019-06-11 엘화 엘엘씨 Anode with Suppressor Grid
KR101988068B1 (en) * 2011-12-29 2019-06-11 엘화 엘엘씨 Field emission device

Similar Documents

Publication Publication Date Title
De Jonge et al. Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope
WO2016110996A1 (en) Electron gun, electron gun control method and control program, and three-dimensional sculpting device
SA516371636B1 (en) an electron emiTter for an x-ray tube
US20120286692A1 (en) Electron source
Klimov et al. Forevacuum plasma source of continuous electron beam
CN109068468A (en) A kind of integration Field emission X-ray sources
US8674300B2 (en) Feedback loop for emitter flashing
Huang et al. A dual-functional micro-focus X-ray source based on carbon nanotube field emission
JP2016031869A (en) Ion gun, ion milling device, and ion milling method
JP2009187684A (en) Method for controlling electron flow of field emission type electron source
JP2016152251A (en) Life prediction method of cathode of electron beam lithography apparatus
Suga et al. Stable multiwalled carbon nanotube electron emitter operating in low vacuum
JP6943701B2 (en) How to adjust cold cathode field emission electron gun
Perez-Martinez et al. Alternative emitter substrates for Ionic Liquid Ion Source implementation in focused ion beams
Zemskov et al. Instabilities of electrical properties of He-induced W “fuzz” within the pre-breakdown and breakdown regimes
Kandaurov et al. Study of electron beam uniformity in large-area multi-aperture diode with arc plasma cathode
KR101266618B1 (en) A remote control x-ray device
Lee et al. Stabilized and equalized field-emission currents from carbon nanotube emitters by cascade active-current-control
US6630794B2 (en) Method for determining an operational condition of a thermal field electron emitter, a method for operating the thermal field electron emitter and an electron beam utilizing system having the thermal field electron emitter
JP2018098395A (en) Charged particle device, charged particle drawing apparatus and charged particle beam control method
US11404238B2 (en) Control method for electron microscope and electron microscope
Zhuravlev et al. Intercepting grids made of anisotropic pyrolytic graphite in electron guns with a dispenser cathode
Bachmann et al. Control of the electron source current
Knapp et al. Special features of electron sources with CNT field emitter and micro grid
JP2011034734A (en) Field emission electron source

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120323