JP2009186397A - Magnetic detection ic and state quantity measuring device for rolling bearing unit - Google Patents

Magnetic detection ic and state quantity measuring device for rolling bearing unit Download PDF

Info

Publication number
JP2009186397A
JP2009186397A JP2008028565A JP2008028565A JP2009186397A JP 2009186397 A JP2009186397 A JP 2009186397A JP 2008028565 A JP2008028565 A JP 2008028565A JP 2008028565 A JP2008028565 A JP 2008028565A JP 2009186397 A JP2009186397 A JP 2009186397A
Authority
JP
Japan
Prior art keywords
sensors
pair
encoder
magnetic
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028565A
Other languages
Japanese (ja)
Other versions
JP5458498B2 (en
JP2009186397A5 (en
Inventor
Tsutomu Hibi
勉 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008028565A priority Critical patent/JP5458498B2/en
Publication of JP2009186397A publication Critical patent/JP2009186397A/en
Publication of JP2009186397A5 publication Critical patent/JP2009186397A5/ja
Application granted granted Critical
Publication of JP5458498B2 publication Critical patent/JP5458498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure allowing to reduce a space for arranging a pair of sensors opposed to the detected surface of an encoder 4. <P>SOLUTION: A hall IC 10a is used as the pair of sensors. This hall IC 10a includes an IC body 11a and a plurality of lead terminals 12, 12. The IC body 11a is the one which is made into an IC by combining a pair of hall elements 13, 13 respectively corresponding to detection parts of the pairs of sensors, and a signal processing part for processing voltage signals of both hall elements 13, 13. Moreover, the hall IC 10a has a circuit configuration that mutually inverts the polarities of the phases of both voltage signals processed by the signal processing part which respectively correspond to output signals of the pair of sensors. The above problem is solved by adopting such a structure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、転がり軸受ユニットを構成する静止側軌道輪と回転側軌道輪との間に作用する外力等の状態量を測定可能とした、転がり軸受ユニットの状態量測定装置と、この状態量測定装置のセンサを構成する為に好ましく使用できる磁気検出用ICとに関する。   The present invention relates to a state measuring device for a rolling bearing unit, which can measure a state quantity such as an external force acting between a stationary side bearing ring and a rotating side bearing ring constituting the rolling bearing unit, and the state quantity measurement. The present invention relates to a magnetic detection IC that can be preferably used for constituting a sensor of an apparatus.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, a wheel of an automobile is rotatably supported by a rolling bearing unit such as a double-row angular type with respect to a suspension device. In addition, in order to ensure the running stability of automobiles, for example, anti-lock braking system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図3は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の1例を示している。この従来構造は、使用時に懸架装置に結合固定した状態で回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIG. 3 shows an example of a conventional structure related to a state quantity measuring device for a rolling bearing unit, which employs the same load measurement principle as the structure described in Patent Document 1. In this conventional structure, a hub 2 that rotates together with a wheel while supporting and fixing the wheel in use is fixed to a plurality of rolling elements 3 and 3 on the inner diameter side of the outer ring 1 that does not rotate while being coupled and fixed to a suspension device when used. It is rotatably supported via A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy, tapered rollers may be used.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組付け状態で車両の幅方向中央側を言い、図3の右側。反対に、車両の幅方向外側となる、図3の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。このエンコーダ4は、磁性金属板製で円環状の芯金5と、この芯金5の外周面の軸方向内半部に添着固定した、永久磁石製で円筒状のエンコーダ本体6とから成る。このエンコーダ本体6は、上記芯金5の外周面の軸方向内半部に、素材である円筒状の磁性部材(永久磁石材、高保磁力材)を添着固定(接着固定、モールドによる固定等)した後、この磁性部材に着磁する事により構成している。被検出面である、上記エンコーダ本体6の外周面には、互いに異なる2種類の磁気極性であるS極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、上記被検出面の軸方向(幅方向)中央部が円周方向に関して最も突出した、「く」字形になっている。   Also, the inner end of the hub 2 in the axial direction ("inner" in relation to the axial direction refers to the center side in the width direction of the vehicle when assembled to the automobile, and is the right side in Fig. 3. Conversely, the outer side in the width direction of the vehicle. The left side of FIG. 3 is referred to as “outside” in the axial direction. The same applies throughout the present specification.) The cylindrical encoder 4 is supported and fixed concentrically with the hub 2. The encoder 4 includes an annular cored bar 5 made of a magnetic metal plate, and a cylindrical encoder body 6 made of a permanent magnet attached and fixed to the inner half of the outer peripheral surface of the cored bar 5 in the axial direction. The encoder body 6 has a cylindrical magnetic member (permanent magnet material, high coercive force material), which is a material, attached and fixed to the inner half in the axial direction of the outer peripheral surface of the core metal 5 (adhesion fixing, fixing by mold, etc.). After that, the magnetic member is magnetized. On the outer peripheral surface of the encoder body 6 that is the detection surface, two different types of magnetic polarities, S poles and N poles, are alternately arranged at equal intervals in the circumferential direction. The boundary between these S poles and N poles has a "<" shape with the central portion in the axial direction (width direction) of the detected surface protruding most in the circumferential direction.

又、上記外輪1の軸方向内端開口を塞ぐ、金属板製で有底円筒状のカバー7の内側に、合成樹脂製のセンサホルダ8を介して、1対のセンサ9a、9bを支持固定している。そして、この状態で、これら両センサ9a、9bのうち、一方のセンサ9aの検出部を上記被検出面の軸方向外半部に、他方のセンサ9bの検出部を同じく軸方向内半部に、それぞれ0.5〜2mm程度の検出隙間を介して、近接対向させている。上記外輪1と上記ハブ2との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とがアキシアル方向(軸方向)に相対変位していない、中立状態で、上記「く」字形の境界の軸方向中央部(折れ曲がり部)が、上記両センサ9a、9bの検出部同士の間の丁度中央位置に存在する様に、各部材の軸方向の設置位置を規制している。同じ状態で、上記両センサ9a、9bの検出部と、上記被検出面の磁気特性変化の位相との関係が所定通りになる様に、上記両センサ7a、7bの円周方向の設置位置を規制している。尚、上記両センサ9a、9bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。   Further, a pair of sensors 9a and 9b are supported and fixed inside a cover 7 made of a metal plate and having a bottomed cylindrical shape that closes the axial inner end opening of the outer ring 1 through a sensor holder 8 made of synthetic resin. is doing. In this state, of these two sensors 9a and 9b, the detection part of one sensor 9a is set to the outer half part in the axial direction of the detected surface, and the detection part of the other sensor 9b is also set to the inner half part in the axial direction. , They are placed close to each other through detection gaps of about 0.5 to 2 mm. An axial load is not applied between the outer ring 1 and the hub 2, and the outer ring 1 and the hub 2 are not displaced relative to each other in the axial direction (axial direction). The axial position of each member is regulated so that the axially central portion (bent portion) of the boundary is located at the central position between the detection portions of the sensors 9a and 9b. In the same state, the installation positions of the sensors 7a and 7b in the circumferential direction are set so that the relationship between the detection portions of the sensors 9a and 9b and the phase of the change in magnetic characteristics of the detected surface is as predetermined. It is regulated. In addition, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of both the sensors 9a and 9b.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、外輪1とハブ2との間にアキシアル荷重が作用する事により、これら外輪1とハブ2とがアキシアル方向に相対変位すると、これに伴って、図4に示す様な、上記両センサ9a、9bの出力信号同士の間に存在する位相差比ε(=位相差λ2 /1周期λ1 )が変化する。この位相差比εは、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)に見合った値をとる。従って、この位相差比εに基づいて、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)を求める事ができる。 In the state measuring device for a rolling bearing unit configured as described above, when an axial load acts between the outer ring 1 and the hub 2, the outer ring 1 and the hub 2 are displaced relative to each other in the axial direction. with the, such as shown in FIG. 4, the two sensors 9a, the phase difference ratio existing between the output signal between the 9b epsilon (= phase difference lambda 2/1 cycle lambda 1) is changed. This phase difference ratio ε takes a value commensurate with the action direction and magnitude of the axial load (the direction and magnitude of the relative displacement). Therefore, based on the phase difference ratio ε, the acting direction and magnitude of the axial load (the direction and magnitude of the relative displacement) can be obtained.

尚、上記外輪1と上記ハブ2とがアキシアル方向に相対変位する事に伴い、上記両センサ9a、9bの出力信号間でパルスエッジタイミングの追い越しが発生すると、上記位相差比εに基づいて、上記アキシアル方向の相対変位及び荷重を正確に求めるのが難しくなる。この為、上記パルスエッジタイミングの追い越しが発生するのを最大限防止できる様にすべく、中立状態で、上記両センサ9a、9bの出力信号の位相を、図4に示す様に互いに反転させる(中立状態での上記位相差比εを0.5に設定する)事が好ましい。この為に具体的には、前述した様に、中立状態で、上記両センサ9a、9bの検出部と、上記エンコーダ4の被検出面の磁気特性変化の位相との関係が、所定通りになる様に、上記両センサ7a、7bの円周方向の設置位置を規制する等の措置を講じる。何れにしても、上記位相差比εに基づいて上記アキシアル方向の相対変位や荷重を求める処理は、図示しない演算器により行う。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差比εと、上記アキシアル方向の相対変位又は荷重との関係(零点及びゲイン)を表す、式やマップを記憶させておく。   When the outer ring 1 and the hub 2 are displaced relative to each other in the axial direction, if a pulse edge timing overtaking occurs between the output signals of the sensors 9a and 9b, based on the phase difference ratio ε, It becomes difficult to accurately determine the relative displacement and load in the axial direction. Therefore, in order to prevent the occurrence of overtaking of the pulse edge timing as much as possible, in the neutral state, the phases of the output signals of both the sensors 9a and 9b are inverted with respect to each other as shown in FIG. The phase difference ratio ε in the neutral state is preferably set to 0.5). For this reason, specifically, as described above, in the neutral state, the relationship between the detection portions of the sensors 9a and 9b and the phase of the change in the magnetic characteristics of the detection surface of the encoder 4 is as predetermined. Similarly, measures are taken such as restricting the installation positions of the sensors 7a and 7b in the circumferential direction. In any case, the processing for obtaining the relative displacement and load in the axial direction based on the phase difference ratio ε is performed by an arithmetic unit (not shown). For this reason, in the memory of this computing unit, an expression representing the relationship (zero point and gain) between the phase difference ratio ε and the relative displacement or load in the axial direction, which has been investigated in advance by theoretical calculation or experiment. And remember the map.

尚、上述した従来構造の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜3及び特願2006−345849には、当該センサの数を3個以上とする事で、多方向の変位や外力を求められる構造が記載されている。   In the case of the above-described conventional structure, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown, Patent Documents 2 to 3 and Japanese Patent Application No. 2006-345849 describe a structure in which multidirectional displacement and external force are required by setting the number of sensors to three or more. ing.

ところで、上述の図3に示した従来構造を実施する場合には、1対のセンサ9a、9bとしてそれぞれ、図5に示す様な、磁気検出用ICの一種である、ホールIC10を使用する事ができる。このホールIC10は、略矩形のIC本体11と、複数本(図示の例では4本)のリード端子12、12とを備える。このうちのIC本体11は、上記各センサ9a、9bの検出部に相当する、信号生成部であるホール素子13(図示はしないが、符号「13」の引出し位置は、このホール素子の中心部を示す。)と、このホール素子13の電圧信号を処理(増幅、ディジタル信号への変換等)する為の信号処理部(図示せず)とを合わせて、IC化したものである。又、上記各リード端子12、12はそれぞれ、上記IC本体11の周縁部のうちの1つの辺(図5の下辺)から引き出される状態で設けられている。尚、これら各リード端子12、12の中には、少なくとも、上記IC本体11に電力を供給する為の電源端子と、上記各センサ9a、9bの出力信号に相当する、上記信号処理部により処理された上記電圧信号を取り出す為の出力端子とが含まれている。又、使用時には、上記ホール素子13の前面(図5の裏面)を、エンコーダ4(図3)の被検出面に近接対向させる。   Incidentally, when the conventional structure shown in FIG. 3 is implemented, the Hall IC 10 which is a kind of IC for magnetic detection as shown in FIG. 5 is used as the pair of sensors 9a and 9b. Can do. The Hall IC 10 includes a substantially rectangular IC body 11 and a plurality (four in the illustrated example) of lead terminals 12 and 12. Of these, the IC main body 11 is a Hall element 13 (not shown, but not shown), which corresponds to the detection part of each of the sensors 9a and 9b. And a signal processing unit (not shown) for processing (amplifying, converting to a digital signal, etc.) the voltage signal of the Hall element 13 is integrated into an IC. Each of the lead terminals 12 and 12 is provided in a state of being pulled out from one side (the lower side in FIG. 5) of the peripheral portion of the IC body 11. Each of these lead terminals 12 and 12 is processed by at least a power supply terminal for supplying power to the IC body 11 and the signal processing unit corresponding to the output signals of the sensors 9a and 9b. And an output terminal for taking out the above-mentioned voltage signal. In use, the front surface (rear surface in FIG. 5) of the Hall element 13 is brought close to and opposite to the detected surface of the encoder 4 (FIG. 3).

又、上述の様に、1対のセンサ9a、9bとしてそれぞれ、上述の様なホールIC10を使用する場合には、使用時のレイアウトとして、図6又は図7に示す様なレイアウトを採用する事が考えられる。このうちの図6に示したレイアウトは、上記1対のホールIC10、10を、エンコーダ4の被検出面の軸方向(図6〜7の上下方向)に関して、互いに同じ向きに配設するレイアウトである。この様なレイアウトを採用する場合には、一方(図示の例では上方)のホールIC10のリード端子12、12が、他方(図示の例では下方)のホールIC10と干渉しない様にすべく、これら両ホールIC10、10同士を、上記被検出面の円周方向(図6〜7の左右方向)にずらせて設置する必要がある。この為、上記両ホールIC10、10の円周方向の設置スペースが嵩む。尚、図6に示したレイアウトの様に、上記両ホールIC10、10を互いに同じ向きに配設すると、これら両ホールIC10、10の出力信号の(位相に関する)極性が互いに等しくなる。この為、中立状態で、これら両ホールIC10、10の出力信号の位相を互いに反転させる為には、この中立状態で、L=P・(N+0.5)と言った寸法関係を満たす必要がある。尚、この関係式中、Lは、上記被検出面の円周方向に関する、上記両ホールIC10、10を構成するホール素子13、13の中心間距離を、Pは、上記被検出面の磁気特性変化のピッチを、Nは整数を、それぞれ示す。   As described above, when the Hall IC 10 as described above is used as each of the pair of sensors 9a and 9b, the layout as shown in FIG. 6 or FIG. Can be considered. Among these, the layout shown in FIG. 6 is a layout in which the pair of Hall ICs 10 and 10 are arranged in the same direction with respect to the axial direction of the detection surface of the encoder 4 (vertical direction in FIGS. 6 to 7). is there. When such a layout is adopted, these lead terminals 12 and 12 of the Hall IC 10 on one side (upper in the illustrated example) do not interfere with the Hall IC 10 on the other side (lower in the illustrated example). It is necessary to install both Hall ICs 10 and 10 so as to be shifted in the circumferential direction of the surface to be detected (the left-right direction in FIGS. 6 to 7). For this reason, the installation space of the circumferential direction of both said Hall ICs 10 and 10 increases. If the Hall ICs 10 and 10 are arranged in the same direction as in the layout shown in FIG. 6, the polarities (related to the phases) of the output signals of the Hall ICs 10 and 10 are equal to each other. Therefore, in order to invert the phases of the output signals of the two Hall ICs 10 and 10 in the neutral state, it is necessary to satisfy the dimensional relationship L = P · (N + 0.5) in the neutral state. . In this relational expression, L is the distance between the centers of the Hall elements 13 and 13 constituting the Hall ICs 10 and 10 in the circumferential direction of the detected surface, and P is the magnetic characteristic of the detected surface. The pitch of change, N is an integer.

一方、図7に示したレイアウトは、上記1対のホールIC10、10を、エンコーダ4の被検出面の軸方向に関して、互いに逆向きに配設するレイアウトである。この様なレイアウトを採用する場合には、上記両ホールIC10、10のリード端子12、12が互いに干渉し合わない為、これら両ホールIC10、10同士を、上記被検出面の円周方向同位置に設置できる。従って、これら両ホールIC10、10の円周方向の設置スペースが嵩む事はない。尚、図7に示したレイアウトの様に、上記両ホールIC10、10を互いに逆向きに配設すると、これら両ホールIC10、10の出力信号の(位相に関する)極性が互いに反転する。この為、中立状態で、図示の様に、上記両ホールIC10、10の円周方向位置を一致させれば、この中立状態で、これら両ホールIC10、10の出力信号の位相を互いに反転させる事ができる。但し、図7に示したレイアウトの場合には、上記エンコーダ4の被検出面の軸方向両側に、上記両ホールIC10、10の各リード端子を引き出す為のスペースを確保する必要がある。この為、これら両ホールIC10、10の軸方向の設置スペースが嵩む。   On the other hand, the layout shown in FIG. 7 is a layout in which the pair of Hall ICs 10 and 10 are arranged in opposite directions with respect to the axial direction of the detected surface of the encoder 4. When such a layout is adopted, since the lead terminals 12 and 12 of the two Hall ICs 10 and 10 do not interfere with each other, the two Hall ICs 10 and 10 are located at the same position in the circumferential direction of the detected surface. Can be installed. Therefore, the installation space in the circumferential direction of these Hall ICs 10 and 10 does not increase. If the two Hall ICs 10 and 10 are arranged in opposite directions as in the layout shown in FIG. 7, the polarities of the output signals of these Hall ICs 10 and 10 are reversed with respect to each other. Therefore, in the neutral state, as shown in the figure, if the circumferential positions of the two Hall ICs 10 and 10 are matched, the phases of the output signals of the two Hall ICs 10 and 10 can be reversed with each other in the neutral state. Can do. However, in the case of the layout shown in FIG. 7, it is necessary to secure a space for drawing out the lead terminals of the Hall ICs 10 and 10 on both sides of the detected surface of the encoder 4 in the axial direction. For this reason, the installation space of the axial direction of these Hall ICs 10 and 10 increases.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A

本発明は、上述の様な事情に鑑み、転がり軸受ユニットの状態量測定装置に組み込んで使用する1対のセンサを設置する為のスペースを縮小できる構造を実現すべく発明したものである。   The present invention has been invented to realize a structure capable of reducing the space for installing a pair of sensors incorporated and used in a state quantity measuring device for a rolling bearing unit in view of the circumstances as described above.

本発明の磁気検出用IC及び転がり軸受ユニットの状態量測定装置のうち、請求項1に記載した磁気検出用ICは、IC本体と、複数本のリード端子とを備える。
このうちのIC本体は、それぞれが自身を通過する磁束の向き又は密度(向きと密度との一方又は双方)に応じた信号を生成する1対の信号生成部(例えばホール素子)と、これら両信号生成部で生成された信号を処理(増幅、ディジタル信号への変換等)する為の信号処理部とを備える。
又、上記複数本のリード端子はそれぞれ、上記IC本体の周縁部から引き出される状態で設けられている。又、これら各リード端子の中には、少なくとも、上記信号処理部で処理された上記両信号を取り出す為の1対の出力端子が含まれている。
又、これと共に、上記両信号生成部の前面に近接対向する部分を、エンコーダの被検出面に設けた互いに異なる2種類の磁気特性部が、それぞれ交互に、且つ、互いに同位相で通過する場合に、上記両出力端子から、互いの位相が反転した(互いの位相差比が0.5となる)1対の信号が取り出される回路構成を有する。尚、この様な回路構成は、例えば、上記両ホール素子に1対ずつ接続する電圧電極の接続方向を、これら両ホール素子同士で互いに反転させたり、或いは、この様に電圧電極の接続方向を互いに反転させる事なく、上記信号処理部で何れか一方の信号の位相のみを反転させる処理を行わせる等により、容易に行なえる。
Among the state detection devices for the magnetic detection IC and the rolling bearing unit of the present invention, the magnetic detection IC described in claim 1 includes an IC body and a plurality of lead terminals.
Of these, the IC main body includes a pair of signal generation units (for example, Hall elements) that generate a signal corresponding to the direction or density (one or both of the direction and density) of the magnetic flux passing through the IC body, and both of these. A signal processing unit for processing (amplifying, converting to a digital signal, etc.) the signal generated by the signal generation unit.
Each of the plurality of lead terminals is provided in a state of being pulled out from the peripheral edge of the IC body. Each of these lead terminals includes at least a pair of output terminals for taking out both signals processed by the signal processing unit.
At the same time, when two different types of magnetic characteristic portions provided on the detection surface of the encoder pass alternately and in phase with each other at the portion facing the front surfaces of both signal generation portions. In addition, it has a circuit configuration in which a pair of signals whose phases are inverted (the phase difference ratio is 0.5) are extracted from both the output terminals. Note that such a circuit configuration can be achieved by, for example, reversing the connection direction of the voltage electrodes connected to each of the Hall elements in pairs, or by changing the connection direction of the voltage electrodes. This can be easily performed by causing the signal processing unit to invert only the phase of one of the signals without inverting each other.

この様な構成を有する、請求項1に記載した磁気検出用ICを実施する場合に、好ましくは、請求項2に記載した様に、上記各リード端子を、上記IC本体の周縁部に存在する複数の辺のうちの1つの辺のみから引き出す状態で設ける。   When implementing the magnetic detection IC according to claim 1 having such a configuration, preferably, as described in claim 2, each of the lead terminals is present at a peripheral portion of the IC body. It is provided in a state where it is drawn out from only one side of the plurality of sides.

又、請求項3に記載した転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、使用時にも回転しない静止側軌道輪と、複数個の転動体を介してこの静止側軌道輪と同心に支持され、使用時に回転する回転側軌道輪とを備える。
又、上記状態量測定装置は、エンコーダと、2個以上のセンサと、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されたもので、この回転側軌道輪と同心の被検出面を備える。そして、この被検出面に互いに異なる2種類の磁気特性部を円周方向に関して交互に配置すると共に、この被検出面の磁気特性が円周方向に関して交互に変化する位相を、少なくとも上記被検出面の幅方向一部分で、この幅方向に関して連続的に変化させている。
又、上記各センサはそれぞれ、自身の検出部を上記エンコーダの被検出面のうちで互いに異なる部分に近接対向させた状態で、使用時にも回転しない部分に支持固定されている。そして、上記被検出面のうちで自身の検出部を対向させた部分の磁気特性の変化に対応して、出力信号を変化させる。
又、上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記両軌道輪同士の間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有する。
特に、請求項3に記載した転がり軸受ユニットの状態量測定装置に於いては、それぞれが上記各センサから選択された2個のセンサの組み合わせのうち、少なくとも1つの組み合わせを構成する為に、上記請求項1又は請求項2に記載した磁気検出用ICを使用する。且つ、上記両軌道輪同士の間に外力が作用しておらず、これら両軌道輪同士が相対変位していない、中立状態で、上記磁気検出用ICを構成する1対の信号生成部の前面を、それぞれ上記被検出面のうちで磁気特性の変化の位相が互いに等しい部分に近接対向させる。
According to a third aspect of the present invention, there is provided a rolling bearing unit state quantity measuring device including a rolling bearing unit and a state quantity measuring device.
Of these, the rolling bearing unit includes a stationary bearing ring that does not rotate during use, and a rotating bearing ring that is supported concentrically with the stationary bearing ring via a plurality of rolling elements and that rotates during use.
The state quantity measuring device includes an encoder, two or more sensors, and a calculator.
Of these, the encoder is supported and fixed directly on a part of the rotation side raceway or via another member, and includes a detection surface concentric with the rotation side raceway. Then, two different types of magnetic characteristic portions are alternately arranged on the detected surface in the circumferential direction, and at least the phase where the magnetic characteristics of the detected surface change alternately in the circumferential direction is at least the detected surface. A part of the width direction is continuously changed with respect to the width direction.
Each of the sensors is supported and fixed to a portion that does not rotate during use in a state where its own detection unit is in close proximity to a different portion of the detection surface of the encoder. And an output signal is changed corresponding to the change of the magnetic characteristic of the part which faced its own detection part in the said to-be-detected surface.
Further, the computing unit is configured to calculate a relative displacement between the two race rings and an external force acting between the two race rings based on a phase difference existing between the output signals of the sensors. Of these, it has a function of calculating at least one state quantity.
In particular, in the state quantity measuring device of the rolling bearing unit according to claim 3, in order to constitute at least one combination of two sensors each selected from the above sensors, The magnetic detection IC according to claim 1 or 2 is used. In addition, the front surface of the pair of signal generation units constituting the magnetic detection IC in a neutral state in which no external force is applied between the two raceways and the two raceways are not relatively displaced. Are placed in close proximity to portions of the detected surface that have the same phase of change in magnetic characteristics.

上述の様に構成する本発明の磁気検出用IC及び転がり軸受ユニットの状態量測定装置の場合には、1個の磁気検出用ICを、状態量測定装置を構成する2個のセンサ(互いの出力信号の位相が中立状態で反転した状態となる2個のセンサ)として使用できる(請求項1、2)か、又は使用している(請求項3)。この為、当該2個のセンサの設置スペースを縮小できる。即ち、本発明の場合には、当該2個のセンサを、1個の磁気検出用ICとして、エンコーダの被検出面の円周方向1個所に設置すれば良い。この為、当該2個のセンサの円周方向の設置スペースを縮小できる。更に、当該2個のセンサとして、請求項2に記載した磁気検出用ICを使用する場合には、エンコーダの被検出面の軸方向片側にのみ、この磁気検出用ICのリード端子を引き出す為のスペースを確保すれば良い。この為、当該2個のセンサの軸方向の設置スペースを縮小できる。又、本発明の場合には、当該2個のセンサを1個の磁気検出用ICとして取り扱える為、組立作業時に、当該2個のセンサの検出部同士の間隔がずれずに済む。従って、その分だけ、当該2個のセンサの組み付け位置を設計通りにする作業を容易に行える。   In the case of the state detection device for the magnetic detection IC and the rolling bearing unit of the present invention configured as described above, one magnetic detection IC is connected to two sensors (each of which constitutes the state measurement device). (Two sensors in which the phase of the output signal is inverted in a neutral state) can be used (Claims 1 and 2) or used (Claim 3). For this reason, the installation space of the two sensors can be reduced. That is, in the case of the present invention, the two sensors may be installed at one place in the circumferential direction of the detection surface of the encoder as one magnetic detection IC. For this reason, the installation space in the circumferential direction of the two sensors can be reduced. Further, when the magnetic detection IC described in claim 2 is used as the two sensors, the lead terminal of the magnetic detection IC is drawn out only on one side of the detected surface of the encoder in the axial direction. You just need to secure space. For this reason, the axial installation space of the two sensors can be reduced. In the case of the present invention, since the two sensors can be handled as one magnetic detection IC, the interval between the detection portions of the two sensors does not shift during assembly work. Accordingly, it is possible to easily perform the work of setting the assembly position of the two sensors as designed.

図1〜2は、本発明の実施の形態の1例を示している。尚、本例の特徴は、エンコーダ4の被検出面に対向させる1対のセンサの構造にある。その他の部分の構造及び作用は、前述の図3〜4に示した従来構造の1例と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   1 and 2 show an example of an embodiment of the present invention. The feature of this example is the structure of a pair of sensors opposed to the detection surface of the encoder 4. Since the structure and operation of the other parts are the same as those of the conventional structure shown in FIGS. 3 to 4 described above, overlapping illustrations and descriptions are omitted or simplified. explain.

本例の場合には、上記エンコーダ4の被検出面に対向させる1対のセンサ9a、9b(図3参照)として、図1にその使用状態を示す様な、磁気検出用ICの一種である、1個のホールIC10aを使用している。このホールIC10aは、略矩形のIC本体11aと、6本のリード端子12、12とを備える。このうちのIC本体11aは、上記1対のセンサ9a、9bの検出部に相当する、それぞれが信号生成部である1対のホール素子13、13(図示はしないが、図1に於いて、各符号「13、13」の引出し位置は、これら各ホール素子の中心部を示す。)と、これら1対のホール素子13、13の電圧信号を処理(増幅、ディジタル信号への変換等)する為の1対の処理回路を備えた信号処理部(図示せず)とを合わせて、IC化したものである。   In the case of this example, the pair of sensors 9a and 9b (see FIG. 3) opposed to the detection surface of the encoder 4 is a kind of IC for magnetic detection as shown in FIG. One Hall IC 10a is used. The Hall IC 10 a includes a substantially rectangular IC body 11 a and six lead terminals 12 and 12. Of these, the IC body 11a corresponds to the detection unit of the pair of sensors 9a and 9b, and is a pair of Hall elements 13 and 13 (not shown, but not shown in FIG. The extraction position of each symbol “13, 13” indicates the center of each Hall element.) And the voltage signals of the pair of Hall elements 13, 13 are processed (amplified, converted into digital signals, etc.). A signal processing unit (not shown) provided with a pair of processing circuits is integrated into an IC.

又、上記6本のリード端子12、12はそれぞれ、上記IC本体11aの周縁部のうちの1つの辺(図1の下辺)から引き出される状態で設けられている。図2に回路図で示す様に、上記6本のリード端子12、12のうちの1本は、上記IC本体11aに電力を供給する電源につなげる為の電源端子である。又、別の2本は、それぞれが上記各センサ9a、9bの出力信号に相当する、上記信号処理部により処理された上記各ホール素子13、13の電圧信号を取り出す為の1対の出力端子である。又、残りの3本は、それぞれ接地(GND)につなげる為のGND端子である。又、図示の様に、各リード端子12、12の途中、若しくは各リード端子12、12間に、それぞれ必要に応じて、コンデンサC1 〜C5 を接続している。 Each of the six lead terminals 12 and 12 is provided so as to be drawn from one side (the lower side in FIG. 1) of the peripheral edge of the IC body 11a. As shown in the circuit diagram of FIG. 2, one of the six lead terminals 12, 12 is a power supply terminal for connection to a power supply for supplying power to the IC body 11a. The other two are a pair of output terminals for taking out the voltage signals of the Hall elements 13 and 13 processed by the signal processor, each corresponding to the output signal of the sensors 9a and 9b. It is. The remaining three are GND terminals for connection to ground (GND). Further, as shown in the figure, capacitors C 1 to C 5 are connected between the lead terminals 12 and 12 or between the lead terminals 12 and 12 as necessary.

上述の様に構成するホールIC10aは、合成樹脂製のセンサホルダ8(図3参照)に包埋支持した状態で、図1に示す様に、一方(図1の上方)のホール素子13の前面(図1の裏面)を、上記エンコーダ4の被検出面の軸方向外半部(図1の上半部)に、他方(図1の下方)のホール素子13の前面(図1の裏面)を、上記被検出面の軸方向内半部(図1の下半部)に、それぞれ近接対向させている。又、外輪1とハブ2(図3参照)との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とがアキシアル方向に相対変位していない、中立状態で、図1に示す様に、上記被検出面の軸方向中央部(「く」字形の境界の折れ曲がり部)が、上記両ホール素子13、13の中心部同士の間の丁度中央位置に存在する様に、各部材の軸方向の設置位置を規制している。又、同じ状態で、それぞれが検出部である上記両ホール素子13、13の中心部を、上記被検出面の円周方向同位置に配置する事により、これら両ホール素子13、13の中心部が、上記被検出面に存在する同じ「く」字形境界に対し、同時に近接対向する様にしている。尚、この状態で、上記ホールIC10aの各リード端子12、12は、上記被検出面の軸方向内側(図1の下側)に引き出す状態で配設している。   The Hall IC 10a configured as described above is embedded and supported in a sensor holder 8 (see FIG. 3) made of synthetic resin, and as shown in FIG. 1, the front surface of one Hall element 13 (upper in FIG. 1). (The back surface in FIG. 1) is placed on the outer half (in the upper half in FIG. 1) in the axial direction of the surface to be detected of the encoder 4, and the front surface (the back in FIG. 1) of the other (lower in FIG. 1) Hall element 13 Are closely opposed to the inner half of the detected surface in the axial direction (lower half of FIG. 1). Moreover, an axial load is not acting between the outer ring 1 and the hub 2 (see FIG. 3), and the outer ring 1 and the hub 2 are not displaced relative to each other in the axial direction, as shown in FIG. Similarly, each member is arranged such that the axially central portion (bent portion of the "<"-shaped boundary) of the surface to be detected exists at the central position between the central portions of the Hall elements 13 and 13. The installation position in the axial direction is regulated. Further, in the same state, the central portions of the two Hall elements 13 and 13, each of which is a detection unit, are arranged at the same position in the circumferential direction of the detected surface, so that the central portions of the Hall elements 13 and 13 are both located However, the same "<"-shaped boundary existing on the detected surface is simultaneously close to and opposed to each other. In this state, the lead terminals 12 and 12 of the Hall IC 10a are arranged in a state of being drawn out inward in the axial direction (lower side in FIG. 1) of the detected surface.

又、本例の場合には、上述の様な位置規制を実現した中立状態で、上記エンコーダ4の回転時に、即ち、上記両ホール素子13、13の前面に近接対向する部分を、このエンコーダ4の被検出面に設けたS極とN極とが、それぞれ交互に、且つ、互いに同位相で通過する場合に、上記各リード端子12、12に含まれる1対の出力端子から、互いの位相が反転した(前述の図4に示した様な)1対の出力信号が取り出される様に、上記IC本体11aの回路構成を決定している。尚、この様な回路構成の決定は、例えば、上記両ホール素子13、13に1対ずつ接続する電圧電極の接続方向を、これら両ホール素子13、13同士で互いに反転させたり、或いは、この様に電圧電極の接続方向を互いに反転させる事なく、前記信号処理部で何れか一方の出力信号の位相のみを反転させる処理を行わせる等により、容易に行える。   Further, in the case of this example, in the neutral state in which the position restriction as described above is realized, when the encoder 4 is rotated, that is, the portion that is close to and opposed to the front surfaces of the Hall elements 13 and 13 is the encoder 4. When the S poles and N poles provided on the detected surface pass alternately and in the same phase, the phase from the pair of output terminals included in each of the lead terminals 12 and 12 is The circuit configuration of the IC main body 11a is determined so that a pair of output signals (as shown in FIG. 4 described above) are extracted. Such a circuit configuration can be determined by, for example, reversing the connection direction of the voltage electrodes connected to each of the Hall elements 13 and 13 between the Hall elements 13 and 13, or In this manner, the signal processing unit can easily perform the process of inverting only the phase of one of the output signals without inverting the connection directions of the voltage electrodes.

上述の様に、本例の磁気検出用IC及び転がり軸受ユニットの状態量測定装置の場合には、この状態量測定装置を構成する2個のセンサとして、1個のホールIC10aを使用している。この為、当該2個のセンサの設置スペースを縮小できる。即ち、本例の場合には、当該2個のセンサを、1個のホールIC10aとして、エンコーダ4の被検出面の円周方向1個所に設置すれば良い。この為、当該2個のセンサの円周方向の設置スペースを縮小できる。更に、本例の場合には、上記ホールIC10aの各リード端子12、12を、上記被検出面の軸方向内側にのみ引き出す状態で配設している。この為、当該2個のセンサの軸方向の設置スペースを縮小できる。又、本例の場合には、当該2個のセンサを1個のホールIC10aとして取り扱える為、組立作業時に、当該2個のセンサの検出部同士の間隔がずれずに済む。従って、その分だけ、当該2個のセンサの組み付け位置を設計通りにする作業を容易に行える。この結果、組立工程での歩留りを向上させる事ができる。   As described above, in the case of the state quantity measuring device for the magnetic detection IC and the rolling bearing unit of this example, one Hall IC 10a is used as two sensors constituting the state quantity measuring device. . For this reason, the installation space of the two sensors can be reduced. That is, in the case of this example, the two sensors may be installed at one place in the circumferential direction of the detection surface of the encoder 4 as one Hall IC 10a. For this reason, the installation space in the circumferential direction of the two sensors can be reduced. Further, in the case of this example, the lead terminals 12 and 12 of the Hall IC 10a are arranged so as to be drawn out only inward in the axial direction of the detected surface. For this reason, the axial installation space of the two sensors can be reduced. In the case of this example, since the two sensors can be handled as one Hall IC 10a, the interval between the detecting portions of the two sensors does not shift during assembly work. Accordingly, it is possible to easily perform the work of setting the assembly position of the two sensors as designed. As a result, the yield in the assembly process can be improved.

尚、本発明は、上述した実施の形態に限らず、特許請求の範囲に規制した要件を満たす、各種の構造に適用可能である。例えば、本発明は、前述の特許文献2〜3及び特願2006−345849に記載された構造、即ち、センサの数を3個以上とする事で、多方向の変位や外力を求められる構造にも適用可能である。又、本発明は、エンコーダの被検出面を円輪面とし、且つ、この被検出面にセンサの検出部を軸方向に対向させる事で、径方向の変位や外力を求められる様にした構造にも適用可能である。更に、本発明は、エンコーダとして単なる磁性材製のもの{被検出面に凹部(又は透孔)と凸部(又は柱部)とを円周方向に関して交互に配置したもの}を組み込んだ構造にも適用可能である。但し、この様な構造に適用する場合には、センサ側に永久磁石を組み込む必要がある。具体的には、ホールICを構成する1対のホール素子の背面にそれぞれ、永久磁石の極を対向させる。   Note that the present invention is not limited to the above-described embodiment, and can be applied to various structures that satisfy the requirements regulated in the claims. For example, the present invention has a structure described in Patent Documents 2 to 3 and Japanese Patent Application No. 2006-345849 described above, that is, a structure that requires multi-directional displacement and external force by setting the number of sensors to three or more. Is also applicable. In addition, the present invention has a structure in which the detection surface of the encoder is a ring surface, and the detection portion of the sensor is opposed to the detection surface in the axial direction so that radial displacement and external force can be obtained. It is also applicable to. Furthermore, the present invention has a structure in which an encoder made of a simple magnetic material is used (recesses (or through-holes) and protrusions (or pillars) are alternately arranged in the circumferential direction on the surface to be detected). Is also applicable. However, when applied to such a structure, it is necessary to incorporate a permanent magnet on the sensor side. Specifically, the poles of the permanent magnets are opposed to the back surfaces of the pair of Hall elements that constitute the Hall IC.

本発明の実施の形態の1例を示す、エンコーダの被検出面の円周方向一部分と、2個のセンサとして使用する1個のホールICとを、このエンコーダの径方向外側から見た図。The figure which showed one example of the circumference direction of the to-be-detected surface of an encoder which shows one example of embodiment of this invention, and one Hall IC used as two sensors from the radial direction outer side of this encoder. ホールICを構成するIC本体と各リード端子との関係を略示する回路図。The circuit diagram which briefly shows the relationship between the IC main body which comprises Hall IC, and each lead terminal. 転がり軸受ユニットの状態量測定装置の従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure of the state quantity measuring apparatus of a rolling bearing unit. 1対のセンサの出力信号を示す線図。The diagram which shows the output signal of a pair of sensor. ホールICの従来構造の1例を示す平面図。The top view which shows an example of the conventional structure of Hall IC. エンコーダの被検出面の円周方向一部分と、1対のセンサとして使用する、互いに同じ向きに配設した1対のホールICとを、このエンコーダの径方向外方から見た図。The figure which looked at the circumference direction part of the to-be-detected surface of an encoder, and a pair of Hall ICs used as a pair of sensors arrange | positioned in the mutually same direction from the radial direction outer side of this encoder. エンコーダの被検出面の円周方向一部分と、1対のセンサとして使用する、互いに逆向きに配設した1対のホールICとを、このエンコーダの径方向外方から見た図。The figure which looked at the circumference direction part of the to-be-detected surface of an encoder, and a pair of Hall ICs which are used as a pair of sensors and which were mutually arrange | positioned from the radial outside of this encoder.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4 エンコーダ
5 芯金
6 エンコーダ本体
7 カバー
8 センサホルダ
9a、9b センサ
10、10a ホールIC
11、11a IC本体
12 リード端子
13 ホール素子
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4 Encoder 5 Core 6 Encoder main body 7 Cover 8 Sensor holder 9a, 9b Sensor 10, 10a Hall IC
11, 11a IC body 12 Lead terminal 13 Hall element

Claims (3)

それぞれが自身を通過する磁束の向き又は密度に応じた信号を生成する1対の信号生成部と、これら両信号生成部で生成された信号を処理する為の信号処理部とを備えたIC本体と、それぞれがこのIC本体の周縁部から引き出される状態で設けられた、上記信号処理部で処理された上記両信号を取り出す為の1対の出力端子を含む複数本のリード端子とを備えると共に、上記両信号生成部の前面に対向する部分を、エンコーダの被検出面に設けた互いに異なる2種類の磁気特性部が、それぞれ交互に、且つ、互いに同位相で通過する場合に、上記両出力端子から、互いの位相が反転した1対の信号が取り出される回路構成を有する磁気検出用IC。   An IC main body comprising a pair of signal generation units that generate signals according to the direction or density of magnetic flux that passes through each of them, and a signal processing unit for processing signals generated by both signal generation units And a plurality of lead terminals including a pair of output terminals for taking out both signals processed by the signal processing unit, each provided in a state of being pulled out from the peripheral portion of the IC body. When the two different types of magnetic characteristic portions provided on the detected surface of the encoder pass alternately and in phase with each other, the both outputs of the two signal generating portions are opposed to the front surfaces. A magnetic detection IC having a circuit configuration in which a pair of signals whose phases are inverted are extracted from a terminal. 各リード端子が、IC本体の周縁部に存在する複数の辺のうちの1つの辺のみから引き出される状態で設けられている、請求項1に記載した磁気検出用IC。   2. The magnetic detection IC according to claim 1, wherein each lead terminal is provided in a state of being pulled out from only one side of a plurality of sides existing at a peripheral portion of the IC body. 転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、使用時にも回転しない静止側軌道輪と、複数個の転動体を介してこの静止側軌道輪と同心に支持され、使用時に回転する回転側軌道輪とを備えたものであり、
上記状態量測定装置は、エンコーダと、2個以上のセンサと、演算器とを備えたものであって、
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されたもので、この回転側軌道輪と同心の被検出面を備え、この被検出面に互いに異なる2種類の磁気特性部を円周方向に関して交互に配置すると共に、この被検出面の磁気特性が円周方向に関して交互に変化する位相を、少なくとも上記被検出面の幅方向一部分で、この幅方向に関して連続的に変化させており、
上記各センサはそれぞれ、自身の検出部を上記エンコーダの被検出面のうちで互いに異なる部分に対向させた状態で、使用時にも回転しない部分に支持固定されていて、上記被検出面のうちで自身の検出部を対向させた部分の磁気特性の変化に対応して出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記両軌道輪同士の間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有するものである、
転がり軸受ユニットの状態量測定装置に於いて、
それぞれが上記各センサから選択された2個のセンサの組み合わせのうち、少なくとも1つの組み合わせを構成する為に、請求項1又は請求項2に記載した磁気検出用ICを使用し、且つ、上記両軌道輪同士の間に外力が作用しておらず、これら両軌道輪同士が相対変位していない、中立状態で、上記磁気検出用ICを構成する1対の信号生成部の前面を、それぞれ上記被検出面のうちで磁気特性の変化の位相が互いに等しい部分に対向させている事を特徴とする転がり軸受ユニットの状態量測定装置。
A rolling bearing unit and a state quantity measuring device;
Of these, the rolling bearing unit includes a stationary side ring that does not rotate during use, and a rotational side ring that is supported concentrically with the stationary side ring through a plurality of rolling elements and that rotates during use. Is,
The state quantity measuring device includes an encoder, two or more sensors, and a calculator.
Of these, the encoder is supported and fixed to a part of the rotating side raceway directly or via another member, and has a detected surface concentric with the rotating side raceway. Two different types of magnetic characteristic portions are alternately arranged in the circumferential direction, and the phase in which the magnetic characteristics of the detected surface alternately change in the circumferential direction is set to the width of at least a part of the detected surface in the width direction. Continuously changing with respect to direction,
Each of the sensors is supported and fixed to a portion that does not rotate during use with its own detection unit facing a different portion of the detected surface of the encoder. The output signal is changed in response to the change in the magnetic characteristics of the part facing its own detection unit,
The computing unit is based on a phase difference existing between the output signals of the sensors, and a relative displacement between the two races and an external force acting between the races. , Which has a function of calculating at least one kind of state quantity,
In the state quantity measuring device of the rolling bearing unit,
A magnetic detection IC according to claim 1 or 2 is used to form at least one combination of two sensors each selected from the sensors, and both In the neutral state where no external force is acting between the races and the two races are not relatively displaced, the front surfaces of the pair of signal generation units constituting the magnetic detection IC are respectively described above. An apparatus for measuring a state quantity of a rolling bearing unit, characterized in that the phase of change in magnetic properties is opposed to a portion of the detected surface that is equal to each other.
JP2008028565A 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units Active JP5458498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028565A JP5458498B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028565A JP5458498B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Publications (3)

Publication Number Publication Date
JP2009186397A true JP2009186397A (en) 2009-08-20
JP2009186397A5 JP2009186397A5 (en) 2011-03-10
JP5458498B2 JP5458498B2 (en) 2014-04-02

Family

ID=41069781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028565A Active JP5458498B2 (en) 2008-02-08 2008-02-08 State quantity measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP5458498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056971A (en) * 2012-09-13 2014-03-27 Tokai Rika Co Ltd Mounting structure of electronic component

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159708A (en) * 1994-12-09 1996-06-21 Nissan Motor Co Ltd Mr element type rotation sensor
JPH1012108A (en) * 1996-06-25 1998-01-16 Mitsubishi Electric Corp Magnetic moving body sensor
JP2006003178A (en) * 2004-06-16 2006-01-05 Na:Kk Gear sensor
JP2006029900A (en) * 2004-07-14 2006-02-02 Tdk Corp Magnetic sensor for encoder
JP2006194837A (en) * 2005-01-17 2006-07-27 Denso Corp Magnetic detector
JP2006258801A (en) * 2005-02-21 2006-09-28 Nsk Ltd Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2006292730A (en) * 2005-03-15 2006-10-26 Nsk Ltd Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2008026041A (en) * 2006-07-19 2008-02-07 Nsk Ltd Ball bearing unit with load measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159708A (en) * 1994-12-09 1996-06-21 Nissan Motor Co Ltd Mr element type rotation sensor
JPH1012108A (en) * 1996-06-25 1998-01-16 Mitsubishi Electric Corp Magnetic moving body sensor
JP2006003178A (en) * 2004-06-16 2006-01-05 Na:Kk Gear sensor
JP2006029900A (en) * 2004-07-14 2006-02-02 Tdk Corp Magnetic sensor for encoder
JP2006194837A (en) * 2005-01-17 2006-07-27 Denso Corp Magnetic detector
JP2006258801A (en) * 2005-02-21 2006-09-28 Nsk Ltd Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2006292730A (en) * 2005-03-15 2006-10-26 Nsk Ltd Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2008026041A (en) * 2006-07-19 2008-02-07 Nsk Ltd Ball bearing unit with load measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056971A (en) * 2012-09-13 2014-03-27 Tokai Rika Co Ltd Mounting structure of electronic component

Also Published As

Publication number Publication date
JP5458498B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JPH11194009A (en) Rolling bearing with rotational angle sensing device
JP2008019933A (en) Bearing device with sensor and bearing system
JP2008224440A (en) Bearing rotation detecting apparatus
JP2017160974A (en) Bearing device with sensor
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP5724326B2 (en) Rolling bearings with sensors and automobiles, railway vehicles, steelmaking facilities, machine tools using rolling bearings with sensors
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP4269669B2 (en) Load measuring device for rolling bearing units
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2005180985A (en) Load measuring device for rolling bearing unit
JP4752483B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2007212389A (en) Load measuring device for rolling bearing unit
JP4393783B2 (en) Bearing with rotation sensor
JP2002340918A (en) Rotational speed detector and bearing for wheel having the same
JP5151634B2 (en) Magnetization method of encoder
JP2006226999A (en) Displacement measuring device and load measurement device for rolling bearing unit
JP2008157790A (en) Method for assembling apparatus which measures state quantity of rolling bearing unit
JP2006177834A (en) Rolling bearing unit having sensor
JP5481831B2 (en) Rotating machine state quantity measuring device
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2005337751A (en) Rotation supporting apparatus with rotation angle detecting device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150