JP2009182825A - Imaging device and image correction method therefor - Google Patents

Imaging device and image correction method therefor Download PDF

Info

Publication number
JP2009182825A
JP2009182825A JP2008021200A JP2008021200A JP2009182825A JP 2009182825 A JP2009182825 A JP 2009182825A JP 2008021200 A JP2008021200 A JP 2008021200A JP 2008021200 A JP2008021200 A JP 2008021200A JP 2009182825 A JP2009182825 A JP 2009182825A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
light
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008021200A
Other languages
Japanese (ja)
Inventor
Tetsuya Takeda
哲也 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008021200A priority Critical patent/JP2009182825A/en
Publication of JP2009182825A publication Critical patent/JP2009182825A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform appropriate correction even if the transfer efficiency of a charge transfer path is changed according to an imaging temperature in the correction of a pick-up image signal of a subject to be photographed with the transfer efficiency. <P>SOLUTION: In the image correction method for the imaging device for photographing an image of a subject to be photographed by a solid-state imaging element having a charge transfer path, when ISO sensitivity in the photographing of the subject to be photographed has predetermined sensitivity or higher (step S6), light is emitted from a built-in light emitting source in a state that a mechanical shutter is closed after the photographing (step S7) to illuminate a light receiving surface of the solid-state imaging element at a predetermined brightness, the transfer efficiency of the charge transfer path is determined from an output signal obtained from the solid-state imaging element by the emission (step S8), and an imaging signal of the subject to be photographed output from the solid-state imaging element by the photographing is corrected based on the transfer efficiency (step S9). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はCCD型固体撮像素子を搭載した撮像装置及びその画像補正方法に係り、特に、水平電荷転送路の転送効率が温度で変動した場合でも高品質な被写体画像を撮像することができる撮像装置及びその画像補正方法に関する。   The present invention relates to an image pickup apparatus equipped with a CCD solid-state image pickup device and an image correction method thereof, and in particular, an image pickup apparatus capable of picking up a high-quality subject image even when the transfer efficiency of a horizontal charge transfer path varies with temperature. And an image correction method thereof.

近年のデジタルカメラ等の撮像装置に設けられるCCD型固体撮像素子は、数百万画素以上を搭載するのが普通になってきており、1画素1画素が微細化されている。この結果、1画素1画素に蓄積される信号電荷量は少なく、得られる信号レベルは小さい。このため、近年のデジタルカメラに設けられる高ISO感度モードで被写体画像を撮影すると、1画素1画素に蓄積される信号電荷量は更に少なくなってしまう。   2. Description of the Related Art In recent years, CCD type solid-state imaging devices provided in imaging devices such as digital cameras are usually mounted with millions of pixels or more, and each pixel is miniaturized. As a result, the amount of signal charge accumulated in one pixel and one pixel is small, and the signal level obtained is small. For this reason, when a subject image is taken in a high ISO sensitivity mode provided in a recent digital camera, the amount of signal charge accumulated in each pixel is further reduced.

その一方で、CCD型固体撮像素子では、信号電荷を水平電荷転送路(HCCD)で転送し出力する場合、水平転送効率が100%でないため、前の画素の信号電荷を転送するとき発生する転送取り残し分が後の画素の信号電荷に混ざってしまうという現象が発生するという問題がある。   On the other hand, in the CCD type solid-state imaging device, when the signal charge is transferred and output through the horizontal charge transfer path (HCCD), the horizontal transfer efficiency is not 100%. Therefore, the transfer generated when the signal charge of the previous pixel is transferred. There is a problem that a phenomenon occurs in which the remaining amount is mixed with the signal charge of the subsequent pixel.

特に、転送する信号電荷量が少なくなると、本来の信号電荷量に対しオフセット性の転送取り残し分が占める割合が増加してしまい、異なる色の画素間で信号電荷が混ざると、カラー画像の色味を極めて劣化させてしまうという問題が発生する。   In particular, if the amount of signal charge to be transferred decreases, the proportion of the remaining untransferred transfer with respect to the original signal charge amount increases, and if signal charges are mixed between pixels of different colors, the color of the color image This causes a problem of extremely degrading.

このため、従来は、特許文献1,2に記載されている様に、ISO感度毎の転送取り残し量を予め測定して記録しておき、これに基づいて、撮像画像信号を補正する様にしている。   For this reason, conventionally, as described in Patent Documents 1 and 2, the remaining transfer amount for each ISO sensitivity is measured and recorded in advance, and based on this, the captured image signal is corrected. Yes.

特開2006-319827号公報JP 2006-319827 A 特開2006-157677号公報JP 2006-157777 A

水平電荷転送路の転送効率は、温度依存性を持っており、常温に対して低温では悪くなり、高温では良くなる特性がある。このため、従来の様に転送取り残し量を測定し、この転送取り残し量で撮像画像信号を補正しても、測定時の温度と異なる温度条件下で撮影した撮像画像信号は、精度の高い補正ができない。   The transfer efficiency of the horizontal charge transfer path is temperature dependent, and has a characteristic that it deteriorates at a low temperature with respect to room temperature and improves at a high temperature. For this reason, even if the untransferred amount is measured as in the past and the captured image signal is corrected with this untransferred amount, the captured image signal captured under a temperature condition different from the temperature at the time of measurement is corrected with high accuracy. Can not.

本発明の目的は、撮影時の温度によらず精度の高い画像補正を行うことができる撮像装置及びその画像補正方法を提供することにある。   An object of the present invention is to provide an imaging apparatus and an image correction method thereof that can perform highly accurate image correction regardless of the temperature at the time of shooting.

本発明の撮像装置は、入射光の光量に応じて検出された信号電荷を転送する電荷転送路を有する固体撮像素子と、該固体撮像素子の受光面の前段に設けられたメカニカルシャッタと、該受光面と該メカニカルシャッタとの間の前記入射光の光路から外れた位置に設けられ該受光面を所定照度で照明する発光源と、被写体を撮影するときのISO感度が所定感度以上の場合に該撮影の後に前記メカニカルシャッタ閉の状態で前記発光源に発光指示を出して発光させる第1制御手段と、該発光に基づく前記固体撮像素子の出力信号から前記電荷転送路の転送効率を求める第2制御手段と、前記撮影により前記固体撮像素子から出力された被写体の撮像信号を前記転送効率に基づいて補正する第3制御手段とを備えることを特徴とする。   An image pickup apparatus according to the present invention includes a solid-state image pickup device having a charge transfer path for transferring a signal charge detected according to the amount of incident light, a mechanical shutter provided in front of a light receiving surface of the solid-state image pickup device, When a light source that illuminates the light receiving surface with a predetermined illuminance between the light receiving surface and the mechanical shutter and that illuminates the light receiving surface with a predetermined illuminance, and when the ISO sensitivity when photographing the subject is equal to or higher than the predetermined sensitivity After the photographing, first control means for emitting light by instructing the light source to emit light while the mechanical shutter is closed, and obtaining transfer efficiency of the charge transfer path from the output signal of the solid-state imaging device based on the light emission. 2 control means, and third control means for correcting the imaging signal of the subject output from the solid-state imaging device by the imaging based on the transfer efficiency.

本発明の撮像装置の画像補正方法は、電荷転送路を有する固体撮像素子によって被写体の画像を撮影する撮像装置の画像補正方法において、被写体を撮影したときのISO感度が所定感度以上の場合、該撮影の後にメカニカルシャッタ閉の状態で内蔵発光源を発光させて前記固体撮像素子の受光面を所定照度で照明させ、該発光により前記固体撮像素子から得られる出力信号から前記電荷転送路の転送効率を求め、前記撮影により前記固体撮像素子から出力された被写体の撮像信号を前記転送効率に基づいて補正することを特徴とする。   An image correction method for an image pickup apparatus according to the present invention is an image correction method for an image pickup apparatus that picks up an image of a subject with a solid-state image pickup device having a charge transfer path. After photographing, the built-in light source emits light with the mechanical shutter closed to illuminate the light receiving surface of the solid-state image sensor at a predetermined illuminance, and the transfer efficiency of the charge transfer path from the output signal obtained from the solid-state image sensor by the light emission The imaging signal of the subject output from the solid-state imaging device by the imaging is corrected based on the transfer efficiency.

本発明によれば、被写体の撮影毎に、電荷転送路の転送効率を測定しこの転送効率で被写体の撮像信号を補正するか否かを判断するため、撮影温度が変化した場合でもその温度に応じた転送効率で撮像信号を補正でき、常に最適な画像補正が可能となる。   According to the present invention, every time a subject is photographed, the transfer efficiency of the charge transfer path is measured, and it is determined whether or not the imaging signal of the subject is corrected with this transfer efficiency. The imaging signal can be corrected with the corresponding transfer efficiency, and the optimum image correction can always be performed.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラの機能ブロック図である。このデジタルカメラは、撮像部21と、撮像部21から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理(CDS)等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によってA/D23,アナログ信号処理部22,撮像部21の駆動制御を行う駆動部(タイミングジェネレータTGを含む)24と、CPU29からの指示によって発光するフラッシュ25とを備える。   FIG. 1 is a functional block diagram of a digital camera according to an embodiment of the present invention. This digital camera includes an imaging unit 21, an analog signal processing unit 22 that performs analog processing such as automatic gain adjustment (AGC) and correlated double sampling processing (CDS) on analog image data output from the imaging unit 21, and analog An analog / digital conversion unit (A / D) 23 that converts analog image data output from the signal processing unit 22 into digital image data, and an A / D 23, analog signal processing in response to an instruction from a system control unit (CPU) 29 described later. And a driving unit (including a timing generator TG) 24 that controls the driving of the imaging unit 21 and a flash 25 that emits light in response to an instruction from the CPU 29.

撮像部21は、被写界からの光を集光する光学レンズ系21aと、該光学レンズ系21aを通った光を絞る絞りやメカニカルシャッタ21bと、光学レンズ系21aによって集光され絞りによって絞られた光を受光し撮像画像データ(アナログ画像データ)を出力するCCD型固体撮像素子100とを備える。   The imaging unit 21 collects light from the object field, a diaphragm or a mechanical shutter 21b that condenses the light that has passed through the optical lens system 21a, and a diaphragm that is condensed by the optical lens system 21a. A CCD type solid-state imaging device 100 that receives the received light and outputs captured image data (analog image data).

本実施形態に係る撮像部21は、更に、メカニカルシャッタ21bとCCD型固体撮像素子100との間の、被写体からの入射光路から外れた位置に、CCD型固体撮像素子100の受光面を発光指示時に所定照度で照明する1個または複数個の小型ダイオード等の発光源21cを備える。   The imaging unit 21 according to the present embodiment further instructs the light-receiving surface of the CCD solid-state imaging device 100 to emit light at a position between the mechanical shutter 21b and the CCD solid-state imaging device 100 that is out of the incident optical path from the subject. Sometimes, a light source 21c such as one or a plurality of small diodes that illuminate at a predetermined illuminance is provided.

本実施形態のデジタルカメラは更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部(シャッタボタンを含む)33が接続されている。   The digital camera according to the present embodiment further includes a digital signal processing unit 26 that takes in digital image data output from the A / D 23 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like. A compression / expansion processing unit 27 that compresses or reversely compresses image data, a display unit 28 that displays menus, displays through images and captured images, and a system control unit that controls the entire digital camera ( CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like, and a bus that interconnects them 40, and the system control unit 29 has an operation unit (shutter) for inputting instructions from the user. Including the tongue) 33 is connected.

図2は、図1に示すCCD型固体撮像素子100の表面模式図である。固体撮像素子100の半導体基板表面部には、二次元アレイ状に複数のフォトダイオード(PD)101が配列形成され、各フォトダイオード列に沿って垂直電荷転送路(VCCD)102が形成され、各垂直電荷転送路102の転送方向端部に沿って水平電荷転送路(HCCD)103が形成され、水平電荷転送路103の出力端部にアンプ104が設けられている。   FIG. 2 is a schematic view of the surface of the CCD solid-state imaging device 100 shown in FIG. A plurality of photodiodes (PD) 101 are arranged in a two-dimensional array on the surface of the semiconductor substrate of the solid-state imaging device 100, and a vertical charge transfer path (VCCD) 102 is formed along each photodiode row. A horizontal charge transfer path (HCCD) 103 is formed along the transfer direction end of the vertical charge transfer path 102, and an amplifier 104 is provided at the output end of the horizontal charge transfer path 103.

図示する例のCCD型固体撮像素子100では、最も左側の各フォトダイオード列を遮光して前OB(オプティカルブラック)部としており、最も右側の各フォトダイオード列を遮光して後OB部としている。   In the CCD solid-state imaging device 100 shown in the drawing, the leftmost photodiode row is shielded to be a front OB (optical black) portion, and the rightmost photodiode row is shielded to be a rear OB portion.

斯かるCCD型固体撮像素子100では、各フォトダイオード101が入射光量に応じた信号電荷を蓄積し、この信号電荷が隣接の垂直電荷転送路102に読み出されて転送され、垂直電荷転送路102から信号電荷を受け取った水平電荷転送路103が各信号電荷をアンプ104まで転送し、アンプ104が、信号電荷量に応じた電圧値信号を撮像画像信号として出力する。   In such a CCD type solid-state imaging device 100, each photodiode 101 accumulates a signal charge corresponding to the amount of incident light, and this signal charge is read out and transferred to an adjacent vertical charge transfer path 102. The horizontal charge transfer path 103 that has received the signal charge from the signal transfers each signal charge to the amplifier 104, and the amplifier 104 outputs a voltage value signal corresponding to the signal charge amount as a captured image signal.

この撮像画像信号は、図1のアナログ信号処理部22,A/D変換部23を通してデジタル信号処理部26に取り込まれ、各種画像処理が行われる。OB部から読み出された信号は、入射光が遮断された信号となるため、「黒レベル」を表す信号となる。   This captured image signal is taken into the digital signal processing unit 26 through the analog signal processing unit 22 and the A / D conversion unit 23 in FIG. 1 and subjected to various image processing. Since the signal read from the OB unit is a signal from which the incident light is blocked, the signal represents the “black level”.

図3は、図1に示すシステム制御部29が配下の駆動部24,デジタル信号処理部26等を用いて実行する画像補正プログラムの処理手順を示すフローチャートである。   FIG. 3 is a flowchart showing a processing procedure of an image correction program executed by the system control unit 29 shown in FIG. 1 using the subordinate driving unit 24, digital signal processing unit 26, and the like.

撮影モードに入ると、デジタル信号処理部26は固体撮像素子100から出力されるスルー画像データを取り込み、AE(自動露出)値,AF(自動焦点)値を算出すると共に、撮影感度(ISO感度)を決定する(ステップS1)。次に、シャッタボタン(2段シャッタの場合にはS2スイッチ)がオンされたか否かを判定し(ステップS2)、オンされていない場合にはステップS1に戻る。   When the photographing mode is entered, the digital signal processing unit 26 captures through image data output from the solid-state imaging device 100, calculates an AE (automatic exposure) value, an AF (automatic focus) value, and photographing sensitivity (ISO sensitivity). Is determined (step S1). Next, it is determined whether or not the shutter button (S2 switch in the case of a two-stage shutter) is turned on (step S2), and if not, the process returns to step S1.

シャッタボタンがオンされた場合には、ステップS2からステップS3に進み、固体撮像素子100の露光を開始する。そして、AE値によって決められた露光時間が経過したときメカニカルシャッタ21bを閉じる(ステップS4)。   When the shutter button is turned on, the process proceeds from step S2 to step S3, and exposure of the solid-state imaging device 100 is started. When the exposure time determined by the AE value has elapsed, the mechanical shutter 21b is closed (step S4).

次のステップS5では、固体撮像素子100の各フォトダイオード101が検出した信号電荷の読み出し及び外部への転送処理を行い、固体撮像素子100から出力される撮像画像信号を図1のデジタル信号処理部26が取り込み、各種画像処理を行う。   In the next step S5, signal charges detected by the respective photodiodes 101 of the solid-state image sensor 100 are read out and transferred to the outside, and the captured image signal output from the solid-state image sensor 100 is converted into a digital signal processing unit in FIG. 26 takes in and performs various image processing.

固体撮像素子100からの撮像画像信号の出力が終わった後、次に、撮影感度が、例えば400以上であるか否かを判定する(ステップS6)。ISO感度が400に満たない場合、つまり低ISO感度の場合には、撮影で得られた信号電荷量は多いため、この処理を終了し、次の撮影に待機する。   After the output of the picked-up image signal from the solid-state image sensor 100 is finished, it is next determined whether or not the photographing sensitivity is 400 or more, for example (step S6). When the ISO sensitivity is less than 400, that is, when the ISO sensitivity is low, the amount of signal charge obtained by shooting is large, so this processing is ended and the next shooting is awaited.

ステップS6の判定の結果、撮影感度が400以上の場合すなわち高ISO感度の場合には、撮影で得られた信号電荷量が少ないため、水平電荷転送路103の転送取り残し量によって画質劣化が起きると判断し、ステップS7に進む。   As a result of the determination in step S6, when the photographing sensitivity is 400 or higher, that is, when the ISO sensitivity is high, the amount of signal charge obtained by photographing is small, and therefore image quality deterioration occurs due to the amount of untransferred left in the horizontal charge transfer path 103. Judge and go to step S7.

ステップS7では、図1に示す発光源21cを、メカニカルシャッタ閉の状態でオンし、所定照度で固体撮像素子100の受光面を照射する。そして次のステップS8で、固体撮像素子100を駆動して、発光源21cの発光で得られた信号電荷の転送及び出力を行う。   In step S7, the light emitting source 21c shown in FIG. 1 is turned on with the mechanical shutter closed, and the light receiving surface of the solid-state imaging device 100 is irradiated with a predetermined illuminance. In the next step S8, the solid-state imaging device 100 is driven to transfer and output the signal charges obtained by the light emission of the light emission source 21c.

そして、固体撮像素子100から出力されたデータを解析し、転送取り残し量(転送効率)を測定する。本来は出力信号がゼロとなる後OB部の出力データから測定できる。   Then, the data output from the solid-state imaging device 100 is analyzed, and the remaining transfer amount (transfer efficiency) is measured. Originally, it can be measured from the output data of the OB section after the output signal becomes zero.

次のステップS9では、測定された転送効率に基づき、ステップS5で出力された撮像画像信号を補正し、この処理を終了して次の撮影に待機する。   In the next step S9, based on the measured transfer efficiency, the captured image signal output in step S5 is corrected, and this process is terminated and the next shooting is awaited.

以上述べた様に、本実施形態によれば、被写体の撮影毎に転送効率で撮像画像信号を補正する必要があるか否かをISO感度で判定し、補正する必要があると判定したときには被写体の撮影直後に転送効率の測定を行って補正に必要なデータを取得するため、そのときの撮影条件,撮影温度によらずに適切な画像信号の補正が可能となる。   As described above, according to the present embodiment, it is determined whether or not the captured image signal needs to be corrected with transfer efficiency for each shooting of the subject based on the ISO sensitivity, and when it is determined that correction is necessary, the subject Immediately after shooting, the transfer efficiency is measured and data necessary for correction is acquired, so that appropriate image signal correction can be performed regardless of the shooting conditions and shooting temperature at that time.

例えば連続して撮影を行うと固体撮像素子100の温度は徐々に上昇するが、その温度上昇に応じた補正データを図3のステップS8の測定結果から求めることができるため、常に最適な補正が可能となる。   For example, when photographing continuously, the temperature of the solid-state imaging device 100 gradually increases, but correction data corresponding to the temperature increase can be obtained from the measurement result of step S8 in FIG. It becomes possible.

また、従来起きていた不具合、例えば温度が高い夏場での過補正による肌色の黄変(赤色の過補正)現象や、温度の低い冬場での補正不足で起きる色周り現象は、本実施形態の撮像装置では回避することができる。   In addition, problems that have occurred in the past, such as yellowing of the skin color due to overcorrection in summer when the temperature is high (red overcorrection of red), and color around phenomenon that occurs due to insufficient correction in winter when the temperature is low, This can be avoided in the imaging apparatus.

尚、図3のステップS8で行う転送効率の測定は、発光源21cによって固体撮像素子100の受光面全面を所定照度で照明することで行うのが好ましく、受光面の広い範囲から得られたデータの平均値に基づいて転送効率を求める方が精度の高い補正が可能となる。   Note that the measurement of the transfer efficiency performed in step S8 in FIG. 3 is preferably performed by illuminating the entire light receiving surface of the solid-state imaging device 100 with a predetermined illuminance by the light source 21c, and data obtained from a wide range of the light receiving surface. If the transfer efficiency is obtained based on the average value, correction with higher accuracy becomes possible.

しかし、発光源21cは、メカニカルシャッタ21bと固体撮像素子100との間の狭い領域に設置する必要があり、撮像装置の大きさによっては、受光面全面を所定照度で照明する様に発光源を設置できない場合もある。この場合でも、受光面の一部を所定照度で照らす発光源を設ければ、撮影毎の温度に応じた転送効率の測定が可能である。   However, the light emitting source 21c needs to be installed in a narrow area between the mechanical shutter 21b and the solid-state imaging device 100. Depending on the size of the imaging device, the light emitting source 21c is illuminated so that the entire light receiving surface is illuminated with a predetermined illuminance. It may not be possible to install. Even in this case, if a light emitting source that illuminates a part of the light receiving surface with a predetermined illuminance is provided, it is possible to measure the transfer efficiency according to the temperature for each photographing.

本発明に係る画像補正方法は、撮影温度によらずに適切な補正が可能となるため、特に多画素化した固体撮像素子を搭載し撮影モードとして高感度モードを備えたデジタルカメラに適用すると有用である。   The image correction method according to the present invention enables appropriate correction regardless of the shooting temperature, and is particularly useful when applied to a digital camera equipped with a multi-pixel solid-state imaging device and having a high sensitivity mode as a shooting mode. It is.

本発明の一実施形態に係るデジタルカメラの機能ブロック図である。It is a functional block diagram of the digital camera which concerns on one Embodiment of this invention. 図1に示す固体撮像素子の表面模式図である。It is a surface schematic diagram of the solid-state image sensor shown in FIG. 図1に示すシステム制御部が実行する画像補正プログラムの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the image correction program which the system control part shown in FIG. 1 performs.

符号の説明Explanation of symbols

21 撮像部
21a 撮影レンズ
21b メカニカルシャッタ
21c 発光源
26 デジタル信号処理部
29 システム制御部
100 CCD型固体撮像素子
101 フォトダイオード(画素)
102 垂直電荷転送路(VCCD)
103 水平電荷転送路(HCCD)
DESCRIPTION OF SYMBOLS 21 Image pick-up part 21a Shooting lens 21b Mechanical shutter 21c Light emission source 26 Digital signal processing part 29 System control part 100 CCD type solid-state image sensor 101 Photodiode (pixel)
102 Vertical charge transfer path (VCCD)
103 Horizontal charge transfer path (HCCD)

Claims (2)

入射光の光量に応じて検出された信号電荷を転送する電荷転送路を有する固体撮像素子と、該固体撮像素子の受光面の前段に設けられたメカニカルシャッタと、該受光面と該メカニカルシャッタとの間の前記入射光の光路から外れた位置に設けられ該受光面を所定照度で照明する発光源と、被写体を撮影するときのISO感度が所定感度以上の場合に該撮影の後に前記メカニカルシャッタ閉の状態で前記発光源に発光指示を出して発光させる第1制御手段と、該発光に基づく前記固体撮像素子の出力信号から前記電荷転送路の転送効率を求める第2制御手段と、前記撮影により前記固体撮像素子から出力された被写体の撮像信号を前記転送効率に基づいて補正する第3制御手段とを備えることを特徴とする撮像装置。 A solid-state imaging device having a charge transfer path for transferring a signal charge detected according to the amount of incident light, a mechanical shutter provided in front of the light-receiving surface of the solid-state imaging device, the light-receiving surface and the mechanical shutter, A light source that illuminates the light receiving surface with a predetermined illuminance, and the mechanical shutter after the shooting when the ISO sensitivity when shooting the subject is equal to or higher than the predetermined sensitivity. First control means for emitting light by instructing the light source to emit light in a closed state; second control means for determining transfer efficiency of the charge transfer path from an output signal of the solid-state imaging device based on the light emission; And a third control unit that corrects the imaging signal of the subject output from the solid-state imaging device based on the transfer efficiency. 電荷転送路を有する固体撮像素子によって被写体の画像を撮影する撮像装置の画像補正方法において、被写体を撮影したときのISO感度が所定感度以上の場合、該撮影の後にメカニカルシャッタ閉の状態で内蔵発光源を発光させて前記固体撮像素子の受光面を所定照度で照明させ、該発光により前記固体撮像素子から得られる出力信号から前記電荷転送路の転送効率を求め、前記撮影により前記固体撮像素子から出力された被写体の撮像信号を前記転送効率に基づいて補正することを特徴とする撮像装置の画像補正方法。 In an image correction method of an imaging apparatus that captures an image of a subject using a solid-state imaging device having a charge transfer path, if the ISO sensitivity when the subject is captured is equal to or higher than a predetermined sensitivity, the built-in light emission is performed with the mechanical shutter closed after the capture A light source is emitted to illuminate the light receiving surface of the solid-state imaging device with a predetermined illuminance, and the transfer efficiency of the charge transfer path is obtained from an output signal obtained from the solid-state imaging device by the light emission, and from the solid-state imaging device by the photographing An image correction method for an imaging apparatus, wherein an output imaging signal of a subject is corrected based on the transfer efficiency.
JP2008021200A 2008-01-31 2008-01-31 Imaging device and image correction method therefor Pending JP2009182825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021200A JP2009182825A (en) 2008-01-31 2008-01-31 Imaging device and image correction method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021200A JP2009182825A (en) 2008-01-31 2008-01-31 Imaging device and image correction method therefor

Publications (1)

Publication Number Publication Date
JP2009182825A true JP2009182825A (en) 2009-08-13

Family

ID=41036414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021200A Pending JP2009182825A (en) 2008-01-31 2008-01-31 Imaging device and image correction method therefor

Country Status (1)

Country Link
JP (1) JP2009182825A (en)

Similar Documents

Publication Publication Date Title
US20100073527A1 (en) Imaging apparatus
JP5162730B2 (en) Imaging device and dark current correction method thereof
US10397502B2 (en) Method and apparatus for imaging an object
JP5132497B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP2013515442A (en) Generation of high dynamic range image using still image and preview image
US20120162467A1 (en) Image capture device
JP2006005520A (en) Imaging apparatus
US8040407B2 (en) Image capturing apparatus and image capturing apparatus control method
US7990426B2 (en) Phase adjusting device and digital camera
US7400355B2 (en) Image pickup apparatus and photometer
JP4926654B2 (en) Imaging apparatus and method
JP2005347928A (en) Imaging controller, solid-state imaging apparatus, and imaging method
US8149291B2 (en) Image capture apparatus, control method thereof, program, and storage medium
JP5720213B2 (en) Imaging device
JP2012029194A (en) Electronic camera and exposure control program
JP2009182825A (en) Imaging device and image correction method therefor
JP2010268271A (en) Imaging device
JP4991435B2 (en) Imaging device
JP2007281759A (en) Imaging device and imaging apparatus
JP2008053812A (en) Imaging apparatus
JP5445956B2 (en) Imaging device
JP2003174581A (en) Image pickup device
JP2011055336A (en) Imaging apparatus and signal processing method
JP2006013892A (en) Image pickup device
JP2010056723A (en) Imaging device and imaging method