JP2009182027A - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP2009182027A
JP2009182027A JP2008017712A JP2008017712A JP2009182027A JP 2009182027 A JP2009182027 A JP 2009182027A JP 2008017712 A JP2008017712 A JP 2008017712A JP 2008017712 A JP2008017712 A JP 2008017712A JP 2009182027 A JP2009182027 A JP 2009182027A
Authority
JP
Japan
Prior art keywords
chemical conversion
sintered body
voltage
solution
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017712A
Other languages
Japanese (ja)
Inventor
Yoko Endo
陽子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2008017712A priority Critical patent/JP2009182027A/en
Publication of JP2009182027A publication Critical patent/JP2009182027A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid electrolytic capacitor, capable of increasing capacitance while keeping leakage current small, by preventing a problem wherein a sintered body element is chemically formed up to the inside of a sintered body element from tending to occur. <P>SOLUTION: This manufacturing method of a solid electrolytic capacitor includes a process using a porous sintered body element and a chemical conversion solution as a positive electrode and a negative electrode, respectively, and immersing the element in the chemical conversion solution with a voltage applied between both the electrodes. The manufacturing method of a solid electrolytic capacitor also includes processes of using the element and the chemical conversion solution as the positive electrode and the negative electrode, respectively; applying a voltage between both the electrodes after immersing the porous sintered body element in the chemical conversion solution; using the element and the chemical conversion solution as the positive electrode and the negative electrode, respectively; and immersing the element in the chemical conversion element, with a voltage higher than this voltage applied between both the electrodes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解コンデンサの製造方法に関し、特に、固体電解コンデンサの化成方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for forming a solid electrolytic capacitor.

固体電解コンデンサ、特に焼結タイプのコンデンサは、タンタルまたはニオブなどを多孔質焼結体にして表面積を拡大し、陽極用リードの一端を埋め込んだ陽極素子と、その表面に化成処理により形成した酸化皮膜と、含浸により形成した固体電解質層と、導電ペーストにより形成した陰極層とが、順次設けられる。また、この最外層の陰極層に、導電ペーストにより形成した導電性接着剤を介して陰極端子板を接続するとともに、溶接等により陽極用リードに陽極端子板を接続している。そして、絶縁樹脂等からなる外装によるモールド成形金型などの方法により被覆し、陽極端子板及び陰極端子板は外装から引き出している。   Solid electrolytic capacitors, especially sintered type capacitors, are made of a porous sintered body of tantalum or niobium to increase the surface area, and an anode element in which one end of an anode lead is embedded, and an oxidation formed on the surface by chemical conversion treatment. A film, a solid electrolyte layer formed by impregnation, and a cathode layer formed of a conductive paste are sequentially provided. Further, a cathode terminal plate is connected to the outermost cathode layer via a conductive adhesive formed of a conductive paste, and an anode terminal plate is connected to the anode lead by welding or the like. And it coat | covers by methods, such as a shaping | molding metal mold | die by the exterior which consists of insulating resin etc., and the anode terminal plate and the cathode terminal plate are pulled out from the exterior.

ところで、この固体電解コンデンサの漏れ電流を改善するひとつの方法として、化成工程において、陽極素子の多孔質焼結体の内部よりも、表面の酸化皮膜を厚くする方法がとられている。
この具体的な手順として、まず、多孔質焼結体全体に均一な酸化皮膜を形成した後に、多孔質焼結体の外表面の酸化皮膜だけを厚くする方法(特許文献1)と、多孔質焼結体の外表面の酸化皮膜だけを厚くした後に、全体に均一な酸化皮膜を形成する方法とがあり、いずれの方法も、多孔質焼結体全体を化成液に浸漬させて行っている。
多孔質焼結体の外表面の酸化皮膜だけを厚くする方法としては、全体に均一な酸化皮膜を設けるときの化成電圧より高い化成電圧で、全体に均一な酸化皮膜を設けるときの化成時間よりも短時間の化成処理を行う方法がとられている。
特公昭58-33688公報
By the way, as one method for improving the leakage current of the solid electrolytic capacitor, a method is employed in which the surface oxide film is made thicker than the inside of the porous sintered body of the anode element in the chemical conversion step.
As a specific procedure, first, after a uniform oxide film is formed on the entire porous sintered body, only the oxide film on the outer surface of the porous sintered body is thickened (Patent Document 1), After thickening only the oxide film on the outer surface of the sintered body, there is a method of forming a uniform oxide film on the whole, and both methods are performed by immersing the entire porous sintered body in the chemical conversion liquid .
As a method of thickening only the oxide film on the outer surface of the porous sintered body, the formation voltage is higher than the formation voltage when a uniform oxide film is provided on the whole, and the formation time when the uniform oxide film is provided on the whole. Also, a method of performing a chemical conversion treatment for a short time is taken.
Japanese Patent Publication No.58-33688

多孔質焼結体の外表面の酸化皮膜だけを厚くする方法は、厚くなっている部分が多いほど、同時に容量の減少を伴うため、できるだけ厚くなっている部分を外表面だけにとどめる必要がある。しかしながら、このような従来の方法では、多孔質焼結体の表面全体が化成液で濡れているために、外表面の酸化皮膜だけを厚く化成しようとしても、内部まで厚く化成されてしまうという問題が生じやすい。
本発明は、上記問題を解決するものであり、多孔質焼結体素子を陽極、化成液を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程を有することによって、焼結体素子が内部まで化成される問題が生じにくくすることにより、漏れ電流を小さく維持しつつ、容量を増加することが可能な固体電解コンデンサの製造方法を提供するものである。
The method of thickening only the oxide film on the outer surface of the porous sintered body is accompanied by a decrease in capacity at the same time as there are more thickened parts. Therefore, it is necessary to keep the thickened part only on the outer surface as much as possible. . However, in such a conventional method, since the entire surface of the porous sintered body is wetted with the chemical conversion solution, even if it is attempted to thicken only the oxide film on the outer surface, it is thickened to the inside. Is likely to occur.
The present invention solves the above-described problem, and includes a step of immersing the element in a chemical liquid in a state where a porous sintered body element is an anode, a chemical liquid is a cathode, and a voltage is applied between both electrodes. Accordingly, the present invention provides a method for manufacturing a solid electrolytic capacitor capable of increasing the capacity while maintaining a small leakage current by making it difficult to cause a problem that the sintered body element is formed to the inside.

本発明は、上記課題を解決するために、多孔質焼結体素子を陽極、化成液中の対極を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程を含んだ固体電解コンデンサの製造方法である。
また、多孔質焼結体素子を化成液に浸漬してから、前記素子を陽極、化成液を陰極とし、この両極間に電圧を印加する工程と、その電圧よりも高い電圧で、前記素子を陽極、化成液を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程と、を含んだ固体電解コンデンサの製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention uses a porous sintered body element as an anode, a counter electrode in the chemical conversion liquid as a cathode, and a step of immersing the element in the chemical conversion liquid with a voltage applied between both electrodes. Is a manufacturing method of a solid electrolytic capacitor containing
Further, after immersing the porous sintered body element in the chemical liquid, the element is used as an anode, the chemical liquid is used as a cathode, and a voltage is applied between the two electrodes. The present invention provides a method for producing a solid electrolytic capacitor, which includes a step of immersing the element in a chemical conversion solution in a state where a voltage is applied between the anode and the chemical conversion solution as a cathode.

本発明によれば、多孔質焼結体素子を陽極、化成液を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程を有することによって、焼結体素子が内部まで化成される問題が生じにくくすることにより、漏れ電流を小さく維持しつつ、容量を増加することが可能な固体電解コンデンサの製造方法を提供するものことができる。   According to the present invention, a porous sintered body element is used as an anode, a chemical conversion liquid is used as a cathode, and a step of immersing the element in the chemical formation liquid in a state where a voltage is applied between both electrodes is provided. By making it difficult to cause the problem of forming the inside, it is possible to provide a method of manufacturing a solid electrolytic capacitor capable of increasing the capacity while maintaining a small leakage current.

本発明に述べる焼結体素子は、弁作用金属の粉末を焼結して形成され、表面積を拡大した陽極で、その陽極の表面に酸化皮膜を設けるものであり、たとえば、タンタル、ニオブまたはアルミニウムなどを多孔質焼結体にして表面積を拡大したもので、一端に陽極用リードを埋め込んだものが使用される。   The sintered body element described in the present invention is an anode formed by sintering valve action metal powder and having an enlarged surface area, and an oxide film is provided on the surface of the anode. For example, tantalum, niobium or aluminum Is a porous sintered body with an enlarged surface area, and an anode lead embedded in one end.

本発明に述べる化成液は、その溶媒に、通常は水を使用し、化成用の溶質を溶解したものである。
化成用の溶質の具体例は、通常、固体電解コンデンサにおいて酸化皮膜層を形成するために用いられているのと同様のものでかまわない。例えばシュウ酸、アジピン酸、ホウ酸、リン酸、リンゴ酸、クエン酸、パラタングステン酸等の少なくとも1種を含む酸またはこれらの塩(例えば、アンモニウム塩、ナトリウム塩)等を用いる。化成液は、上記の溶質を0.05wt%から10wt%程度溶解したものを使用する。
化成液には、粘度増強剤として、エチレングリコールやプロピレングリコール、イソブチルアルコールなどを混合してもかまわない。粘度増強剤は、化成液が内部に入り込むのを遅らせるため好ましいが、洗浄がその分容易ではなくなる場合がある。
化成液には、添加剤として、非イオン系界面活性剤であるポリオキシプロピレングリコールと酸化エチレンのブロック共重合体、イソオクチルフェノールエチレンオキサイド付加物や、酸化剤である過酸化水素水を0.01wt%から0.1wt%程度添加してもかまわない。これらの添加剤は、漏れ電流や耐圧を改善する場合がある。
The chemical conversion solution described in the present invention is a solution in which water is usually used in the solvent and a chemical solute is dissolved.
A specific example of the solute for chemical conversion may be the same as that usually used for forming an oxide film layer in a solid electrolytic capacitor. For example, an acid containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid, malic acid, citric acid, paratungstic acid or a salt thereof (for example, ammonium salt, sodium salt) or the like is used. As the chemical conversion solution, a solution obtained by dissolving about 0.05 wt% to 10 wt% of the above solute is used.
In the chemical conversion liquid, ethylene glycol, propylene glycol, isobutyl alcohol, or the like may be mixed as a viscosity enhancer. Viscosity enhancers are preferred because they delay the entry of the chemical conversion solution into the interior, but cleaning may not be as easy.
The chemical conversion liquid contains 0.01 wt% of a nonionic surfactant polyoxypropylene glycol and ethylene oxide block copolymer, an isooctylphenol ethylene oxide adduct, and an oxidizing agent hydrogen peroxide solution as an additive. % To 0.1 wt% may be added. These additives may improve leakage current and breakdown voltage.

本発明に述べる化成は、焼結体素子に、陽極酸化などによって、誘電体膜となる酸化膜を形成するものであり、素子全体に酸化皮膜を化成する通常の化成工程の前工程か後工程として、外表面の酸化皮膜だけを厚く化成するための追加の化成工程を有するものである。通常の化成工程は、化成液に焼結体素子を浸漬し、定格電圧の2から4倍の電圧をかけて陽極酸化するものである。追加の化成工程は、焼結体素子と化成液の間に電圧を印加したまま浸漬させて、化成液に焼結体素子全体が沈むまでか、もしくは化成液が焼結体内部に入り込む前に引き上げること、または、化成液が内部に入り込む前に電源を切ることにより行われるものである。この追加の化成工程の化成液温度は、1℃から90℃程度、好ましくは10℃から70℃程度で、化成電圧は焼結体素子に均一な酸化皮膜を形成する通常の化成電圧より、2倍以上、好ましくは3倍以上である。   The chemical conversion described in the present invention is to form an oxide film to be a dielectric film on the sintered body by anodic oxidation or the like, and a pre-process or a post-process of a normal chemical conversion process for forming an oxide film on the entire element. As such, it has an additional chemical conversion step for thickening only the oxide film on the outer surface. In a normal chemical conversion step, a sintered body element is immersed in a chemical conversion solution and anodized by applying a voltage 2 to 4 times the rated voltage. An additional chemical conversion step is performed by immersing the sintered body element and the chemical liquid while applying voltage, until the entire sintered body element sinks in the chemical liquid, or before the chemical liquid enters the sintered body. It is performed by pulling up or turning off the power before the chemical conversion liquid enters the inside. The chemical conversion liquid temperature in this additional chemical conversion step is about 1 ° C. to 90 ° C., preferably about 10 ° C. to 70 ° C., and the chemical conversion voltage is 2 than the normal chemical conversion voltage for forming a uniform oxide film on the sintered body element. Double or more, preferably 3 or more.

以下、本発明を図面に示す実施の形態に基づいて説明する。
図1は、本発明に係る固体電解コンデンサの製造方法を示していて、多孔質焼結体の外表面の酸化皮膜だけを厚くする化成工程において、化成液に多孔質焼結体を浸漬する前の状態を示している。
1は、陽極用リードで、タンタル、ニオブまたはアルミニウム等の弁作用金属の、直径が0.1mmから0.5mm程度の線状や、厚さ0.1mmから0.5mm程度の短冊薄板状に形成される。
2は、焼結体素子で、陽極用リード1の一端を埋め込んで、タンタルやニオブまたはアルミニウム等の弁作用金属の、平均粒径1μm程度の微粉末に、アクリルやカンファー等のバインダーを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の陽極焼結体である。この後、この焼結体に、化成により陽極酸化皮膜と、二酸化マンガンや導電性高分子等の固体電解質層と、カーボン層や銀層の陰極層とを順次設ける。
3は、支持ホルダーで、陽極用リード1の一端を保持し、それ自体は、上下に稼働する。
4は、化成液で、化成槽5に溜める。焼結体素子2の多孔質焼結体は、支持ホルダー3が下に稼働して、化成液4に浸漬される。
6は、対極で、化成液中の、焼結体素子を浸漬したときあたらない程度の位置に設けられる。対極の形状は、平板または網状の平板で、水平にして設置する。
7は、電源で、電源の電流の向きは、陽極用リード1側をプラス、対極6側をマイナスにする。
8は、スイッチで、電源7の化成電圧の印加をON/OFFするものである。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 shows a method for manufacturing a solid electrolytic capacitor according to the present invention, in the chemical conversion step of thickening only the oxide film on the outer surface of the porous sintered body, before immersing the porous sintered body in the chemical conversion liquid. Shows the state.
Reference numeral 1 denotes an anode lead, which is a valve action metal such as tantalum, niobium, or aluminum, which has a linear shape with a diameter of about 0.1 mm to 0.5 mm or a thin strip shape with a thickness of about 0.1 mm to 0.5 mm. It is formed.
2 is a sintered body element, in which one end of the anode lead 1 is embedded, and a binder such as acrylic or camphor is mixed with fine powder having an average particle diameter of about 1 μm of a valve metal such as tantalum, niobium or aluminum. It is a sponge-like anode sintered body formed by press-pressing powder and then sintering in vacuum. Thereafter, an anodized film, a solid electrolyte layer such as manganese dioxide or a conductive polymer, and a cathode layer such as a carbon layer or a silver layer are sequentially provided on the sintered body by chemical conversion.
Reference numeral 3 denotes a support holder that holds one end of the anode lead 1 and moves up and down.
4 is a chemical conversion liquid and is stored in the chemical conversion tank 5. The porous sintered body of the sintered body element 2 is immersed in the chemical conversion liquid 4 with the support holder 3 operating downward.
Reference numeral 6 is a counter electrode, and is provided at a position in the chemical conversion liquid that is not exposed when the sintered body element is immersed. The shape of the counter electrode is a flat plate or a net-like flat plate, which is installed horizontally.
Reference numeral 7 denotes a power source, and the current direction of the power source is positive on the anode lead 1 side and negative on the counter electrode 6 side.
Reference numeral 8 denotes a switch that turns on / off application of the conversion voltage of the power source 7.

平均粒径が0.5μmのタンタル粉末をタンタル製容器に入れ、温度1400℃の真空雰囲気中で1時間加熱する。加熱処理したタンタル粉末は互いに結合している。このタンタル粉末を容器から取り出して軽く破砕し、篩分法や風簸法等によって所定の大きさの焼結造粒粉にする。次に、破砕後のタンタル粉末を1.1×1.5×0.8mmの大きさに圧縮成形し、真空中で焼成し、タンタルの焼結体を作成する。なお、この焼結体には、圧縮成形の際に、直径0.25mmのタンタル線からなる陽極リード線を植込み、その先端を引き出しておく。
そして、まず、この焼結体を化成液に浸漬する前に、陽極リード線を備えた焼結体と化成液中の対極との間に80Vの電圧を印加しておき、電圧をかけながら、この焼結体を化成液である濃度1wt%のほう酸溶液中に浸漬して、完全に沈んだところで電源を切る。ここで一旦焼結体を化成液から取り出し、純粋ボイル中で洗浄する。次に、この焼結体を別の化成液である濃度0.1wt%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。
次に、酸化皮膜を形成後、酸化皮膜の表面に、ポリアニリンからなる固体電解質層を、化学酸化重合法により形成する。すなわち、化成後の焼結体を0.2mol/lのペルオキソ2硫酸アンモニウムの水溶液中に5分間浸漬する。この浸漬後、室温でアニリン0.2mol/l、パラトルエンスルホン酸0.1mol/lで水、エタノールの等容量の混合溶液中に5秒間浸漬する。この後、空気中に30分間放置して、重合処理する。そしてこのペルオキソ2硫酸アンモニウム水溶液に浸漬する工程から放置処理までを15回繰り返す。繰り返し後、温度80℃で30分間乾燥処理し、黒色の導電性のポリアニリンからなる固体電解質層を形成する。固体電解質層を形成した後、焼結体をpHがほぼ1で、濃度が0.1mol/lのパラトルエンスルホン酸の水溶液中に20〜30分間浸漬する。浸漬後、温度110℃で30分間程度乾燥する。
乾燥後、カーボンペースト、銀ペーストを順次塗布し、硬化してグラファイト層及び銀層を形成する。銀層を形成後、銀層に銀導電性ペーストにより陰極端子を接続するとともに、陽極用リード線に陽極端子を溶接する。そしてエポキシ樹脂をトランスファ・モールド処理して外装を形成し、エージング処理する。
Tantalum powder having an average particle size of 0.5 μm is put in a tantalum container and heated in a vacuum atmosphere at a temperature of 1400 ° C. for 1 hour. The heat-treated tantalum powder is bonded to each other. The tantalum powder is taken out from the container and lightly crushed, and is made into a sintered granulated powder of a predetermined size by a sieving method, a wind method or the like. Next, the crushed tantalum powder is compression-molded to a size of 1.1 × 1.5 × 0.8 mm and fired in vacuum to produce a tantalum sintered body. Note that an anode lead wire made of a tantalum wire having a diameter of 0.25 mm is implanted into the sintered body and the tip thereof is drawn out during compression molding.
And first, before immersing this sintered body in the chemical liquid, a voltage of 80 V is applied between the sintered body provided with the anode lead wire and the counter electrode in the chemical liquid, This sintered body is immersed in a boric acid solution having a concentration of 1 wt%, which is a chemical conversion solution, and the power is turned off when it is completely submerged. Here, the sintered body is once taken out from the chemical conversion liquid and washed in pure boil. Next, this sintered body is immersed in a nitric acid solution having a concentration of 0.1 wt%, which is another chemical conversion solution, and anodized at a voltage of 26 V for 120 minutes to form an oxide film.
Next, after forming the oxide film, a solid electrolyte layer made of polyaniline is formed on the surface of the oxide film by a chemical oxidative polymerization method. That is, the formed sintered body is immersed in an aqueous solution of 0.2 mol / l ammonium peroxodisulfate for 5 minutes. After this immersion, it is immersed for 5 seconds in a mixed solution of water and ethanol in an equal volume of 0.2 mol / l aniline and 0.1 mol / l p-toluenesulfonic acid at room temperature. Thereafter, it is left in the air for 30 minutes to carry out the polymerization treatment. Then, the process from the step of immersing in this aqueous ammonium peroxodisulfate to the standing treatment is repeated 15 times. After the repetition, it is dried at a temperature of 80 ° C. for 30 minutes to form a solid electrolyte layer made of black conductive polyaniline. After forming the solid electrolyte layer, the sintered body is immersed in an aqueous solution of paratoluenesulfonic acid having a pH of about 1 and a concentration of 0.1 mol / l for 20 to 30 minutes. After soaking, it is dried at a temperature of 110 ° C. for about 30 minutes.
After drying, a carbon paste and a silver paste are sequentially applied and cured to form a graphite layer and a silver layer. After forming the silver layer, a cathode terminal is connected to the silver layer with a silver conductive paste, and the anode terminal is welded to the anode lead wire. Then, an epoxy resin is transfer-molded to form an exterior, and then subjected to an aging process.

化成方法として、この焼結体を化成液である濃度0.1wt%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。次に、一旦取り出し、純水ボイル中で洗浄する。次に、陽極リード線を備えた焼結体と化成液中の対極との間に80Vの電圧をかけながら、この焼結体を化成液である濃度1wt%のほう酸溶液中に浸漬して完全に沈んだところで電源を切った。それ以外は実施例1と同様におこなった。   As a chemical conversion method, this sintered body is dipped in a nitric acid solution having a concentration of 0.1 wt%, which is a chemical conversion solution, and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Next, it is once taken out and washed in pure water boil. Next, while applying a voltage of 80 V between the sintered body provided with the anode lead wire and the counter electrode in the chemical conversion liquid, the sintered body was immersed in a boric acid solution having a concentration of 1 wt% as a chemical conversion liquid to complete the process. I turned off the power when I was sunk. Other than that was carried out in the same manner as in Example 1.

化成方法として、この焼結体を化成液である濃度0.5wt%の硝酸液中に浸漬して、20Vの電圧になるまで昇圧して予備陽極酸化し、酸化皮膜を形成する。次に、一旦取り出し、純水ボイル中で洗浄する。次に、陽極リード線を備えた焼結体と化成液中の対極との間に80Vの電圧をかけながら、この焼結体を化成液である濃度1wt%のほう酸溶液中に浸漬して完全に沈んだところで電源を切る。次に、この焼結体を濃度0.1wt%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。それ以外は実施例1と同様におこなった。   As a chemical conversion method, this sintered body is dipped in a nitric acid solution having a concentration of 0.5 wt%, which is a chemical conversion solution, and the pressure is increased to a voltage of 20 V and preliminary anodization is performed to form an oxide film. Next, it is once taken out and washed in pure water boil. Next, while applying a voltage of 80 V between the sintered body provided with the anode lead wire and the counter electrode in the chemical conversion liquid, the sintered body was immersed in a boric acid solution having a concentration of 1 wt% as a chemical conversion liquid to complete the process. Turn off the power when it sinks. Next, this sintered body is immersed in a nitric acid solution having a concentration of 0.1 wt% and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Other than that was carried out in the same manner as in Example 1.

化成方法として、そして、まず、陽極リード線を備えた焼結体と化成液中の対極との間に80Vの電圧をかけながら、この焼結体を、エチレングリコールを10wt%添加した濃度1wt%のほう酸溶液中に浸漬して完全に沈んだところで電源を切る。ここで、一旦取り出し、純水ボイル中で洗浄する。次に、この焼結体を濃度0.1wt%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。それ以外は実施例1と同様におこなった。   As a chemical conversion method, first, while applying a voltage of 80 V between the sintered body provided with the anode lead wire and the counter electrode in the chemical conversion liquid, this sintered body was added with a concentration of 1 wt% with 10 wt% of ethylene glycol. Turn off the power when completely immersed in boric acid solution. Here, it is once taken out and washed in pure water boil. Next, this sintered body is immersed in a nitric acid solution having a concentration of 0.1 wt% and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Other than that was carried out in the same manner as in Example 1.

(比較例1−4)
各実施例(比較例番号は各実施例番号と対応する)の化成工程中で、電圧をかけながら陽極酸化する工程を、電圧をかけずに、焼結体素子を化成液に浸漬完了後、陽極酸化する方法に変更する以外は各実施例と同様におこなった。
(Comparative Example 1-4)
In the formation process of each example (comparative example number corresponds to each example number), the step of anodizing while applying voltage, after applying the voltage, without immersing the sintered body element in the conversion solution, It carried out similarly to each Example except having changed into the method of anodizing.

以上、実施例および比較例の容量と漏れ電流を測定し(n=20)、表1の結果を得た。
なお、容量の増加率とは、各実施例に対応する比較例の容量に対して、実施例の容量が増加した割合である。また、漏れ電流の測定方法は、10Vで、1分間かけたときの値とした。
以上の結果より、焼結体素子に電圧をかけたままで、化成液に陽極素子を浸漬する本発明は、そうしない場合と比べて、漏れ電流を小さく維持して増加を抑えながら、容量を10%から20%増加させることができた。
As mentioned above, the capacity | capacitance and leakage current of an Example and a comparative example were measured (n = 20), and the result of Table 1 was obtained.
In addition, the increase rate of a capacity | capacitance is the ratio which the capacity | capacitance of the Example increased with respect to the capacity | capacitance of the comparative example corresponding to each Example. Moreover, the measuring method of leakage current was taken as the value when it took 1 minute at 10V.
From the above results, according to the present invention in which the anode element is immersed in the chemical conversion solution while the voltage is applied to the sintered body element, the capacity is reduced to 10% while keeping the leakage current small and suppressing increase. % To 20%.

Figure 2009182027
Figure 2009182027

本発明に係る固体電解コンデンサの製造方法を示している。1 shows a method of manufacturing a solid electrolytic capacitor according to the present invention.

符号の説明Explanation of symbols

1…陽極用リード 2…焼結体素子 3…支持ホルダー 4…化成液 5…化成槽 6…対極 7…電源 8…スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Lead for anode 2 ... Sintered body element 3 ... Support holder 4 ... Chemical conversion liquid 5 ... Chemical conversion tank 6 ... Counter electrode 7 ... Power supply 8 ... Switch.

Claims (2)

多孔質焼結体素子を陽極、化成液中の対極を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程を含んだ固体電解コンデンサの製造方法。   A method for producing a solid electrolytic capacitor comprising a step of immersing the element in a chemical forming solution with a porous sintered body element as an anode and a counter electrode in the chemical forming solution as a cathode, and a voltage is applied between the two electrodes. 多孔質焼結体素子を化成液に浸漬してから、前記素子を陽極、化成液中の対極を陰極とし、この両極間に電圧を印加する工程と、その電圧よりも高い電圧で、前記素子を陽極、化成液を陰極とし、この両極間に電圧を印加した状態で、前記素子を化成液に浸漬する工程と、を含んだ固体電解コンデンサの製造方法。   After immersing the porous sintered body element in the chemical liquid, the element is used as an anode, the counter electrode in the chemical liquid is used as a cathode, and a voltage is applied between the two electrodes. And a step of immersing the element in the chemical conversion solution while applying a voltage between the two electrodes, using the anode as the anode and the chemical conversion solution as the cathode.
JP2008017712A 2008-01-29 2008-01-29 Manufacturing method of solid electrolytic capacitor Pending JP2009182027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017712A JP2009182027A (en) 2008-01-29 2008-01-29 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017712A JP2009182027A (en) 2008-01-29 2008-01-29 Manufacturing method of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009182027A true JP2009182027A (en) 2009-08-13

Family

ID=41035789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017712A Pending JP2009182027A (en) 2008-01-29 2008-01-29 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009182027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216649A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2012054434A (en) * 2010-09-02 2012-03-15 Sanyo Electric Co Ltd Method of manufacturing electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216649A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2012054434A (en) * 2010-09-02 2012-03-15 Sanyo Electric Co Ltd Method of manufacturing electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2014049520A (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP2008182098A (en) Solid electrolytic capacitor and its manufacturing method
JP5502562B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP4863509B2 (en) Manufacturing method of solid electrolytic capacitor
JP4589187B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2009206426A (en) Method for manufacturing solid-state electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JPH09306792A (en) Manufacture of solid electrolytic capacitor
JP5496708B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007242742A (en) Manufacturing method for solid electrolytic capacitor
JP2007311629A (en) Method for manufacturing solid-state electrolytic capacitor
JP2009238776A (en) Method of manufacturing solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JP2001167980A (en) Manufacturing method of solid electrolytic capacitor
JPS63146425A (en) Manufacture of solid electrolytic capacitor
JP2005294401A (en) Solid electrolytic capacitor and its manufacturing method
JP2003297672A (en) Method of manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091229

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A7422