JP2009181149A - Motion control device of conveying device - Google Patents

Motion control device of conveying device Download PDF

Info

Publication number
JP2009181149A
JP2009181149A JP2008017041A JP2008017041A JP2009181149A JP 2009181149 A JP2009181149 A JP 2009181149A JP 2008017041 A JP2008017041 A JP 2008017041A JP 2008017041 A JP2008017041 A JP 2008017041A JP 2009181149 A JP2009181149 A JP 2009181149A
Authority
JP
Japan
Prior art keywords
point
axis
moving
target point
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017041A
Other languages
Japanese (ja)
Inventor
Atsushi Nakagawa
篤 中川
Tatsuki Hashimoto
竜樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Priority to JP2008017041A priority Critical patent/JP2009181149A/en
Publication of JP2009181149A publication Critical patent/JP2009181149A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Numerical Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motion control device of a conveying device for shortening traveling time, reducing requests with respect to strength of a conveying device, and having an excellent energy-saving effect, in an operation for making a moving body reach a target point by passing a predetermined intermediate point from a start point. <P>SOLUTION: The motion control device of a conveying device has a motion control part 7 for allowing the movable body 3 to execute the next operations. The moving body 3 starts moving from a start point A to an intermediate point B in the X-axis direction; in the course of movement from the start point A to the intermediate point B, the moving body reaches the intermediate point B by moving to the direction separate from a target point C in the Y-axis direction, and then moving to the direction close to the target point C; in the course of movement from the intermediate point B to the target point C, the moving body reaches the target point C by moving to the direction separate from the start point A in the X-axis direction, and then moving to the direction close to the target point C. It controls a drive source of each shaft so that the traveling time from the start point A to the target point C is minimized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、旋盤等の工作機械や、パンチプレス等の板材加工機等を含む加工機に設けられて、直交2軸方向にワークを搬送する搬送装置のモーション制御装置に関する。   The present invention relates to a motion control device of a transfer device that is provided in a processing machine including a machine tool such as a lathe and a plate material processing machine such as a punch press and transfers a workpiece in two orthogonal axes.

この種の搬送装置では、図7に示す移動体50の移動の開始点Aから目標点Cへの位置決めにおいて、途中で所定の中間点Bを通過しなければならないことがある。例えば、旋盤のガントリローダでは、工作機械の上方の走行経路から、機体カバーの上面にあるシャッタを通過して機内に下降させることが必要であり、シャッタの開口に中間点Bが採られる。また、板材加工機における板材を水平面上で直交2軸方向に移動させる搬送装置においては、途中の障害物を避けるために、上記のように所定の中間点Bを通過しなければならないことがある。   In this type of transport apparatus, in positioning from the movement start point A to the target point C of the moving body 50 shown in FIG. 7, it may be necessary to pass a predetermined intermediate point B on the way. For example, in a gantry loader of a lathe, it is necessary to pass through a shutter on the upper surface of the machine body cover from a traveling path above the machine tool and lower it into the machine, and an intermediate point B is taken at the opening of the shutter. Moreover, in the conveying apparatus which moves the board | plate material in a horizontal biaxial direction on a horizontal surface in a board | plate material processing machine, in order to avoid the obstruction on the way, it may have to pass the predetermined intermediate point B as mentioned above. .

従来は、このような所定の中間点Bを通過させる位置決めでは、開始点Aから中間点Bへの位置決めと、中間点Bから目標点Cへの位置決めに分割し、中間点Bではなるべく停止しないで次の動作へ移る制御を行い、中間点Bでは低速で近傍を通過するのが通例であった。   Conventionally, in such positioning that passes the predetermined intermediate point B, the positioning is divided into the positioning from the start point A to the intermediate point B and the positioning from the intermediate point B to the target point C, and the intermediate point B is not stopped as much as possible. In general, the control to move to the next operation is performed, and at the intermediate point B, it passes through the vicinity at a low speed.

上記従来例の制御では、移動体50を、速度ゼロに近い状態で中間点Bの近傍を通過させ、目標点Cに向けて再加速しなければならない。そのため、移動に長い時間を要するという問題がある。
また、中間点Bでは、移動体50に速度の急な低下や再加速のための大きな加速度が発生する。この加速度により搬送装置に与えるショックが大きくて、機械強度への影響があり、エネルギの損失も大きいという問題がある。
In the control of the above-described conventional example, the moving body 50 must be re-accelerated toward the target point C by passing the vicinity of the intermediate point B in a state close to zero speed. Therefore, there is a problem that it takes a long time to move.
Further, at the intermediate point B, the mobile body 50 undergoes a rapid decrease in speed and a large acceleration for reacceleration. There is a problem that a shock given to the conveying device due to the acceleration is large, which has an influence on the mechanical strength and a large loss of energy.

この発明の目的は、開始点から所定の中間点を通過させて目標点に至らせる動作において、移動時間の短縮が図れ、搬送装置の強度上の要求も少なくて済み、省エネルギの面でも優れた搬送装置のモーション制御装置を提供することである。
この発明の他の目的は、移動体の移動可能な範囲が限られている場合に、上記の目標を達成可能とし、かつ適切な移動経路の生成が簡単に行えるようにすることである。
The object of the present invention is to reduce the movement time, reduce the demands on the strength of the transfer device, and save energy in the operation of passing the predetermined intermediate point from the start point to the target point. Another object of the present invention is to provide a motion control device for a transport device.
Another object of the present invention is to make it possible to achieve the above-mentioned target when a movable range of a moving body is limited and to easily generate an appropriate movement path.

この発明の搬送装置のモーション制御装置は、第1の座標軸(X軸)に沿う方向、および第1の座標軸(X軸)に直交する第2の座標軸(Y軸)に沿う方向に移動可能な移動体(3)、およびこの移動体(3)を前記第1および第2の座標軸(X,Y軸)に沿う方向にそれぞれ移動させる各軸の駆動源(4,5)を有する搬送装置(2)において、前記各軸の駆動源(4,5)を制御するモーション制御装置(1)である。
前記第1の座標軸(X軸)および第2の座標軸(Y軸)で構成される直交座標系で、開始点Aから目標点Cまで、中間点Bを通過して前記移動体(3)が移動するように、前記各軸の駆動源(4,5)を制御するモーション制御部(7)を備える。
前記開始点Aと中間点Bとを結ぶ仮想直線(L1)は前記第1の座標軸(X軸)と平行で、かつ中間点Bと目標点Cとを結ぶ仮想直線(L2)は第2の座標軸(Y軸)と平行である。前記開始点Aと目標点Cとは、互いに第1および第2の座標軸(X,Y軸)の座標位置が共に異なる位置である。
前記モーション制御部は、前記移動体(3)が、
第1の座標軸(X軸)の方向に開始点Aから中間点Bへの移動を開始し、
開始点Aから中間点Bへの移動過程で、第2の座標軸(Y軸)の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動して中間点Bに到達し、中間点Bから目標点Cへの移動過程で、第1の座標軸(X軸)の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動して目標点Cに到達する移動経路(R)を採ることにより、開始点Aから中間点Bを通過し目標点Cへ至る移動時間が最短となるように、前記各軸の駆動源(4,5)の制御を行うものとする。
The motion control device of the transfer device according to the present invention is movable in a direction along the first coordinate axis (X axis) and in a direction along the second coordinate axis (Y axis) orthogonal to the first coordinate axis (X axis). A transport apparatus (4) having a moving body (3) and a driving source (4, 5) for each axis for moving the moving body (3) in directions along the first and second coordinate axes (X, Y axes). 2), a motion control device (1) for controlling the drive source (4, 5) of each axis.
In the orthogonal coordinate system composed of the first coordinate axis (X axis) and the second coordinate axis (Y axis), the moving body (3) passes through the intermediate point B from the start point A to the target point C. A motion control unit (7) is provided for controlling the drive source (4, 5) of each axis so as to move.
A virtual straight line (L1) connecting the start point A and the intermediate point B is parallel to the first coordinate axis (X axis), and a virtual straight line (L2) connecting the intermediate point B and the target point C is the second It is parallel to the coordinate axis (Y axis). The start point A and the target point C are positions where the coordinate positions of the first and second coordinate axes (X, Y axes) are different from each other.
The motion control unit is configured such that the moving body (3)
Start moving from the starting point A to the intermediate point B in the direction of the first coordinate axis (X axis),
In the process of moving from the starting point A to the intermediate point B, the second coordinate axis (Y axis) moves in a direction away from the target point C and then moves in a direction approaching the target point C to reach the intermediate point B. In the process of moving from the intermediate point B to the target point C, after moving in the direction away from the start point A with respect to the direction of the first coordinate axis (X-axis), the target point C is reached by moving in the direction approaching the target point C. The drive source (4, 5) of each axis is controlled so that the travel time from the start point A through the intermediate point B to the target point C becomes the shortest by taking the travel path (R) to be performed. Shall.

この構成のモーション制御装置(1)によると、モーション制御部(7)は、移動体(3)の開始点Aから中間点Bへの移動過程で、第2の座標軸(Y軸)の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動させ、また中間点Bから目標点Cへの移動過程で、第1の座標軸(X軸)の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動させる。このため、移動体(3)の移動経路(R)は、中間点Bを通る滑らかな曲線となる。
このため、中間点Bで急激に減速させたり急激に再加速する必要がなく、移動時間の短縮が図れる。また、移動体(3)に加わる加速度ベクトルの絶対値を可能な限り小さくできて、搬送装置(2)の強度上の要求も少なくて済み、省エネルギの面でも優れたものとなる。
According to the motion control device (1) with this configuration, the motion control unit (7) is related to the direction of the second coordinate axis (Y axis) in the process of moving the moving body (3) from the starting point A to the intermediate point B. After moving in a direction away from the target point C, move in a direction approaching the target point C, and in the process of moving from the intermediate point B to the target point C, leave from the start point A with respect to the direction of the first coordinate axis (X axis). After moving in the direction, it is moved in the direction approaching the target point C. For this reason, the moving path (R) of the moving body (3) is a smooth curve passing through the intermediate point B.
For this reason, it is not necessary to rapidly decelerate or re-accelerate suddenly at the intermediate point B, and the travel time can be shortened. In addition, the absolute value of the acceleration vector applied to the moving body (3) can be made as small as possible, and the strength requirements of the transport device (2) can be reduced, which is excellent in terms of energy saving.

この発明において、前記モーション制御部(7)は、前記移動体(3)の移動が許容される許容ゾーンとして、開始点Aと中間点Bとを結ぶ仮想直線(L1)から目標点Cに対して第2の座標軸(Y軸)の方向に離れる設定幅の第1の許容ゾーン(Zn1)と、中間点Bと目標点Cとを結ぶ仮想直線(L2)から開始点Aに対して第1の座標軸(X軸)の方向に離れる設定幅の第2の許容ゾーン(Zn2)とが設定され、これら第1および第2の許容ゾーン(Zn1,Zn2)の範囲内で、前記移動経路(R)を採るように、前記各軸の駆動源(4,5)の制御を行うものとしても良い。
搬送装置(2)では、障害物の存在や、移動体(3)のレールや駆動源上の制限等で、移動可能な範囲が制限される場合がある。このような場合に、移動体(3)の移動が許容される許容ゾーンとして、上記第1の許容ゾーン(Zn1)および第2の許容ゾーン(Zn2)を設定することで、上記のような移動時間の短縮、加速度ベクトルの絶対値の最小化が可能な移動経路の生成が適切に、かつ簡単に行える。
In the present invention, the motion control unit (7) is configured from the virtual straight line (L1) connecting the start point A and the intermediate point B to the target point C as an allowable zone in which the moving body (3) is allowed to move. The first allowable zone (Zn1) having a set width that is separated in the direction of the second coordinate axis (Y-axis) and the virtual line (L2) connecting the intermediate point B and the target point C are first relative to the start point A. A second allowable zone (Zn2) having a set width that is separated in the direction of the coordinate axis (X-axis) of the first and second allowable zones (Zn1, Zn2) is set. The drive sources (4, 5) of the respective axes may be controlled so that
In the transfer device (2), the movable range may be limited due to the presence of obstacles, restrictions on the rails of the moving body (3), and the drive source. In such a case, by setting the first permissible zone (Zn1) and the second permissible zone (Zn2) as permissible zones where the movement of the mobile body (3) is permitted, the above movement It is possible to appropriately and easily generate a movement path that can shorten the time and minimize the absolute value of the acceleration vector.

この発明の搬送装置のモーション制御装置は、第1の座標軸に沿う方向、および第1の座標軸に直交する第2の座標軸に沿う方向に移動可能な移動体、およびこの移動体を前記第1および第2の座標軸に沿う方向にそれぞれ移動させる各軸の駆動源を有する搬送装置において、前記各軸の駆動源を制御するモーション制御装置であって、前記第1の座標軸および第2の座標軸で構成される直交座標系で、開始点Aから目標点Cまで、中間点Bを通過して前記移動体が移動するように、前記各軸の駆動源を制御するモーション制御部を備え、前記開始点Aと中間点Bとを結ぶ仮想直線は前記第1の座標軸と平行で、かつ中間点Bと目標点Cとを結ぶ仮想直線は第2の座標軸と平行であって、前記開始点Aと目標点Cとは、互いに第1および第2の座標軸の座標位置が共に異なる位置であり、前記モーション制御部は、前記移動体が、第1の座標軸の方向に開始点Aから中間点Bへの移動を開始し、開始点Aから中間点Bへの移動過程で、第2の座標軸の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動して中間点Bに到達し、中間点Bから目標点Cへの移動過程で、第1の座標軸の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動して目標点Cに到達する移動経路を採ることにより、開始点Aから中間点Bを通過して目標点Cへ至る移動時間が最短となるように、前記各軸の駆動源の制御を行うものとしたため、開始点から所定の中間点を通過させて目標点に至らせる動作において、移動体の移動時間の短縮が図れ、かつ搬送装置の強度上の要求も少なくて済み、省エネルギの面でも優れたものとなる。   The motion control device of the transfer device according to the present invention includes a movable body movable in a direction along the first coordinate axis and a second coordinate axis perpendicular to the first coordinate axis, and the movable body as the first and the second coordinate axes. In a transport apparatus having a drive source for each axis that is moved in a direction along the second coordinate axis, the motion control apparatus controls the drive source for each axis, and includes the first coordinate axis and the second coordinate axis. A motion control unit that controls the drive source of each axis so that the moving body moves from the start point A to the target point C through the intermediate point B in the orthogonal coordinate system, and the start point A virtual straight line connecting A and the intermediate point B is parallel to the first coordinate axis, and a virtual straight line connecting the intermediate point B and the target point C is parallel to the second coordinate axis. The starting point A and the target point Point C is the first and second of each other The coordinate positions of the coordinate axes are different from each other, and the motion controller starts moving the moving body from the start point A to the intermediate point B in the direction of the first coordinate axis, and from the start point A to the intermediate point B. In the process of moving to the second coordinate axis, the second coordinate axis moves away from the target point C, then moves closer to the target point C, reaches the intermediate point B, and moves from the intermediate point B to the target point C. In the process, by moving in a direction away from the starting point A with respect to the direction of the first coordinate axis and then moving in a direction approaching the target point C to reach the target point C, an intermediate point B from the starting point A is obtained. Since the drive source of each axis is controlled so that the movement time from the starting point to the target point C is the shortest, in the operation of passing the predetermined intermediate point from the starting point to the target point , The moving time of the moving body can be shortened, One request for the strength of the conveying device also requires less, and excellent in terms of energy saving.

前記モーション制御部が、前記移動体の移動が許容される許容ゾーンとして、開始点Aと中間点Bとを結ぶ仮想直線から目標点Cに対して第2の座標軸の方向に離れる設定幅の第1の許容ゾーンと、中間点Bと目標点Cとを結ぶ仮想直線から開始点Aに対して第1の座標軸の方向に離れる設定幅の第2の許容ゾーンとが設定され、これら第1および第2の許容ゾーンの範囲内で、前記移動経路を採るように、前記各軸の駆動源の制御を行うものである場合は、移動体の移動可能な範囲が限られている場合に、上記の各効果が得られる適切な移動経路の生成を簡単に行うことができる。   As a permissible zone in which the moving body is allowed to move, the motion control unit has a set width of a set width that is away from the virtual line connecting the start point A and the intermediate point B in the direction of the second coordinate axis with respect to the target point C. A first tolerance zone and a second tolerance zone having a setting width away from the virtual straight line connecting the intermediate point B and the target point C in the direction of the first coordinate axis with respect to the start point A are set. In the case where the drive source of each axis is controlled so as to take the movement path within the range of the second permissible zone, when the movable range of the moving body is limited, the above Thus, it is possible to easily generate an appropriate movement path that can achieve each effect.

この発明の一実施形態にかかる搬送装置のモーション制御装置を、図1ないし図4と共に説明する。このモーション制御装置1の制御対象となる搬送装置2は、第1の座標軸であるX軸に沿う方向、およびX軸に直交する第2の座標軸であるY軸に沿う方向に移動可能な移動体3、およびこの移動体3をX軸およびY軸に沿う方向にそれぞれ移動させる各軸の駆動源4,5を有する搬送装置である。移動体3は、被搬送物を把持する手段を有している。各軸の駆動源4,5は、例えばサーボモータである。   A motion control device for a conveying apparatus according to an embodiment of the present invention will be described with reference to FIGS. The transfer device 2 to be controlled by the motion control device 1 is a movable body that can move in a direction along the X axis that is the first coordinate axis and in a direction along the Y axis that is the second coordinate axis orthogonal to the X axis. 3 and a transport device having driving sources 4 and 5 for each axis for moving the movable body 3 in directions along the X-axis and the Y-axis, respectively. The moving body 3 has means for gripping the object to be conveyed. The drive sources 4 and 5 for each axis are, for example, servo motors.

このモーション制御装置1は、コンピュータおよびこのコンピュータに実行させるプログラム、並びに他の電気部品等からなり、基本制御部6およびモーション制御部7を有する。基本制御部6は、モーション制御部7の上位制御部となるものであり、移動体3の動作の開始等のシーケンス制御を行う。基本制御部6は、例えば、これら基本制御部6およびモーション制御部7を構成するプログラムとは別に設けられた搬送プログラム15を解読して実行する手段であって、その実行時の移動体3の移動経路Rおよび移動速度の制御をモーション制御部7に行わせる。   The motion control apparatus 1 includes a computer, a program to be executed by the computer, and other electrical components, and includes a basic control unit 6 and a motion control unit 7. The basic control unit 6 is a higher-order control unit of the motion control unit 7 and performs sequence control such as the start of the operation of the moving body 3. The basic control unit 6 is, for example, a means for decoding and executing the conveyance program 15 provided separately from the programs constituting the basic control unit 6 and the motion control unit 7. The motion controller 7 controls the movement path R and the movement speed.

モーション制御部7は、搬送装置2における上記各軸の駆動源4,5を制御する手段であって、X軸およびY軸で構成される直交座標系で、開始点Aから目標点Cまで、中間点Bを通過して前記移動体3が移動するときの、移動経路Rおよび速度の指令を生成する。
上記開始点A、中間点B、および目標点Cの位置関係を説明する。開始点Aと中間点Bとを結ぶ仮想直線L1はX軸と平行であり、かつ中間点Bと目標点Cとを結ぶ仮想直線L2はY軸と平行である。開始点Aと目標点Cの座標位置は、互いにX座標およびY座標が共に異なる。なお、座標原点は任意の位置に設定しても良い。
The motion control unit 7 is a means for controlling the drive sources 4 and 5 of each axis in the transport device 2, and is an orthogonal coordinate system composed of the X axis and the Y axis, from the start point A to the target point C. A command for a movement path R and a speed when the moving body 3 moves through the intermediate point B is generated.
The positional relationship between the start point A, the intermediate point B, and the target point C will be described. A virtual straight line L1 connecting the start point A and the intermediate point B is parallel to the X axis, and a virtual straight line L2 connecting the intermediate point B and the target point C is parallel to the Y axis. The coordinate positions of the start point A and the target point C are different from each other in the X coordinate and the Y coordinate. The coordinate origin may be set at an arbitrary position.

モーション制御部7は、移動位置座標設定部8,移動範囲条件設定部9,能力条件設定部10,経路演算手段11,および各軸駆動指令生成手段12を有し、さらにX軸およびY軸のサーボ制御手段13,14を有している。   The motion control unit 7 includes a movement position coordinate setting unit 8, a movement range condition setting unit 9, a capability condition setting unit 10, a route calculation unit 11, and each axis drive command generation unit 12, and further, an X axis and a Y axis Servo control means 13 and 14 are provided.

移動位置座標設定部8は、開始点A、中間点B、および目標点Cの各軸の座標位置を記憶する手段である。移動位置座標設定部8への各座標位置の入力は、基本制御部6を介して上記搬送プログラム15から与えることで行うが、キーボード等の入力手段から与えるようにしても良い。   The movement position coordinate setting unit 8 is a means for storing the coordinate positions of the axes of the start point A, the intermediate point B, and the target point C. Although the input of each coordinate position to the movement position coordinate setting unit 8 is performed from the transfer program 15 via the basic control unit 6, it may be performed from input means such as a keyboard.

移動範囲条件設定部9には、移動体3の移動が許容される許容ゾーンとして、第1および第2の許容ゾーンZn1,Zn2が設定される。第1の許容ゾーンZn1は、開始点Aと中間点Bとを結ぶ仮想直線L1から目標点Cに対してY軸方向に離れる設定幅の帯状のゾーンである。第2の許容ゾーンZn2は、中間点Bと目標点Cとを結ぶ仮想直線L2から開始点Aに対してX軸方向に離れる設定幅の帯状のゾーンである。上記各設定幅は、任意に設定された幅である。第1および第2の許容ゾーンZn1,Zn2の長さは、無限としても有限としても良いが、有限とする場合、両許容ゾーンZn1,Zn2は、中間点Bの箇所Zn1,2で、互いに各許容ゾーンZn1,Zn2の全幅にわたり重なるように設定する。
移動範囲条件設定部9への許容ゾーンZn1,Zn2の設定の入力は、適宜の入力手段で行うようにしても良く、また帯状の各許容ゾーンZn1,Zn2の一側の座標は、移動体2のストローク限として定まる位置であっても良い。
In the movement range condition setting unit 9, first and second permissible zones Zn1 and Zn2 are set as permissible zones in which movement of the moving body 3 is permitted. The first permissible zone Zn1 is a belt-like zone having a set width that is separated from the target point C in the Y-axis direction from a virtual straight line L1 connecting the start point A and the intermediate point B. The second permissible zone Zn2 is a band-like zone having a set width away from the imaginary straight line L2 connecting the intermediate point B and the target point C with respect to the start point A in the X-axis direction. Each of the set widths is an arbitrarily set width. The lengths of the first and second permissible zones Zn1 and Zn2 may be infinite or finite. However, in the case where the lengths are finite, both permissible zones Zn1 and Zn2 It sets so that it may overlap over the full width of tolerance zone Zn1, Zn2.
Input of setting of the permissible zones Zn1 and Zn2 to the movement range condition setting unit 9 may be performed by an appropriate input means, and the coordinates of one side of the belt-like permissible zones Zn1 and Zn2 are the moving body 2 The position may be determined as the stroke limit.

能力条件設定部10は、X軸最大速度、X軸最大加速度、Y軸最大速度、およびY軸最大加速度等が設定される。最大加速度は時定数として設定しても良い。これら最大速度および最大加速度は、X軸駆動源4やY軸駆動源5の能力、並びに移動抵抗となる移動体3の重量、移動体3に搬送される被搬送物の重量、および各部の摩擦係数等で定まる定格値等が設定される。これら最大速度および最大加速度の能力条件設定部10への入力は、適宜の入力手段で行う。   The capability condition setting unit 10 is set with an X-axis maximum speed, an X-axis maximum acceleration, a Y-axis maximum speed, a Y-axis maximum acceleration, and the like. The maximum acceleration may be set as a time constant. The maximum speed and the maximum acceleration are determined by the capabilities of the X-axis drive source 4 and the Y-axis drive source 5, the weight of the moving body 3 serving as a movement resistance, the weight of the object to be conveyed to the moving body 3, and the friction of each part. A rated value determined by a coefficient or the like is set. The maximum speed and the maximum acceleration are input to the capability condition setting unit 10 by appropriate input means.

経路演算手段11は、上記移動位置座標設定部8、移動範囲条件設定部9、および能力条件設定部10の各設定値から、後述の所定の演算規則11aに従って、移動体1の移動経路Rおよび移動速度を計算する手段である。   The route calculating means 11 calculates the moving route R and the moving body R of the moving body 1 from the set values of the moving position coordinate setting unit 8, the moving range condition setting unit 9, and the capability condition setting unit 10 according to a predetermined calculation rule 11a described later. It is a means for calculating the moving speed.

各軸駆動指令生成手段12は、経路演算手段11の演算結果に従って、各軸の駆動指令を生成する手段であり、例えば、パルス分配等によって、位置および速度の指令となる各軸の駆動指令を出力する。
各軸のサーボ制御手段13,14は、各軸駆動指令生成手段12からパルス列等で出力された各軸の駆動指令に従ってX軸駆動源4およびY軸駆動源5を制御する手段である。サーボ制御手段13,14は、例えば、サーボモータからなるX軸駆動源4,Y軸駆動源5の有するパルスコーダ(図示せず)の出力を用いて閉ループ制御を行う。
Each axis drive command generation unit 12 is a unit that generates a drive command for each axis according to the calculation result of the path calculation unit 11. For example, the axis drive command generation unit 12 outputs a drive command for each axis serving as a position and speed command by pulse distribution or the like. Output.
The servo control means 13 and 14 for each axis are means for controlling the X-axis drive source 4 and the Y-axis drive source 5 in accordance with the drive command for each axis output from each axis drive command generation means 12 as a pulse train or the like. The servo control means 13 and 14 perform closed-loop control using the output of a pulse coder (not shown) included in the X-axis drive source 4 and the Y-axis drive source 5 made up of servomotors, for example.

経路演算手段11における演算規則11aにつき説明する。この演算規則11aは、基本的には移動体3が次の(1) 〜(4) 、または(1) 〜(5) を満足するように移動する移動経路R,速度となるように、演算を行うものとされる。
(1) X軸の方向に開始点Aから中間点Bへの移動を開始する。
(2) 開始点Aから中間点Bへの移動過程で、Y軸の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動して中間点Bに到達する。
(3) 中間点Bから目標点Cへの移動過程で、X軸の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動して目標点Cに到達する。
(4) 開始点Aから中間点Bを通過して目標点Cへ至る移動時間を最短とする。
(5) 中間点Bでの移動経路Rの接線方向の速度VB を、設定条件下で最大とする。(なお、速度VB を最大とするとは、中間点Bにおける速度を可能な範囲で最大にする意味であって、移動経路R中の他の箇所に比べて最大とする意味ではない。)
図1の下部に示す移動経路Rは、上記の規則部分(1) 〜(5) を満足する一例の概略を示す。
The calculation rule 11a in the route calculation means 11 will be described. This calculation rule 11a is basically calculated so that the moving body 3 has a moving path R and a speed to move so as to satisfy the following (1) to (4) or (1) to (5). It is supposed to do.
(1) The movement from the starting point A to the intermediate point B is started in the X-axis direction.
(2) In the process of moving from the starting point A to the intermediate point B, after moving in the direction away from the target point C with respect to the direction of the Y axis, it moves in the direction approaching the target point C and reaches the intermediate point B.
(3) In the process of moving from the intermediate point B to the target point C, after moving in the direction away from the start point A with respect to the direction of the X axis, it moves in the direction approaching the target point C and reaches the target point C.
(4) The moving time from the starting point A through the intermediate point B to the target point C is minimized.
(5) The velocity V B in the tangential direction of the moving route R at the intermediate point B is maximized under the set conditions. (Note that maximizing the speed V B means that the speed at the intermediate point B is maximized as much as possible, and does not mean that it is maximized as compared with other places in the movement route R.)
The movement route R shown in the lower part of FIG. 1 shows an outline of an example satisfying the above-mentioned regular parts (1) to (5).

なお、上記(4) の設定条件は、例えば、上記移動範囲条件設定部9および能力条件設定部10に設定された各値を満足するという条件である。この設定条件は、さらに、速度零から最大速度まで最大加速度(例えば、時定数で与えられる)で加速し、最大速度に達した後、減速も最大加速度で行う制御、いわゆる台形制御を行うという条件を含むものとしても良い。   The setting condition (4) is a condition that, for example, the values set in the movement range condition setting unit 9 and the ability condition setting unit 10 are satisfied. This setting condition further includes a condition that acceleration is performed from the zero speed to the maximum speed at the maximum acceleration (for example, given by a time constant), and after reaching the maximum speed, the deceleration is also performed at the maximum acceleration, so-called trapezoidal control is performed. May be included.

図2ないし図4と共に、上記台形制御を行う場合の速度曲線等の具体例を説明する。
なお、図1に示した移動経路Rの形状は、概念的に示した形状であって、図2〜図4に示す制御によって定まる経路形状を示したものでない。
図2は、X軸方向の移動を示し、縦軸は移動体3のX座標位置lxを示し、横軸は経過
時間を示す。開始点Aから移動を開始し(時刻t0)、中間点Bに達すると(時刻t2)と、第2の許容ゾーンZn2内で、中間点Bを行き過ぎ、この後に、中間点B,目標点Cと同じX座標位置まで戻る(時刻t3)。移動開始(時刻t0)からX軸方向最大行き過ぎ点Xmに達するまでの時間がtx1,X軸方向最大行き過ぎ点Xmから目標点Cに戻るまでの間の時間がtx2である。また、移動開始から中間点Bに至るまでの時間がtx3、中間点Bから最大行き過ぎ点Xmに至るまでの時間がtx4である。
X軸方向の移動は、同図(B)に示すように、終始、最大加速度(設定時定数)で加速して最大速度に達した後はその速度を維持し、減速も最大加速度(設定時定数)で減速するという台形制御を行う。
A specific example of a speed curve and the like when performing the trapezoidal control will be described with reference to FIGS.
The shape of the movement route R shown in FIG. 1 is a conceptual shape, and does not show the route shape determined by the control shown in FIGS.
FIG. 2 shows the movement in the X-axis direction, the vertical axis shows the X coordinate position lx of the moving body 3, and the horizontal axis shows the elapsed time. When the movement starts from the start point A (time t0) and reaches the intermediate point B (time t2), the intermediate point B is overrun in the second allowable zone Zn2, and thereafter, the intermediate point B and the target point C are reached. To the same X coordinate position (time t3). The time from the start of movement (time t0) until reaching the X-axis direction maximum overshoot point Xm is tx1, and the time from the X-axis direction maximum overshoot point Xm to returning to the target point C is tx2. The time from the start of movement to the intermediate point B is tx3, and the time from the intermediate point B to the maximum overshoot point Xm is tx4.
As shown in the figure (B), the movement in the X-axis direction is always accelerated after the maximum acceleration (set time constant) and reaches the maximum speed, and the speed is maintained. A trapezoidal control that decelerates at a constant)

図3は、Y軸方向の移動を示し、縦軸は移動体3のY座標位置lyを示し、横軸は経過
時間を示す。Y軸方向には、移動体3が中間点Bに達するまでの、ある時刻(開始点Aでの移動開始時であっても良い)t1から、目標点Cに対して離れる方向に移動する。第1の許容ゾーンZn1内でY軸方向最大行き過ぎ点Ymに達した後、中間点Bまで戻り(時刻t2)、さらに移動して目標点Cに達する(時刻t4)。Y軸方向最大行き過ぎ点Ymから目標点Cに至るまでの時間をty1、Y軸方向の移動開始時からY軸方向最大行き過ぎ点Ymに達するまでの時間をty2、中間点Bから目標点Cに至るまでの時間をty3、Y軸方向最大行き過ぎ点Ymから中間点Bに至るまでの時間をty4とする。
Y軸方向の移動についても、同図(B)に示すように、終始、最大加速度(最大時定数)で加速して最大速度に達した後はその速度を維持し、減速も最大加速度(最大時定数)で減速するという台形制御を行う。
FIG. 3 shows the movement in the Y-axis direction, the vertical axis shows the Y coordinate position ly of the moving body 3, and the horizontal axis shows the elapsed time. In the Y-axis direction, the moving body 3 moves in a direction away from the target point C from a certain time t1 (which may be at the start of movement at the starting point A) until the moving body 3 reaches the intermediate point B. After reaching the maximum excess point Ym in the Y-axis direction in the first allowable zone Zn1, it returns to the intermediate point B (time t2) and further moves to reach the target point C (time t4). The time from the maximum excess point Ym in the Y-axis direction to the target point C is ty1, the time from the start of movement in the Y-axis direction to the maximum excess point Ym in the Y-axis direction is ty2, and the intermediate point B to the target point C The time from the maximum overshoot point Ym in the Y-axis direction to the intermediate point B is assumed to be ty4.
As for the movement in the Y-axis direction, as shown in FIG. 5B, after accelerating at the maximum acceleration (maximum time constant) and reaching the maximum speed from beginning to end, the speed is maintained, and the deceleration is also the maximum acceleration (maximum Perform trapezoidal control that decelerates with a time constant.

図2(A)と図3(A)とを重ね合わせると、図4のようになる。ここで、時刻t0〜t4と各時間とは次の関係にあるので、図4のように重ねられる。
t0=0
t1=tx3−(ty2+ty4)
t2=tx3
t3=tx3+tx2+tx4
t4=tx3+ty3
When FIG. 2 (A) and FIG. 3 (A) are overlapped, FIG. 4 is obtained. Here, the times t0 to t4 and each time are in the following relationship, and thus are overlapped as shown in FIG.
t0 = 0
t1 = tx3- (ty2 + ty4)
t2 = tx3
t3 = tx3 + tx2 + tx4
t4 = tx3 + ty3

なお、Y軸方向最大行き過ぎ点YmとX軸方向最大行き過ぎ点Xmとは、いずれか一方が許容ゾーンZn1,Zn2内の限界位置にあるとする。例えば、Y軸方向最大行き過ぎ点Ymが、第1の許容ゾーンZn1内の限界位置にあるとする。
これらの関係を充足する移動経路Rを求めると、移動経路Rおよび速度が、例えば一義的に定まり、関数として表現される。
経路演算手段11は、このように演算規則11aに従って移動経路Rおよび速度を演算する。
It is assumed that one of the Y axis direction maximum overshoot point Ym and the X axis direction maximum overshoot point Xm is at the limit position in the allowable zones Zn1 and Zn2. For example, it is assumed that the maximum excess point Ym in the Y-axis direction is at the limit position in the first allowable zone Zn1.
When the travel route R satisfying these relationships is obtained, the travel route R and the speed are uniquely determined, for example, and expressed as a function.
The route calculating means 11 calculates the movement route R and the speed according to the calculation rule 11a in this way.

この構成のモーション制御装置によると、このようにモーション制御部7が、移動体3の開始点Aから中間点Bへの移動過程で、第2の座標軸の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動させ、また中間点Bから目標点Cへの移動過程で、第1の座標軸の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動させる。このため、移動体の移動経路Rは、中間点Bにおいて滑らかな曲線となる。
このため、中間点Bで急激に減速させたり急激に再加速する必要がなく、移動時間の短縮が図れる。また、移動体3に加わる加速度ベクトルの絶対値を可能な限り小さくできて、搬送装置2の強度上の要求も少なくて済み、省エネルギの面でも優れたものとなる。
また、搬送装置2では、障害物の存在や、移動体3のレールや駆動源上の制限等で、移動可能な範囲が制限される場合がある。このような場合に、移動体3の移動が許容される許容ゾーンとして、上記第1の許容ゾーンZn1および第2の許容ゾーンZn2を設定することで、上記のような移動時間の短縮、加速度ベクトルの絶対値の最小化が可能な移動経路の生成が適切に、かつ簡単に行える。
According to the motion control apparatus having this configuration, the motion control unit 7 moves in the direction away from the target point C with respect to the direction of the second coordinate axis in the process of moving the moving body 3 from the starting point A to the intermediate point B. And then move in the direction approaching the target point C, and in the process of moving from the intermediate point B to the target point C, move in the direction away from the start point A with respect to the direction of the first coordinate axis and then in the direction approaching the target point C. Move. For this reason, the moving path R of the moving body is a smooth curve at the intermediate point B.
For this reason, it is not necessary to rapidly decelerate or re-accelerate suddenly at the intermediate point B, and the travel time can be shortened. In addition, the absolute value of the acceleration vector applied to the moving body 3 can be made as small as possible, and the strength requirement of the transport device 2 can be reduced, which is excellent in terms of energy saving.
Further, in the transport device 2, there are cases where the movable range is limited due to the presence of obstacles, limitations on the rails and driving sources of the moving body 3, and the like. In such a case, by setting the first permissible zone Zn1 and the second permissible zone Zn2 as permissible zones in which the movement of the mobile body 3 is permitted, the travel time can be shortened and the acceleration vector can be increased. It is possible to appropriately and easily generate a movement path that can minimize the absolute value of.

図5は、上記実施形態のモーション制御装置1が適用される搬送装置2の具体例の一つを示す。同図は、加工機20とガントリ形式の搬送装置2とを備える加工設備を示す。
加工機20は、タレット旋盤等の工作機械であり、ベッド21上の主軸台22に、主軸チャック23を有する主軸が設置され、主軸台22の側方に、タレットからなる刃物台24およびこの刃物台24を搭載した送り台25が設けられている。加工機20は、機体カバー26で覆われ、機体カバー26の天井板部26aに、主軸チャック23の上方に位置してシャッタ(図示せず)で開閉される天井開口27が設けられている。
FIG. 5 shows one specific example of the transport apparatus 2 to which the motion control apparatus 1 of the above embodiment is applied. The figure shows a processing facility provided with a processing machine 20 and a gantry-type transfer device 2.
The processing machine 20 is a machine tool such as a turret lathe. A spindle 22 having a spindle chuck 23 is installed on a spindle stock 22 on a bed 21. A feed base 25 on which a base 24 is mounted is provided. The processing machine 20 is covered with a machine body cover 26, and a ceiling plate 27 a of the machine body cover 26 is provided with a ceiling opening 27 that is located above the spindle chuck 23 and is opened and closed by a shutter (not shown).

搬送装置2は、加工機20の上方で水平に延びるレール28に走行体29を設置し、走行体29に、前後移動台30および昇降ロッド31を介して、ローダヘッド32が昇降可能に設けられている。ローダヘッド32は、ワークWを把持する複数のローダチャック32を有している。上記ローダヘッド32が、図1の例の移動体3である。また、走行体29に搭載されて走行板29を走行駆動する駆動源29aが図1のX駆動源であり、前後移動台30に搭載されてローダヘッド32を昇降駆動する駆動源32aが図1のY軸駆動源である。   In the conveying device 2, a traveling body 29 is installed on a rail 28 that extends horizontally above the processing machine 20, and a loader head 32 is provided on the traveling body 29 via a back-and-forth moving table 30 and a lifting rod 31. ing. The loader head 32 has a plurality of loader chucks 32 that grip the workpiece W. The loader head 32 is the moving body 3 in the example of FIG. A driving source 29a mounted on the traveling body 29 for driving the traveling plate 29 is the X driving source shown in FIG. 1, and a driving source 32a mounted on the front / rear moving table 30 for driving the loader head 32 up and down is shown in FIG. Y-axis drive source.

この加工設備では、ローダヘッド32が走行体29の走行により機体カバー26の上方で左右(X軸方向)に移動し、天井開口27から機内に上下方向(Y軸方向)に出入りして主軸チャック23に対するワークWの搬入,搬出を行う。上記ローダヘッド32の左右移動の始端が開始点A、天井開口27の通過位置が中間点B、主軸チャック23との対向位置が目標点Cである。この場合、例えば、機体カバー26の上面またはこの上面よりも任意の設定距離だけ高い位置から、ローダヘッド32の上昇ストローク端までが、前記第1の許容ゾーンZn1とされる。また、天井開口27の通過時にローダヘッド32の左右方向の位置ずれが許容される幅が、前記第2の許容ゾーンZn2とされる。
このようなガントリ形式の搬送装置2の場合に、この発明における前記各効果が効果的に発揮される。
In this processing equipment, the loader head 32 moves left and right (X-axis direction) above the machine body cover 26 as the traveling body 29 travels, and enters and exits the machine from the ceiling opening 27 in the vertical direction (Y-axis direction). The work W is carried into and out of the machine 23. A start point A of the left and right movement of the loader head 32 is a start point A, a passing position of the ceiling opening 27 is an intermediate point B, and a position facing the spindle chuck 23 is a target point C. In this case, for example, the first allowable zone Zn1 is from the upper surface of the body cover 26 or a position higher than the upper surface by an arbitrary set distance to the ascending stroke end of the loader head 32. Further, the width in which the lateral displacement of the loader head 32 is allowed when passing through the ceiling opening 27 is defined as the second allowable zone Zn2.
In the case of such a gantry type conveying apparatus 2, the above-described effects of the present invention are effectively exhibited.

図6は、上記実施形態のモーション制御装置1が適用される搬送装置2の他の具体例を示す。同図は、板材用の加工機40と搬送装置2とを備える加工設備を示す。
加工機40は、タレット式のパンチプレスからなり、テーブル41上の板材のワークWを前後(Y軸方向)および左右(X軸方向)に移動させる板材送り機構42、および加工位置PでワークWにパンチ加工を行うパンチ駆動機構43、並びにパンチ金型を支持するタレット44を備えている。この加工機40は、板材のワークWから複数の製品Waを切り取る加工が可能である。
FIG. 6 shows another specific example of the transport apparatus 2 to which the motion control apparatus 1 of the above embodiment is applied. The figure shows a processing facility provided with a processing machine 40 for plate material and a conveying device 2.
The processing machine 40 includes a turret punch press, and moves a plate material workpiece W on the table 41 back and forth (Y-axis direction) and left and right (X-axis direction). Are provided with a punch drive mechanism 43 for punching and a turret 44 for supporting a punch die. The processing machine 40 is capable of processing a plurality of products Wa from a workpiece W made of a plate material.

搬送装置2は、2本の前後レール45上を移動する前後移動台46に、左右方向に延びるレール47が設けられ、レール47に走行自在に設置された走行体48に板材把持具49が設けられている。この走行体48が図1の移動体3となる。板材把持具49は、板材Wや製品Waを吸着する真空吸着パッド(図示せず)等を複数設けたものである。走行体48は、走行駆動源48aを搭載しており、この走行駆動源48aが図1の例のX駆動源4となる。図6の前後移動台46は前後移動用駆動源46aを搭載しており、この前後移動用駆動源46aが、図1の例のY軸駆動源5となる。   In the transport device 2, a rail 47 extending in the left-right direction is provided on a front / rear moving table 46 that moves on two front / rear rails 45, and a plate material gripper 49 is provided on a traveling body 48 that is installed on the rail 47 so as to be able to run freely. It has been. The traveling body 48 becomes the moving body 3 in FIG. The plate material gripper 49 is provided with a plurality of vacuum suction pads (not shown) for sucking the plate material W and the product Wa. The traveling body 48 is equipped with a traveling drive source 48a, and this traveling drive source 48a is the X drive source 4 in the example of FIG. The back-and-forth moving table 46 in FIG. 6 is equipped with a back-and-forth moving drive source 46a, and this back-and-forth moving drive source 46a is the Y-axis drive source 5 in the example of FIG.

図6の搬送装置2では、搬出先が、2本の前後レール45間の第1搬出エリアEAと、前後レール45の外側にある第2搬出エリアEBとに、加工形態に応じて使い分けられる。第2搬出エリアEBに搬出するときは、第1搬出エリアEA上の搬出済み板材が障害物となるため、第1搬出エリアEAを避けて搬出する必要がある。   In the transport device 2 of FIG. 6, the carry-out destination is selectively used for the first carry-out area EA between the two front and rear rails 45 and the second carry-out area EB outside the front and rear rails 45 according to the processing form. When carrying out to the 2nd carrying out area EB, since the board | plate material already carried out on the 1st carrying out area EA becomes an obstruction, it is necessary to carry out avoiding the 1st carrying out area EA.

そこで、この搬送装置2では、第2搬出エリアEBへの搬出に、図1の実施形態のモーション制御装置1が適用される。この場合、加工機40上のパンチ位置Pの近傍である製品Waの把持位置が開始点Aとなり、開始点Aから第2搬出エリアEBまでX方向に移動した位置が中間点Bとなり、第2搬出エリアEBの中心が目標点Cとなる。
この構成の搬送装置2の場合にも、この発明における前記の各効果が効果的に発揮される。
Therefore, in the transport device 2, the motion control device 1 of the embodiment of FIG. 1 is applied to carry-out to the second carry-out area EB. In this case, the gripping position of the product Wa in the vicinity of the punch position P on the processing machine 40 is the start point A, and the position moved in the X direction from the start point A to the second unloading area EB is the intermediate point B. The center of the carry-out area EB is the target point C.
Also in the case of the transport apparatus 2 having this configuration, the above-described effects of the present invention are effectively exhibited.

この発明の一実施形態に係る搬送装置のモーション制御装置の概念構成を示すブロック図と、その移動体の移動経路とを示す説明図である。It is a block diagram which shows the conceptual structure of the motion control apparatus of the conveying apparatus which concerns on one Embodiment of this invention, and explanatory drawing which shows the movement path | route of the mobile body. 移動体のX方向の移動位置および速度曲線のグラフである。It is a graph of the moving position and speed curve of the X direction of a moving body. 移動体のY方向の移動位置および速度曲線のグラフである。It is a graph of the moving position and speed curve of a moving body in the Y direction. 図2と図3とを重ねたグラフである。FIG. 4 is a graph in which FIG. 2 and FIG. 3 are superimposed. 搬送装置の具体例を示す破断正面図である。It is a fracture | rupture front view which shows the specific example of a conveying apparatus. 搬送装置の他の具体例を示す平面図である。It is a top view which shows the other specific example of a conveying apparatus. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1…モーション制御装置
2…搬送装置
3…移動体
4,5…駆動源
6…基本制御部
7…モーション制御部
8…移動位置座標設定部
9…移動範囲条件設定部
10…能力条件設定部
11…経路演算手段
11a…演算規則
12…各軸駆動指令生成手段
20…加工機
26…機体カバー
27…天井開口
32…ローダヘッド(移動体)
40…加工機
46…前後移動台
48…走行体(移動体)
A…開始点
B…中間点
C…目標点
L1,L2…仮想直線
X…第1の座標軸
Y…第2の座標軸
Ym…Y軸方向最大行き過ぎ点
Xm…X軸方向最大行き過ぎ点
Zn1…第1の許容ゾーン
Zn2…第2の許容ゾーン
DESCRIPTION OF SYMBOLS 1 ... Motion control apparatus 2 ... Conveyance apparatus 3 ... Moving body 4, 5 ... Drive source 6 ... Basic control part 7 ... Motion control part 8 ... Movement position coordinate setting part 9 ... Movement range condition setting part 10 ... Ability condition setting part 11 ... path calculation means 11a ... calculation rules 12 ... each axis drive command generation means 20 ... processing machine 26 ... machine body cover 27 ... ceiling opening 32 ... loader head (moving body)
40 ... Processing machine 46 ... Previous moving table 48 ... Running body
A ... Start point B ... Intermediate point C ... Target point L1, L2 ... Virtual straight line X ... First coordinate axis Y ... Second coordinate axis Ym ... Y-axis direction maximum overshoot point Xm ... X-axis direction maximum overshoot point Zn1 ... First Tolerance zone Zn2 ... second tolerance zone

Claims (2)

第1の座標軸に沿う方向、および第1の座標軸に直交する第2の座標軸に沿う方向に移動可能な移動体、およびこの移動体を前記第1および第2の座標軸に沿う方向にそれぞれ移動させる各軸の駆動源を有する搬送装置において、前記各軸の駆動源を制御するモーション制御装置であって、
前記第1の座標軸および第2の座標軸で構成される直交座標系で、開始点Aから目標点Cまで、中間点Bを通過して前記移動体が移動するように、前記各軸の駆動源を制御するモーション制御部を備え、
前記開始点Aと中間点Bとを結ぶ仮想直線は前記第1の座標軸と平行で、かつ中間点Bと目標点Cとを結ぶ仮想直線は第2の座標軸と平行であって、前記開始点Aと目標点Cとは、互いに第1および第2の座標軸の座標位置が共に異なる位置であり、
前記モーション制御部は、前記移動体が、
第1の座標軸の方向に開始点Aから中間点Bへの移動を開始し、
開始点Aから中間点Bへの移動過程で、第2の座標軸の方向に関して目標点Cから離れる方向に移動した後に目標点Cに近づく方向に移動して中間点Bに到達し、中間点Bから目標点Cへの移動過程で、第1の座標軸の方向に関して開始点Aから離れる方向に移動した後に目標点Cに近づく方向に移動して目標点Cに到達する移動経路を採ることにより、開始点Aから中間点Bを通過し目標点Cへ至る移動時間が最短となるように、前記各軸の駆動源の制御を行うものとした、
搬送装置のモーション制御装置。
A movable body movable in a direction along the first coordinate axis and in a direction along a second coordinate axis orthogonal to the first coordinate axis, and the movable body is moved in a direction along the first and second coordinate axes, respectively. In a transport apparatus having a drive source for each axis, a motion control device for controlling the drive source for each axis,
A drive source for each axis such that the moving body moves through an intermediate point B from a start point A to a target point C in an orthogonal coordinate system composed of the first coordinate axis and the second coordinate axis. Equipped with a motion control unit to control
A virtual straight line connecting the starting point A and the intermediate point B is parallel to the first coordinate axis, and a virtual straight line connecting the intermediate point B and the target point C is parallel to the second coordinate axis, and the starting point A and the target point C are positions where the coordinate positions of the first and second coordinate axes are different from each other,
In the motion control unit, the moving body is
Start moving from the starting point A to the intermediate point B in the direction of the first coordinate axis;
In the process of moving from the starting point A to the intermediate point B, the second coordinate axis moves away from the target point C with respect to the direction of the second coordinate axis, and then moves in a direction approaching the target point C to reach the intermediate point B. In the process of moving from the target point C to the target point C, by moving in a direction away from the start point A with respect to the direction of the first coordinate axis, and moving in a direction approaching the target point C to reach the target point C, The drive source of each axis is controlled so that the movement time from the start point A through the intermediate point B to the target point C is the shortest.
Motion control device for transfer device.
前記モーション制御部は、前記移動体の移動が許容される許容ゾーンとして、開始点Aと中間点Bとを結ぶ仮想直線から目標点Cに対して第2の座標軸の方向に離れる設定幅の第1の許容ゾーンと、中間点Bと目標点Cとを結ぶ仮想直線から開始点Aに対して第1の座標軸の方向に離れる設定幅の第2の許容ゾーンとが設定され、これら第1および第2の許容ゾーンの範囲内で、前記移動経路を採るように、前記各軸の駆動源の制御を行うものとした請求項1記載の搬送装置のモーション制御装置。   The motion control unit, as an allowable zone in which the moving body is allowed to move, has a set width with a set width that is away from the virtual line connecting the start point A and the intermediate point B in the direction of the second coordinate axis with respect to the target point C. A first tolerance zone and a second tolerance zone having a setting width away from the virtual line connecting the intermediate point B and the target point C in the direction of the first coordinate axis with respect to the start point A are set. The motion control device for a transfer device according to claim 1, wherein the drive source of each axis is controlled so as to take the movement path within a range of a second permissible zone.
JP2008017041A 2008-01-29 2008-01-29 Motion control device of conveying device Pending JP2009181149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017041A JP2009181149A (en) 2008-01-29 2008-01-29 Motion control device of conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017041A JP2009181149A (en) 2008-01-29 2008-01-29 Motion control device of conveying device

Publications (1)

Publication Number Publication Date
JP2009181149A true JP2009181149A (en) 2009-08-13

Family

ID=41035120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017041A Pending JP2009181149A (en) 2008-01-29 2008-01-29 Motion control device of conveying device

Country Status (1)

Country Link
JP (1) JP2009181149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045641A (en) * 2010-08-24 2012-03-08 Sinfonia Technology Co Ltd Orbital information generating device of moving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142405A (en) * 1986-12-04 1988-06-14 Fujitsu Ltd System for controlling locus of robot
JPH06222820A (en) * 1993-01-26 1994-08-12 Fanuc Ltd Movable allowance area checking method for numerical controller
JP2004216504A (en) * 2003-01-15 2004-08-05 Murata Mach Ltd Loader control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142405A (en) * 1986-12-04 1988-06-14 Fujitsu Ltd System for controlling locus of robot
JPH06222820A (en) * 1993-01-26 1994-08-12 Fanuc Ltd Movable allowance area checking method for numerical controller
JP2004216504A (en) * 2003-01-15 2004-08-05 Murata Mach Ltd Loader control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045641A (en) * 2010-08-24 2012-03-08 Sinfonia Technology Co Ltd Orbital information generating device of moving device

Similar Documents

Publication Publication Date Title
WO2019056840A1 (en) Palletizing control device, system and method and storage medium
JP6082825B2 (en) Longitudinal sheet loading / unloading and cutting method and system
JP2015523224A (en) Stacking line system and blank stacking method output from blanking shear or blanking press
JP5844774B2 (en) Servo transfer feeder and control method of servo transfer feeder
JP2009237710A (en) Motion control device for conveyance device
WO2005121911A1 (en) Movement controller for controlling movement of mobile body of machine tool, machine tool provided with movement controller and mobile body moving method
JP2009181149A (en) Motion control device of conveying device
CN107073717B (en) Conveying system and control method thereof
CN102729058A (en) Exchange workstation and control method as well as machine tool
JP2003290851A (en) Workpiece transporting device for press
JP2011079016A (en) Laser beam machining apparatus and laser beam machining method
US20180173190A1 (en) Numerical controller
WO2010035650A1 (en) Method for setting operation condition of press line
JP6154509B2 (en) Work transfer device
JP4407083B2 (en) Command value generation method and command value generation system
JP4542862B2 (en) Drive command generation device for work transfer device
CN211218695U (en) Full-automatic processing production system of wheel hub class
JP2001192103A (en) Automatic crane cargo handling device
JPH0773756B2 (en) Transfer feeder
WO1997044149A1 (en) Work feeder control apparatus
CN114080295A (en) Method for conveying workpiece parts
KR20040057720A (en) Development of High Performance Anti-Swing Control Method for an Overhead Crane
JPH11104899A (en) Suppression and controller for vibration of press transfer feeder and its control method
JPH02180573A (en) Control method for work transfer robot
CN110421400A (en) A kind of method of numerically-controlled machine tool anticollision control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113